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ON THE ESSENTIAL NORMS OF SINGULAR INTEGRAL

OPERATORS WITH CONSTANT COEFFICIENTS AND OF THE

BACKWARD SHIFT

OLEKSIY KARLOVYCH AND EUGENE SHARGORODSKY

(Communicated by Javad Mashreghi)

Abstract. Let X be a rearrangement-invariant Banach function space on
the unit circle T and let H[X] be the abstract Hardy space built upon X. We

prove that if the Cauchy singular integral operator (Hf)(t) = 1
πi

∫
T

f(τ)
τ−t

dτ is

bounded on the space X, then the norm, the essential norm, and the Hausdorff
measure of non-compactness of the operator aI + bH with a, b ∈ C, acting
on the space X, coincide. We also show that similar equalities hold for the

backward shift operator (Sf)(t) = (f(t)− f̂(0))/t on the abstract Hardy space
H[X]. Our results extend those by Krupnik and Polonskĭı [Funkcional. Anal.
i Priloz̆en. 9 (1975), pp. 73-74] for the operator aI + bH and by the second
author [J. Funct. Anal. 280 (2021), p. 11] for the operator S.

1. Introduction

For a Banach space E, let B(E) and K(E) denote the sets of bounded linear and
compact linear operators on E, respectively. The norm of an operator A ∈ B(E) is
denoted by ‖A‖B(E). The essential norm of A ∈ B(E) is defined by

‖A‖B(E),e := inf{‖A−K‖B(E) : K ∈ K(E)}.
For a bounded subset Ω of the space E, we denote by χ(Ω) the greatest lower bound
of the set of numbers r such that Ω can be covered by a finite family of open balls
of radius r. For A ∈ B(E), set

‖A‖B(E),χ := χ (A(BE)) ,

where BE denotes the closed unit ball in E. The quantity ‖A‖B(E),χ is called the
(Hausdorff) measure of non-compactness of the operator A. It follows from the
definition of the essential norm and [24, inequality (3.29)] that for every A ∈ B(E)
one has

(1.1) ‖A‖B(E),χ ≤ ‖A‖B(E),e ≤ ‖A‖B(E).

We refer to the monographs [1–3] for the general theory of measures of non-
compactness.
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In this paper, we deal with the norm, the essential norm, and the measure of non-
compactness of the following two operators: the singular integral operator aI+bH,
where I is the identity operator, a, b ∈ C and H is the Cauchy singular integral op-
erator (sometimes called the Hilbert transform), acting on rearrangement-invariant
Banach function spaces X (see Section 2.2), and the backward shift operator S, act-
ing on the abstract Hardy spaces H[X] built upon rearrangement-invariant Banach
function spaces X.

For 1 ≤ p ≤ ∞, let Lp := Lp(T) be the standard Lebesgue space on the unit
circle T in the complex plane C with respect to the normalized Lebesgue measure
dm(t) = |dt|/(2π). For f ∈ L1, the Cauchy singular integral Hf is defined by

(Hf)(t) :=
1

πi
p.v.

∫
T

f(τ )

τ − t
dτ, t ∈ T,

where the integral is understood in the Cauchy principal value sense. The Riesz
projection is defined by P := 1

2 (I + H). It is well known that H ∈ B(Lp) if
1 < p < ∞ (see, e.g., [13, Chap. 1, Lemma 2.1]). It follows from the results by
Gohberg and Krupnik [12, 15], Pichorides [27], Hollenbeck and Verbitsky [17] that
for all 1 < p < ∞,

(1.2) ‖H‖B(Lp) = ‖H‖B(Lp),e = cot
(π
2
λLp

)
and

(1.3) ‖P‖B(Lp) = ‖P‖B(Lp),e =
1

sin(πλLp)
,

where

(1.4) λLp = min{1/p, 1− 1/p}.
Rearrangement-invariant Banach function spaces are far-reaching generalizations

of Lebesgue spaces Lp, 1 ≤ p ≤ ∞ (see [4, Chap. 2] and Section 2.2). Krupnik and
Polonskĭı proved [23, Theorem 1] that if X is a reflexive rearrangement-invariant
Banach function space on the unit circle T (see Section 2.2) such that H ∈ B(X),
then

(1.5) ‖H‖B(X) = ‖H‖B(X),e.

