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ANALYTIC CONTINUATION OF GENERALIZED

TRIGONOMETRIC FUNCTIONS
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(Communicated by Yuan Xu)

Abstract. Via a unified geometric approach, certain generalized trigonomet-
ric functions with two parameters are analytically extended to maximal do-

mains on which they are univalent. Some consequences are deduced concern-
ing radius of convergence for the Maclaurin series, commutation with rotation,
continuation beyond the domain of univalence, and periodicity.

1. Introduction

Inverses of functions of the form y �→
∫ y

0
(1−xq)−1/pdx for y ∈ [0, 1] with p, q > 1

have been of interest to analysts. See, for example, [1], [2], [5], [6]; also see [8] for an
account of early work in this area. Herein, we study the complex-analytic aspects
of a subclass of them and identify their maximal domain of univalence.

Throughout this note, n and k are integers with n > 2 and 1 ≤ k < n.
For y ∈ [0, 1], let

Fn,k(y) =

∫ y

0

1

(1− xn)k/n
dx.

Denoting the number Fn,k(1) by ϕn,k, define Sn,k : [0, ϕn,k] → [0, 1] to be the
inverse of Fn,k. These functions Sn,k are often referred to as generalized sine func-
tions. Primarily studied as real-valued functions, they are sometimes considered as
analytic functions on Fn,k[D] (D = {z ∈ C | |z| < 1}) due to the fact that Fn,k is
univalent as a complex-valued function on D (by the Noshiro-Warschawski theorem
in [4]).

In this article, we identify, for each n and k, Sn,k’s “natural” domain of ana-
lyticity, which turns out to be a maximal domain on which Sn,k is univalent. Our
unified treatment also encompasses the circular sine function (if we allow n = 2),
the historically important lemniscate sine function S4,2, and the Dixon’s elliptic
function S3,2. It is pertinent to note that, while we only treat the cases where k is
an integer, the analysis herein is equally applicable if k is any positive real number
less than n.

In §2, we introduce notation and state the main results, which are then proved
in §3. In §4, we note several consequences, some of which concern further analytic
continuation on larger domains beyond the domain of univalence.
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2. The main results

We often denote points in C by capital letters in the English alphabet; when we
do so, we write AB for the (closed) line segment between point A and point B,
whereas we write [A,B) for the half-open segment AB \ {B}.

Now, let n > 2 be fixed. Let ωn = ei2π/n. Denote the point ϕn,k by An,k and
the point ϕn,kωn by Bn,k. We construct a closed set Πn,k for each k < n. There
are two cases, k = 1 and k > 1, that need separate (but related) treatments.

We first treat the case k = 1 and construct Πn,1. The boundary of Πn,1 is the

union of the two rays
{
ϕn,1 + teiπ/n | t ≥ 0

}
and

{
ϕn,1ωn + teiπ/n | t ≥ 0

}
along

with the two segments OAn,1 and OBn,1, whereas the interior of Πn,1 is the com-

ponent of C \ ∂Πn,1 that contains {teiπ/n | t > 0} (the bisector of ∠An,1OBn,1).
For k > 1, let Pn,k denote the point on the bisector of ∠An,kOBn,k such that

An,kPn,k has an angle of inclination kπ/n. (If k were 1, such a point would only
“exist” at ∞; cf. the construction of Πn,1.) We denote by Πn,k the (compact) set
enclosed by the polygon OAn,kPn,kBn,k. Note that �OPn,kAn,k = (k − 1)π/n.
Thus, in Πn,k, the interior angle at the vertex Pn,k exceeds π iff k > n

2 +1, in which
case Πn,k is nonconvex, whereas the “interior angle” at Pn,k becomes a straight
angle (and Pn,k is a degenerate vertex) iff k = n

2 + 1. With a little geometry, one
can verify that Pn,k is the point

(2.1) ϕn,ke
iπ/n

(
cos

π

n
+ sin

π

n
cot

(k − 1)π

n

)
;

note that cot [(k − 1)π/n] < 0 when k > n
2 + 1, i.e., when the interior angle at the

vertex Pn,k exceeds π. Four cases of Πn,k are illustrated in Figures 1–4, some of
which will be referred to in the proofs for Theorems 4.1, 4.5, and 4.7.

