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TENSOR QUASI-RANDOM GROUPS

MARK SELLKE

(Communicated by Martin Liebeck)

Abstract. Gowers [Combin. Probab. Comput. 17 (2008), pp. 363–387] ele-
gantly characterized the finite groups G in which A1A2A3 = G for any positive
density subsets A1, A2, A3. This property, quasi-randomness, holds if and only
if G does not admit a nontrivial irreducible representation of constant dimen-
sion. We present a dual characterization of tensor quasi-random groups in
which multiplication of subsets is replaced by tensor product of representa-
tions.

1. Introduction

Many large finite groups G exhibit expansion and mixing phenomena. The
former states that product sets A1A2 ⊆ G are always significantly larger than
either of A1, A2 ⊆ G. The latter states that when A1, A2, A3 ⊆ G are fairly large,

then the number of solutions to a1a2 = a3 for ai ∈ Ai is close to |A1A2A3|
|G|2 . Such

properties have attracted a lot of interest and are related to theoretical computer
science via the notion of expander graphs [Mar88, LPS88]. Seminal papers have
established such properties for certain simple groups; see for instance [Hel08,BV12,
BGGT13,PS16,Ebe16].

The present work is inspired by a striking result of [Gow08] which qualitatively
characterizes the groups G that exhibit expansion on large scales. More precisely, it
characterizes the groups for which any three subsets A1, A2, A3 of constant density
must multiply to cover all of G. This is equivalent to stating that if |A1|, |A2| =
Ω(|G|) then |A1A2| = (1 − o(1))|G|. Throughout we consider the regime of large
groups with |G| → ∞ as all other parameters are fixed. We use the standard
notations A = O(B) or B = Ω(A) to indicate that A

B is bounded, and A = o(B) to

indicate that A
B tends to 0.

Theorem 1.1 ([Gow08]). Let G be a finite group. The following are asymptotically
equivalent up to dependence of constants, and define a quasi-random group:

(1) G has no O(1)-dimensional non-trivial irreducible representations.
(2) If A1, A2, A3 ⊆ G each have size Ω(|G|), then A1 ·A2 ·A3 = G.
(3) Fix any constant m ≥ 3. If A ⊆ G has |A| = Ω(|G|), then Am = A ·A · · · · ·

A = G.
(4) G has neither an O(1)-size nor an abelian non-trivial quotient.

We explain in Appendix A why the above equivalence follows from [Gow08] as
it is not stated directly. It follows from criterion (4) that large non-abelian simple
groups are quasi-random. This implies for instance that given a subset S ⊆ G for
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G simple, to show that Sk = G for k not too large, it suffices to show that a small
power of S has macroscopic Ω(|G|) size. Such an argument was used in [BNP08]
to simplify the proof of [Hel08]. Of course the result above is interesting in its own
right; the original application was that constant-density product-free sets do not
exist in general finite groups.

Our purpose is to study a dual problem: given large G-representations Vi, when
must V1 ⊗ V2 ⊗ V3 contain all irreducible G-representations as subrepresentations?
In such a case we say this tensor product covers Irrep(G), the set of (isomor-
phism classes of) irreducible G-representations. Another line of working on cov-
ering Irrep(G) is the Saxl conjecture, which asserts that Irrep(Sn) can be covered
by a tensor square for n large enough - see [PPV16, Ike15, Li18, LS17]. The work
[HSTZ13] establishes such a result in groups of Lie type, and [LST20,Sel20,LST21]
study the number of tensor powers of a fixed irreducible representation needed to
cover Irrep(G) in various cases. As we allow our tensor factors Vi to be reducible, it
is not obvious how to best measure their size. We will use the Plancherel measure.

Definition 1.2. For G a finite group, the Plancherel measure MG is a probability
distribution on Irrep(G) which assigns the irreducible representation λ probability

MG(λ) = dim(λ)2

|G| . For an arbitrary finite-dimensional G-representation V , let

MG(V ) denote the Plancherel measure of the set of distinct (up to isomorphism)
irreducible subrepresentations λ ⊆ V .

