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GRAPHICAL EKELAND’S PRINCIPLE

FOR EQUILIBRIUM PROBLEMS

MONTHER RASHED ALFURAIDAN AND MOHAMED AMINE KHAMSI

(Communicated by Mourad Ismail)

Abstract. In this paper, we give a graphical version of the Ekeland’s vari-
ational principle (EVP) for equilibrium problems on weighted graphs. This
version generalizes and includes other equilibrium types of EVP such as op-
timization, saddle point, fixed point and variational inequality ones. We also
weaken the conditions on the class of bifunctions for which the variational
principle holds by replacing the strong triangle inequality property by a below
approximation of the bifunctions.

1. Introduction

Ekeland’s variational principle [10, 11, 16, 18] is a minimization theorem for a
bounded from below proper lower semicontinuous function on complete metric
spaces. This result provides one of the most powerful tools in nonlinear analysis, op-
timization, geometry of Banach spaces, economics, control theory, sensitivity, fixed
point theory, and game theory [3–5,9,12–15,19]. It is used to approximate the solu-
tion through a simple minimization idea. Motivated by its wide applications, many
authors have been interested in extending Ekeland’s variational principle to, for
instance, weighted graphs [2] and equilibrium problems on complete metric spaces
[8]. Inspired by these two papers, we aim to get a generalized form of the Ekeland’s
variational principle for equilibrium problems on weighted graphs endowed with a
metric distance.

First we start by recalling the equilibrium problem.

Definition 1.1 ([6,17]). Let (X, d) be a metric space and M be a nonempty subset
of X. Let F : M × M → R be a bifunction such that F (x, x) = 0 for all x ∈ M .
The problem of finding x ∈ M such that

F (x, y) ≥ 0, for all y ∈ M,

is called an equilibrium problem for F (·, ·).

It is clear that the concept of an equilibrium problem as defined in the above
definition is not dependent on the distance d(·, ·). Therefore, we may rephrase the
above definition in a more abstract form to obtain the following:
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Definition 1.2. Let M be a nonempty set. Let F : M ×M → R be a bifunction
such that F (x, x) = 0 for all x ∈ M . The problem of finding x ∈ M such that

F (x, y) ≥ 0, for all y ∈ M,

is called an equilibrium problem for F (·, ·).

It is well-known that the equilibrium problem is a unified model of several prob-
lems, namely, optimization problems, fixed point problems, variational inequality
problems, saddle point problem, etc. Let us explain the relation between the equi-
librium problem and the fixed point problem since it is not straighforward in the
nonlinear metric setting.

Example 1.3. Let M be a nonempty subset of a metric space (X, d), and f : M →
M be a given map. The fixed point problem is to find x ∈ M such that f(x) = x.
Consider the bifunction

F (x, y) = d2(y, f(x))− d2(x, f(x))− d2(y, x), for any x, y ∈ M.

Note that we have F (x, x) = 0, for any x ∈ M . Moreover if f(x) = x, then we
have F (y, x) = 0, for any y ∈ M . Conversely, assume that x is a solution of the
equilibrium problem, i.e., F (x, y) ≥ 0, for any y ∈ M . Then we have

d2(y, f(x))− d2(x, f(x))− d2(y, x) ≥ 0

which gives d2(y, f(x)) ≥ d2(x, f(x))+d2(y, x), for any y ∈ M . If we take y = f(x),
we get d2(x, f(x)) ≤ 0 which gives f(x) = x, i.e., x is a fixed point of f .

2. Preliminaries

In 1993, W. Oettli and M. Théra introduced the Ekeland’s variational principle
for equilibrium problems [17]. In 2005, the same result was reproved by using
Crandall’s method [7].

Theorem 2.1. Let (X, d) be a complete metric space and M be a nonempty closed
subset of X. Let F : M × M → R be a bifunction. Assume that the following
conditions hold:

(i) F (x, x) = 0, for every x ∈ M ;
(ii) F (x, y) ≤ F (x, z) + F (z, y), for every x, y, z ∈ M ;
(iii) F (x, .) is lower bounded and lower semicontinuous, for every x ∈ M .

Then, for every ε > 0 and for every x0 ∈ M there exists x ∈ M such that

(a) F (x0, x) + ε d(x0, x) ≤ 0;
(b) F (x, y) + ε d(x, y) > 0, for every y ∈ M such that y �= x.

The conclusion (b) leads to the concept of approximate solution for an equilib-
rium problem which was introduced in [7] as follows.