Let Vn = {reiθ | r > 0; θ ∈ (0, 2π/n)}. We state a key lemma.

Lemma 2.1. The analytic continuation of Fn,k is a conformal equivalence from

Vn to Π̊n,k (the interior of Πn,k); its continuous extension to V n (the closure of
Vn) restricts to a homeomorphism from ∂Vn onto ∂Πn,k when k = 1 and onto
∂Πn,k \ {Pn,k} when k > 1.

Definition 2.2. Define the domain Ωn,k to be the interior of

n−1⋃
j=0

(
ωj
n ·Πn,k

)
;

letting J = [1,∞), define Σn to be the plane with the n slits ωj
n · J (j ∈ Z):

Σn = C \

⎛
⎝n−1⋃

j=0

(
ωj
n · J

)⎞⎠ .

Theorem 2.3. Concerning Sn,k, we have the following statements.

(1) The analytic continuation of Sn,k is a conformal equivalence from Ωn,k onto
Σn.

(2) Sn,k : Ωn,k → Σn has a continuous extension S̃n,k with S̃n,k(ω
j
nϕn,k) = ωj

n

(j ∈ Z); moreover,

(a) S̃n,1 maps ∂Ωn,1 \ ∪j{ωj
nϕn,1} two-to-one onto ∪jω

j
n · J̊ ;

(b) for k > 1, S̃n,k maps ∂Ωn,k \ ∪j{ωj
nϕn,k , ω

j
n · Pn,k} two-to-one onto

∪jω
j
n · J̊ .
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Figure 2. Π5,4

(3) Ωn,k is the maximal domain containing 0 on which Sn,k is univalent.

We now set out to make the case.

3. Analytic continuation of F and S; proof of main results

Let

Kn,k(z) =
1

(1− zn)k/n

with the requirement that Kn,k(0) = 1 and that Kn,k be continuous on V n\{1, ωn}.
Then, Kn,k is analytic on Vn with a primitive

Fn,k(z) =

∫ z

0

Kn,k(ζ)dζ,

where the integral is path-independent. We first examine the behavior of Fn,k on
∂Vn.
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Figure 3. Π6,3
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In the following, n
√
a stands for the principal nth root of a positive number a.

• For x ∈ [0, 1), Fn,k(x) =
∫ x

0
1/ n

√
1− tn

k
dt. Thus,

Fn,k[[0, 1]] = OAn,k.

• For x > 1, Kn,k(x) = eikπ/n/ n
√
xn − 1

k
where the phase factor eikπ/n is

dictated by the continuity of Kn,k. Then,

Fn,k(x) = ϕn,k + eikπ/n
∫ x

1

1

n
√
tn − 1

k
dt.

In the case k = 1, since limx→∞
∫ x

1

(
n
√
tn − 1

)−1
dt = ∞,

Fn,1[J ] =
{
ϕn,1 + teiπ/n | t ≥ 0

}
,

which is a ray originating from An,1 with an angle of inclination π/n.
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If k > 1, then

lim
x→∞

Fn,k(x) = ϕn,k + eikπ/nIn,k where In,k =

∫ ∞

1

1

n
√
tn − 1

k
dt.

and

Fn,k[J ] =
{
ϕn,k + teikπ/n | t ∈ [0, In,k)

}
,

which is a segment [An,k, P
′
n,k) of length In,k with angle of inclination kπ/n.

• For z = tωn with t ∈ [0, 1),

Kn,k(z) = (1− (tωn)
n)−k/n =

(
n
√
1− tn

)−k

and

Fn,k(z) =

∫ t

0

Kn,k(τωn)ωndτ = ωn

∫ t

0

1

n
√
1− τn

k
dτ .

Thus,

Fn,k[{tωn | t ∈ [0, 1]}] = OBn,k.

• For z = tωn with t > 1,

Kn,k(z) = e−iπk/n
(

n
√
tn − 1

)−k
,

where the phase factor is again dictated by the continuity of Kn,k, and

Fn,k(z) = Fn,k(ωn) +

∫ t

1

Kn,k(τωn)ωndτ

= ϕn,kωn + e−ikπ/nωn

∫ t

1

1

n
√
τn − 1

k
dτ.

