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Abstract. The quasilinear elliptic equation with a Hardy potential

div(|x|α|∇u|p−2∇u) +
μ

|x|p−α
|u|p−2u = 0 in RN − {0}

is considered, where N ∈ N, p > 1 and α ∈ R, μ ∈ R− {0}. In this note, the
asymptotic behaviors of radial solutions are obtained divided into three case
μ < |(N − p + α)/p|p, μ = |(N − p + α)/p|p and μ > |(N − p + α)/p|p. This
equation also appears as the Euler-Lagrange equation related to the weighted
Hardy inequality

∫
Ω
|∇u(x)|p|x|αdx ≥

∣∣∣∣∣
N − p+ α

p

∣∣∣∣∣
p ∫

Ω
|u(x)|p|x|α−pdx

for u ∈ C∞
c (RN ) and N − p+ α �= 0, where Ω is a domain of RN .

The rectifiability of oscillatory solutions to the ordinary differential equa-
tion with one-dimensional p-Laplacian is also studied, and an answer to an
open problem is given.

1. Introduction

We consider the quasilinear elliptic equation with a Hardy potential

(1.1) div(|x|α|∇u|p−2∇u) +
μ

|x|p−α
|u|p−2u = 0 in RN − {0},

where N ∈ N, p > 1 and α ∈ R, μ ∈ R− {0}. Radial solutions of (1.1) satisfy

(1.2) (φp(u
′))′ +

N − 1 + α

r
φp(u

′) +
μ

rp
φp(u) = 0, r > 0,

where φp(t) := |t|p−2t for t ∈ R. When p = 2, equation (1.1) is reduced to the
linear equation

(1.3) div(|x|α∇u) +
μ

|x|2−α
u = 0, in RN − {0},

and we know two fundamental solutions of (1.3), because the radial version of (1.3)
is an Euler differential equation

(1.4) u′′ +
N − 1 + α

r
u′ +

μ

r2
u = 0, r > 0.
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The characteristic equation of (1.4)

(1.5) λ2 + (N − 2 + α)λ+ μ = 0

has two roots

λ =
−(N − 2 + α)±

√
(N − 2 + α)2 − 4μ

2
.

Then we have exact solutions of (1.4) as follows:

(i) if μ > (N − 2 + α)2/4, then

u(r) = C1r
−N−2+α

2 sin

(√
4μ− (N − 2 + α)2

2
log r

)

+ C2r
−N−2+α

2 cos

(√
4μ− (N − 2 + α)2

2
log r

)
;

(ii) if μ = (N − 2 + α)2/4, then

u(r) = C1t
−N−2+α

2 + C2t
−N−2+α

2 log r;

(iii) if μ < (N − 2 + α)2/4, then

u(r) = C1r
−(N−2+α)−

√
(N−2+α)2−4μ
2 + C2r

−(N−2+α)+
√

(N−2+α)2−4μ
2 .

Here, C1 and C2 are arbitrary constants.
On the other hand, all solutions of (1.2) cannot be expressed as exact solutions.

In this note, we give the asymptotic behavior of solutions to (1.2). First we note
that the global existence and uniqueness result holds for equation (1.2), which will
be shown in Section 2.

Proposition 1.1. For each u0, u1 ∈ R and r0 > 0, the initial value problem (1.2)
with

(1.6) u(r0) = u0, u′(r0) = u1

has a unique solution on (0,∞).

The main results in this note are as follows.

Theorem 1.1. Assume that μ > |(N − p + α)/p|p. Then, for each nontrivial
solution u(r) of (1.2), there exist sign-changing periodic functions C, S with some
period L > 0 such that

u(r) = r−
N−p+α

p C(log r), u′(r) = r−
N−p+α

p −1S(log r), r > 0.

Theorem 1.2. Assume that μ = |(N−p+α)/p|p. Let u(r) be a nontrivial solution
of (1.2) and let r0 > 0. Then the following (i) and (ii) hold :

(i) If r0u
′(r0) = −((N − p+ α)/p)u(r0), then

u(r) = u(r0)r
N−p+α

p

0 r−
N−p+α

p , r > 0;

(ii) If r0u
′(r0) �= −((N −p+α)/p)u(r0), then there exist constants c1 �= 0 and

c2 �= 0 such that

(1.7) lim
r→∞

u(r)

(log r)
2
p r−

N−p+α
p

= c1, lim
r→∞

u′(r)

(log r)
2
p
(
r−

N−p+α
p

)′ = c1
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and

(1.8) lim
r→0+

u(r)

(− log r)
2
p r−

N−p+α
p

= c2, lim
r→0+

u′(r)

(− log r)
2
p
(
r−

N−p+α
p

)′ = c2.

