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Abstract. Let D denote the distance matrix for an n+ 1 point metric space
(X, d). In the case that X is an unweighted metric tree, the sum of the
entries in D−1 is always equal to 2/n. Such trees can be considered as affinely
independent subsets of the Hamming cube Hn, and it was conjectured that
the value 2/n was minimal among all such subsets. In this paper we confirm
this conjecture and give a geometric interpretation of our result which applies
to any subset of Hn.

1. Introduction

There is a long study of the interaction between properties of finite metric spaces
and properties of their distance matrices. The most classical questions in this area
concern whether the metric space can be isometrically embedded in a Euclidean
space, a problem solved by Schoenberg [14], or else in some other standard normed
space. Properties of the metric space are often reflected in linear algebraic proper-
ties of the distance matrix involving say the determinant or inverse of the matrix.

To fix some notation, let (X, d) denote a finite metric space with elements
{x1, . . . , xm} (with m ≥ 2) and let D = DX denote its distance matrix
(d(xi, xj))

m
i,j=1. Let 1 denote the vector (1, . . . , 1)T ∈ R

m so that for any m × m
matrix A, 〈A1,1〉 gives the sum of the entries in A.

One particular class of spaces for which this relationship has been much studied
are those which are (isometric to) subsets of Hamming cubes Hn = {0, 1}n with
the Hamming metric d1 (which is the �1 metric on R

n, restricted to these spaces).
(See, for example, [2–6].) This class includes, for example, all unweighted metric
trees. Much of [2] concerns extending Graham and Pollak’s [4] formula, det(D) =
(−1)nn2n−1, for the distance matrix of an n+ 1 point unweighted metric tree.

If X is an n+ 1 point unweighted metric tree in Hn, then D is invertible. In [2]
it was shown that the subsets of Hn for which the distance matrix D is invertible
are precisely the ones for which the points form an affinely independent subset of
R

n. They showed that for an n + 1 point unweighted metric tree the sum of the
entries in D−1, that is 〈D−11,1〉, is always equal to 2/n and conjectured, based
on empirical evidence, that this value was minimal among all affinely independent
subsets of Hn. The aim of this note is to prove this conjecture and to provide
geometric interpretations for the value of this quantity.

A consequence of Theorem 5.1 will be the following two results.
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Theorem 1.1. Suppose that X is an affinely independent subset of the Hamming
cube (Hn, d1) with at least two points. Then

(1) 〈D−11,1〉 =
(n
2
− 2d2(h, ZX)2

)−1

,

where d2(h, ZX) is the Euclidean distance from the point h =
(
1
2 , . . . ,

1
2

)
to the

affine subspace ZX ⊆ R
n spanned by the elements of X.

Corollary 1.2. Suppose that X is an affinely independent subset of the Hamming
cube (Hn, d1) with at least two points. Then

2

n
≤ 〈D−11,1〉 ≤ 2.

Proof. Let x and y be two distinct points in X. The point m = (x + y)/2 =
(m1, . . . ,mn) must lie in ZX and so d2(h, ZX) ≤ ‖h −m‖2. Note that for each j,∣∣mj − 1

2

∣∣ is either 0 or 1
2 , and, as x and y are distinct, the value 0 must occur for at

least one value of j. Thus ‖h−m‖22 ≤ (n− 1)/4 and so 1
2 ≤ n

2 − 2d2(h, ZX)2 ≤ n
2 .

Together with (1), this then implies the result. �

Remark 1.3. Formula (1) is somewhat remarkable as the left-hand side only depends
on the distances between the points, and not their positions. On the other hand,
the quantity d2(h, ZX) depends only on the linear relationship between the points
of X, and does not appear to depend on their relative distances. This will be
illustrated with some examples at the end of the paper.