Definition 2.2. Let M be a nonempty subset of a metric space (X, d). Let F :
M ×M → R be a bifunction and ε > 0 be given. The element x ∈ M is said to be
an ε-equilibrium element of F if

(2.1) F (x, y) ≥ −ε d(x, y), for every y ∈ M.

It is called a strict ε-equilibrium element of F if the inequality (2.1) is strict for
every y �= x.
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Remark 2.3.

(i) Notice that item (b) of Theorem 2.1 gives the existence of a strict ε-
equilibrium element, for every ε > 0.

(ii) By conditions (i) & (ii) of Theorem 2.1, we have F (x, x0) ≥ −F (x0, x) and
hence by (a)

F (x, x0) ≥ ε d(x, x0),

localizing, in a certain sense, the position of x.
(iii) Assume infx∈M F (x0, x) ∈ (−∞, 0). Let λ := − infx∈M F (x0, x). Fix

ε > 0. Using Theorem 2.1, there exists x ∈ M such that⎧⎨
⎩

F (x0, x) + ε d(x0, x) ≤ 0,

F (x, x) + ε d(x, x) > 0, for any x �= x.

The first inequality implies that F (x0, x) ≤ 0, and since −F (x0, x) ≤ λ,
we have

d(x0, x) ≤
λ

ε
.

(iv) In the particular case, where F (x, y) = φ(y) − φ(x) and φ : M → R a
lower semi-continuous and bounded below, Theorem 2.1 turns into the
well known Ekeland’s variational principle.

The following result is easy to obtain from Theorem 2.1.

Theorem 2.4. Let (X, d) be a complete metric space, M be a nonempty closed
subset of X and F : M × M → R be a bifunction. Assume that the following
conditions hold:

(i) F (x, x) = 0, for every x ∈ M ;
(ii) F (x, y) ≤ F (x, z) + F (z, y), for every x, y, z ∈ M ;
(iii) F (x, .) is lower bounded and lower semicontinuous, for every x ∈ M .

Let G : M ×M → R be a bifunction such that F (x.y) ≤ G(x, y), for any x, y ∈ M .
Then for any ε > 0 and x0 ∈ M , there exists x ∈ M such that

(a) F (x0, x) ≤ −ε d(x0, x);
(b) G(x, y) + ε d(x, y) > 0, for any y ∈ M such that y �= x.

As a corollary, we obtain the main result of Castellani and Giuli [8], who claimed
that they obtained a more general result than Theorem 2.1.

Corollary 2.5. Let (X, d) be a complete metric space, M be a nonempty closed
subset of X and F : M × M → R be a bifunction. Assume that the following
conditions hold:

(i) there exists φ : M → R such that

F (x, y) ≥ φ(y)− φ(x), for every x, y ∈ M ;

(ii) φ is lower bounded and lower semicontinuous.

Then, for any ε > 0 and x0 ∈ M , there exists x ∈ M such that:

(a) φ(x) ≤ φ(x0)− ε d(x0, x);
(b) F (x, y) + ε d(x, y) > 0, for any y ∈ M such that y �= x.



36 M. R. ALFURAIDAN AND M. A. KHAMSI

3. Graphical Ekeland’s principle for equilibrium problems

In this section, we gave the main result of our work. Let us start with the
following basic notations and definitions from graph theory that are needed in the
sequel.

Definition 3.1. A directed graph G is an ordered triple (V (G), E(G), IG) where
V (G) is a nonempty set called the set of vertices of G, E(G) is a possibly empty
set, called the set of edges of G and IG is an incidence map that associates with
each edge of G an ordered pair of vertices of G.

(i) If e is an edge of G, and IG(e) = (u, u) for some u ∈ V (G), then e is called
a loop. If E(G) contains all the loops, then G is said to be reflexive.

(ii) An oriented graph G is a directed graph with the property that whenever
(u, v) ∈ E(G), then (v, u) /∈ E(G).

(iii) A circuit is a nonempty trail in which the first vertex is equal to the last
vertex. A cycle is a circuit in which the only repeated vertex is the first/last
vertex. A graph without cycles is called an acyclic graph.

(iv) A graph G is transitive if (u,w) ∈ E(G) whenever (u, v) ∈ E(G) and
(v, w) ∈ E(G), for any u, v, w ∈ V (G).

(v) A directed graph G in which each edge (u, v) is given a numerical weight
w(u, v) is called a weighted digraph.

(vi) Let G = (V (G), E(G), d) be a weighted digraph. We say that a mapping
T : V (G) → V (G) is G-monotone if for any x, y ∈ V (G) we have

(x, y) ∈ E(G) ⇒ (T (x), T (y)) ∈ E(G).

