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REDUCTION OF QUAD-EQUATIONS CONSISTENT AROUND A

CUBOCTAHEDRON I: ADDITIVE CASE

NALINI JOSHI AND NOBUTAKA NAKAZONO

(Communicated by Mourad Ismail)

Abstract. In this paper, we consider a reduction of a new system of partial
difference equations, which was obtained in our previous paper [Classification

of quad-equations on a cuboctahedron, arXiv:1906:06650, 2019] and shown to
be consistent around a cuboctahedron. We show that this system reduces to

A
(1)∗
2 -type discrete Painlevé equations by considering a periodic reduction of

a three-dimensional lattice constructed from overlapping cuboctahedra.

1. Introduction

In this paper, we consider a system of partial difference equations (PΔEs) gov-
erning a function u = u(l) taking values on the vertices of a face-centered cubic
lattice Ω, given by

(1.1) Ω =

{
l =

3∑
i=1

liεi

∣∣∣∣∣ li ∈ Z, l1 + l2 + l3 ∈ 2Z

}
,

where {ε1, ε2, ε3} is a standard basis of R3. The system consists of 6 equations:
(1.2)

uik

uik

=
(αij + γi)ujk − (αij + γj − γk)ujk

(αij − γj + γk)ujk − (αij − γi)ujk

,
ujk

ujk

=
(αij + γi)uik − (αij − γj + γk)uik

(αij + γj − γk)uik − (αij − γi)uik

,

where (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2), and the bars ī and j denote l → l + εi
and l → l− εj respectively and the coefficients are given by

αij = αi(li)− αj(lj), αi(k) = αi(0) + k, i, j ∈ {1, 2, 3}, k ∈ Z,(1.3a)

γ1 = −c+ (−1)l1+l2δ1, γ2 = −c+ (−1)l2+l3δ2, γ3 = −c+ (−1)l1+l3δ3,(1.3b)

with αi(0), i = 1, 2, 3, c, and δj , j = 1, 2, 3, being complex parameters. Figure 1.1
shows a unit cell in Ω.
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Figure 1.1. A unit cell of the Ω lattice

Our study is motivated by two considerations. Firstly, the system (1.2) sat-
isfies the consistency around a cuboctahedron (CACO) property [10], which is a
generalization of the famous consistency around a cube (CAC) property [17]. (See
Appendix A for a summary of the details of the CACO property and §1.2 for those of
the CAC property.) Secondly, we are motivated by finding relations between par-
tial difference equations and ordinary difference equations known as the discrete
Painlevé equations.

In this paper, we show that the system (1.2) reduces to discrete Painlevé equa-

tions with initial value space characterised as A
(1)∗
2 in the sense of Sakai [22]. The

latter equations have two forms in the literature given respectively by Tsuda [23]
and Ramani et al. [21] and are explicitly given by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
Y +X

)(
X + Y

)
=

(
(X + c3)

2 − c1
) (

(X − c3)
2 − c2

)
(X + t)2 − c4

,(
X + Y )

(
X + Y

)
=

(
(Y − c3)

2 − c1
) (

(Y + c3)
2 − c2

)(
Y + t+ 1

2

)2 − c5
,

(1.4a)

(
X +X

)(
X +X

)
=

(
X2 − c1

) (
X2 − c2

)
(X + t)2 − c3

.(1.4b)

Here, t ∈ C is an independent variable, ci, i = 1 . . . , 5, are complex parameters and
X,Y are dependent variables:

(1.5) X = X(t), Y = Y (t), X = X(t+ 1), X = X(t− 1), Y = Y (t− 1).

We note that discrete Painlevé equations admit special solutions when parameters
take special values. For example, Equation (1.4a) has the special solution given by
the generalized hypergeometric series 3F2 when 4c3 + 2

√
c4 + 2

√
c5 = 1 [11].

Our main result is Theorem 1.1. To state the theorem, we first explain how to
take the reduction on the lattice Ω. To be explicit, consider a vertex l ∈ Ω, given by
l1ε1+ l2ε2+ l3ε3. Define the plane Hk ⊂ Ω given by l3 = k. We project the vertices
of H1 to the adjacent horizontal plane H0 by taking (l1, l2, 1) �→ (l1 − 1, l2 − 1, 0).
The union of the projection with the lattice points on H0 forms Z2. We can define
such a projection from every plane Hk to H0 by the following:

(l1, l2, k) �→ (l1 − k, l2 − k, 0).
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We call the result of this operation a (1, 1, 1)-periodic reduction.

Theorem 1.1. The A
(1)∗
2 -type discrete Painlevé equations (1.4) can be obtained

from the system of PΔEs (1.2) via the (1, 1, 1)-periodic reduction.