Theorem 1.3. Assume that μ < |(N−p+α)/p|p. Let u(r) be a nontrivial solution
of (1.2) and let r0 > 0. Then the equation

(1.9) (p− 1)|λ|p + (N − p+ α)|λ|p−2λ+ μ = 0

has exactly two real roots λ1, λ2 with λ1 < λ2 and the following (i) and (ii) hold :

(i) If r0u
′(r0) = λiu(r0) for some i ∈ {1, 2}, then

u(r) = u(r0)r
−λi
0 rλi , r > 0;

(ii) If r0u
′(r0) �= −((N − p + α)/p)u(r0) for each i ∈ {1, 2}, then there exist

constants c1 �= 0 and c2 �= 0 such that

(1.10) lim
r→∞

u(r)

rλ2
= c1, lim

r→∞

u′(r)

(rλ2)′
= c1

and

(1.11) lim
r→0+

u(r)

rλ1
= c2, lim

r→0+

u′(r)

(rλ1)′
= c2.

Moreover, the following (a)–(c) hold :

(a) if μ < 0, then λ1 < 0 < λ2;
(b) if μ > 0 and N − p+ α > 0, then λ1 < λ2 < 0;
(c) if μ > 0 and N − p+ α < 0, then 0 < λ1 < λ2.

Elliptic partial differential equations involving the operator

Δpu+
μ

|x|p |u|
p−2u

have been studied by many authors, where Δpu = div(|∇u|p−2∇u) is the p-
Laplacian. See, for example, [2, 5–7, 9, 11, 13].

The number |(N−p+α)/p|p appearing in Theorems 1.1–1.3 is the best constant
of the weighted Hardy inequality

(1.12)

∫
Ω

|∇u(x)|p|x|αdx ≥
∣∣∣∣∣N − p+ α

p

∣∣∣∣∣
p ∫

Ω

|u(x)|p|x|α−pdx

for u ∈ C∞
c (RN ) and N −p+α �= 0, where Ω is a domain of RN . See, for example,

Abdellaoui, Colorado and Peral [1] and Horiuchi and Kumlin [8]. Equation (1.1)
with μ = |(N − p+ α)/p|p is the corresponding Euler-Lagrange equation for (1.12)

and |x|−
N−p+α

p is a solution. (This solution is also obtained in Theorem 1.2 (i).)
When p = 2, equation (1.9) is reduced to (1.5). The number ((N−2+α)/2)2−μ

is the discriminant of (1.5), that is, its sign determines properties of the roots of
(1.5). The number |(N − p + α)/p|p − μ plays a similar role for (1.9). Indeed, by
[10, Proposition 1.3], we have the following: if |(N − p+α)/p|p − μ < 0, then (1.9)
has no real root; if |(N − p + α)/p|p − μ = 0, then (1.9) has a unique real root
λ = (N − p+α)/p; if |(N − p+α)/p|p −μ > 0, then (1.9) has exact two real roots.
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Equation (1.9) with α = 0 appeared in the paper by Abdellaoui, Felli and Peral [2]
and they studied the asymptotic behavior of radial solutions to

Δpu+
λ

|x|p u
p−1 + u

Np
N−p−1 = 0.

See, also, Xiang [13].
The asymptotic behavior of solutions to equation

(1.13) (φp(x
′))′ +

μ

tp
φp(x) = 0,

which is (1.2) with N − 1 + α = 0, has been investigated by Elbert [4] and Došlý
and Řehák [3].

Now let u(r) be a solution of (1.2). We set

x(t) := u(et).

Then

(φp(x
′))′ + (N − p+ α)φp(x

′) + μφp(x) = 0.

Moreover we set

y(t) := φp(x
′(t)) = φp(e

tu′(et)).

Then we obtain

(1.14)

{
x′ = φp∗(y),

y′ = −μφp(x)− (N − p+ α)y,

where p∗ is a positive number satisfying (1/p)+(1/p∗) = 1 and we note that p∗ > 1
and φp∗ is the inverse function of φp. The asymptotic behavior of solutions to the
following system

(1.15)

{
x′ = ax+ bφp∗(y)

y′ = cφp(x) + dy

has been studied in [10], where a, b, c, d ∈ R. Applying their results, we can obtain
Proposition 1.1 and Theorems 1.1–1.3, which will be shown in Section 2.