Throughout, we only consider digraphs without multi-edges. We will only con-
sider weighted digraphs in which the weight is a distance function, e.i., w(·, ·) =
d(·, ·). Definition 3.2 which was initially introduced in [1] for partial orders will be
needed.

Definition 3.2 ([2]). Let G = (V (G), E(G), d) be a weighted digraph. We say
that G satisfies the property (OSC) if and only if for any convergent G-decreasing
sequence {xn} in V (G), i.e. (xn+1, xn) ∈ E(G), for all n ∈ N, we have

(i) (limn→∞ xn, xm) ∈ E(G), for any m ∈ N, and
(ii) (x, limn→∞ xn) ∈ E(G) whenever (x, xn) ∈ E(G), for any n ∈ N.

Next we give the graphical version of the Ekeland’s variational principle for
equilibrium problems on weighted graphs.

Theorem 3.3. Let G = (V (G), E(G), d) be a reflexive transitive acyclic weighted
digraph such that (V (G), d) is G-complete. Assume that G satisfies Property (OSC).
Let F : V (G) × V (G) → R be a bifunction. Assume that the following conditions
hold:

(i) F (x, x) = 0 for every x ∈ V (G);
(ii) F (x, y) ≤ F (x, z)+F (z, y) for every x, y, z ∈ V (G) such that (y, x) ∈ E(G)

and (z, y) ∈ E(G);
(iii) F (x, .) is lower bounded and G-lower semicontinuous, for every x ∈ V (G);

Then, for every ε > 0 and x0 ∈ V (G), there exists x ∈ V (G) such that (x, x0) ∈
E(G) and

(a) F (x0, x) + ε d(x0, x) ≤ 0;
(b) F (x, y) + ε d(x, y) > 0, for every y ∈ V (G) \ {x} with (y, x) ∈ E(G).



GRAPHICAL EKELAND’S PRINCIPLE FOR EQUILIBRIUM PROBLEMS 37

Proof. By replacing the distance d(·, ·) by the equivalent distance ε d(·, ·), we may
assume ε = 1 without loss of any generality. Let x ∈ V (G). Set

A(x) = {y ∈ V (G); (y, x) ∈ E(G) and F (x, y) + d(x, y) ≤ 0}.
Since G is reflexive and the property (i), we get x ∈ A(x) which implies A(x) is not
empty, for any x ∈ V (G). Let y ∈ A(x) and z ∈ A(y). Since G is transitive, we get
(z, x) ∈ E(G). Using (ii), we get

F (x, z) + d(x, z) ≤ F (x, y) + F (y, z) + d(x, y) + d(y, z)
= F (x, y) + d(x, y) + F (y, z) + d(y, z)
≤ 0,

which implies A(y) ⊂ A(z). Moreover, for any x ∈ V (G), set

r(x) = sup
y∈A(x)

d(x, y) and v(x) = inf
y∈A(x)

F (x, y).

Note that v(x) > −∞, for any x ∈ V (G) since F is lower bounded. For any
x ∈ V (G) and y ∈ A(x), we have d(x, y) ≤ −F (x, y) which implies

r(x) = sup
y∈A(x)

d(x, y) ≤ sup
y∈A(x)

−F (x, y) = − inf
y∈A(x)

F (x, y) = −v(x).

Fix x0 ∈ V (G). By definition of v(x0), there exists x1 ∈ A(x0) such that

F (x0, x1) ≤ v(x0) +
1

2
.

By induction, we construct a sequence {xn} such that xn+1 ∈ A(xn) and

F (xn, xn+1) ≤ v(xn) +
1

2n+1
,

for any n ∈ N. Fix n ∈ N. Since A(xn+1 ⊂ A(xn), we get

inf
y∈A(xn)

F (xn+1, y) ≤ inf
y∈A(xn+1)

F (xn+1, y) = v(xn+1).

For any y ∈ V (G), (ii) implies F (xn, y) ≤ F (xn, xn+1) + F (xn+1, y) which gives

F (xn, y)− F (xn, xn+1) ≤ F (xn+1, y).

Hence
v(xn)− F (xn, xn+1) = inf

y∈A(xn)
F (xn, y)− F (xn, xn+1)

≤ inf
y∈A(xn)

F (xn+1, y) ≤ v(xn+1).