See also [21, Example 4.1], where the equality

(1.6) ‖aI + bH‖B(Lp) = ‖aI + bH‖B(Lp),e

is stated for 1 < p < ∞ and a, b ∈ C.
Further, the first author obtained in [18, Theorem 4.5 and Corollary 4.6] lower

estimates for ‖H‖B(X),e and ‖P‖B(X),e in the case of a reflexive rearrangement-
invariant Banach function space X such that H ∈ B(X). The lower bounds for the
essential norms are defined exactly as the right-hand sides of (1.2) and (1.3) with
λLp given by (1.4) replaced by λX = min{pX , 1− qX}, where 0 < pX ≤ qX < 1 are
the so-called Zippin indices of the rearrangement-invariant Banach function space
X. Note that for the Lebesgue spaces Lp the Zippin indices coincide and are equal
to 1/p, but there are Orlicz spaces LΦ for which 0 < pLΦ < qLΦ < 1 (see, e.g., [25]).

We refer to the monographs [14, Chap. 13] and [21, Chap. 4] and the survey
paper [22] for a more detailed account of the history of the problem of calculation
(or estimation) of the norms and the essential norms of the operators aI+ bH with
a, b ∈ C.
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Our first main result is the following extension of [23, Theorem 1] (see (1.5)).

Theorem 1.1. Let X be a rearrangement-invariant Banach function space on the
unit circle T. If H ∈ B(X) and a, b ∈ C, then

‖aI + bH‖B(X),χ = ‖aI + bH‖B(X),e = ‖aI + bH‖B(X).

The first equality appears in this work for the first time. We also would like to
underline that, in contrast to [23], we do not require that the space X is reflexive. It
is instructive to analyze the case of the Lorentz spaces Lp,q , 1 < p < ∞, 1 ≤ q ≤ ∞,
which are rearrangement-invariant Banach function spaces (see, e.g., [4, Chap. 4,
Theorem 4.6]). It is well known that the operator H is bounded on all such spaces
Lp,q. This follows from the boundedness of H on Lp for 1 < p < ∞ (see, e.g.,
[13, Chap. 1, Lemma 1]), Boyd’s interpolation theorem (see [7] and also [4, Chap. 3,
Theorem 5.16]), and [4, Chap. 4, Theorem 4.6]. Note that if 1 < p < ∞, then the
spaces Lp,q are separable and reflexive for 1 < q < ∞; the spaces Lp,1 are separable
and non-reflexive; and the spaces Lp,∞ are non-separable and non-reflexive. So, all
equalities in Theorem 1.1 are new for Lp,1 and Lp,∞.

Now we pass to the backward shift operator. For f ∈ L1, let

f̂(n) :=
1

2π

∫ π

−π

f(eiϕ)e−inϕ dϕ, n ∈ Z,

be the sequence of the Fourier coefficients of f . For 1 ≤ p ≤ ∞, the classical Hardy
spaces Hp are defined by

Hp :=
{
f ∈ Lp : f̂(n) = 0 for all n < 0

}
.

Consider the functions

en(z) := zn , z ∈ C, n ∈ Z.

The backward shift operator S is defined on Hp, 1 ≤ p ≤ ∞, by

(1.7) (Sf)(t) := e−1(t)
(
f(t)− f̂(0)

)
, t ∈ T.