1.1. Notation and definitions. Throughout the paper, we use terminology to
describe polynomials and quad-equations that is common in the literature. Readers
who are unfamiliar with this notation may wish to consult [1, 8, 10]. We use Q =
Q(x, y, z, w) to denote a multivariable polynomial over C. Under certain conditions,
i.e., Q be affine linear and irreducible, we will refer to the equation Q = 0 as a
quad-equation or sometimes, for succinctness, refer to the polynomial Q as a quad-
equation. We remind the reader that the condition of irreducibility implies that
Q(x, y, z, w) = 0 can be solved for each argument, and that the solution is a rational
function of the other three arguments.

1.2. Background. Integrable systems are widely applicable models of science, oc-
curring in fluid dynamics, particle physics and optics. The prototypical example is
the famous Korteweg-de Vries (KdV) equation whose solitary wave-like solutions
interact with elastically like particles, leading to the invention of the term soliton. It
is then natural to ask what discrete versions of such equations are also integrable.
This question turns out to be related to consistency conditions for polynomials
associated to faces of cubes as we explain below.

Integrable discrete systems were discovered [15, 16, 18, 20] from mappings that
turn out to be consistent on multi-dimensional cubes. (We note that there are
additional systems that do not fall into this class; see e.g., [8, Chapter 3].) These are
quad-equations in the sense in §1.1. In [1–4], Adler-Bobenko-Suris et al. classified
quad-equations satisfying the consistency around a cube (CAC) property, which
lead to integrable PΔEs. We refer to such PΔEs as ABS equations. It turns out
that ABS equations contain many well known integrable PΔEs [9, 14–16].

Reductions of integrable PDEs lead to Painlevé equations, which first arose in
the search for new transcendental functions in the early 1900’s [5, 6, 19]. Again a
natural question is to ask whether discrete versions exist with analogous properties.
This question led to the discovery of second-order difference equations called the
discrete Painlevé equations [7, 13, 20].

It is now well-known that discrete Painlevé equations have initial value spaces
with geometric structures that can be identified with root systems and affine Weyl
groups [22]. Sakai showed that there are 22 types of initial value spaces as shown
in Table 1.1.

Table 1.1. Types of spaces of initial values

Discrete type Type of space of initial values

Elliptic A
(1)
0

Multiplicative A
(1)∗
0 , A

(1)
1 , A

(1)
2 , A

(1)
3 , . . . , A

(1)
8 , A

(1)′

7

Additive A
(1)∗∗
0 , A

(1)∗
1 , A

(1)∗
2 , D

(1)
4 , . . . , D

(1)
8 , E

(1)
6 , E

(1)
7 , E

(1)
8

1.3. Outline of the paper. This paper is organized as follows. In §2, we show

the extended affine Weyl group of type E
(1)
6 and its subgroup which forms that of
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type A
(1)
2 . Moreover, from those birational actions we obtain the discrete Painlevé

equations (1.4) and the PΔEs (2.16), which are periodically reduced equations of
the system (1.2). In §3, using the results in §2 we give the proof of Theorem 1.1.
Finally, we give some concluding remarks in §4.

2. Derivation of the discrete integrable systems from an extended

affine Weyl group of type E
(1)
6

In this section, we derive the partial/ordinary discrete integrable systems from

the birational actions of an extended affine Weyl group of type E
(1)
6 , denoted by

W̃ (E
(1)
6 ). Note that details of W̃ (E

(1)
6 ) are given in Appendix B.

2.1. Extended affine Weyl group of type A
(1)
2 . Let ai, i = 0, . . . , 6, be param-

eters satisfying the condition

(2.1) a1 + 2a2 + 3a3 + 2a4 + a5 + 2a6 + a0 = 1,

and τ
(i)
j , i = 1, 2, 3, j = 0, 1, 2, 3, be variables. Moreover, we define the transfor-

mations si, i = 0, . . . , 6, ιj , j = 1, 2, 3, by isomorphisms from the field of rational

functions K({τ (i)j }), where K = C({ai}), to itself. These transformations collec-

tively form the extended affine Weyl group of type E
(1)
6 , denoted by W̃ (E

(1)
6 ):

(2.2) W̃ (E
(1)
6 ) = 〈s0, . . . , s6〉� 〈ι1, ι2, ι3〉.

See Appendix B for more details.
Let us define the transformations wi, i = 0, 1, 2, and π by

(2.3) w0 = s2s1s3s2, w1 = s4s5s3s4, w2 = s6s0s3s6, π = ι3ι1.

They collectively form the extended affine Weyl group of type A
(1)
2 :

(2.4) W̃ (A
(1)
2 ) = 〈w0, w1, w2〉� 〈π〉.

