
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY, SERIES B
Volume 9, Pages 90–94 (March 29, 2022)
https://doi.org/10.1090/bproc/69

CONFORMAL IMAGES OF CARLESON CURVES

CHRISTOPHER J. BISHOP

(Communicated by Filippo Bracci)

Abstract. We show that if γ is a curve in the unit disk, then arclength on γ
is a Carleson measure iff the image of γ has finite length under every conformal

map of the disk onto a bounded domain with a rectifiable boundary.

In this note we characterize curves in D for which arclength is a Carleson mea-
sure, in terms of conformal maps onto rectifiable domains, answering a question
asked by Percy Deift (personal communication) arising from his work on Riemann-
Hilbert problems. The question seems natural and the proof follows from standard
techniques, but I have not been able to locate this result in the literature.

Recall that a positive measure μ on the open unit disk, D, is called a Carleson
measure if

‖μ‖C = sup
|z|=1,r>0

μ(D(z, r))

r
< ∞.

The left hand side is called the Carleson norm of the measure.

Theorem 1. If γ is a curve in the unit disk, then arclength on γ is a Carleson
measure iff the image of γ has finite length under every conformal map onto a
bounded domain with rectifiable boundary.

Proof. One direction is an easy consequence of known facts. If f is a conformal
map onto a rectifiable domain, then the F. and M. Riesz theorem (e.g., [2, Theorem
VI.1.2]) says that its derivative is in the Hardy space H1. For a Jordan domain,
the H1 norm of f ′ is the length of the image’s boundary. If the boundary is not a
Jordan curve then we may replace “length” by “1-dimensional Hausdorff measure”
(also denoted by �) and get �(∂Ω) ≤ ‖f ′‖H1 ≤ 2�(∂Ω). For any Hp function g on
the unit disk ∫

|g|pdμ ≤ Cp‖μ‖C‖g‖Hp

(e.g., [1, Theorem II.3.9]), where ‖ · ‖Hp is the Hardy space norm. Thus taking
g = f ′ we see that

�(f(γ)) =

∫
γ

|f ′|ds ≤ C1‖μ‖C · �(∂f(D)),

where μ denotes arclength measure on γ.
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The converse requires more work. [1, Theorem II.3.9] implies that if μ is not
Carleson, then there is a g ∈ H1 so that

∫
|g|dμ = ∞. By the usual factorization

theorems for Hardy spaces (e.g., [1, Corollary II.5.7]), we can assume g never van-
ishes in D, but this is not quite enough to deduce that g = h′ for some conformal
map h. Instead, we will explicitly construct a conformal map h onto a rectifiable
domain so that

∫
|h′|dμ = ∞.

Our conformal map h will be built as a limit of compositions from a collection
of conformal maps defined as follows. Suppose 0 < a < 1 and let Ωa,ε = D ∪
D(1 + a, (1 + ε)a) be the overlapping union of the unit disk D and a smaller disk
centered outside of D. See Figure 1. The conformal map D → Ωa,ε is a composition
of Möbius transformations and power functions, but we will not need the explicit
formula. We will only use the following facts.

Lemma 2. There is a constant 0 < c < 1 so that given any 0 < a < 1 and
0 < δ < 1/2, there exists a 0 < ra < 1 so that the following holds. For any
0 < r < ra there is an ε > 0 and a conformal map f : D → Ωa,ε such that:

(1) f(0) = 0 and f is symmetric with respect to R,
(2) f(1− r) = 1 + a,
(3) |f ′| ≥ ca/r on D(1, r).
(4) f has a conformal extension across T,
(5) |f(z)− z| < δ and |f ′(z)− 1| < δ on D \D(1, δ).

f

Figure 1. The top picture shows the domain Ωa,ε which is a
small disk attached to the unit disk. A properly placed Carleson
region is expanded by this map to a size comparable to the added
“bubble” and |f ′| is comparable to the ratio of the diameters of the
region and its image. By composing maps of this form, we build a
sequence of domains that look like the lower picture, except that
in the proof the sizes of the “bubbles” shrink much more dramat-
ically.

The lemma can be proven by an explicit calculation of f , or by applying sym-
metry and distortion properties of conformal maps (e.g., Koebe’s 1

4 -theorem). The
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idea for (2) is that the hyperbolic distance between 0 and a is a continuous function
of ε and it goes to ∞ as ε goes to zero. For a given a, ε we can choose r so the
image is > 1 + a, but the image tends to 1 as ε ↘ 0, so there is an intermediate
choice of ε where r maps to 1+ a. By replacing f(z) by f(sz) for s very close to 1,
we can assume f has a conformal extension across T and the previous conditions
still hold. We leave the details to the reader.

By conjugating f with a rotation of D (i.e., replace f(z) by f(λz)/λ, |λ| = 1),
we can clearly make |f ′| large on any sufficiently small Carleson disk, not just those
centered at 1.

Let μ denote arclength measure on a curve γ and suppose this is not a Carleson
measure. Then there must be sequence of disks centered at points {xn} on the unit
circle and radii ρn → 0 so that

μ(D(xn, ρn)) ≥ nρn.