We refer to the monograph by Cima and Ross [9] for a systematic study of this
operator on the classical Hardy spaces Hp(D) over the unit disk D for 0 < p ≤ ∞.
The operator S is one of the simplest Toeplitz operators (see, e.g., [6]). It plays
an important role in the study of more general Toeplitz operators with continuous
symbols on the classical Hardy spaces Hp with 1 < p < ∞ (see [5] and [28]). The
second author proved in [28, Theorems 3.1 and 5.1] that for the Hardy spaces Hp,
1 < p < ∞, one has

(1.8) ‖S‖B(Hp),χ = ‖S‖B(Hp),e = ‖S‖B(Hp) ≤ 2|1−2/p|.

Note that the exact value of the norm of the operator S is unknown even in the
case of the Hardy space H1 (see [11]).

Let X be a rearrangement-invariant Banach function space (see Section 2.2). It
is continuously embedded into L1. Following [29, p. 877], we consider the abstract
Hardy space H[X] built upon the space X, which is defined by

H[X] :=
{
f ∈ X : f̂(n) = 0 for all n < 0

}
.

This is a Banach space with respect to the norm

‖f‖H[X] := ‖f‖X .

It is clear that if 1 ≤ p ≤ ∞, then H[Lp] is the classical Hardy space Hp.
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Our second main result is the following extension of the equalities in (1.8) from
the setting of classical Hardy spaces Hp = H[Lp] with 1 < p < ∞ to the case of
abstract Hardy spaces H[X] built upon arbitrary rearrangement-invariant Banach
function spaces X.

Theorem 1.2. Let H[X] be the abstract Hardy space built upon a rearrangement-
invariant Banach function space X on the unit circle T. Then the backward shift
operator S is bounded on H[X] and

‖S‖B(H[X]),χ = ‖S‖B(H[X]),e = ‖S‖B(H[X]).

Once again, since we do not require that X is reflexive, our result covers the
case of classical Hardy spaces H1 = H[L1] and H∞ = H[L∞], which were not
considered in [28, Theorem 5.1].

The paper is organized as follows. In Section 2, we collect definitions of a
rearrangement-invariant Banach function space and its associate space, as well as
auxiliary facts on measure preserving transformations of the unit circle onto itself
generated by inner functions vanishing at the origin. In Section 3, we show that the
operators Bnf = en(f ◦ e2n) commute with A = aI + bH for a, b ∈ C and n ∈ N.
Further, we prove Theorem 1.1 following the scheme of the proof of [28, Theo-
rem 5.1]. In Section 4, we show that the backward shift operators S is bounded
on the abstract Hardy space built upon an arbitrary Banach function space (not
necessarily rearrangement-invariant). Finally, we prove Theorem 1.2.

2. Rearrangement-invariant Banach function spaces

2.1. Banach function spaces and their associate spaces. Let M be the set
of all measurable complex-valued functions on T equipped with the normalized
measure dm(t) = |dt|/(2π) and let M+ be the subset of functions in M whose
values lie in [0,∞]. The characteristic (indicator) function of a measurable set
E ⊂ T is denoted by χE .

Following [4, Chap. 1, Definition 1.1], a mapping ρ : M+ → [0,∞] is called a
Banach function norm if, for all functions f, g, fn ∈ M+ with n ∈ N, and for all
constants a ≥ 0, the following properties hold:

ρ(f) = 0 ⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),(A1)

0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),(A2)

0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),(A3)

ρ(1) < ∞,(A4) ∫
T

f(t) dm(t) ≤ Cρ(f)(A5)

with a constant C ∈ (0,∞) that may depend on ρ, but is independent of f . When
functions differing only on a set of measure zero are identified, the set X of all
functions f ∈ M for which ρ(|f |) < ∞ is called a Banach function space. For each
f ∈ X, the norm of f is defined by ‖f‖X := ρ(|f |). The set X equipped with
the natural linear space operations and this norm becomes a Banach space (see
[4, Chap. 1, Theorems 1.4 and 1.6]). If ρ is a Banach function norm, its associate
norm ρ′ is defined on M+ by

ρ′(g) := sup

{∫
T

f(t)g(t) dm(t) : f ∈ M+, ρ(f) ≤ 1

}
, g ∈ M+.
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It is a Banach function norm itself [4, Chap. 1, Theorem 2.2]. The Banach function
space X ′ determined by the Banach function norm ρ′ is called the associate space
(Köthe dual) of X. The associate space X ′ can be viewed as a subspace of the
Banach dual space X∗.