Indeed, the following fundamental relations hold:

(2.5) (wiwj)
aij = 1, i, j ∈ {0, 1, 2}, π3 = 1, πw{0,1,2} = w{1,2,0}π,

where

(2.6) (aij)
2
i,j=0 =

⎛⎝2 3 3
3 2 3
3 3 2

⎞⎠ .

Introduce the parameters and variables that go well with W̃ (A
(1)
2 ) as follows. Let

b0 = a1 + 2a2 + a3, b1 = a3 + 2a4 + a5, b2 = a3 + 2a6 + a0,

(2.7a)

c =
a0 + a1 + a3 + a5

2
, d12 =

a0 + a1 − a3 − a5
2

, d23 =
a0 − a1 + a3 − a5

2
,

(2.7b)

d13 =
a0 − a1 − a3 + a5

2
,

(2.7c)
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where b0 + b1 + b2 = 1, and

(2.8) y1 =
τ
(1)
1

τ
(1)
0

, y2 =
τ
(3)
3

τ
(3)
2

, y3 =
τ
(2)
1

τ
(2)
0

, y4 =
τ
(2)
3

τ
(2)
2

, y5 =
τ
(1)
3

τ
(1)
2

, y6 =
τ
(3)
1

τ
(3)
0

.

Then, the actions of W̃ (A
(1)
2 ) on the parameters b0, b1, b2, c, d12, d23, d13 are given

by

wi(bj) =

{
−bi if i = j,

bj + bi if i 	= j,
w0 : (d12, d23) �→ (d23, d12),(2.9a)

w1 : (d23, d13) �→ (d13, d23), w2 : (d12, d13) �→ (−d13,−d12),(2.9b)

π : (b0, b1, b2, d12, d23, d13) �→ (b1, b2, b0,−d23,−d13, d12),(2.9c)

where i, j ∈ Z/(3Z), while those on the y-variables yi, i = 1, . . . , 6, are given by

w0 :

⎛⎝y1, y3

y5, y6

⎞⎠ �→

⎛⎜⎜⎜⎝
y5,

(b0 − c+ d13)y3 − (b0 − d12 + d23)y1
(b0 + d12 − d23)y3 − (b0 + c− d13)y1

y5

y1,
(b0 − c+ d13)y6 − (b0 − d12 + d23)y1
(b0 + d12 − d23)y6 − (b0 + c− d13)y1

y5

⎞⎟⎟⎟⎠ ,(2.10a)

w1 :

⎛⎝y1, y3

y4, y6

⎞⎠ �→

⎛⎜⎜⎜⎝
(b1 − c+ d12)y1 − (b1 − d13 + d23)y3
(b1 + d13 − d23)y1 − (b1 + c− d12)y3

y4, y4

y3,
(b1 − c+ d12)y6 − (b1 − d13 + d23)y3
(b1 + d13 − d23)y6 − (b1 + c− d12)y3

y4

⎞⎟⎟⎟⎠ ,(2.10b)

w2 :

⎛⎝y1, y2

y3, y6

⎞⎠ �→

⎛⎜⎜⎜⎝
(b2 − c− d23)y1 − (b2 − d12 − d13)y6
(b2 + d12 + d13)y1 − (b2 + c+ d23)y6

y2, y6

(b2 − d12 − d13)y6 − (b2 − c− d23)y3
(b2 + c+ d23)y6 − (b2 + d12 + d13)y3

y2, y2

⎞⎟⎟⎟⎠ ,(2.10c)

π : (y1, y2, y3, y4, y5, y6) �→ (y3, y5, y6, y2, y4, y1).(2.10d)

Remark 2.1. We follow the convention that the parameters and y-variables not
explicitly included in the actions listed in Equations (2.9) and (2.10) are the ones
that remain unchanged under the action of the corresponding transformation. That
is, the transformation acts as an identity on those parameters or variables.

For later convenience, we here define the translations in W̃ (A
(1)
2 ) by

(2.11) T1 = w1w2π
2, T2 = w2w0π

2, T3 = w0w1π
2,

whose actions on the parameters b0, b1, b2, c, d12, d23, d13 are given by

T1 :(b0, b1, d12, d13) �→ (b0 − 1, b1 + 1,−d12,−d13),(2.12a)

T2 :(b1, b2, d12, d23) �→ (b1 − 1, b2 + 1,−d12,−d23),(2.12b)

T3 :(b2, b0, d23, d13) �→ (b2 − 1, b0 + 1,−d23,−d13).(2.12c)

Note that T1T2T3 = 1 and TiTj = TjTi, where i, j = 1, 2, 3.
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2.2. Derivation of the partial difference equations from W̃ (A
(1)
2 ). In this

subsection, we derive the PΔEs (2.16) from the birational action of W̃ (A
(1)
2 ).