Our main result, a dual version of Theorem 1.1, characterizes which groups
exhibit good tensor product expansion on large scales.

Theorem 1.3. Let G be a finite group. The following are asymptotically equivalent
up to dependence of constants, and define a tensor quasi-random or TQR group:

(1) G contains no O(1) sized non-trivial conjugacy class.
(2) If V1, V2, V3 are G-representations with MG(Vi) = Ω(1) for all i, then V1 ⊗

V2 ⊗ V3 covers Irrep(G).
(3) Fix m ≥ 3. If V is a G-representation with MG(V ) = Ω(1), then MG(V

⊗m)
> 1

2 .
(4) G contains neither an O(1) size nontrivial normal subgroup, nor an O(1)

index normal subgroup (possibly equal to G) with non-trivial center.

While [Gow08] turns subsets A ⊆ G into representation-theoretic data via the
Fourier transform, we turn representations into class functions via their characters.
The crucial lowest dimension of a non-trivial irreducible representation is for us
replaced by the smallest non-trivial conjugacy class of G. In both situations, a
key insight is that if all nontrivial irreducible representations or conjugacy classes
are large, then an appropriate �∞ norm must be quite small - see the proof of
Theorem 2.3.

We remark that from the fourth criterion in Theorem 1.3 it follows that large
simple groups are also TQR. In [LST20] it was conjectured that for simple groups,

any irreducible representation λ requires only O
(

log |G|
log dimλ

)
tensor powers to cover

Irrep(G) - this is an easy lower bound since covering Irrep(G) requires large dimen-
sion. This conjecture was proved there in bounded rank groups of Lie type, and
then for Sn in [Sel20] and subsequently An in [LST21]. Because simple groups are
TQR, to establish the conjecture it suffices to show that a small tensor power of
λ has Plancherel measure Ω(1) (or even a bit smaller depending on the group in
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question), at which point one could apply Theorem 1.3 to finish. This idea was
used in [BNP08] to simplify the landmark result of [Hel08] on covering SL2(Z/pZ)
by products of subsets. As in [BNP08], our methods do not seem to be helpful for
showing growth at small scales, but are only able to show that products of large
representations quickly cover everything.

In Section 4 we specialize our results to the tensor product Markov chains studied
in [Ful08, Ful04, Ful10, BDLT19]. The result is that the tensor quasi-randomness
of a group G characterizes whether certain tensor product chains mix in constant
time.

Corollary 1.4. Associate with a G-representation V its reduced representation Ṽ
as in Definition 1.6. For any ε > 0, if G is large and TQR, then when MG(V ) =

Ω(1) the uniform ε-mixing time of the tensor product Markov chain given by ·⊗Ṽ is
at most 3. Conversely if G is large and not TQR then the total variation 1

4 -mixing

times of the chains · ⊗ Ṽ are arbitrarily large for suitable G-representations V .

1.1. Preliminaries.

Definition 1.5. Direct sum and tensor product of class functions are defined by
element-wise sum/product (the notation is chosen to emphasize the underlying
representations). For any character χ we denote by χ0 the function χ0(g) = 1g �=e ·
χ(g), so that χ(g) = χ(e) · 1g=e + χ0(g).

In [Gow08], subsets S ⊆ G correspond to their characteristic functions 1S(x) =
1x∈S , and Fourier analysis is performed on these functions. For us, the correspond-
ing “right” version of a G-representation V is the reduced representation. Through-
out the paper we identify G-representations with their set of isomorphism classes
of irreducible representations. We will use �p norms | · |p on functions f : G → C

with counting measure on G, so that |f |p =
(∑

g∈G |f(g)|p
)1/p

.

Definition 1.6. For V a G-representation, the corresponding reduced representa-
tion is given by

Ṽ =
⊕
λ∈V

dim(λ) · λ.

Hence Ṽ depends only on the set of distinct irreducibles contained in V , and
takes Irrep(G) to the regular representation. We also define the reduced character
function χ̃V : G → C via:

χ̃V (g) =
1

|G| · χ
˜V (g) =

1

|G|
∑

λ∈Irrep(G)

1λ∈V · dim(λ) · χλ(g).