In Section 3, we study the rectifiability of oscillatory solutions to

(φp(y
′))′ +

a

x
φp(u

′) +
b

xσ
φp(u) = 0, x > 0,

where p > 1, a, σ ∈ R and b > 0. Equation (3.1) can possess nontrivial solutions
having infinitely many zeros near x = 0. We divide the length of the curve of such
a solution into finite and infinite. The case where a = 0, σ = p and b > ((p−1)/p)p

still remains an open problem. Applying Theorem 1.1, we will give its answer in
Section 3.

2. Proofs of main results

In this section we give proofs of main results. To this end, we use the follow-
ing Proposition A, Theorems A, B and C obtained in [10], Proposition 1.1 and
Theorems 1.1–1.3. We use the following notation:

T = a+ d, D = φp(a)d− φp(b)c, Δ =

∣∣∣∣ ap∗ − d

p

∣∣∣∣
p

+ φp(b)c,

C(λ) = {(x, y) : (a− λ)x+ bφp∗(y) = 0}.
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Proposition A. For each (t0, x0, y0) ∈ R3, the initial value problem (1.15) with

(2.1) x(t0) = x0, y(t0) = y0

has a unique solution on R.

Theorem A. Let (x(t), y(t)) be a solution of (1.15) with (2.1) and let (x0, y0) �=
(0, 0). Assume that Δ < 0. Then (x(t), y(t)) is rotating infinitely around the origin
in a clockwise [respectively counter-clockwise] direction as t → ∞ when b > 0
[respectively b < 0], and

e−
T
p tx(t) and e−

T
p∗ ty(t)

are periodic with period L for some constant L > 0, which depends on only a, b, c,
d and p.

Theorem B. Let (x(t), y(t)) be a solution of (1.15) with (2.1) and let (x0, y0) �=
(0, 0). Assume that Δ = 0 and bc �= 0. Then the following (i) and (ii) hold :

(i) if (x0, y0) ∈ C(T/p), then

(x(t), y(t)) = (x0e
T
p (t−t0), y0e

T
p∗ (t−t0)) ∈ C(T/p), t ∈ R;

(ii) if (x0, y0) �∈ C(T/p), then (x(t), y(t)) �∈ C(T/p) for t ∈ R and

lim
t→∞

(t−
2
p e−

T
p tx(t), t−

2
p∗ e−

T
p∗ ty(t)) = (x1, y1)

for some (x1, y1) ∈ C(T/p) with x1 �= 0.

Theorem C. Let (x(t), y(t)) be a solution of (1.15) with (2.1) and let (x0, y0) �=
(0, 0). Assume that Δ > 0 and bc �= 0. Then the equation

(2.2) φp(λ− a)[(p− 1)λ− d]− φp(b)c = 0

has exact two real roots λ = λ1, λ2 with λ1 < λ2, and the following (i) and (ii)
hold :

(i) if (x0, y0) ∈ C(λi) for some i ∈ {1, 2}, then

(x(t), y(t)) = (x0e
λi(t−t0), y0e

λi(p−1)(t−t0)) ∈ C(λi), t ∈ R;

(ii) if (x0, y0) �∈ C(λ1) ∪ C(λ2), then (x(t), y(t)) �∈ C(λ1) ∪ C(λ2) for t ∈ R
and

lim
t→∞

(e−λ2tx(t), e−λ2(p−1)ty(t)) = (x1, y1)

for some (x1, y1) ∈ C(λ2) with x1 �= 0.

Hereafter u(r) is a nontrivial solution of (1.2). Then (x(t), y(t)) =
(u(et), φp(e

tu′(et))) is a nontrivial solution of (1.14). Applying Proposition A,
we obtain Proposition 1.1 immediately.

When a = 0, b = 1, c = −μ and d = −(N −p+α), system (1.15) becomes (1.14)
and we have

T = −(N − p+ α), D = μ, Δ =

∣∣∣∣N − p+ α

p

∣∣∣∣
p

− μ,

and

C(λ) = {(x, y) : −λx+ φp∗(y) = 0}.
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Now we prove Theorem 1.1. Assume that μ > |(N − p + α)/p|p. Then Δ < 0.
Theorem A implies that

C(t) := e
N−p+α

p tx(t) and S(t) := φp∗

(
e

N−p+α
p∗ ty(t)

)
are sign-changing periodic functions with some period L > 0. Since (x(t), y(t)) =
(u(et), φp(e

tu′(et))), we conclude that

u(r) = r−
N−p+α

p C(log r) and u′(r) = r−
N−p+α

p −1S(log r).