For f ∈ X and g ∈ X ′, put

〈f, g〉 :=
∫
T

f(t)g(t) dm(t) =
1

2π

∫ π

−π

f
(
eiθ

)
g (eiθ) dθ.

The following statement is a consequence of the Lorentz-Luxemburg theorem
(see [4, Chap. 1, Theorem 2.7]). It can be proved in exactly the same way as
[19, Lemma 2.10].

Lemma 2.1. Let S0 be the set of all simple functions on T and let X be a Banach
function space on T. If f ∈ X, then

‖f‖X = sup {|〈f, s〉| : s ∈ S0, ‖s‖X′ ≤ 1} .

2.2. Rearrangement-invariant Banach function spaces and their associate
spaces. Let M0 (resp. M+

0 ) denote the set of all a.e. finite functions in M (resp.
in M+). Following [4, Chap. 2, Definitions 1.1 and 1.2], the distribution function
mf of a function f ∈ M0 is given by

mf (λ) := m {t ∈ T : |f(t)| > λ} , λ ≥ 0.

Two functions f, g ∈ M0 are said to be equimeasurable if mf (λ) = mg(λ) for all
λ ≥ 0. A Banach function norm ρ : M → [0,∞] is said to be rearrangement-
invariant if ρ(f) = ρ(g) for every pair of equimeasurable functions f, g ∈ M+

0 . In
that case, the Banach function spaceX generated by ρ is said to be a rearrangement-
invariant Banach function space (see [4, Chap. 2, Definition 4.1]). It follows from
[4, Chap. 2, Proposition 4.2] that if a Banach function space X is rearrangement-
invariant, then its associate space X ′ is also a rearrangement-invariant Banach
function space.

2.3. Measure preserving transformations defined by inner functions. Let
D denote the open unit disk in the complex plane C. Recall that a function F
analytic in D is said to belong to the Hardy space H∞(D) if

‖F‖H∞(D) := sup
z∈D

|F (z)| < ∞.

Recall that an inner function is a function u ∈ H∞(D) such that |u(eiθ)| = 1 for
a.e. θ ∈ [−π, π].

Lemma 2.2. If u is an inner function such that u(0) = 0, then u is a measure
preserving transformation from T onto itself.

This lemma goes back to Nordgren (see corollary to [26, Lemma 1] and also
[8, Remark 9.4.6], [19, Lemma 2.5], [10, Theorem 5.5]).

Lemma 2.3. Let X be a rearrangement-invariant Banach function spaces on the
unit circle T an let H[X] be the abstract Hardy space built upon X.

(a) If f ∈ X and n ∈ N, then f ◦ en ∈ X and ‖f ◦ en‖X = ‖f‖X .
(b) If f ∈ H[X] and n ∈ N, then f ◦ en ∈ H[X] and ‖f ◦ en‖H[X] = ‖f‖H[X].

Proof.
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(a) It is clear that en is an inner function and en(0) = 0 for every n ∈ N. It
follows from Lemma 2.2 that mf = mf◦en

for every f ∈ X and every n ∈ N. Then
f ◦ en ∈ X and ‖f ◦ en‖X = ‖f‖X because X is rearrangement-invariant.

(b) If f ∈ H1, then it follows from [10, Theorem 5.5] that f ◦ en ∈ H1 for every
n ∈ N. Combining this observation with part (a), we see that if f ∈ H[X] = X∩H1,
then f ◦ en ∈ X ∩H1 = H[X] and ‖f ◦ en‖H[X] = ‖f‖H[X].

�

3. Singular integral operators with constant coefficients

3.1. Operators Bn. For f ∈ L1 and n ∈ N, let

(3.1) Bnf := en(f ◦ e2n).