Vital to the proof of (1) are the facts that the Hamming cube is of 1-negative
type, and that the natural embedding of Hn into R

n is a so-called S-embedding.
The definitions of these concepts are given in Section 2. Equation (1) is essentially
a special case of a formula involving the M -constant M(X) of the space (X, d). The
link between the M -constant and the radius of a particular sphere containing X is
due to Nickolas and Wolf [11, Section 3] (following earlier work of Alexander and
Stolarsky [1]), and it is this which provides the geometric meaning for many of the
quantities considered. Working with M(X) is advantageous as it is defined even
when the matrix D is not invertible, and this will allow us to consider arbitrary
subsets of Hn. The relationship between M(X) and 〈D−11,1〉 is developed in
Section 3, and this provides sufficient information to prove the conjecture in [2]. In
the final sections we use the properties of S-embeddings to prove Theorem 1.1 and
to give a geometric interpretation of the value of 〈D−11,1〉.

To simplify the statements of the results, we shall assume throughout that all
metric spaces considered have at least two elements. (Without this restriction the
statements are usually either false or meaningless.)

2. Negative type and S-embeddings

Definition 2.1. Suppose that (X, d) is a metric space and that p ≥ 0. Then (X, d)
is of p-negative type if for each finite subset {x1, . . . , xm} ⊆ X and each set of
scalars ξ1, . . . , ξm ∈ R with ξ1 + · · ·+ ξm = 0,

(2)
m∑

i,j=1

d(xi, xj)
pξiξj ≤ 0.
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In certain settings, spaces of 1-negative type are also called quasihypermetric
spaces (see for example [12]) or spaces of generalized roundness 1 (see [7]).

A space is of strict p-negative type if (2) holds, with equality only in the trivial
case where each ξi is zero. (It is worth noting that a distinct but related concept,
that of a strictly quasihypermetric space, appears in [10]. For finite spaces, such as
the ones considered in this paper, a space is of strict 1-negative type if and only if
it is strictly quasihypermetric.) It follows from the results of Wolf [16] and Sánchez
[13] that a finite metric space of 1-negative type is of strict 1-negative type if and
only if D is non-singular and 〈D−11,1〉 	= 0.

By [15, Theorem 4.10] any subset of R
n with the �1 metric, and hence any

subset of Hn, has 1-negative type. Combining the results of Muragan [8], and
Doust, Robertson, Stoneham and Weston [2] (see also Nickolas and Wolf [12]) gives
the following equivalences.

Theorem 2.2. Suppose that X = {x1, . . . , xm} ⊆ Hn ⊆ R
n. Then the following

are equivalent.

(1) X is of strict 1-negative type.
(2) X is affinely independent (as a subset of Rn).
(3) D is non-singular.

Proof. The equivalence of (1) and (2) was shown in [8, Theorem 4.3]. The equiva-
lence of (2) and (3) was proven in [2, Corollary 2.5]. �

Clearly then, Hn is of 1-negative type, but not of strict 1-negative type.
A celebrated theorem of Schoenberg [14] says that a metric space (X, d) can be

isometrically embedded in a Euclidean space if and only if it is of 2-negative type.
This gives the following.

Proposition 2.3. Let (X, d) be a finite metric space. Then the following are
equivalent.

(1) (X, d) is of 1-negative type (or quasihypermetric).
(2) (X, d1/2) embeds isometrically in a Euclidean space.

An embedding ι : X → R
n which maps (X, d1/2) isometrically into (Rn, ‖ · ‖2)

is called an S-embedding. It is easy to check that the natural inclusion of Hn in
R

n is such an embedding, and hence so is the restriction to any subset of Hn.

3. The M-constant and maximal measures

The quantity 〈D−11,1〉 is closely related to the M -constant of the metric space,
which we shall now introduce. Working with the M -constant is in fact usually
preferable since it is defined even when the distance matrix D is not invertible. For
further background on the M -constant we refer the reader to [1] or [9].

Let (X, d) be a compact metric space. For a signed Borel measure μ on X, let

I(μ) =

∫
X

∫
X

d(x, y) dμ(x)dμ(y)

and define dμ : X → R by

dμ(x) =

∫
X

d(x, y) dμ(y).
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Let F1 denote the set of measure on X of total mass one. The M -constant of (X, d)
is defined to be

M(X) = sup
μ∈F1

I(μ).

If I(μ) = M(X), then we say that μ is a maximal measure. It is clear that if X
is a metric subspace of Y then M(X) ≤ M(Y ).