Let

(2.13) ul1,l2,l3 = T1
l1T2

l2T3
l3(y2).

Note that
(2.14)
u0,1,1 = y1, u0,0,0 = y2, u1,0,0 = y3, u0,1,0 = y4, u1,1,0 = y5, u1,2,0 = y6.

We assign the variable ul1,l2,l3 on the vertices (l1, l2, l3) of the triangle lattice

(2.15) Z
3/(1, 1, 1) :=

{
(l1, l2, l3) ∈ Z

3
∣∣ l1 + l2 + l3 = 0

}
.

Then, we obtain Lemma 2.2.

Lemma 2.2. On the triangle lattice there are three fundamental relations (essen-
tially two):
(2.16)

ui

ui
=

(
b
(i)
li,lj

− c+ (−1)li+ljdij

)
uj −

(
b
(i)
li,lj

− (−1)lj+lkdjk + (−1)li+lkdik

)
uj(

b
(i)
li,lj

+ (−1)lj+lkdjk − (−1)li+lkdik

)
uj −

(
b
(i)
li,lj

+ c− (−1)li+ljdij

)
uj

,

where (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) and

(2.17) b
(1)
l1,l2

= b1 + l1 − l2, b
(2)
l2,l3

= b2 + l2 − l3 − 1, b
(0)
l1,l3

= b0 + l3 − l1.

Here, u = ul1,l2,l3 and the subscript i (or, i ) for a function u = ul1,l2,l3 means +1
shift (or, −1 shift) in the li-direction.

Proof. Equation (2.16) with (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) are respectively
obtained from the following actions:

T1(y5)

y4
=

(b1 − c+ d12)y6 − (b1 + d23 − d13)y3
(b1 − d23 + d13)y6 − (b1 + c− d12)y3

,(2.18a)

T2(y4)

y2
=

(b2 − c− d23)y1 − (b2 − d13 − d12)y6
(b2 + d13 + d12)y1 − (b2 + c+ d23)y6

,(2.18b)

T3(y2)

y5
=

(b0 − c+ d13)y3 − (b0 − d12 + d23)y1
(b0 + d12 − d23)y3 − (b0 + c− d13)y1

.(2.18c)

Moreover, we can easily verify that using Equations (2.16) we can express any
ul1,l2,l3 on the lattice by the six initial variables yi, i = 1, . . . , 6, and one of the
equations (2.16) can be obtained from the other two equations. Therefore, we have
completed the proof. �
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Remark 2.3. Because of the following relations:

w0(ul1,l2,l3) = ul3,l2,l1 , w1(ul1,l2,l3) = ul2,l1,l3 , w2(ul1,l2,l3) = ul1+1,l3+2,l2 ,

(2.19a)

π(ul1,l2,l3) = ul3+1,l1+1,l2 ,

(2.19b)

which follow from

w0T{1,2,3} = T{3,2,1}w0, w1T{1,2,3} = T{2,1,3}w1, w2T{1,2,3} = T{1,3,2}w2,

πT{1,2,3} = T{2,3,1}π, w0(u0,0,0) = u0,0,0, w1(u0,0,0) = u0,0,0,

w2(u0,0,0) = u1,2,0, π(u0,0,0) = u1,1,0,

the transformation group W̃ (A
(1)
2 ) can be also regarded as a symmetry of the tri-

angle lattice (see Figure 2.1).

Figure 2.1. Triangle lattice. On the vertices the variables ul1,l2,l3

are assigned, and on the quadrilaterals there exist quad-equations
(2.16), e.g. Equations (2.18a), (2.18b) and (2.18c) are colored in
red, blue and green, respectively.

2.3. Derivation of the A
(1)∗
2 -type discrete Painlevé equations from W̃ (A

(1)
2 ).

In this subsection, we derive the A
(1)∗
2 -type discrete Painlevé equations (1.4) from

the birational action of W̃ (A
(1)
2 ).

Let

f =
(c− d12 + d23 − d13)y1

2(y6 − y1)
+

b2 + c− d12 + d23 − d13
4

,(2.20a)

g =
(c− d12 + d23 − d13)y3

2(y3 − y6)
− b2 + c− d12 + d23 − d13

4
.(2.20b)
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Then, the action of W̃ (A
(1)
2 ) on the variables f and g is given by

w0(f) = f − b0
4
, w1(g) = g +

b1
4
, π(g) = f − b2 + b0

4
,

4(c− d12 + d23 − d13)

4f − 2b0 − b2 − c− d12 + d23 + d13

(
w0(g) +

b2 + b0 + c+ d12 − d23 − d13
4

)
=

(b0 − d12 + d23)(4g + b2 − c+ d12 − d23 + d13)

4f − b2 + c− d12 + d23 − d13

− (b0 − c+ d13)(4g + b2 + c− d12 + d23 − d13)

