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ABSTRACT. We construct integrable PT-symmetric nonlocal reductions for
an integrable hierarchy associated with the special orthogonal Lie algebra
so(3,R). The resulting typical nonlocal integrable equations are integrable
PT-symmetric nonlocal reverse-space, reverse-time and reverse-spacetime non-
linear Schrédinger equations associated with so(3,R).

1. INTRODUCTION

The nonlinear Schréodinger (NLS) equation is an integrable model, frequently
used in nonlinear optics and soft-condensed matter physics, and it appears as one
of universal equations that describe the evolution of slowly varying packets of quasi-
monochromatic waves in weakly nonlinear dispersive media [7]. On one hand, vector
generalizations are introduced and studied in soliton theory, and generalizations
with an external potential are used in modeling Bose-Einstein condensates as well
as many other physical fields [I,25]. On the other hand, nonlocal integrable NLS
equations have been recently explored, which possess infinitely many symmetries
and conservation laws, indeed [3,4]. The resulting model equations can relate
function values at point = in space to its function values at a mirror-reflection
space point -z [4]. This has opened new avenues for studying NLS type integrable
equations [20]. One popular example of nonlocal dynamics is pantograph modeling,
which has long history in pantograph mechanics and pantograph transport [5].

It is known that integrable equations are a class of nonlinear partial differen-
tial equations, which are associated with matrix Lie algebras [I]. Lax pairs [10]
pay a crucial role in the formulation of integrable equations and their solutions [IJ.
The trace identity [29] and the variational identity [I7] can be used to establish
Hamiltonian structures which exhibit the Liouville integrability of the underlying
equations. Among the well-known integrable equations associated with simple Lie
algebras are the KdV equation, the AKNS system of NLS equations, and the deriv-
ative NLS equation [IL9]. More generally, there are integrable couplings associated
with non-semisimple Lie algebras [22[23], which bring hereditary recursion opera-
tors in block matrix form [I3}[14].
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In our construction, we will use the special orthogonal Lie algebra g = so(3,R),
presented by all 3 x 3 trace-free, skew-symmetric real matrices, with a basis:

00 -1 00 0 0 -1 0
(1.1) e1=]00 0 |,e2=|00 —=1],e5=|1 0 0],
10 0 01 0 0 0 0

whose structure equations read
(1.2) [e1,e2] = e3, [e2,e3] = e1, [e3,e1] = ea.

Obviously, the derived algebra [g, g] = [so(3,R),so(3,R)] is g = so(3,R) itself. The
algebra is one of the only two three-dimensional real Lie algebras with this property.
The other one is the special linear algebra sl(2,R), which lays a foundation for
studying many integrable equations [2]. The corresponding matrix loop algebra
that we will use is

(1.3) g =50(3,R) = {M € s0(3,R) | entries of M - Laurent series in A},

where ) is a spectral parameter. The loop algebra so(3,R) contains matrices of the
form Mieq + Mf2eq + AFseq with arbitrary integers k;, 1 < ¢ < 3. This matrix loop
algebra has also been recently used to construct integrable equations [15[16}28].
In this paper, we would first like to revisit a hierarchy of integrable equations
associated with so(3,R) [15]. We will then consider three classes of nonlocal PT-
symmetric integrable reductions for the adopted spectral matrix, to generate three
reduced hierarchies of scalar integrable equations. Three typical such reduced non-
local PT-symmetric integrable equations are the reverse-space NLS equation
- * 1 * 1 *
Pt = pmw(_xat) - §p2p (_xat) - E(p (_'/E)t))gv
where p* denotes the complex conjugate of p, the reverse-time NLS equation
. 1 1
Pt = pm(% _t) - §p2p($v _t) - i(p(xv _t))ga
and the reverse-spacetime NLS equation

. 1 1
Pt = _pxz(_x7 _t) + §p2p(_x7 _t) + 5(]9(_$> _t))37

which are all associated with so(3,R).