Suppose now that X = {x1, . . . , xm} is a finite metric space. In this case we
shall write μ = (α1, . . . , αm) to denote that μ({xi}) = αi, i = 1, . . . ,m. Then

I(μ) =
m∑

i,j=1

αiαjd(xi, xj) = 〈Dμ, μ〉,

and

dμ(x) =

m∑
i=1

αid(xi, x),

although in most cases we shall retain the integral notation. We shall identify the
measures of total mass one with the hyperplane of vectors whose elements sum
to 1. That is, F1 = {v ∈ R

m : 〈v,1〉 = 1}, and so M(X) = supμ∈F1
〈Dμ, μ〉.

By considering μ = 1
m1, we have M(X) ≥ 1

m2 〈D1,1〉 ≥ m−1
m d0, where d0 is the

smallest non-zero distance in X. In particular M(X) is always strictly positive.
It is less clear that for a general compact metric space M(X) should always

be finite, and indeed this need not be the case (see [9, Theorem 3.1]). Even if
M(X) is finite it may be that there are no maximal measures. Fortunately for
subsets of the Hamming cube, these complications do not arise. Nickolas and Wolf
[12, Theorem 4.7] showed that if X is any m-point subset of Rn with the �1 metric
then M(X) ≤ m

4 diam(X).
We recall some important properties of these quantities.

Theorem 3.1. Suppose that (X, d) is a finite metric space of 1-negative type and
that M(X) < ∞.

(1) A maximal measure exists.
(2) If μ is a maximal measure, then dμ(x) = M(X) for all x ∈ X.
(3) If μ ∈ F1 and there is a constant C such that dμ(x) = C for all x ∈ X,

then μ is maximal and so M(X) = C.

Proof. (1) is [10, Theorem 4.11]; (2) and (3) are from [10, Theorem 3.1]. �
Theorem 3.1 is closely related to the following result.

Theorem 3.2. Suppose that (X, d) is a finite metric space of 1-negative type with
distance matrix D. Then there exists b ∈ R

m such that Db = 1 and 〈b,1〉 ≥ 0.
Further

(1) The value of 〈b,1〉 is independent of b. That is, if Db = Db′ = 1 then
〈b,1〉 = 〈b′,1〉.

(2) M(X) < ∞ if and only if 〈b,1〉 > 0. In this case μ = 1
〈b,1〉b is a maximal

measure and

M(X) =
1

〈b,1〉 .

Proof. The existence of b is shown in [17, Theorem 4.2]. The independence of
the value of 〈b,1〉 was noted in [17, Remark 4.4]. Statement (2) is [17, Theorem
4.8]. �
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Theorem 3.3. Suppose that (X, d) is a finite metric space of strict 1-negative type
with distance matrix D. Then M(X) < ∞ and

M(X) =
1

〈D−11,1〉 .

Proof. By Theorem 2.2, D must be invertible. Let b = D−11. By [17, Theorem 4.3],

〈b,1〉 > 0 so by Theorem 3.2, M(X) < ∞ and M(X) =
(
〈D−11,1〉

)−1
. �

Theorem 3.4. M(Hn) =
n
2 .

Proof. Due to the symmetry of the Hamming cube, the sum of the distances from
any given point is independent of the point. Simple analysis shows that this sum is

β =

n∑
k=0

k

(
n

k

)
= n2n−1

and so D1 = β1. Let b = 1
β1, so Db = 1 and

〈b,1〉 = 1

n2n−1
〈1,1〉 = 2n

n2n−1
=

2

n
.

By Theorem 3.2 then

M(Hn) =
n

2
.

�

Combining the above results gives a positive answer to the conjecture in [2].

Theorem 3.5. Let X be a subset of Hn. Then

(1) M(X) ≤ n
2 .

(2) If X is affinely independent, then 〈D−11,1〉 = 1
M(X) and hence 〈D−11,1〉 ≥

2
n .

Proof. (1) As noted earlier if X ⊆ Hn then M(X) ≤ M(Hn), so the result follows
immediately from Theorem 3.4.
(2) This follows immediately from Theorem 2.2, Theorem 3.3 and (1).

�

The remainder of the paper is devoted to investigating the geometric interpre-
tation of M(X) in the context of subsets of the Hamming cube.