The regular representation has reduced character 1g=e. In general χ̃V (e) =

MG(V ) and |χ̃V (e)|2 =
√
MG(V ). The following covering criterion shows that

if the �1 mass of a character χ is concentrated on χ(e), then the corresponding
representation must contain all irreducibles.

Lemma 1.7. Let V be a G-representation and let χ : G → C be a class function
in the C-linear span of {χλ|λ ∈ V }. Suppose also that |χ(e)| >

∑
g∈G\{e} |χ(g)|.

Then S = Irrep(G).
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Proof. We show 〈χ, χλ〉 
= 0 for any λ ∈ Irrep(G). Indeed,

〈χ, χλ〉 = χ(e)χλ(e) + 〈χ0, χ
λ
0 〉.

Now by assumption |χ(e)| > |χ0|�1 , and since λ is a genuine G-representation
|χλ(e)| ≥ |χλ

0 |�∞ . Therefore

|〈χ0, χ
λ
0 〉| ≤ |χ0|1 · |χλ

0 |∞ < |χ(e)χλ(e)|.

Hence 〈χ, χλ〉 
= 0 completing the proof. �

2. Covering Irrep(G) when all conjugacy classes are large

In this section we prove the implication (1) =⇒ (2) of Theorem 1.3.
As a warmup we reprove a result from our previous work [Sel20] on covering

Irrep(G) by a tensor product of two representations. We consider this a dual to the
trivial statement that if A1, A2 ⊆ G satisfy |A1|+ |A2| > |G| then A1A2 = G.

Theorem 2.1 ([Sel20]). Suppose MG(V1) + MG(V2) > 1. Then V1 ⊗ V2 covers
Irrep(G).

Proof. For convenience take ai = MG(Vi). Then(
χ̃V1 ⊗ χ̃V2

)
(g) = a1a2 · 1g=e + χ̃V1

0 ⊗ χ̃V2
0 (g).

The Cauchy-Schwarz inequality implies:

|χ̃V1
0 ⊗ χ̃V2

0 |1 ≤ |χ̃V1
0 |2|χ̃V2

0 |2 =
√

(a1 − a21)(a2 − a22).

The assumption a1+a2 > 1 implies a1 > 1−a2 and a2 > 1−a1. Therefore a1a2 >
(1− a1)(1− a2), and so a21a

2
2 > (a1 − a21)(a2 − a22). Therefore

(
χ̃V1 ⊗ χ̃V2

)
(e) > 0,

concluding the proof. �

Let c(G) denote the minimal size of a non-trivial conjugacy class in G. We now
show that tensor triple products cover Irrep(G) when c(G) is large. The idea is to
use Holder’s inequality with 1

2 + 1
2 + 1

∞ = 1.

Lemma 2.2. Let V be a G-representation; then |χ̃V
0 |∞ ≤ c(G)−1/2.

Proof. Certainly |χ̃V
0 |2 ≤ 1. Moreover χ̃V

0 is constant on conjugacy classes, all of
which have size at least c(G). This implies the claim. �

Theorem 2.3. For representations V1, V2, V3 of G, if

MG(V1)MG(V2)MG(V3) > c(G)−1/2,

then V1 ⊗ V2 ⊗ V3 contains all irreducible representations of G.

Proof. We consider the character values on e ∈ G and on all other values. χ̃Vi(e) =
MG(Vi) and so

χ̃V1 ⊗ χ̃V2 ⊗ χ̃V3(e) = MG(V1)MG(V2)MG(V3).

On the other hand, Holder’s inequality and Lemma 2.2 imply:

|χ̃V1
0 ⊗ χ̃V2

0 ⊗ χ̃V3
0 |1 ≤ |χ̃V1

0 |2 · |χ̃V2
0 |2 · |χ̃V3

0 |∞ ≤ c(G)−1/2.