2. THE MODEL INTEGRABLE HIERARCHY REVISITED

2.1. Integrable hierarchy. We would like to revisit an integrable hierarchy asso-
ciated with the matrix loop algebra s0(3,R) [15]. We begin with a spatial matrix
spectral problem

(2.1) —igy =Ud = U(u, )9,
with
0 —q —X
(2.2) U=U(u,\) =Xe1 +pea+qges=|q 0 —p|,
A D 0
where 4 is the unit imaginary number, \ is a spectral parameter, u = (p,q)7 is a

potential and ¢ = (¢1, da, #3)7 is a column eigenfunction. The spectral matrix for
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an integrable hierarchy in [15] is only U, but here we have adopted a spectral matrix
iU, involving a constant factor 7. This will bring us convenience in determining
integrable nonlocal reductions.

As usual [IT], we solve the stationary zero curvature equation

(2.3) W, = i[U, W]
for W = W(u, \) € s0(3,R). This is equivalent to
(2.4) a; =i(pc —gb), by =i(—Ac+ qa), ¢, = i(Ab— pa),
as long as W is given by
0 —c —a
(2.5) W =ae; +beg +ce3=|c 0 —=b| = Z WomA™™,
a b 0 m20
with
0 —cmn —am
(2.6) Wo,m = ame1 + bmea + cmes = | cm 0 —bm|,m>0
am  bm 0
Upon taking the initial values
(2.7) ap=—1, bop=cp =0,
the system (Z4]), being equivalent to
(2.8)
b1 = —iCm,z + Pam, Cmt1 = bme + @A, Am+1,0 = 1(PCmt1 — gbmy1), m >0,

defines the sequence of {a,, by, ¢m| m > 1} uniquely, under the integration condi-
tions

(2.9) m)u=0 = bm|u=0 = Cm|u=0 =0, m > 1.
The first few sets are as follows:

by =—p, c1=—q, a1 =0;

by = iqy, C2 = —ipy, az = 5(p* + ¢?);

b3 = —Paa + 30° + 3P4%,

€3 = —(oa + 3P0+ 3¢°,

a3 = i(p2q — Pqx);

bs = i(Geea — 5P°¢x — 30°Q);

¢4 = i(—Paaa + 20°p2 + 3pad?),

44 = PPaz + Qloa — 392 — 562 — S(0* + ¢*)%

Let us then set
m

(2.10) Vi = (mw) =Y Wo A" m >0,

1=0
to introduce the temporal matrix spectral problems:

(2.11) —igy = VMg = vIm(u, N, m>o0.
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Finally, the compatibility conditions of (2 and (ZI1), i.e., the zero curvature
equations

(2.12) Uy, — VI o, v =0, m >0,
give rise to a hierarchy of integrable equations:
—Cm+1 /Lq
(2.13) w, = Km =i B I L e )
bm+1 —p
where the operator @ is determined by (Z8])
@~ 'p  —0+q07'q
(2.14) o= o=
o—pd~lp  —pdlq Oz

2.2. The Liouville intergrability. Based on the trace identity [29] for our spec-
tral matrix U

) ou A oU
2.1 — — S e A i
(2.15) 5u/tr(Wa)\)das AT (WD),
where the constant v is determined by
Ad
(2.16) 7——§aln|<W7W>|7

we can construct Hamiltonian structures which exhibit the Liouville integrability
of the hierarchy ([2.I3). Obviously, the corresponding trace identity (2Z.I5]) reads

) ) b
-_— = YT\
(m/“dx A 8>\/\ [C]

An application of it leads to the following Hamiltonian structures for the hierarchy

2.13):

—c,
(2.17) w, =Ky =i AR LT
b1 ou
with the Hamiltonian operator and the Hamiltonian functionals
0 -1 iAo
2.18 J= Mo = [ (——2E2) dae, m > 0.
( ) [1 0 ] /( m + 1) B

These yield infinitely many conservation laws of each system in the hierarchy (2.13]),
which can often be generated through symbolic computation by computer algebra
systems (see, e.g., [§]).
To exhibit the Liouville integrability, we need to show that the operator ® defined
by (ZI4) is a common hereditary recursion operator for the hierarchy ([2I3]).
First, a direct but lengthy computation can show that the operator ® is heredi-
tary (see [6] for definition), i.e., it satisfies