4f − b2 − c+ d12 − d23 + d13
,

4(c− d12 + d23 − d13)

4g + 2b1 + b2 + c− d12 − d23 + d13

(
w1(f)−

b1 + b2 + c− d12 − d23 + d13
4

)
=

(b1 + d23 − d13)(4f − b2 + c− d12 + d23 − d13)

4g + b2 − c+ d12 − d23 + d13

− (b1 − c+ d12)(4f − b2 − c+ d12 − d23 + d13)

4g + b2 + c− d12 + d23 − d13
,

π(f) = − (4f − b2 + c− d12 + d23 − d13)(4g + b2 + c− d12 + d23 − d13)

16(f + g)

+
b0 + c− d12 + d23 − d13

4
.

Using the transformation T1
2 whose action on the parameter space {b0, b1, b2, c, d12,

d23, d13} is translational as T1
2 : (b0, b1) �→ (b0 − 2, b1 + 2) shows, we obtain the

discrete Painlevé equation (1.4a) with the following correspondence:

X = f, Y = g, X = T1
2(f), Y = T1

−2(g), t =
2b1 + b2 − 2

4
,(2.21a)

c1 =
(b2 + c+ d23)

2

16
, c2 =

(b2 − c− d23)
2

16
, c3 =

d12 + d13
4

,(2.21b)

c4 =
(c+ d12 − d23 − d13)

2

16
, c5 =

(c− d12 − d23 + d13)
2

16
.(2.21c)

We can also obtain the discrete Painlevé equations from another operation on
the parameter space as follows [12]. The action of T1 on the parameter space:

T1 : (b0, b1, d12, d13) �→ (b0 − 1, b1 + 1,−d12,−d13),

is not translational, but when the parameters take the special values d12 = d13 = 0,
it becomes translational motion on the parameter sub-space {b0, b1, b2, c, d23}: T1 :
(b0, b1) �→ (b0 − 1, b1 +1). Under the specialization of the parameters, the action of
T1 gives the discrete Painlevé equation (1.4b) with the following correspondence:

X = 2f, X = T1(2f), X = T1
−1(2f), t =

2b1 + b2 − 2

2
,(2.22a)

c1 =
(b2 + c+ d23)

2

4
, c2 =

(b2 − c− d23)
2

4
, c3 =

(c− d23)
2

4
.(2.22b)

3. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1 via the reduction from the
system of PΔEs (1.2) to the system of PΔEs (2.16).

Lemma 3.1 holds.
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Lemma 3.1. By imposing the (1, 1, 1)-periodic condition: u(l+ε1+ε2+ε3) = u(l)
for l ∈ Ω, the system (1.2) can be reduced to the following system of PΔEs:

(3.1)
ui

ui
=

(
αij − c+ (−1)li+lj δi

)
uj −

(
αij − (−1)lj+lkδj + (−1)li+lkδk

)
uj(

αij + (−1)lj+lkδj − (−1)li+lkδk

)
uj −

(
αij + c− (−1)li+ljδi

)
uj

,

where (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2), u = u(l) and l =
∑3

i=1 liεi ∈ Z3/(ε1 +
ε2 + ε3).

Proof. Applying the (1, 1, 1)-periodic condition to the system (1.2), we obtain Equa-
tion (3.1) with (i, j, k) = (1, 2, 3), (2, 3, 1) and (3, 1, 2) from Equation (1.2) with
(i, j, k) = (1, 2, 3), (2, 3, 1) and (3, 1, 2), respectively. Therefore, we have completed
the proof. �

Remark 3.2.

(i) The number of essential equations in the system (3.1) is two.
(ii) By the (1, 1, 1)-reduction, each cuboctahedron is reduced to a hexagram (see

Figure 3.1), which causes the reduction from the face-centred cubic lattice
Ω to the triangle lattice Z

3/(ε1 + ε2 + ε3).

Figure 3.1. The (1, 1, 1)-reduction of the cuboctahedron

Lemma 3.3. The reduced system (3.1) is equivalent to equations in the system
(2.16).

Proof. The statement follows from the following correspondences:

b
(1)
l1,l2

= α12, b
(2)
l2,l3

= α23, b
(0)
l1,l3

= α31, d12 = δ1, d23 = δ2, d13 = δ3,

ul1,l2,l3 = u(l1ε1 + l2ε2 + l3ε3).

�

Remark 3.4. Lemma 3.3 means that the reduced system (3.1) can be obtained from

the theory of the τ -function associated with A
(1)∗
2 -type discrete Painlevé equations.
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We are now ready to prove Theorem 1.1. The (1, 1, 1)-periodic reduction from
the system (1.2) to the system (3.1) given in Lemma 3.1, the relation between
the system (3.1) and the system (2.16) given in Lemma 3.3, and that between the

system (2.16) and the A
(1)∗
2 -type discrete Painlevé equations (1.4) given in §2.2 and

§2.3 collectively give the proof of Theorem 1.1.