�
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This establishes the implication (1) =⇒ (2) of Theorem 1.3. In fact examination
of the proof above shows slightly more, in analogy with Theorem 3.3 of [Gow08]. Let
V1, V2, V3 be representations of a TQR group G with Plancherel measuresMG(Vi) =

ai. Then the multiplicity of an irreducible λ in Ṽ1⊗ Ṽ2⊗ Ṽ3 is |G|2(a1a2a3 dim(λ)+

|χ̃V1
0 ⊗ χ̃V2

0 ⊗ χ̃V3
0 |1), where the last term is at most c(G)−1/2. Hence in a TQR

group, such a tensor product of reduced representations contains every irreducible
λ a number of times approximately proportional to dim(λ). The L∞ mixing time
result is a slight generalization of this argument.

3. Remaining proofs for Theorem 1.3

The implication (2) =⇒ (3) of Theorem 1.3 is clear. We now show the implication
(4) =⇒ (1) of Theorem 1.3, and in Section 3.1 show (3) =⇒ (4).

Proof of Theorem 1.3, implication (4) =⇒ (1). We go by contradiction and assume
G contains neither a small non-trivial conjugacy class C at most k = O(1) in size
nor a normal subgroup at most k! in size. We will show that G contains a constant-
index normal subgroup with non-trivial center.

First, if k = 1 then G itself has nontrivial center so we may assume k > 1. Then
G acts on C by conjugation; this defines a non-trivial homomorphism φ : G → Sk.
Therefore N = kerφ � G is a normal subgroup of G commuting with each element
of C. Its index is |G/N | ≤ k!. The subgroup H generated by C is normal (as C is
a conjugacy class) and commutes with N . Since H is a normal subgroup of G, by
assumption |H| > k!. Let K = H ∩N . We have

|K| ≥ |H||N |
|G| ≥ |H|

k!
> 1.

Since H and N commute, K is central in N . Therefore G contains a constant
index subgroup N with nontrivial center K. This shows (4) =⇒ (1). �

3.1. Tensor power condition implies normal subgroup condition. To prove
the implication (3) =⇒ (4) we begin with two preparatory lemmas in additive
combinatorics. Throughout, if n is a positive integer and B is a subset of an
abelian group, we denote by nB the n-fold sum B +B + · · ·+B.

Lemma 3.1. Let k,m, n be positive integers and let B ⊆ K be a subset of an
abelian group K with size |B| = k + 1. Then mnB can be covered by (10km)k

translates of nB. In particular |mnB|
|nB| ≤ (10km)k.

Proof. It suffices to show the result when B = {0, e1, . . . , ek} consists of zero
and standard basis vectors in K = Zk. Indeed given any such identification, the
resulting homomorphism from Zk → K transfers a covering inside Zk to a covering
inside K. Observe that nB ⊇ {0, . . . , j − 1}k for j = 1 + �n

k �, while mnB ⊆ {0,
. . . , J − 1}k for J = mn+ 1. As J ≤ 10kmj the result follows. �

Lemma 3.2. Let K be a finite non-trivial abelian group admitting an action of
automorphisms by a group L of size k. Then there exists a subset A ⊆ K with

|A| = Ωk,m(|K|) and |mA| ≤ |K|
2 .

Proof. Fix a small, positive value ε < 1
(10km)k+1 . We construct A using the following

iterative algorithm initialized withA = {e} and a ∈ K\{e}. Throughout, for a ∈ K,
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we denote by La ⊆ K the orbit of a under the action of L.

(1) If A 
= A+ La, update A ← A ∪ (A+ La).
(2) If A = A+ La, update a to any element of K\A and return to step (1).

(3) At the first time that |A| ≥ ε|K|, terminate and output the current set Â.

This algorithm repeats multiple iterations of step (1) interrupted by single it-
erations of step (2) until terminating in step (3). To show that the outputed set

Â satisfies the conditions of the lemma it remains to show that mA � K. First
observe that the size |A| grows by a factor of at most k+1 at each iteration because
|La| ≤ |L| ≤ k for each a ∈ K.