(2.19) o' (w)[PK]S — 0P (u)[K]S = & (u)[®S] K — &' (u)[I]K,

and @ is a recursion operator for u;, = Ko:

(2.20) L, =0, Ko=i l ] , (Lx®)S = ®[K, S] — [K, 9],

-bp
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where K and S are arbitrary vector fields and [+, -] is the Lie bracket of vector fields.
Another direct result is that J and
—0+q07'q —q07'p
(2.21) M=&J=i
—pd~1q -0+ pd~p

constitute a Hamiltonian pair (see [24] for details). The hereditary property (219)
is equivalent to

(2.22) Log® = PLKD,
where K is an arbitrary vector field, and thus

(2.23) Lk, ® = Lok

m m71q) =®Lk ®=0, m2>1,

m—1

where the K,,’s are given by (ZI3)). This implies that the operator ® defined by
[214) is a common hereditary recursion operator for the hierarchy (2.13).
Now, the hierarchy ([2I3)) is bi-Hamiltonian (see, e.g., [24.26] for details):

5Hm 5/Hm—l
2.24 K, =7 M 1
( ) Ut,y, m Su Su » M= 4,
where J, M and H,, are defined by (2I8) and ([221)), and so, every member in
the hierarchy is Liouville integrable, i.e., it possesses infinitely many commuting
symmetries and conservation laws. In particular, we have the Abelian symmetry
algebra:

(2.25) (K, Ki] = K (u)[K)] — K[ (u)[K] = 0, k,1>0,
and the Abelian algebras of conserved functionals:
OHp\T OH;

. = _— _— = >
(2.26) {Hr, Hits /( o ) J 5o dr =0, k1 >0,
and

OHp T OH,;

. — [ (22 gy = > 0.

(2.27) {Hi, Hitm /( 50 ) M s dr =0, k>0

The first nonlinear integrable system of equations in the hierarchy 2I3)) is a
system of NLS equations associated with so(3,R):

. 1 1 . 1 1
(2.28) Pto = i(Gez — 5020 = 5°)s Gty = i(—Paa + 50° + 50G°).
2 2 2 2
It possesses the following bi-Hamiltonian structure
OHo OH1
2.29 =Ky=J—=M—
(2:29) Utz 2 du Su’

where the Hamiltonian pair {J, M} is defined by (ZI8)) and [221]), and the Hamil-
tonian functionals, H; and Hq, are given by

1
(230) Hi= _5 /(pqz _pr) dx>

i 1, 1, 3
(2.31) Ha=— /Lppm + e — 5P — 5% — g (0° + 7)) da.
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3. INTEGRABLE NONLOCAL REDUCTIONS

3.1. Reverse-space reductions. Let us first consider two specific reverse-space
reductions for the spectral matrix:

00 0
(3.1) Ul(—=z,t,—\*) = =CU(z,t, \)C™}, C=| 0 1 0 |, d==+l,
5 0 0

where * and | stand for the complex conjugate and the Hermitian transpose, re-
spectively. They lead to the potential reductions

(3.2) p*(—z,t) = —dq(z,1).
Under these potential reductions, one has the reduction property for W:
(3.3) W(—z,t,—\*) = CW (x,t,\)C~},

since two matrices on both sides of the equation solve the stationary zero curvature
equation ([23) with the same initial values. This implies that

(3.4) a*(—z,t,—\") = a(x,t, ), b"(—=x,t,—\") = dc(z,t, \),

namely,

(3.5) ay (—z,t) = (=1)"am(x,t), b} (—z,t) = (=1)"dcpm(x,t), m > 1.
Therefore, one obtains

(3.6) (VImh (—z,t, —\*) = (=)™ CVI™ (2,1, )L, m > 1,

and further

(3.7

(U, =V i[U, VI (=, t, =) = —C(U,— V2 iU, VEI)) (2,6, YO, 1> 1.