In the case k = 1,

Fn,1[ωn · J ] =
{
ϕn,1ωn + teiπ/n | t ≥ 0

}

which is a ray originating from Bn,1 with an angle of inclination π/n.
If k > 1, then

Fn,k[ωn · J ] =
{
ϕn,kωn + tωne

−ikπ/n | t ∈ [0, In,k)
}

is a segment [Bn,k, P
′′
n,k) of length In,k whose angle with

−−→
OBn,k, measured

clockwise from
−−→
OBn,k, has measure kπ/n.

• We claim that, for k > 1,

(3.1) lim
z∈V n, |z|→∞

Fn,k(z) = lim
r→∞

Fn,k(r),

which will imply that P ′′
n = P ′

n = Pn. Let ε > 0 be given. Note that

Fn,k(re
iθ)− Fn,k(r) =

∫
ζ=reit, t∈[0,θ]

1

(1− ζn)k/n
dζ,

whose modulus can be bounded by ε/2 for sufficiently large r (since k > 1)
and for all θ ∈ [0, 2π/n]. Also |Fn,k(r)− P ′

n,k| < ε/2 for sufficiently large r

as P ′
n,k = limr→∞ Fn,k(r). Thus, |Fn,k(re

iθ)− P ′
n,k| < ε for all sufficiently

large r and for all θ ∈ [0, 2π/n], proving the claim.
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Remark 3.1. Let k > 1. Consider 
OAn,kPn,k. On one hand, the point Pn,k is
located by (2.1); on the other hand, since |An,kPn,k| = In,k, Pn,k is also the point(

ϕn,k cos
π

n
+ In,k cos

(k − 1)π

n

)
eiπ/n.

Comparing the two, we obtain the identity∫ ∞

1

1

(tn − 1)k/n
dt =

sin(π/n)

sin[(k − 1)π/n]
ϕn,k.

Returning to the analysis of Fn,k on Vn, we claim that Fn,k maps Vn bijectively

onto Π̊n,k. Let w ∈ Π̊n,k. Let γr be the positively oriented boundary of the
circular sector with vertices 0, r, and rωn. The preceding analysis shows that, for
all sufficiently large r, Fn,k ◦ γr winds around w exactly once.

Thus, Fn,k : Vn → Π̊n,k is a conformal equivalence. The boundary behavior of
Fn,k detailed above shows that its continuous extension is a homeomorphism from
∂Vn onto ∂Πn,k when k = 1 and onto ∂Πn,k \ {Pn,k} when k > 1.

This concludes the argument for Lemma 2.1.
At long last, we define Sn,k : Π̊n,k → Vn to be the inverse of Fn,k. The boundary

extension of Sn,k mirrors that of Fn,k and maps OAn,k and OBn,k to the two line
segments [0, 1] and {tωn | t ∈ [0, 1]} on ∂Vn. We may then apply the Schwarz
reflection principle repeatedly to analytically continue Sn,k over Ωn,k with range
Σn. This establishes Part (1) of Theorem 2.3.

Note that Sn,k[ω
j
n · Π̊n,k] = ωj

n · Vn. By the boundary behavior of Fn,k, the
boundary extension of Sn,k behaves as described by Part (2) of Theorem 2.3.

Finally, we argue Part (3) of Theorem 2.3, i.e., Ωn,k is maximal among domains
on which Sn,k is univalent. Suppose that Sn,k is analytically continued on an (open
connected) domain properly containing Ωn,k. This domain necessarily contains a

disc U around some line segment L ⊂ ∂Ωn,k with Lmapped by S̃n,k into a ray ωj
n ·J .

By the Schwarz reflection principle, Sn,k maps U \ (Ωn,k) into Σn = Sn,k(Ωn,k),
ruining univalence.

4. Some consequences

From the main results, we deduce some notable consequences.
First, we consider the radius of convergence of the Maclaurin series for Sn,k.

Theorem 4.1. Let Rn,k be the radius of convergence for the Maclaurin series for
Sn,k. Then,

(1) Rn,1 = ϕn,1;

(2) for k > 1, Rn,k ≤
(
cos π

n + sin π
n cot (k−1)π

n

)
ϕn,k;

(3) for k ≥ n
2 + 1, Rn,k =

(
cos π

n + sin π
n cot (k−1)π

n

)
ϕn,k.

Proof. Recall that, by (2.1), |OPn,k| =
(
cos π

n + sin π
n cot (k−1)π

n

)
ϕn,k.