Consequently, we obtain Theorem 1.1.
Next we give a proof of Theorem 1.2. Assume that μ = |(N − p+ α)/p|p. Then

Δ = 0. Let t0 = log r0. From Theorem B it follows that the following (i) and (ii)
hold: (i) if ((N − p+ α)/p)x(t0) + φp∗(y(t0)) = 0, then

x(t) = x(t0)e
−N−p+α

p (t−t0), t ∈ R;

(ii) if ((N − p+ α)/p)x(t0) + φp∗(y(t0)) �= 0, then

(2.3) lim
t→∞

(
t−

2
p e

N−p+α
p tx(t), t−

2
p∗ e

N−p+α
p∗ ty(t)

)
= (c1, d1)

for some (c1, d1) with ((N − p+ α)/p)c1 + φp∗(d1) = 0 and c1 �= 0. Recalling that
(x(t), y(t)) = (u(et), φp(e

tu′(et))), we find that ((N − p+α)/p)x(t0)+φp∗(y(t0)) =
0 is equivalent to r0u

′(r0) = −((N − p + α)/p)u(r0) and then we obtain (i) of
Theorem 1.2. Now we suppose that r0u

′(r0) �= −((N − p + α)/p)u(r0). Then
((N − p + α)/p)x(t0) + φp∗(y(t0)) �= 0 and by (2.3) we obtain (1.7). Next we set
(X(s), Y (s)) = (x(−s),−y(−s)). Then (X(s), Y (s)) is a nontrivial solution of

(2.4)

{
X ′ = φp∗(Y ),

Y ′ = −μφp(X) + (N − p+ α)Y.

We note that system (2.4) is system (1.14) replacing (N −p+α) with −(N −p+α)
and find that (−(N − p + α)/p)X(s0) + φp∗(Y (s0)) �= 0 with s0 = −t0. Hence we
can apply Theorem B to (2.4) and then

(2.5) lim
s→∞

(
s−

2
p e

−(N−p+α)
p sX(s), s−

2
p∗ e

−(N−p+α)
p∗ sY (s)

)
= (c2, d2)

for some (c2, d2) with (−(N − p + α)/p)c2 + φp∗(d2) = 0 and c2 �= 0. Since
(X(s), Y (s)) = (u(e−s),−φp(e

−su′(e−s))), we obtain (1.8). The proof of Theorem
1.2 is complete.

Finally we suppose that μ < |(N − p + α)/p|p. Then Δ > 0. Let t0 = log r0.
Theorem C implies that (1.9) has exact two real roots λ = λ1, λ2 with λ1 < λ2,
and the following (i) and (ii) hold:

(i) if λix(t0) = φp∗(y(t0)) for some i ∈ {1, 2}, then

x(t) = x(t0)e
λi(t−t0), t ∈ R;

(ii) if λix(t0) �= φp∗(y(t0)) for each i ∈ {1, 2}, then

(2.6) lim
t→∞

(e−λ2tx(t), e−λ2(p−1)ty(t)) = (c1, d1)

for some (c1, d1) with λ2c1 = φp∗(d1) and c1 �= 0.
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By (x(t), y(t)) = (u(et), φp(e
tu′(et))), we see that λix(t0) = φp∗(y(t0)) is equivalent

to r0u
′(r0) = λiu(r0). Therefore, (i) of Theorem 1.3 holds. Next we assume that

r0u
′(r0) �= λiu(r0) for each i ∈ {1, 2}. Then λix(t0) �= φp∗(y(t0)) and hence

(2.6) holds for some (c1, d1) with λ2c1 = φp∗(d1) and c1 �= 0, which implies that
(1.10) holds. Now we set (X(s), Y (s)) = (x(−s),−y(−s)). Then (X(s), Y (s)) is a
nontrivial solution of (2.4) and satisfies λiX(s0) + φp∗(Y (s0)) �= 0 with s0 = −t0.
Moreover, λ = −λ2, −λ1 are real solutions of

(p− 1)|λ|p + (−(N − p+ α))|λ|p−2λ+ μ = 0

and −λ2 < −λ1. Consequently, Theorem C implies that

lim
s→∞

(eλ1sX(s), eλ1(p−1)sY (s)) = (c2, d2)

for some (c2, d2) with λ1c2+φp∗(d2) = 0 and c2 �= 0, which means that (1.11) holds.
Proposition 1.3 in [10] implies (a)–(c) in Theorem 1.3 immediately. The proof of
Theorem 1.3 is complete.