Fix one such disk D = D(x, r) and let Wt = D∩{|z| < t}. Since D∩D is the union
of the Wt’s as t ↗ 1, we can choose a t so that μ(Wt) ≥ 1

2μ(D). For each disk in our
sequence, make such a choice and inductively define a subsequence of sets {Wn} so
that μ(Wn) ≥ ndn and dn+1 ≤ 2−n ·dist(Wn,T), where dn = diam(Wn) (Euclidean
diameter). We now proceed by induction to construct a sequence of conformal
maps {hj} on D that map our non-Carleson curve γ to curves with longer and
longer length. The limiting map h will map γ to a curve of infinite length.

Start with a = δ = 1/2 and let ra be as in the lemma. Choose k1 so large that the
region Wk1

⊂ D(xk1
, ρk1

) has diameter less than ra. By the lemma, we can choose
a point a1 = a · xk1

outside D, an ε1 > 0, and a conformal map f1 : D → Ωa1,ε1

so that |f ′
1| ≥ ca1/ρk1

on Wk1
, and f1 extends to be analytic on {|z| < 1 + s1} for

some positive s1. Let h1 = f1.
In general, assume we have used the lemma to choose conformal maps f1, . . . ,

fn−1 and that all of them have a conformal extension to {|z| < 1 + sn−1} for
some positive sn−1. Let hn−1 = f1 ◦ · · · ◦ fn−1. Let Mn−1 = max |h′

n−1| over
the closed unit disk (since hn−1 has a holomorphic extension across the boundary,
this maximum is certainly finite). Similarly, let mn = min |h′

n−1| > 0. Choose
0 < an < sn−1 and εn > 0 so small that anMn−1 ≤ 2−n and so that the conformal
map fn given by the lemma satisfies both

|fn(z)− z| ≤ sn−1/2, and |f ′
n − 1| ≤ 2−n,

on D\D(1, sn−1). Moreover, |f ′
n| ≥ c/(anρkn

) on D(1, rn), where rn = ran
as given

by the lemma.
Now choose kn so large that the region Wkn

satisfies:

(6) diam(Wkn
) < ran

(ra as given by the lemma),
(7) The minimum and maximum of |h′

n−1| over Wkn
differ by at most a fac-

tor of 2 (this is possible by the distortion theorem for conformal maps if
diam(Wkn

) is small enough).
(8) kn ≥ c/(mnan).

By the definition of Wn, Condition (8) implies

μ(Wkn
)/ diam(Wkn

) ≥ kn ≥ c/(mnan)

or

μ(Wkn
) ≥ c · diam(Wkn

)

mnan
.
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By conjugating fn by an appropriate rotation, we get a function (also called fn)
so that |f ′

n| ≥ can/ρkn
on Wkn

. This implies that the length of σ inside Wkn
is

expanded to approximately unit length under fn. We want to show this is also true
for the composition hn = hn−1 ◦ fn = f1 ◦ · · · fn−1 ◦ fn and show these maps have
a limit h with the same property.

By construction, the image of each map fj lies inside a disk where the map fj−1

is defined and conformal so the composition is well defined and conformal on D.
Since the maps fj converge uniformly to the identity on compact subsets of D (as
rapidly as we wish), the limiting map h exists and is conformal on D. Next we
check that h(γ) has infinite length and that h(T) is rectifiable.

On each Wkj
we have

|h′
n| ≥ |h′

j |(
n∏

m=j+1

(1− 2−m)) ≥ c|h′
j |.

Thus later generations of the construction do not greatly affect the expansion we
have already created on earlier regions. Since hn → h uniformly on compact sets,
we also have h′

n → h′ uniformly on compact sets and hence∫
K

|h′|dμ = lim
n

∫
K

|h′
n|dμ,

for any compact K ⊂ D. In particular we can let K = Wk1
∪ · · · ∪Wkn

be a finite
union of the sets Wkj

and note that

∫
K

|h′
n|dμ ≥ c

n∑
j=1

∫
Wkj

|h′
j |dμ �

n∑
j=1

mn−1 ·
1

|aj |ρkj

· ρkj
kj �

n∑
j=1

1 → ∞

by our choice of kj in Condition (8). Thus h(γ) has infinite length.
Finally, we have to check that h maps D to a domain with rectifiable boundary.

However, the domain hn(D) is obtained by taking the union of D with disk of
diameter an and composing with the map hn−1 and then dilating the map very
slightly to make sure it has a conformal extension across the unit circle. Adding
the disk adds length O(an) and composing with hn−1 gives a curve which is in
the union of ∂hn−1(D) and the image of the small disk. This image has length
O(Mn−1an) = O(2−n). Dilating shortens the length of the boundary curve (since
|f ′| is subharmonic the length of f(|z| = r) is always less than the length of f(|z| =
1) for any conformal map). Thus we can choose |an| ↘ 0 so rapidly that the length
of ∂hn(D) is uniformly bounded above by some L < ∞.

Next, note that the length of ∂h(D) is equal to

sup
0<r<1

∫
|h′(reiθ)|dθ.

On the other hand, for any fixed r, hn converges uniformly to h on the compact
set {|z| = r} and hence its derivative converges uniformly to h′ on this set. Thus
for a fixed 0 < r < 1,∫

|h′(reiθ)|dθ ≤ sup
n

∫
|h′

n(re
iθ)|dθ ≤ L.

Taking the sup over r we see h′ ∈ H1 and so h(T) is rectifiable. �
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Although Deift’s question concerned curves, we never used this, and we have
actually proven that a positive measure μ on the disk is Carleson iff

∫
|f ′|dμ < ∞

for any conformal map f onto a rectifiable domain.
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