(1) Note that dist(0, C \ Ωn,1) = ϕn,1 and therefore Rn,1 ≥ ϕn,1. We claim
that no extension of Sn,1 can be analytic at ϕn,1. To see this, first note

that the two rays {ϕn,1 + teiπ/n | t ≥ 0} and {ϕn,1 + te−iπ/n | t ≥ 0} are

mapped by S̃n,1 onto J with S̃n,1(ϕn,1) = 1. Within Ωn,1, these two rays

make an interior angle of measure 2π(n− 1)/n. Thus, S̃n,1 expands angle
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at ϕn,1 by the non-integer factor n/(n − 1) and hence cannot be analytic
there. (If we allow n = 2, n/(n− 1) is an integer and indeed the ordinary
circular sine function is analytic at π/2!)

(2) Let k > 1. Since |Sn,k(z)| → ∞ as z → Pn,k in Ωn,k, Rn,k ≤ |OPn,k|.
(3) When k ≥ n

2 + 1, the interior angle of the polygon Ωn,k at Pn,k is at least
π and hence |OPn,k| = dist(0, C \Ωn,k); see Π5,4 and Π6,4 in Figures 2 and
4. Hence, Rn,k ≥ |OPn,k|.

�

Next we examine the interaction between Sn,k and certain rotations around O.
We need a preliminary observation.

Let Ln = {teiπ/n | t ≥ 0}.

Lemma 4.2. When k > 1, Fn,k[Ln] = [O,Pn,k) ⊂ Ln, whereas Fn,1[Ln] = Ln.

Proof. Integrating Kn,k along Ln, we obtain

Fn,k(te
iπ/n) = eiπ/n

∫ t

0

1

n
√
1 + τn

k
dτ.

The claim for k > 1 follows at once in light of (3.1), whereas the claim about Fn,1

is due to the divergence of
∫∞
0

1/ n
√
1 + τn dτ . �

Remark 4.3. In light of Lemma 4.2, we make two observations. Let k > 1.

(1) The consideration given for Lemma 4.2 yields another expression for |OPn,k|,
i.e.,

∫∞
0

(1 + tn)
−k/n

dt, in addition to that given by (2.1). Comparing the
two, we obtain the identity∫ ∞

0

1

(1 + tn)
k/n

dt =

(
cos

π

n
+ sin

π

n
cot

(k − 1)π

n

)
ϕn,k.

(2) Define
√
Vn to be {reiθ : r > 0; θ ∈ (0, π/n)}. By Lemma 4.2, Fn,k maps√

Vn conformally onto 
̊OAn,kPn,k, the interior of 
OAn,kPn,k. There is
a unique conformal equivalence

Ψn,k : {z | Im z > 0} → 
̊OAn,kPn,k

whose continuous extension maps R ∪ {±∞} onto ∂(
OAn,kPn,k) with
Ψn,k(0) = O, Ψn,k(1) = An,k, and Ψn,k(±∞) = Pn,k. By uniqueness,
Fn,k(z) = Ψn,k(z

n) for z ∈
√
Vn. As Ψn,k can be expressed by a Schwarz-

Christoffel integral formula, this functional identity yields another integral
expression for Fn,k on

√
Vn.

We now show that each Sn,k commutes with rotation around O by angle 2π/n.

Theorem 4.4. For z ∈ Ωn,k, Sn,k(ωnz) = ωnSn,k(z).

Proof. For a line L in the plane, let RL denote the reflection across L. Recall that
the composition of reflections across two intersecting lines is a rotation around their
point of intersection by an angle that is twice the angle between the two lines. It
suffices to check this identity for z in the interior of 
OAn,kPn,k. By Lemma 4.2,
Sn,k maps [O,Pn,k) ⊂ Ln into Ln. Applying the Schwarz reflection principle, we
obtain

Sn,k (RLn
(z)) = RLn

(Sn,k(z)) .
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Applying this and the definition of Sn,k on ωn · Π̊n,k, we have(
Sn,k ◦R(ωn·R)

)
(RLn

(z)) =
(
R(ωn·R) ◦ Sn,k

)
(RLn

(z))

=
(
R(ωn·R) ◦RLn

)
(Sn,k(z)) ;

i.e.,
Sn,k ◦

(
R(ωn·R) ◦RLn

)
=

(
R(ωn·R) ◦RLn

)
◦ Sn,k.