4. S-embeddings and spheres

There is a close connection between S-embeddings onto spheres and maximal
measures. We begin with two lemmas.

Lemma 4.1. Suppose that u1, . . . , um ∈ R
n and that α1, . . . , αm ∈ R satisfy∑m

i=1 αi = 1. Then, for all u ∈ R
n,

m∑
i=1

αi‖ui − u‖22 =
∥∥ m∑
i=1

αiui − u
∥∥2
2
+

1

2

m∑
i,j=1

αiαj‖ui − uj‖22.
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Proof. With the notation of the lemma
m∑
i=1

αi‖ui − u‖22

=
m∑
i=1

αi‖ui‖22 +
m∑
i=1

αi‖u‖22 − 2
m∑
i=1

αi〈ui, u〉

= ‖u‖22 − 2〈
m∑
i=1

αiui, u〉+
∥∥ m∑
i=1

αiui

∥∥2
2
−
∥∥ m∑
i=1

αiui

∥∥2
2
+

m∑
i=1

αi‖ui‖22

=
∥∥ m∑
i=1

αiui − u
∥∥2
2
−
∥∥ m∑
i=1

αiui

∥∥2
2
+

m∑
i=1

αi‖ui‖22

=
∥∥ m∑
i=1

αiui − u
∥∥2
2
−

m∑
i,j=1

αiαj〈ui, uj〉+
m∑
i=1

αi‖ui‖22

=
∥∥ m∑
i=1

αiui − u
∥∥2
2
+

m∑
i=1

αi‖ui‖22 −
1

2

m∑
i,j=1

αiαj

(
‖ui‖22 + ‖uj‖22 − ‖ui − uj‖22

)

=
∥∥ m∑
i=1

αiui − u
∥∥2
2
+

m∑
i=1

αi‖ui‖22

− 1

2

m∑
j=1

αj

m∑
i=1

αi‖ui‖22 −
1

2

m∑
i=1

αi

m∑
j=1

αj‖uj‖22 +
1

2

m∑
i,j=1

αiαj‖ui − uj‖22

=
∥∥ m∑
i=1

αiui − u
∥∥2
2
+

1

2

m∑
i,j=1

αiαj‖ui − uj‖22.

�

Lemma 4.2. Let (X, d), X = {x1, . . . , xm} be a finite metric space of 1-negative
type, and let ι : (X, d1/2) → (Rn, ‖ · ‖2) be an S-embedding of X. Suppose that
μ = (α1, . . . , αm) ∈ F1. Then, for all x ∈ X,

dμ(x) =
∥∥ m∑
i=1

αiι(xi)− ι(x)
∥∥2
2
+

I(μ)

2
.

Proof. Using Lemma 4.1

dμ(x) =

m∑
i=1

αi‖ι(xi)− ι(x)‖22

=
∥∥ m∑
i=1

αiι(xi)− ι(x)
∥∥2
2
+

1

2

m∑
i,j=1

αiαj‖ι(xi)− ι(xj)‖22

=
∥∥ m∑
i=1

αiι(xi)− ι(x)
∥∥2
2
+

1

2

m∑
i,j=1

αiαjd(xi, xj)

=
∥∥ m∑
i=1

αiι(xi)− ι(x)
∥∥2
2
+

I(μ)

2
.

�
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The content of the following result can be found in Theorem 3.2 of [11]. We
include a short proof for completeness.

Theorem 4.3. Let (X, d), X = {x1, . . . , xm} be a finite metric space of 1-negative
type, and let ι : (X, d1/2) → (Rn, ‖ · ‖2) be an S-embedding of X. Then

(1) If μ = (α1, . . . , αm) is a maximal measure on X, then ι(X) lies on a sphere
in R

n with centre
∑m

i=1 αiι(xi) and radius

r =

√
M(X)

2
.

(2) Suppose that ι(X) lies on a sphere of radius r with centre c which lies inside
the affine hull of {ι(x1), . . . , ι(xm)}, say c =

∑m
i=1 βiι(xi) with

∑m
i=1 βi = 1.

Then μ = (β1, . . . , βm) is a maximal measure on X and

r =

√
M(X)

2
.