We claim that all times, |mA| ≤ (10km)k|A| holds. Indeed let a1, a2, . . . , at be
the sequence of values of a so far in the algorithm, and let At−1 be the set A at the
time that a ← at was updated. Then At−1 is exactly the subgroup generated by
the sets Lai for i ≤ t− 1. Letting B = Lat∪ e, the current set A may be written as

A = At−1 + nB

for some non-negative integer n, where B = e ∪ La has size |B| = k + 1. Since
At−1 ⊆ K is a subgroup, we may set ψ : K → K/At−1 to be the natural quotient

map. Then Lemma 3.1 yields |mA|
|A| = |nmψ(B)|

|ψ(nB)| ≤ (10km)k proving the claim.

Since |A| grows by a factor of at most k+1 each iteration, as long as |K| ≥ ε−1

the output set Â satisfies | ̂A|
|K| <

1
10·(10km)k

. Therefore |mÂ| < |K|
10 as desired. On

the other hand if |K| ≤ ε−1 then step (3) immediately outputs Â = {e}. In this case

|mÂ| = 1, which also concludes the proof as K is assumed to be non-trivial. �

We now complete the proof of Theorem 1.3.

Proof of Theorem 1.3, implication (3) =⇒ (4). It is easy to see that if G has a con-
stant size normal subgroup N , then condition (3) fails - simply take V to be
the regular representation on the quotient G/N , viewed as a G-representation.
Then in V ⊗m, N will still act trivially so V ⊗m cannot cover Irrep(G). Moreover
MG(V ) = 1

|N | = Ω(1) because irreducible G/N representations are also irreducible

G-representations. Therefore V contradicts condition (3).
For the main part of the proof, take N � G with |G/N | = O(1) and with non-

trivial center K ⊆ N . We will construct a G-representation V with MG(V ) = Ω(1)
such that MG(V

⊗m) ≤ 1
2 . The idea is to construct G-representations from K-

characters via induction. Letting θ : K → C× be a multiplicative character, we
define Vθ = IndNK θ. From the Mackey formula and centrality of K in N ,

χVθ (g) =

{
0, for g /∈ K
|N |
|K| · θ(g), for g ∈ K

}
.

It follows that the induced representations Vθ remain mutually orthogonal and

satisfy
⊕

θ∈K∗ Vθ = χReg
N . This implies that they are of the form

Vθ :=
⊕

λ∈Λθ⊆Irrep(N)

(dimλ)λ,

where {Λθ : θ ∈ K∗} is a partition of Irrep(N). Hence their N -Plancherel measures
satisfy

MN (Vθ) =
dim(Vθ)

|N | =
1

|K| .
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We induct again from N to G, obtaining G-representations

Wθ := IndGK θ = IndGN Vθ.

Observe that any inner automorphism on G restricts to an automorphism on N ,
hence preserves its center K. Therefore conjugation defines a group homomorphism
ϕ0 : G → Aut(K). ϕ0(n) acts trivially for any n ∈ N so we obtain a quotient map
ϕ : G/N → Aut(K). The Mackey formula again takes a simple form. Writing
ϕg(θ)(·) = θ(ϕ(g)(·)) we may view ϕ as a G/N action on K∗. Then

(1) χWθ(k) =
|N |
|K|

∑
gi∈G/N

ϕgi(θ)(k).

Partition the setK∗ ofK-characters into equivalence classes (Si)
j
i=1 by the action

of G/N . (1) implies that if θ, θ′ are in the same equivalence class then Wθ = W θ′
,

while if not then Wθ,W
θ′

have orthogonal characters. Let WSi = Wθ if θ ∈ Si.

Next observe that
⊕

θ∈K∗ θ � V Reg
K and so⊕

i≤j

|Si| ·WSi =
⊕
θ∈K∗

Wθ = IndGK V Reg
K = V Reg

G .