3. Rectifiability of solutions

In this section, we consider the rectifiability of oscillatory solutions to

(3.1) (φp(y
′))′ +

a

x
φp(u

′) +
b

xσ
φp(u) = 0, x > 0,

where p > 1, a, σ ∈ R and b > 0. A solution y of (3.1) is said to be oscillatory
near x = 0 if there exists {xn}∞n=1 such that y(xn) = 0 for n ∈ N and xn → 0 as
n → ∞. Otherwise, it is said to be nonoscillatory near x = 0. A solution y of (3.1)
is said to be rectifiable [resp. nonrectifiable] oscillatory near x = 0 if y is oscillatory
near x = 0 and the length of the graph of y on (0, 1] is finite [resp. infinite], that is,∫ 1

0

√
1 + |y′(x)|2dx < ∞ [resp. = ∞].

On the oscillatory of solutions to equation (3.1) with a = 0

(3.2) (φp(y
′))′ +

b

tσ
φp(x) = 0, x > 0,

we have the following result. (See, for example, [3].)

Theorem D. Every nontrivial solution of (3.2) is nonoscillatory near x = 0 if
one of the following (i)–(iii) holds :

(i) σ > p;
(ii) σ = p and b ≤ ((p− 1)/p)p.

Every nontrivial solution of (3.2) is oscillatory near x = 0 if one of the following
(i)–(iii) holds :

(i) σ < p;
(ii) σ = p and b > ((p− 1)/p)p.

On the rectifiability of oscillatory solutions to (3.2), Pašić and Wong [12] estab-
lished the following result.

Theorem E. If p < σ < p2, then every nontrivial solution of (3.2) is rectifi-
able oscillatory near x = 0. If σ ≥ p2, then every nontrivial solution of (3.2) is
nonrectifiable oscillatory near x = 0.
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For the case where σ = p and b > ((p − 1)/p)p, Theorem D implies that every
nontrivial solution of (3.2) is oscillatory near x = 0, but its rectifiability is open, and
it is natural to expect that every nontrivial solution of (3.2) is rectifiable oscillatory
near x = 0 in view of Theorem E. By the following result, we conclude that it is
true.

Theorem 3.1. labelthm3.1 Assume b > |(p − 1 − a)/p|p and σ = p. Then the
following (i) and (ii) hold :

(i) if a < p−1, then every nontrivial solution of (3.1) is rectifiable oscillatory
near x = 0;

(ii) if a ≥ p− 1, then every nontrivial solution of (3.1) is nonrectifiable oscil-
latory near x = 0.

Proof. Let y(x) be a nontrivial solution of (3.1). We note that equation (3.1) is
equation (1.2) with σ = p, α = a − N + 1 and μ = b. From Theorem 1.1, there
exist sign-changing periodic functions C, S with some period L > 0 such that

y(x) = x
p−1−a

p C(log x), y′(x) = x
p−1−a

p −1S(log x), x > 0.

Hence, y(x) is oscillatory near x = 0.
First we assume that a < p − 1. Since |S(t)| ≤ M for t ∈ R for some M > 0,

using the inequality
√
1 + x2 ≤ 1 + |x|, we conclude that∫ 1

0

√
1 + |y′(x)|2dx ≤

∫ 1

0

(1 + |y′(x)|)dx

= 1 +

∫ 1

0

∣∣∣∣x p−1−a
p −1S(log x)

∣∣∣∣dx
≤ 1 +M

∫ 1

0

x
p−1−a

p −1dx

= 1 +
Mp

p− 1− a
.

Therefore, y(x) is rectifiable oscillatory near x = 0.
Now we suppose that a ≥ p − 1. Recalling S is a periodic function with the

period L > 0, we find that∫ −(m−1)L

−mL

|S(t)|dt =
∫ L

0

|S(t)|dt > 0, m ∈ N.

Hence, we observe that, for n ∈ N,∫ 1

e−nL

√
1 + |y′(x)|2dx ≥

∫ 1

e−nL

|y′(x)|dx =

∫ 1

e−nL

∣∣∣∣x p−1−a
p −1S(log x)

∣∣∣∣dx
≥

∫ 1

e−nL

x−1|S(log x)|dx

=

∫ 0

−nL

|S(t)|dt

= n

∫ L

0

|S(t)|dt,
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which implies that

lim
n→∞

∫ 1

e−nL

√
1 + |y′(x)|2dx = ∞.

Consequently, y(x) is nonrectifiable oscillatory near x = 0. �
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