4. Concluding remarks

In this paper, we considered a reduction of a system of PΔEs, which is unusual in
the sense that it has the CACO property but not the widely studied CAC property.

We showed how the system (1.2) can be reduced to the A
(1)∗
2 -type discrete Painlevé

equations (1.4) using the affine Weyl group associated with the discrete Painlevé
equations.

In a forthcoming paper (N. Joshi and N. Nakazono), we will show how another

system of PΔEs, which also has the CACO property, can be reduced to the A
(1)
2 -

type discrete Painlevé equations (see Table 1.1 for the distinction between A
(1)
2 and

A
(1)∗
2 ).

Appendix A. Consistency around a cuboctahedron property

In this appendix, we recall the definition of consistency around a cuboctahedron.
To define it, we also introduce an additional important property called consistency
around an octahedron. We refer the reader to [10] for detailed information about
these properties.

A.1. Consistency around an octahedron property. In this subsection, we
give a definition of a consistency around an octahedron.

Let ui, i = 1, . . . , 6, be variables and consider the octahedron shown in Figure
A.1. The planes that pass through the vertices {u4, u2, u1, u5}, {u2, u6, u5, u3} and
{u6, u4, u3, u1} give 3 quadrilaterals that lie in the interior of the octahedron and
we assign the quad-equations Qi, i = 1, 2, 3, to the quadrilaterals as the following:

(A.1) Q1 (u4, u2, u1, u5) = 0, Q2 (u2, u6, u5, u3) = 0, Q3 (u6, u4, u3, u1) = 0.

The consistency around an octahedron property is defined by the following.

Figure A.1. An octahedron labelled with vertices ui, i = 1, . . . , 6
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Definition A.1 (CAO property [10]). The octahedron with quad-equations {Q1,
Q2, Q3} is said to have a consistency around an octahedron (CAO) property if each
quad-equation can be obtained from the other two equations. An octahedron is
said to be a CAO octahedron if it has the CAO property.

A.2. Consistency around a cuboctahedron property. In this subsection, we
give a definition of consistency around a cuboctahedron.

We consider the cuboctahedron centered around the origin whose twelve vertices
are given by V = {±εi ± εj | i, j ∈ Z, 1 ≤ i < j ≤ 3}, where {ε1, ε2, ε3} form the
standard basis of R3. We assign the variables u(l) to the vertices l ∈ V and impose
the following relations:

Q1 (u5, u1, v5, v4) = 0, Q2 (v2, v1, u2, u4) = 0, Q3 (u3, u5, v3, v2) = 0,(A.2a)

Q4 (v6, v5, u6, u2) = 0, Q5 (u1, u3, v1, v6) = 0, Q6 (v4, v3, u4, u6) = 0,(A.2b)

Q7 (u4, u2, u1, u5) = 0, Q8 (u2, u6, u5, u3) = 0, Q9 (u6, u4, u3, u1) = 0,(A.2c)

where Qi, i = 1, . . . , 9, are quad-equations and

u1 = u(ε2 + ε3), u2 = u(−ε1 − ε3), u3 = u(ε1 + ε2), u4 = u(−ε2 − ε3),

(A.3a)

u5 = u(ε1 + ε3), u6 = u(−ε1 − ε2), v1 = u(ε2 − ε3), v2 = u(ε1 − ε3),

(A.3b)

v3 = u(ε1 − ε2), v4 = u(−ε2 + ε3), v5 = u(−ε1 + ε3), v6 = u(−ε1 + ε2).

(A.3c)

Note that quad-equations Qi, i = 1, . . . , 6, are assigned to the faces of the cubocta-
hedron (see Figure A.2a). Moreover, ui, i = 1, . . . , 6, collectively form the vertices
of an octahedron and quad-equations Qi, i = 7, 8, 9, are assigned to the quadrilat-
erals that appear as sections passing through four vertices of the octahedron (see
Figure A.2b).

(a) A cuboctahedron labelled with ver-
tices ui and vj , i, j = 1, . . . , 6

(a) An octahedron labelled with ver-
tices ui, i = 1, . . . , 6

Figure A.2. A cuboctahedron and an interior octahedron
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We are now in a position to give the following definitions.

Definition A.2 (CACO property [10]). The cuboctahedron with quad-equations
{Q1, . . . , Q9} is said to have a consistency around a cuboctahedron (CACO) property
if the following properties hold.