This tells that the potential reductions in ([B2]) are compatible with the 2I-th zero
curvature equation of the integrable hierarchy [2I3)). In this way, we obtain two
reduced scalar integrable hierarchies associated with so(3,R):

(3.8) Pt = Kot 1lg(a,t)=—op* (=2, 1 =1,

where K, = (K1, Km2)T, m > 1, are defined by (ZI3). The infinitely many
symmetries and conservation laws for the integrable hierarchy ([ZI3)) are reduced
to infinitely many ones for the above integrable hierarchies in ([B.8]).

With 6 = 1, the first nonlinear reduced scalar integrable equation is a nonlocal
reverse-space PT-symmetric NLS equation associated with so(3,R):

(39) Pt = pxw(_'rat) - §p2p (—.I,t) - i(p (_Iat))37

where p* denotes the complex conjugate of p. Note that the two components
of K,,, m > 1, have even and odd properties with respect to p and ¢g. Actually,
Ks;1, 1 > 1, are odd with respect to g and even with respect to p, and Koj11,1, { > 1,
are even with respect to ¢ and odd with respect to p. Similarly, K92, [ > 1, are
odd with respect to p and even with respect to ¢, and Ky112, I > 1, are even
with respect to p and odd with respect to q. Therefore, the first reduced scalar
integrable equation with 6 = —1 in (B.8)) has just a different sign from the nonlocal
reverse-space NLS equation (39)).
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3.2. Reverse-time reductions. Secondly, let us consider two specific reverse-time
reductions for the spectral matrix:

0046
(3.10) Ul (x,~t,-\) = —CU(z,t, )C™', C=| 0 1 0 |, §=+1,
§ 00

where T means taking the transpose of a matrix. They generate the potential
reductions

(3.11) p(z, —t) = —dq(x, t).
Similarly, under these potential reductions, we have the reduction property for W:
(3.12) WT(xz, —t,—\) = CW(x,t,\)C ™!,

upon noting that two matrices on both sides of the equation solve the stationary
zero curvature equation (23) with the same initial values. Thus, we have

(3.13) a(x,—t,—X) = a(z,t,\), bz, —t, =) = de(x,t, N),

namely,

(3.14) am(x, —t) = (=1)"am,(z,t), by(x,—t) = (=1)"0cy (x,t), m > 1.
Then, we arrive at

(3.15) (VIPNT (2, —t, =X) = (=)™ CVI™ (2, t, )L, m > 1,

and further
(3.16)
(U, = VR iU, v (=2, t, =) T = C(U, — V2 4[0, VEI)) (2, 6, YO, 1> 1,

This implies that the potential reductions in ([BII]) are compatible with the 2/-th
zero curvature equation of the integrable hierarchy ([2.I3]). Consequently, we obtain
two reduced scalar integrable hierarchies associated with so(3,R):

(317) Pt = K2171

q(z,t)=—06p(z,—t)» > 1,

where K, = (K1, Km2)T, m > 1, are defined by (ZI3). Infinitely many sym-
metries and conservation laws for the above hierarchies in [B.I7]) are obtained from
the ones for the integrable hierarchy (2Z.13)).

With 6 = 1, the first nonlinear reduced scalar integrable equation is a nonlocal
reverse-time PT-symmetric NLS equation asscociated with so(3,R):

(3.15) b0 = P, —) = 5070, 1) — 5 (bl 1))

Noting even and odd properties with respect to p and ¢ in the two components of
K,,, m > 1, we see that the reduced first scalar integrable equation with § = —1 in
(BI10) has just a different sign from the nonlocal reverse-time NLS equation ([B.I8]).
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3.3. Reverse-spacetime reductions. Thirdly, let us consider two specific reverse-

spacetime reductions for the spectral matrix:

(3.19) Ul (—z,—t,\) = CU(x,t,\)C™!, C = , 0 =41,

S O O
oS O o>

0
1
0
where T' means taking the transpose of a matrix again. They yield the potential
reductions

(3.20) p(—xz,—t) = dq(x, t).