Since the representations |Si| ·WSi have pairwise orthogonal characters and their
direct sum is the regular representation, they must be of the form

|Si| ·WSi =
∑

λ∈Λi⊆Irrep(G)

(dimλ)λ

for some partition {Λi : i ∈ [j]} of Irrep(G). Therefore MG(W
Si) = |Si| dim(WSi )

|G| =
|Si|
|K| . Altogether for any ϕ-invariant subset S ⊆ K∗, letting V S =

⊕
θ∈S θ we have

MG(Ind
G
K(V S)) = MK(V S).

By Lemma 3.2, there exists A ⊆ K∗ invariant under the action ϕ of G/N of size

|A| = Ωk,m(|K|), and which also satisfies |mA| ≤ |K∗|
2 . We take V =

⊕
θ∈A Wθ. It

is not difficult to see by ϕ-invariance of A that χ̃V (g) vanishes outside of K, and
that for any k ∈ K:

χ̃V (k) =
|N |
|G|

∑
θ∈A

θ(k).

Hence the m-th tensor power of this character is in the C-linear span of {χWθ |θ ∈
mA}. As a result, MG(V

⊗m) ≤ 1
2 , completing the proof. �

4. Application to tensor product Markov chains

Here we prove Corollary 1.4 on tensor product Markov chains. We consider the

chains · ⊗ Ṽ for V a G-representation, where the reduced representation Ṽ is as in
Definition 1.6. To take a step in these Markov chains, from a starting representation

λ one samples from the irreducible subrepresentations of λ ⊗ Ṽ , weighted by the
product of their multiplicity and dimension. The Plancherel measure is a stationary
distribution for any such Markov chain, and the distribution pt(λ, ·) after t steps
can be generated by sampling in the same way from the irreducible subrepresen-

tations of λ ⊗ (Ṽ )⊗t. Recall also that the �∞ (or uniform) ε-mixing time is given

by inf
{
t ≥ 0 : maxλ,μ

∣∣∣ pt(λ,μ)
MG(μ) − 1

∣∣∣ ≤ ε
}

while the �1 (or total variation) ε-mixing
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time is inf {t ≥ 0 : maxλ,μ |pt(λ,μ)−MG(μ)| ≤ ε}. There are several other related
definitions for mixing times, such as the �p mixing time and the separation distance
mixing time. Among all of these choices, uniform mixing time is the largest while
total variation mixing time is the smallest. Therefore in the setting of Corollary 1.4,
when G is TQR all of these chains mix within 3 steps, while when G is not TQR
none of these chains are guaranteed to mix within O(1) steps.

Proof of Corollary 1.4. We begin with the first statement. Let λ, V be G-repre-
sentations with λ irreducible and V (without loss of generality) reduced. Then:

|χ̃V ⊗3

0 ⊗ χ̃λi
0 |1 ≤ MG(λ) · |χ̃V ⊗3

0 |1 ≤ |χ̃V
0 |2 · |χ̃V

0 |2 · |χ̃V
0 |∞ ≤ MG(λi) · c(G)−1/2.

On the other hand,

χ̃V ⊗3

(e)χ̃λ(e) = MG(λ) ·MG(V )3.

Let p3(λ,μ) denote the probability to reach μ from λ in exactly 3 steps. Then
with ∝ indicating proportionality as μ varies over Irrep(G),

p3(λ,μ) ∝ 〈χ̃μ, χ̃V ⊗3 ⊗ χλ〉 ∝ MG(μ)MG(λ)MG(V )3 + 〈χ̃μ
0 , χ̃

V ⊗3

0 ⊗ χλ
0 〉.

As MG(V ) = Ω(1) and G is TQR, it follows that c(G)−1/2 = o(MG(V )3). Recall:

〈χ̃μ
0 , χ̃

V ⊗3

0 ⊗ χλ
0 〉 ≤ |χ̃μ

0 |∞|χ̃V ⊗3

0 ⊗ χλ
0 |1 ≤ MG(μ)MG(λ) · c(G)−1/2.

We conclude that for c(G) large,

p3(λ,μ) ∝ MG(μ)(1 + o(1)).

