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A CONSTRUCTION PRINCIPLE
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Abstract. Proper scoring rules enable decision-theoretically principled com-
parisons of probabilistic forecasts. New scoring rules can be constructed by
identifying the predictive distribution with an element of a parametric family
and then applying a known scoring rule. We introduce a condition which en-
sures propriety in this construction and thereby obtain novel proper scoring
rules.

1. Introduction

In order to account for the inherent uncertainty of future quantities or events, it
is preferable to issue forecasts in the form of probability distributions [6]. One way
to measure the predictive ability of such probabilistic forecasts is to assign a score,
or loss, S(F, y) to each pair of forecast distribution F ∈ F and observation y ∈ O.
In this setting O is a topological space with Borel σ-algebra O and F is a class of
probability distributions on (O,O). A scoring rule is a function S : F × O → R̄

such that for all F,G ∈ F the expectation

EGS(F, Y ) =

∫
O

S(F, y) dG(y)

is well defined. Here we let R̄ := [−∞,∞] be the extended real line. The scoring
rule S is proper relative to F if

EGS(G, Y ) ≤ EGS(F, Y )

for all F,G ∈ F . It is strictly proper if equality holds if and only if F = G. If a
forecaster believes that the quantity y is drawn from the distribution G and receives
a penalty S(F, y) for reporting F , then propriety ensures that reporting her true
belief F = G is an optimal strategy in expectation. For recent reviews of the theory
and application of proper scoring rules we refer to [2], [7], and [3].

Various proper scoring rules have been proposed in the literature, in particular
for the special situation where each member of F admits a density with respect to
some σ-finite measure on (O,O). The logarithmic score [8] is defined via

LogS(f, y) := − log f(y),

where f denotes the probability density function of F . It is the most popular
strictly proper scoring rule for densities since it connects to various fundamental
statistical concepts, such as maximum-likelihood estimation, information criteria,
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and Bayes factors [7]. For O = R
d a popular scoring rule which depends on the

first two moments only is the Dawid-Sebastiani (DS) score [4]. If F is a class of
distributions with finite second moments, then it is given by

DSS(F, y) := log detΣF + (y − μF )
�Σ−1

F (y − μF ),

where μF and ΣF denote the mean and the covariance matrix of the predictive
distribution F . The DS score is proper, but not strictly proper, as distributions
with the same first and second moments attain the same score.

This work is motivated by the fact that, up to unimportant constants, the DS
score of F equals the logarithmic score of a multivariate normal distribution with
the same mean and covariance matrix as F . More precisely,

DSS(F, y) = −2 log (ϕ(y | μF ,ΣF ))− d log(2π)

= 2LogS (ϕ(· | μF ,ΣF ), y)− d log(2π),

where ϕ(· | μ,Σ) denotes the density of the multivariate normal distribution with
mean μ and covariance matrix Σ. This connection raises the question, under which
conditions we obtain a proper scoring rule by identifying the predictive distribu-
tion F with an element of a parametric family (e.g. the normal distributions) and
then applying another proper scoring rule (e.g. the logarithmic score). The Sec-
tion 2 gives a simple condition which ensures propriety in this construction and
is restricted to neither the normal family nor the logarithmic score. The paper
concludes with several examples which yield new proper scoring rules and recover
existing ones.

2. Construction principle

Let E := {Fθ | θ ∈ Θ} ⊆ F be a parametric family of distributions with param-
eter space Θ. Let φ : F → E , F �→ Fθ be a mapping onto E and write θF for the
parameter θ in φ(F ) = Fθ.

Theorem 2.1. Let S : F × O → R̄ be a proper scoring rule and φ : F → E . If
there is a function H : O → R which is integrable with respect to all F ∈ F and
such that for all F,G ∈ F

EGS(φ(F ), Y ) + EGH(Y ) = Eφ(G)S(φ(F ), Y ) + Eφ(G)H(Y ),(2.1)

then the scoring rule

S∗(F, y) = S(φ(F ), y) = S(FθF , y)

is proper.

Proof. For F,G ∈ F invoke Equation (2.1) two times to obtain

EGS
∗(F, Y ) = EGS(φ(F ), Y ) = Eφ(G)S(φ(F ), Y ) + Eφ(G)H(Y )− EGH(Y )

≥ Eφ(G)S(φ(G), Y ) + Eφ(G)H(Y )− EGH(Y )

= EGS(φ(G), Y ) = EGS
∗(G, Y ),

where the inequality stems from the propriety of S. �

Strict propriety in Theorem 2.1 is only possible for special choices of E and φ,
which render the mapping φ a bijection, since otherwise two different distributions
can attain the same score.
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Exponential families are natural and flexible candidates for distributional classes
in statistics. We call a set of densities {f(· | θ) | θ ∈ Θ} on O an exponential family
if any member can be represented via

f(y | θ) = h(y) exp
(
η(θ)�t(y)−A(θ)

)

for measurable functions h : O → (0,∞), t : O → R
m, η : Θ → R

m, and A : Θ → R,
where m ∈ N. The mapping A is often called log-partition function and t is a
sufficient statistic for the parameter θ; see [1] for details.

When the scoring rule S in Theorem 2.1 is the logarithmic score, exponential
families are convenient candidates for the class E . In detail, let E be an exponential
family on O and set H(y) := log h(y), then Equation (2.1) holds if

EGt(Y ) = Eφ(G)t(Y ),(2.2)

i.e. if the expectations of t agree. Since φ(G) is a member of the exponential family
E , the right-hand side of (2.2) can be calculated and expressed in terms of θ ∈ Θ via
the partial derivatives of the log-partition function A. If a closed-form expression
exists, this yields sufficient conditions on the mapping φ : F → E for (2.1) to hold;
see Section 3 for concrete examples.