(i) The octahedron with quad-equations {Q7, Q8, Q9} has the CAO property.
(ii) Assume that u1, . . . , u6 are given so as to satisfy Qi = 0, i = 7, 8, 9, and, in

addition, vk is given, for some k ∈ {1, . . . , 6}. Then, quad-equations Qi,
i = 1 . . . , 6, determine the variables vj , j ∈ {1, . . . , 6}\{k}, uniquely.

A cuboctahedron is said to be a CACO cuboctahedron if it has the CACO property.

Definition A.3 (Square property [10]). The CACO cuboctahedron with quad-
equations {Q1, . . . , Q9} is said to have a square property if there exist polyno-
mials Ki = Ki(x, y, z, w), i = 1, 2, 3, where degx Ki = degw Ki = 1 and 1 ≤
degy Ki, degz Ki, satisfying

(A.4) K1(v1, u1, u4, v4) = 0, K2(v2, u2, u5, v5) = 0, K3(v3, u3, u6, v6) = 0.

Then, each equation Ki = 0 is called a square equation.

A.3. CACO property of PΔEs. We now explain how to associate quad-equations
with PΔEs in three-dimensional space by using the system of PΔEs (1.2) as an
example. This requires us to consider overlapping cuboctahedra that lead to two-
dimensional tessellations consisting of quadrilaterals. For each given cuboctahe-
dron, there are twelve overlapping cuboctahedra.

The twelve overlapping cuboctahedra around a given one provide six directions
of tiling by quadrilaterals. For later convenience, we label directions by εi ± εj ,
1 ≤ i < j ≤ 3. Vertices labelled in this way form the set Ω given by (1.1). Such
vertices are interpreted as being iterated on each successive cuboctahedron. We here
consider the system of PΔEs (1.2). For simplicity, we abbreviate each respective
equation in Equations (1.2) as

P1

(
u13, u23, u13, u23

)
= 0, P2

(
u12, u13, u12, u13

)
= 0, P3

(
u23, u12, u23, u12

)
= 0,

P4

(
u23, u13, u23, u13

)
= 0, P5

(
u13, u12, u13, u12

)
= 0, P6

(
u12, u23, u12, u23

)
= 0.

Conversely, given l ∈ Ω, we obtain the cuboctahedron centered around l. We re-
fer to its quad-equations as before by {Q1(l), . . . , Q9(l)}. Moreover, the overlapped
region gives an octahedron centred around l+ ε3, and we label its quad-equations
by {Q̂1(l), Q̂2(l), Q̂3(l)}.
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Each such quad-equation is identified with the 6 partial difference equations
given in Equations (1.2) in the following way. For Q1, . . . , Q9, we use

Q1(l) = P1

(
u13, u23, u13, u23

)
= 0, Q2(l) = P1

(
u13, u23, u13, u23

)
= 0,

Q3(l) = P2

(
u12, u13, u12, u13

)
= 0, Q4(l) = P2

(
u12, u13, u12, u13

)
= 0,

Q5(l) = P3

(
u23, u12, u23, u12

)
= 0, Q6(l) = P3

(
u23, u12, u23, u12

)
= 0,

Q7(l) = P4

(
u23, u13, u23, u13

)
= 0, Q8(l) = P5

(
u13, u12, u13, u12

)
= 0,

Q9(l) = P6

(
u12, u23, u12, u23

)
= 0,

and for Q̂1, Q̂2, Q̂3, we use

Q̂1(l) = P1

(
u13, u23, u13, u23

)
= 0, Q̂2(l) = P2

(
u23, u33, u23, u

)
= 0,

Q̂3(l) = P3

(
u33, u13, u, u13

)
= 0.

Then, Proposition A.4 holds.

Proposition A.4 ([10]). The system of PΔEs (1.2) has the CACO and square
properties, that is, the following statements hold.

(i) The cuboctahedra with quad-equations {Qi(l)} have the CACO and square prop-
erties.

(ii) The square equations are consistent with the PΔEs (1.2).

(iii) The octahedra with quad-equations {Q̂i(l)} have the CAO property.

Appendix B. Extended affine Weyl group of type E
(1)
6 and τ -variables

In this appendix, we review the action of the extended affine Weyl group of type

E
(1)
6 given in [23], which is the symmetry group of A

(1)∗
2 -type discrete Painlevé

equations.