Lemma 3.1. If a, b ∈ C and A = aI + bH, then ABnϕ = BnAϕ for all ϕ ∈ L1

and n ∈ N.

Proof. Let P denote the set of all trigonometric polynomials. If f ∈ P, then it is
easy to see that for every k, n ∈ N,

(3.2) f̂ ◦ en(k) =
{

f̂(m), if k = nm, m ∈ Z,
0, otherwise.

Since P is dense in L1 (see, e.g., [20, Chap. 1, Theorem 2.12]), identity (3.2) remains
true for every f ∈ L1.

By Lemma 2.3(a), Bnϕ ∈ L1. For any z ∈ D, we get using (3.2)

F (z) :=
1

2πi

∫
T

(Bnϕ)(τ )

τ − z
dτ =

1

2πi

∫
T

τnϕ
(
τ2n

)
τ − z

dτ

=
1

2π

∫ π

−π

einθϕ
(
e2inθ

)
eiθ − z

eiθ dθ =
1

2π

∫ π

−π

einθϕ
(
e2inθ

)
1− ze−iθ

dθ

=
1

2π

∫ π

−π

einθϕ
(
e2inθ

)( ∞∑
k=0

zke−ikθ

)
dθ

=

∞∑
k=0

zk
1

2π

∫ π

−π

ϕ
(
e2inθ

)
e−i(k−n)θ dθ =

∞∑
k=0

zkϕ̂ ◦ e2n(k − n)

=

∞∑
m=0

z2nm+nϕ̂(m) = zn
∞∑

m=0

(
z2n

)m
ϕ̂(m)

=
zn

2π

∫ π

−π

ϕ
(
eiθ

)( ∞∑
m=0

z2nme−imθ

)
dθ

=
zn

2π

∫ π

−π

ϕ
(
eiθ

)
1− z2ne−iθ

dθ =
zn

2πi

∫
T

ϕ (τ )

τ − z2n
dτ =: G(z).

Since ϕ,Bnϕ ∈ L1, it follows from Privalov’s theorem (see, e.g., [16, Chap. X,
§3, Theorem 1]) that the nontangential limit of F (z) as z → eiϑ coincides with(
P (Bnϕ)

)
(eiϑ) for a.e. ϑ ∈ [−π, π], while the nontangential limit of G(z) coincides

with
(
Bn(Pϕ)

)
(eiϑ). Hence PBnϕ = BnPϕ, which implies ABnϕ = BnAϕ for all

ϕ ∈ L1, since H = 2P − I. �
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3.2. Proof of Theorem 1.1. The proof is similar to that of [28, Theorem 5.1]. In
view of inequality (1.1), it is sufficient to prove that

(3.3) ‖A‖B(X),χ ≥ ‖A‖B(X).

For any ε > 0, there exists q ∈ X, such that ‖q‖X = 1 and

(3.4) ‖Aq‖X ≥ ‖A‖B(X) − ε.

By Lemma 2.1, there exists a simple function h ∈ X ′ ∩ L∞ such that ‖h‖X′ ≤ 1
and

(3.5)
1

2π

∫ π

−π

(Aq)
(
eiθ

)
h
(
eiθ

)
dθ ≥ ‖Aq‖X − ε.

For n ∈ N, set hn := e−n(h ◦ e2n). Since X ′ is rearrangement-invariant (see
[4, Chap. 2, Proposition 4.2]), it follows from Lemma 2.3(a) that

(3.6) ‖hn‖X′ = ‖h‖X′ ≤ 1, n ∈ N.