As before, under these potential reductions, W satisfies the following reduction
property:

(3.21) WT(—z,—t,\) = CW (z,t,\)C~ 1,

because two matrices solve the stationary zero curvature equation (Z3]) with the
same initial values. Thus, we have

(3.22) a(—z,—t,\) = a(z,t,\), b(—=z, —t, ) = dc(x,t, N),
namely,
(3.23) am (=2, —t) = am (2, t), by (—z, —t) = dcp(x,t), m > 1.

Then, we obtain
(3.24) (VImDT (—g, —t, X) = CVIMl(z, £, )™, m > 1,

and further
(3.25)
(U =V i (U, VI (=2, =, N) T = —C (U= VM i [0, VI (2,8, ) O™, m>1,

This implies that the potential reductions in [B:220) are compatible with the zero
curvature equations of the integrable hierarchy [2I3).

In this way, we obtain two reduced scalar integrable hierarchies associated with
so(3,R):

(326) bt = Km,1|q(m,t):6p(fz,ft)u m > 1,

where K, = (K1, Kin2)?, m > 1, are defined by ([Z.I3). Moreover, the infinitely
many symmetries and conservation laws for the integrable hierarchy 2I3]) are
reduced to infinitely many ones for the above integrable hierarchies in (3:20)).
With § = 1, the first nonlinear reduced scalar integrable equation is a nonlocal
reverse-spacetime PT-symmetric NLS equation associated with so(3,R):

(B21) = —paa(, 1) + 55— —0) + 5 (=, 1)

Even and odd properties with respect to p and ¢ in the two components of K,,, m >
1, show that the first nonlinear reduced scalar integrable equation with 6 = —1 in
(B26) has just a different sign from the nonlocal reverse-spacetime NLS equation

(3.27).
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4. CONCLUDING REMARKS

We have revisited a hierarchy of integrable equations based on zero curvature
equations associated with so(3,R) and presented three classes of integrable non-
local PT-symmetric reductions for the hierarchy. Three examples among the re-
duced scalar integrable equations are a nonlocal reverse-space nonlinear Schrodinger
(NLS) equation, a nonlocal reverse-time NLS equation, and a nonlocal reverse-
spacetime NLS equation associated with the special orthogonal Lie algebra so(3,R).
Each class of nonlocal reductions contains two reductions, but every pair of reduc-
tions leads to two nonlocal integrable equations with only a sign difference. This is
a new phenomenon for integrable equations associated with so(3, R), different from
the one for integrable equations associated with sl(2, R).

There are interesting questions for integrable equations, both local and nonlocal,
associated with the special orthogonal Lie algebras. First, what kind of general
integrable hierarchies could exist? Some novel structures of integrable equations
associated to so(4,R) have been discussed [30]. Second, how can we formulate
Riemann-Hilbert problems based on associated matrix spectral problems? The
above spectral matrix ¢U in our analysis with zero potential has three eigenvalues,
which brings difficulty in establishing relevant theories. The existing examples of
Riemann-Hilbert problems belong to the class with two eigenvalues.

Integrable couplings are generated from zero curvature equations associated
with non-semisimple Lie algebras, and their Hamiltonian structures could be fur-
nished by applying the variational identity [I8/[27]. Bi-integrable couplings and
tri-integrable couplings are such examples and exhibit insightful thoughts about
general structures of multi-component integrable equations [21]. Multi-integrable
couplings provide abundant examples of recursion operators in block matrix form,
indeed. There are rich mathematical structures related to integrable couplings
[14,[21]. Nevertheless, non-semisimple matrix Lie algebras may not possess any
non-degenerate and ad-invariant bilinear forms required in the variational identi-
ties [12)[19], and this causes much difficulty in establishing Hamiltonian structures
for integrable couplings. For example, we do not even know whether there exists
any Hamiltonian structure for a perturbation type coupling:

w=K(u), v=K'(w)o], w = K'(u)[u].
In the KAV case, the question is if there is any Hamiltonian structure for the
integrable couping;:

Uy = 6’LL’U,;I; + Uz, V¢t = 6(’(1,’[))1 + Vopga, Wi = 6(’11/[1})1 + Wrzs-
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