Let ai, i = 0, . . . , 6, be parameters satisfying the condition (2.1) and τ
(i)
j , i =

1, 2, 3, j = 0, 1, 2, 3, be variables. The actions of transformations si, i = 0, . . . , 6,
and ιj , j = 1, 2, 3, on the parameters are given by

s0 : (a0, a6) �→ (−a0, a6 + a0), s1 : (a1, a2) �→ (−a1, a2 + a1),

s2 : (a1, a2, a3) �→ (a1 + a2,−a2, a3 + a2),

s3 : (a2, a3, a4, a6) �→ (a2 + a3,−a3, a4 + a3, a6 + a3),

s4 : (a3, a4, a5) �→ (a3 + a4,−a4, a5 + a4), s5 : (a4, a5) �→ (a4 + a5,−a5),

s6 : (a0, a3, a6) �→ (a0 + a6, a3 + a6,−a6),

ι1a{0,5,4,6} �→ a{5,0,4,6}, ι2a{0,1,2,6} �→ a{1,0,6,2}, ι3a{1,5,2,4} �→ a{5,1,4,2},
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while those on the τ -variables τ
(i)
j , i = 1, 2, 3, j = 0, 1, 2, 3, are given by

s0 : (τ
(3)
2 , τ

(3)
3 ) �→ (τ

(3)
3 , τ

(3)
2 ), s1 : (τ

(1)
2 , τ

(1)
3 ) �→ (τ

(1)
3 , τ

(1)
2 ),

s2 : (τ
(1)
1 , τ

(1)
2 ) �→ (τ

(1)
2 , τ

(1)
1 ),

: (τ
(2)
0 , τ

(3)
0 ) �→

(
(a2 + a3)τ

(1)
1 τ

(2)
0 − a2τ

(2)
1 τ

(1)
0

a3τ
(1)
2

,
(a2 + a3)τ

(1)
1 τ

(3)
0 − a2τ

(3)
1 τ

(1)
0

a3τ
(1)
2

)
,

s3 : (τ
(1)
1 , τ

(2)
1 , τ

(3)
1 , τ

(1)
0 , τ

(2)
0 , τ

(3)
0 ) �→ (τ

(1)
0 , τ

(2)
0 , τ

(3)
0 , τ

(1)
1 , τ

(2)
1 , τ

(3)
1 ),

s4 : (τ
(2)
1 , τ

(2)
2 ) �→ (τ

(2)
2 , τ

(2)
1 ),

: (τ
(1)
0 , τ

(3)
0 ) �→

(
(a3 + a4)τ

(2)
1 τ

(1)
0 − a4τ

(1)
1 τ

(2)
0

a3τ
(2)
2

,
(a3 + a4)τ

(2)
1 τ

(3)
0 − a4τ

(3)
1 τ

(2)
0

a3τ
(2)
2

)
,

s5 : (τ
(2)
2 , τ

(2)
3 ) �→ (τ

(2)
3 , τ

(2)
2 ),

s6 : (τ
(3)
1 , τ

(3)
2 ) �→ (τ

(3)
2 , τ

(3)
1 ),

: (τ
(1)
0 , τ

(2)
0 ) �→

(
(a3 + a6)τ

(3)
1 τ

(1)
0 − a6τ

(1)
1 τ

(3)
0

a3τ
(3)
2

,
(a3 + a6)τ

(3)
1 τ

(2)
0 − a6τ

(2)
1 τ

(3)
0

a3τ
(3)
2

)
,

ι1 : (τ
(2)
j , τ

(3)
j ) �→ (τ

(3)
j , τ

(2)
j ), ι2 : (τ

(1)
j , τ

(3)
j ) �→ (τ

(3)
j , τ

(1)
j ),

ι3 : (τ
(1)
j , τ

(2)
j ) �→ (τ

(2)
j , τ

(1)
j ), j = 0, 1, 2, 3.

Remark B.1.

(i) Each transformation here defined is an isomorphism from the field of rational

functions K({τ (i)j }), where K = C({ai}), to itself.

(ii) We follow the convention of Remark 2.1 for the above equations. That is, each
transformation acts as an identity on parameters or variables not appearing
in its definition.

The transformations collectively form the extended affine Weyl group of type

E
(1)
6 , denoted by (2.2). Indeed, the following fundamental relations hold:

(sisj)
Aij = 1, ι1

2 = ι2
2 = ι3

2 = 1, ι1ι2 = ι2ι3 = ι3ι1, ι2ι1 = ι3ι2 = ι1ι3,

(B.1a)

ι1s{0,5,4,6} = s{5,0,4,6}ι1, ι2s{0,1,2,6} = s{1,0,6,2}ι2, ι3s{1,5,2,4} = s{5,1,4,2}ι3,
(B.1b)

where i, j ∈ {0, 1, . . . , 6} and

(B.2) (Aij)
6
i,j=0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 3
0 2 3 0 0 0 0
0 3 2 3 0 0 0
0 0 3 2 3 0 3
0 0 0 3 2 3 0
0 0 0 0 3 2 0
3 0 0 3 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Remark B.2. The correspondence between the notations in this paper and those in

[23] is given by τ
(i)
j → τ ij and τ

(i)
0 → s3(τ

i
1), where i, j = 1, 2, 3.
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