On the other hand, taking into account that e2n is a measure preserving transfor-
mation of T onto itself (see Lemma 2.2), we see that for all n ∈ N,

1

2π

∫ π

−π

(BnAq)
(
eiθ

)
hn

(
eiθ

)
dθ =

1

2π

∫ π

−π

((Aq) ◦ e2n)
(
eiθ

)
(h ◦ e2n)

(
eiθ

)
dθ

=
1

2π

∫ π

−π

(Aq)
(
eiθ

)
h
(
eiθ

)
dθ.(3.7)

Take any finite set {ϕ1, . . . , ϕm} ⊂ X ⊆ L1. It is clear that hn = h1 ◦en, and it fol-

lows from (3.2) that ĥ1(0) = 0. By Fejér’s lemma (see [30, Chap. II, Theorem 4.15]),
we have for every j ∈ {1, . . . ,m},

lim
n→∞

1

2π

∫ π

−π

ϕj

(
eiθ

)
hn

(
eiθ

)
dθ =

1

2π

∫ π

−π

ϕj

(
eiθ

)
dθ

1

2π

∫ π

−π

h1

(
eiθ

)
dθ = 0.

Therefore, there exists N ∈ N such that

(3.8)

∣∣∣∣ 1

2π

∫ π

−π

ϕj

(
eiθ

)
hN

(
eiθ

)
dθ

∣∣∣∣ < ε, j ∈ {1, . . . ,m}.

It follows from (3.5), (3.7), (3.8) that for j ∈ {1, . . . ,m},∣∣∣∣ 1

2π

∫ π

−π

(BNAq − ϕj)
(
eiθ

)
hN

(
eiθ

)
dθ

∣∣∣∣
≥

∣∣∣∣ 1

2π

∫ π

−π

(BNAq)
(
eiθ

)
hN

(
eiθ

)
dθ

∣∣∣∣− ∣∣∣∣ 1

2π

∫ π

−π

ϕj

(
eiθ

)
hN

(
eiθ

)
dθ

∣∣∣∣
> ‖Aq‖X − 2ε.(3.9)

On the other hand, Hölder’s inequality for X (see [4, Chap. 1, Theorem 2.4]) and
(3.6) imply that for j ∈ {1, . . . ,m},∣∣∣∣ 1

2π

∫ π

−π

(BNAq − ϕj)
(
eiθ

)
hN

(
eiθ

)
dθ

∣∣∣∣ ≤ ‖BNAq − ϕj‖X‖hN‖X′

≤ ‖BNAq − ϕj‖X .(3.10)

Combining (3.9) and (3.10), we see that for j ∈ {1, . . . ,m},
(3.11) ‖BNAq − ϕj‖X > ‖Aq‖X − 2ε.



ON THE ESSENTIAL NORMS 67

It follows from X ⊂ L1, Lemma 3.1 and inequalities (3.4) and (3.11) that for all
j ∈ {1, . . . ,m},

‖ABNq − ϕj‖X = ‖BNAq − ϕj‖X > ‖Aq‖X − 2ε ≥ ‖A‖B(X) − 3ε.

By Lemma 2.3(a), ‖BNq‖X = ‖q‖X = 1. So, for every finite set {ϕ1, . . . , ϕm} ⊂ X,
there exists an element of the image of the unit ball A(BX) that lies at a distance
greater than ‖A‖B(X) − 3ε from every element of {ϕ1, . . . , ϕm}. This means that
A (BX) cannot be covered by a finite family of open balls of radius ‖A‖B(X) − 3ε.
Hence

‖A‖B(X),χ ≥ ‖A‖B(X) − 3ε for all ε > 0.

Passing to the limit as ε → 0+, we arrive at (3.3), which completes the proof. �

4. Backward shift operator

4.1. Boundedness of the backward shift operator. First, we observe that in
order to guarantee the boundedness of the backward shift operator on the abstract
Hardy space H[X], we do not need to require that the underlying Banach function
space X is rearrangement-invariant or reflexive.

Lemma 4.1. Let H[X] be the abstract Hardy space built upon an arbitrary Banach
function space X on the unit circle T. Then the backward shift operator S defined
by (1.7) is bounded on the space H[X].