Because Rωn·R ◦RLn
(ζ) = ωn · ζ for all ζ ∈ C, the result follows. �

Next we consider the possibility of further continuation of Sn,k.

Theorem 4.5. Suppose that n = 2k. Then Sn,k can be analytically continued to a
function (also denoted by Sn,k) on the interior of

∪n−1
j=0

[
ωj
n ·

(
∪m∈Z

(
2mϕn,k + Ωn,k

))]
;

for z ∈ ωj
n ·

(
∪m∈Z

(
2mϕn,k +Ωn,k

))
,

Sn,k(z + 4ωj
nϕn,k) = Sn,k(z).

Furthermore, Sn,k has multiplicity 2 at ωj
nϕn,k (j ∈ Z).

Proof. When k = n/2, �OAn,kPn,k = π/2; see Π6,3 in Figure 3. Therefore, in

the polygon Ωn,k, the interior angle at An,k becomes a straight angle. Let P ∗
n,k

denote the complex conjugate of Pn,k. Note that S̃n,k folds up the open segment

(Pn,k, P
∗
n,k) into J with S̃n,k(An,k) = 1. We may apply the Schwarz reflection

principle to continue Sn,k across (Pn,k, P
∗
n,k), and then across 2ϕn,k + (Pn,k, P

∗
n,k),

and so on. Recall that the composition of reflections across two parallel lines is a
translation by twice the distance between them. This implies that 4ϕn,k is a period

for Sn,k on ∪m∈Z

(
2mϕn,k +Ωn,k

)
. Applying the identity in Theorem 4.4, we can

extend Sn,k analytically on the domain claimed by the statement. Finally, note
that Sn,k is two-to-one on some disc centered at An,k (again due to the Schwarz
reflection principle), proving the final claim. �
Remark 4.6. Note that S4,2 is the historically important lemniscate sine function

sl (and 2ϕ4,2 is the lemniscate constant). Since Ω4,2 is a square each of whose sides
is mapped into R or iR, repeated application of Schwarz reflection principle allows
S4,2 to be analytically continued to an elliptic function on C, a well-known classical
result now encompassed by Theorem 4.5.

By considering the behavior of S̃n,k near Pn,k, we deduce the following.

Theorem 4.7. Suppose that n is even and k = n
2 +1. Then, (Sn,k)

n/2 can be con-
tinued to a meromorphic function on a neighborhood of Pn,k, whereas Sn,k cannot.

Proof. When k = n
2 + 1, Pn,k becomes a degenerate vertex of Ωn,k as the interior

angle at Pn,k becomes a straight angle; see Π6,4 in Figure 4. Recall that S̃n,k maps
[An,k, Pn,k) onto J and that it maps [Bn,k, Pn,k) onto the ray ωn · J . If Sn,k were
continued to a meromorphic function on a disc around Pn,k, then Schwarz reflection
across [An,k, Pn,k) and across [Bn,k, Pn,k) would entail a contradiction. Note that

(Sn,k)
n/2 maps [Bn,k, Pn,k) onto (−∞, 1]. Thus, An,kBn,k \ {Pn,k} is mapped into

the x-axis by (Sn,k)
n/2. The Schwarz reflection principle can then be applied to

analytically extend (Sn,k)
n/2 on some punctured disc centered at Pn,k. Thus, Pn,k

is an isolated singularity of (Sn,k)
n/2 and in fact a pole. �
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Remark 4.8. Our approach unifies various individual cases and provides insights
into their properties. For example, as the complex plane can be tessellated by
regular hexagons and Ω3,2 is a regular hexagon, it is easy to show that S3,2 is
extendable to an elliptic function; this is known in [3] and S3,2 is the Dixon’s
elliptic function sm. Similarly, it can be shown, based upon Theorem 4.7 and the
fact that Ω4,3 is a square, that (S4,3)

2 can be continued to an elliptic function; this
is established in [7] but via an entirely different (and less elementary) approach.
As a related matter, our main results readily imply that Sn,n−1 is extendable to a
real-analytic function on R if n is even and on the interval(

−1

2
ϕn,n−1 sec

π

n
, ϕn,n−1 +

1

2
ϕn,n−1 sec

π

n

)

if n is odd.
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