Another possible choice for S in Theorem 2.1 which fits well with exponential
families is the Hyvärinen score [9]. Let O = R

d and let ∇ denote the gradient and
Δ the Laplace operator. Define L∗ as the class of densities on O which are twice
differentiable, positive almost everywhere, and such that ∇ log(f(y))g(y) → 0 as
‖y‖ → ∞ for all f, g ∈ L∗. Then the Hyvärinen score is given by

HyvS(f, y) := Δ log f(y) +
1

2
‖∇ log f(y)‖2

and it is a strictly proper scoring rule relative to L∗ if its expectation is finite.
The Hyvärinen score has the remarkable property that it is 0-homogeneous, i.e.
to compute HyvS(f, y) the predictive density f needs to be specified up to the
normalization constant only; see [9], [10], and [5] for details.

To connect to Theorem 2.1 assume for simplicity that E is an exponential family
of distributions on O = R

d where the function h is constant and all densities satisfy
the regularity conditions of the class L∗. If we define Wθ(y) := η(θ)�t(y), then the
Hyvärinen score on E is completely determined by

ΔWθ(y) =

m∑
i=1

ηi(θ)Δti(y) and ∇Wθ(y) =

m∑
i=1

ηi(θ)∇ti(y),

where the index i denotes the i-th component of a vector in R
m. As a consequence,

we can set H = 0 and Equation (2.1) holds if the derivatives of t satisfy

EGΔti(Y ) = Eφ(G)Δti(Y ),(2.3)

EG

[
∇ti(Y )�∇tj(Y )

]
= Eφ(G)

[
∇ti(Y )�∇tj(Y )

]
,(2.4)

for i, j = 1, . . . ,m, givingm+m(m+1)/2 identities. Similar to (2.2) these equations
provide sufficient conditions for (2.1) to hold, which can be used to define a suitable
mapping φ : F → E in Theorem 2.1; see Example 3.4.
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3. Examples

Example 3.1 (Normal family). Let E consist of the multivariate normal distribu-
tions with parameter θ = (μ,Σ), where μ is the mean and Σ the covariance matrix.
The exponential family representation of E implies t(y) = (y, yy�). If S is the
logarithmic score, then a mapping φ can be determined via (2.2). This yields

(EGY,EGY Y �) = EGt(Y ) = Eφ(G)t(Y ) = (μG,ΣG + μGμ
�
G),

such that θF = (EFY,CovF (Y )) has to be computed from a predictive distribution
F ∈ F . The resulting scoring function

S∗(F, y) =
1

2

(
log detΣF + d log(2π) + (y − μF )

�Σ−1
F (y − μF )

)
is proper by Theorem 2.1 and an affine transformation of the DS score, as discussed
in Section 1.

Example 3.2 (Laplace family). Let E be the class of centered Laplace distri-
butions with scale parameter ν > 0. Its members have densities f(y | ν) =
(2ν)−1 exp(−|y|/ν), thus it forms an exponential family with t(y) = |y|. In this
situation, (2.2) becomes

EG|Y | = EGt(Y ) = Eφ(G)t(Y ) = Eφ(G)|Y | = νG,

such that θF = EF |Y | is computed from the predictive distribution. Theorem 2.1
implies that the scoring rule

S∗(F, y) = log(2νF ) +
|y|
νF

,

where νF = EF |Y | is proper. A natural question is whether it is possible to transfer
these arguments to the general class of Laplace distributions with parameters (μ, ν),
i.e. to the situation of a non-constant location parameter μ ∈ R. In this case, (2.1)
reads

EG

[
|Y − μF |

νF
+H(Y )

]
= Eφ(G)

[
|Y − μF |

νF
+H(Y )

]
,

with θF = (μF , νF ). Since the random variable Y and the parameter μF cannot be
separated, it is not clear how to obtain a mapping φ which satisfies this identity
for all F,G ∈ F if F is sufficiently large. Consequently, it is not obvious whether
Theorem 2.1 can be applied to the logarithmic score in concert with the general
Laplace family.

Example 3.3 (Poisson family). Let O = N and E be the class of Poisson distribu-
tions with parameter λ > 0. The exponential family representation implies t(y) = y
and (2.2) becomes

EGY = EGt(Y ) = Eφ(G)t(Y ) = Eφ(G)Y = λG,

hence θF = EFY gives a suitable mapping φ. By Theorem 2.1 the resulting scoring
rule

S∗(F, y) = −y log(λF ) + λF + log(y!),

where λF is the expectation of F , is proper.
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Example 3.4 (Normal family, continued). Let E be as in Example 3.1. If S is
the Hyvärinen score, the conditions in (2.3) and (2.4) simplify to equations which
contain the moments EGYi and mixed moments EGYiYj for i, j = 1, . . . , d, only.
Hence, the mapping φ of Example 3.1, which is given by the parameter choice
θF = (EFY,CovF (Y )), satisfies these conditions. As a result we obtain a Dawid-
Sebastiani type scoring rule given by

S∗(F, y) = −2 trΣ−1
F + ‖Σ−1

F (y − μF )‖2 = −2 trΣ−1
F + (y − μF )

�Σ−2
F (y − μF ),

which is proper by Theorem 2.1. It already appears in [9, Section 3.1] in the context
of score matching, however, our derivation establishes propriety in wide generality,
not only relative to the normal family.
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