Proof. For every f ∈ H[X], one has

‖Sf‖H[X] =
∥∥∥e−1

(
f − f̂(0)

)∥∥∥
H[X]

=
∥∥∥e−1

(
f − f̂(0)

)∥∥∥
X

=
∥∥∥f − f̂(0)

∥∥∥
H[X]

≤ ‖f‖H[X] +
∣∣∣f̂(0)∣∣∣ ‖1‖H[X] ≤ ‖f‖H[X] + ‖f‖L1‖1‖X .

By Axiom (A4), 1 ∈ X. On the other hand, in view of Axiom (A5), ‖f‖L1 ≤ C‖f‖X
for some constant C > 0 independent of f ∈ X. Hence

‖Sf‖H[X] ≤ ‖f‖H[X] + C‖f‖X‖1‖H[X] = (1 + C‖1‖X) ‖f‖H[X].

Therefore S ∈ B(H[X]) and

(4.1) ‖S‖B(H[X]) ≤ 1 + C‖1‖X ,

which completes the proof. �

Note that estimate (4.1) is quite crude. If X = Lp with 1 < p < ∞, then
‖1‖Lp = ‖1‖Lp′ = 1, where 1/p+ 1/p′ = 1. By Hölder’s inequality, ‖f‖L1 ≤ ‖f‖Lp

and the constant C = 1 on the right-hand side of this inequality is best possible.
Thus, it follows from (4.1) that ‖S‖B(Hp) ≤ 2 for all 1 < p < ∞. On the other
hand, the inequality in (1.8) gives a better estimate for the norm of the backward
shift operator on the classical Hardy spaces: ‖S‖B(Hp) ≤ 2|1−2/p|.

4.2. Proof of Theorem 1.2. The proof is similar to that of Theorem 1.1 (and of
[28, Theorem 5.1]). In view of inequality (1.1), it is sufficient to prove that

(4.2) ‖S‖B(H[X]),χ ≥ ‖S‖B(H[X]).

Fix ε > 0. Then there exists q ∈ H[X], such that ‖q‖H[X] = 1 and

(4.3) ‖Sq‖H[X] ≥ ‖S‖B(H[X]) − ε.
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Let q0 := q − q̂(0) ∈ H[X]. Then

(4.4) ‖q0‖H[X] = ‖e−1q0‖H[X] = ‖Sq‖H[X].

By Lemma 2.1, there exists a simple function h ∈ X ′ ∩ L∞ such that ‖h‖X′ ≤ 1
and

(4.5)
1

2π

∫ π

−π

q0
(
eiθ

)
h
(
eiθ

)
dθ ≥ ‖q0‖X − ε.

For n ∈ N, set hn := h ◦ en. Since X ′ is rearrangement-invariant (see [4, Chap. 2,
Proposition 4.2]), it follows from Lemma 2.3(a) that

(4.6) ‖hn‖X′ = ‖h‖X′ ≤ 1, n ∈ N.

On the other hand, taking into account that en is a measure preserving transfor-
mation of T onto itself (see Lemma 2.2), we see that for all n ∈ N,

(4.7)
1

2π

∫ π

−π

(q0 ◦ en)
(
eiθ

)
hn

(
eiθ

)
dθ =

1

2π

∫ π

−π

q0
(
eiθ

)
h
(
eiθ

)
dθ.

Take any finite set {ϕ1, . . . , ϕm} ⊂ H[X] ⊆ H1. Let ψj := e1ϕj for j ∈ {1, . . . ,m}.
It is clear that

1

2π

∫ π

−π

ψj

(
eiθ

)
dθ = ψ̂j(0) = 0, j ∈ {1, . . . ,m}.

By Fejér’s lemma (see [30, Chap. II, Theorem 4.15]), for every j ∈ {1, . . . ,m},

lim
n→∞

1

2π

∫ π

−π

ψj

(
eiθ

)
hn

(
eiθ

)
dθ =

1

2π

∫ π

−π

ψj

(
eiθ

)
dθ

1

2π

∫ π

−π

h
(
eiθ

)
dθ = 0.