Since F (xn, xn+1) ≤ v(xn) +
1

2n+1 , we get

−v(xn) ≤ −F (xn, xn+1) +
1

2n+1
≤ v(xn+1)− v(xn) +

1

2n+1
,

which implies

0 ≤ v(xn+1) +
1

2n+1
.

Therefore, we must have

r(xn+1) ≤ −v(xn+1) ≤
1

2n+1
.

In particular, we have

d(xn, xn+1) ≤ r(xn) ≤
1

2n
,
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which proves that {xn} is Cauchy. Since this sequence is G-decreasing by con-
struction and V (G) is G-complete, we conclude that {xn} is convergent. Set
x = limn−→∞ xn. Since G satisfies the property (OSC), we get (x, xn) ∈ E(G).
Since F (x, ·) is G-lower semicontinuous, for any x ∈ V (G), we conclude that

F (y, x) ≤ lim inf
n−→∞

F (y, xn),

for any y ∈ V (G). By construction of {xn}, we know that xn+h ∈ A(xn), for any
n, h ∈ N, which implies

F (xn, x) + d(xn, x) ≤ lim infh−→∞ F (xn, xn+h) + d(xn, xn+h)
≤ 0.

Hence x ∈ A(xn), which implies A(x) ⊂ A(xn), for any n ∈ N. For any y ∈ A(x)
and n ∈ N, we have

d(x, y) ≤ d(x, xn) + d(xn, y) ≤ 2r(xn) = 2
1

2n
.

Therefore, we must have A(x) = {x}. Putting everything together, we get

F (x0, x) + d(x0, x) ≤ 0

since x ∈ A(x0), and for any y ∈ V (G) \ {x} with (y, x) ∈ E(G), we have

F (x, y) + d(x, y) > 0,

since y �∈ A(x). The proof of Theorem 3.3 is complete. �

The following result is easy to obtain from Theorem 3.3.

Theorem 3.4. Let G = (V (G), E(G), d) be a reflexive transitive acyclic weighted
digraph such that (V (G), d) is G-complete. Assume that G satisfies Property (OSC).
Let F : V (G) × V (G) → R be a bifunction. Assume that the following conditions
hold:

(i) F (x, x) = 0, for every x ∈ V (G);
(ii) F (x, y) ≤ F (x, z) + F (z, y), for every x, y, z ∈ V (G) such that (y, x) ∈

E(G) and (z, y) ∈ E(G);
(iii) F (x, .) is lower bounded and G-lower semicontinuous, for every x ∈ V (G).

Let H : V (G) × V (G) → R be a bifunction such that F (x.y) ≤ H(x, y), for any
x, y ∈ V (G). Then for any ε > 0 and x0 ∈ V (G), there exists x ∈ V (G) such that
(x, x0) ∈ E(G) and

(a) F (x0, x) + ε d(x0, x) ≤ 0;
(b) H(x, y) + ε d(x, y) > 0, for every y ∈ V (G) \ {x} with (y, x) ∈ E(G).

As a corollary, we obtain the graphical version of Corollary 2.5 which is a major
improvement to the main result of [2].

Corollary 3.5. Let G = (V (G), E(G), d) be a reflexive transitive acyclic weighted
digraph such that (V (G), d) is G-complete. Assume that G satisfies Property (OSC).
Let F : V (G) × V (G) → R be a bifunction. Assume that the following conditions
hold:

(i) there exists φ : V (G) → R such that

F (x, y) ≥ φ(x)− φ(y), for every x, y ∈ V (G);

(ii) φ is lower bounded and G-lower semicontinuous.
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Then, for every ε > 0 and x0 ∈ V (G), there exists x ∈ V (G) such that (x, x0) ∈
E(G) and

(a) φ(x) ≤ φ(x0)− ε d(x0, x);
(b) F (x, y) + ε d(x, y) > 0, for any y ∈ V (G) such that y �= x.

Example 3.6. Consider the indicator function

h(x) =

{
0 , for x ∈ Q;
1 , for x ∈ R \Q.

Let G be the graph with vertex set V (G) = [1,∞) where two vertices x, y are
adjacent (connected by an edge) if either both are rational numbers or both are
irrational numbers. The bifunction F : [1,∞) → R defined by

F (x, y) =
1

y
− 1

x
+ h(y − x)

satisfies the triangle inequality property and all the other assumptions of Theorem
3.4 except the lower semicontinuity of F (x, .), for any fixed x ∈ [1,∞). Neverthe-
less the condition (i) of Corollary 3.5 is verified using the lower bounded continuous
function φ(t) = 1/t. Therefore the equilibrium problem for F (·, ·) admits approxi-
mate solutions.
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