This implies the uniform mixing time result. For total variation non-mixing, we
recall Theorem 1.3, assertion (3). Taking the contrapositive we see that if G is not
TQR, then there is a G-representation V with MG(V ) = Ωm(1) but MG(V

⊗m) ≤ 1
2

for any fixed m. Taking as starting point λ the trivial representation, after m
steps at least half of Irrep(G) is still completely inaccessible to the tensor product
Markov chain. Such a distribution must have large total variation distance from
the Plancherel measure stationary distribution, which concludes the proof. �

5. Relations between TQR and quasi-random groups

Here we make some comments on the structure of TQR and quasi-random
groups. We observe that any quasi-random group has a quotient which is both
quasi-random and TQR, but there seems to be no analogous general way to go
from a TQR group to a quasi-random group.

Corollary 5.1. Any large center-free quasi-random group G is TQR.

Proof. If G is not TQR, then it contains a nontrivial conjugacy class of size k =
O(1). As G is center-free, k > 1. Therefore we obtain a nontrivial conjugacy action
G → Sk with nontrivial normal kernel N � G. Then |G/N | ≤ k!, so G contains a
constant-sized quotient, contradicting quasi-randomness. �

Corollary 5.2. Any large quasi-random group G has a quotient H of super-constant
size which is simultaneously quasi-random and TQR.
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Proof. Begin from G and repeatedly quotient out the center until a center-free
quotient H of G is reached. Being quasi-random G contains no non-trivial abelian
quotient, so |H| > 1 as reaching |H| = 1 requires coming from an abelian quotient
in the previous step. G also contains no constant-size non-trivial quotient, implying
|H| = ω(1) is super-constant. Since all quotients of H are quotients of G, condition
(4) of Theorem 1.1 implies that H is also quasi-random. Moreover H is center-free;
hence it is TQR as well. �

Proposition 5.3. Let G = Fp �F∗
p be the group of affine bijections x → ax+ b on

Fp. Then G is TQR, but none of its subgroups or quotients are quasi-random.

Proof. The TQR property follows by considering conjugacy classes so we focus on
the latter assertions. First we show that any non-trivial subgroup H of G has a
non-trivial abelian quotient, implying G has no quasi-random subgroup. This holds
because restriction of the quotient map G → F∗

p defined by (ax + b) → a gives an
abelian quotient unless H is contained in the set {x + b}. In the latter case H is
abelian already.

Next we show that G cannot have a quasi-random quotient, and in fact that all
non-trivial quotients of G are abelian. Indeed any irreducible representation of a
quotient G/N pulls back to an irreducible representation of G. As G has order
p2 − p and has irreducible representations of dimension only p − 1 and 1, simple
size considerations imply only the 1-dimensional irreducible G-representations can
be irreducible representations of a non-trivial quotient. Therefore any quotient of
G is abelian, concluding the proof. �

Appendix A. Statement of Theorem 1.1

Here we justify our statement of Theorem 1.1. In [Gow08, Theorems 3.3, 4.5,
4.6, 4.8] the following statements are shown to be equivalent for a finite group G:

(A) G has no O(1)-dimensional non-trivial irreducible representations.
(B) If A1, A2, A3 ⊆ G each have size Ω(|G|), then a1a2 = a3 has a solution in

(a1, a2, a3) ∈ A1 ×A2 ×A3.
(C) G has neither an O(1)-size nor an abelian non-trivial quotient.

It is easy to see that Assertion (B) is equivalent to assertion (2) of Theorem 1.1.
As Assertion (2) of Theorem 1.1 clearly implies Assertion (3), it only remains to
show that Assertion (3) of Theorem 1.1 implies one of the others. We will show it
implies Assertion (1). Going by contrapositive, we suppose we are given a nontrivial
homomorphism ϕ : G → U(k) for k = O(1). Take the set A to be the preimage by
ϕ of a small neighborhood of the identity in U(k). Then Am contains no element
with negative trace, but ϕ(G) must contain such elements as the average trace of
ϕ(g) for g ∈ G uniformly random is 0. Moreover a simple volume argument on

cosets of A shows that |A|
|G| = Ωk,m(1). This proves Assertion (1) of Theorem 1.1

from Assertion (3).
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