Therefore, there exists N ∈ N such that

(4.8)

∣∣∣∣ 1

2π

∫ π

−π

ψj

(
eiθ

)
hN

(
eiθ

)
dθ

∣∣∣∣ < ε, j ∈ {1, . . . ,m}.

It follows from (4.5), (4.7), (4.8) that for j ∈ {1, . . . ,m},∣∣∣∣ 1

2π

∫ π

−π

(q0 ◦ eN − e1ϕj)
(
eiθ

)
hN

(
eiθ

)
dθ

∣∣∣∣
≥

∣∣∣∣ 1

2π

∫ π

−π

(q0 ◦ eN )
(
eiθ

)
hN

(
eiθ

)
dθ

∣∣∣∣− ∣∣∣∣ 1

2π

∫ π

−π

ψj

(
eiθ

)
hN

(
eiθ

)
dθ

∣∣∣∣
> ‖q0‖X − 2ε.(4.9)

On the other hand, Hölder’s inequality for X (see [4, Chap. 1, Theorem 2.4]) and
(4.6) imply that for j ∈ {1, . . . ,m},∣∣∣∣ 1

2π

∫ π

−π

(q0 ◦ eN − e1ϕj)
(
eiθ

)
hN

(
eiθ

)
dθ

∣∣∣∣ ≤ ‖q0 ◦ eN − e1ϕj‖X‖hN‖X′

≤ ‖q0 ◦ eN − e1ϕj‖X .(4.10)

Combining (4.9) and (4.10), we see that for j ∈ {1, . . . ,m},
(4.11) ‖q0 ◦ eN − e1ϕj‖X > ‖q0‖X − 2ε = ‖q0‖H[X] − 2ε.

Inequality (4.11), equality (4.4) and inequality (4.3) imply that for j ∈ {1, . . . ,m},
‖S(q ◦ eN )− ϕj‖H[X] = ‖e−1(q0 ◦ eN )− e−1e1ϕj‖X = ‖q0 ◦ eN − e1ϕj‖X

> ‖q0‖H[X] − 2ε ≥ ‖S‖B(H[X]) − 3ε.
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So, for every finite set {ϕ1, . . . , ϕm} ⊂ H[X], there exist a function S(q ◦ eN ) that
lies at a distance greater than ‖S‖B(H[X])− 3ε from every element of {ϕ1, . . . , ϕm}.
It follows from Lemma 2.3(b) that ‖q◦eN‖H[X] = ‖q‖H[X] = 1, that is, the function

S(q ◦ eN ) lies in the image S
(
BH[X]

)
of the unit ball of the space H[X] by the

operator S. This means that S
(
BH[X]

)
cannot be covered by a finite family of

open balls of radius ‖S‖B(H[X]) − 3ε. Hence

‖S‖B(H[X]),χ ≥ ‖S‖B(H[X]) − 3ε for all ε > 0.

Passing to the limit as ε → 0+, we arrive at (4.2), which completes the proof. �
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[6] Albrecht Böttcher and Bernd Silbermann, Analysis of Toeplitz operators, 2nd ed., Springer
Monographs in Mathematics, Springer-Verlag, Berlin, 2006. Prepared jointly with Alexei
Karlovich. MR2223704

[7] David W. Boyd, Spaces between a pair of reflexive Lebesgue spaces, Proc. Amer. Math. Soc.
18 (1967), 215–219, DOI 10.2307/2035264. MR212556

[8] Joseph A. Cima, Alec L. Matheson, and William T. Ross, The Cauchy transform, Mathe-
matical Surveys and Monographs, vol. 125, American Mathematical Society, Providence, RI,
2006, DOI 10.1090/surv/125. MR2215991

[9] Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, Mathematical
Surveys and Monographs, vol. 79, American Mathematical Society, Providence, RI, 2000,
DOI 10.1090/surv/079. MR1761913

[10] Vladimir Dybin and Sergei M. Grudsky, Introduction to the theory of Toeplitz operators with

infinite index, Operator Theory: Advances and Applications, vol. 137, Birkhäuser Verlag,
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