Proof. (1) Let μ = (α1, . . . , αm) ∈ F1 be a maximal measure on X. Fix then
x ∈ X. By Theorem 3.1 and Lemma 4.2

M(X) = dμ(x) =
∥∥ m∑
i=1

αiι(xi)− ι(x)
∥∥2
2
+

I(μ)

2
.

Since μ is maximal I(μ) = M(X) and hence

∥∥ m∑
i=1

αiι(xi)− ι(x)
∥∥2
2
=

M(X)

2

which proves (1).
(2) Let c be as in the statement of the theorem and suppose that x ∈ X, so that
‖c− ι(x)‖22 = r2. Let μ = (β1, . . . , βm). By Lemma 4.2

dμ(x) = ‖c− ι(x)‖22 +
I(μ)

2
= r2 +

I(μ)

2
.

Since dμ(x) is independent of x, from Theorem 3.1 we can conclude that μ is
maximal on X and that

M(X) = r2 +
I(μ)

2
and hence that

r2 =
M(X)

2
.

�

Suppose that B = {v1, . . . , vk} is a basis for a subspace Z ⊆ R
n. Then there is a

unique point c ∈ Z which is equidistant from all the elements of B and the origin.
Indeed a small calculation shows that if A is the n× k matrix whose ith column is
vi, then

(3) c =
k∑

i=1

γivi where

⎛
⎜⎝
γ1
...
γk

⎞
⎟⎠ =

1

2
(ATA)−1

⎛
⎜⎝
‖v1‖22

...
‖vk‖22

⎞
⎟⎠ .

This implies the following.
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Lemma 4.4. Suppose that X = {x1, . . . , xm} is a finite subset of Rn and let ZX be
the smallest affine subspace of Rn containing X. Then there is at most one sphere
in R

n whose centre lies in ZX and which contains the points of X.

5. The M-constant for subsets of the Hamming cube

Suppose that X = {x1, . . . , xm} ⊆ Hn. Let ZX denote the smallest affine
subspace of R

n containing the points {x1, . . . , xm}. We shall use d2(x, ZX) to
denote the Euclidean distance from a point x ∈ R

n to an affine subspace ZX . Let
h =

(
1
2 , . . . ,

1
2

)
∈ R

n.

Theorem 5.1. Suppose that X = {x1, . . . , xm} ⊆ Hn. Then

(4) M(X) =
n

2
− 2d2(h, ZX)2.

Proof. Let ι : (Hn, d
1/2
1 ) → (Rn, ‖ · ‖2) be the natural inclusion map of Hn in R

n.
As noted in Section 2, this map is necessarily an S-embedding.

Since ‖x − h‖22 = n
4 for all x ∈ Hn, we have that X = ι(X) lies on the sphere

S ⊆ R
n of radius r =

√
n/2 centred at h. Let P be the orthogonal projection from

R
n onto ZX and let cX = Ph. If u ∈ ι(X) ⊆ ZX then, by Pythagoras,

‖cX − u‖22 = ‖h− u‖22 − ‖h− cX‖22 =
n

4
− d2(h, ZX)2.

That is, all points in ι(X) lie on a sphere SX with centre cX ∈ ZX and radius r
with r2 = n

4 −d2(h, ZX)2. (Note that by Lemma 4.4, there is only one such sphere.)
But by Theorem 4.3(2), the radius of such this sphere must also satisfy

r2 =
n

4
− d2(h, ZX)2 =

M(X)

2

which gives the result. �

Equation (4) immediately gives the following characterization of when the max-
imum value of M(X) is achieved.

Corollary 5.2. M(X) achieves its maximum value of n
2 if and only if h lies in

ZX .

Combining Theorem 5.1 and Theorem 3.5 gives Theorem 1.1 stated in Section 1.
Following the proof of [11, Theorem 3.2], an alternative but less geometri-

cally illuminating verification of Theorem 5.1 can be given by noting that for



DISTANCE MATRICES OF SUBSETS OF THE HAMMING CUBE 133

μ = (α1, . . . , αm) ∈ F1, and {xi}mi=1 ⊆ Hn,

I(μ) =

m∑
i,j=1

αiαj‖xi − xj‖1 =

m∑
i,j=1

αiαj‖xi − xj‖22

=

m∑
i,j=1

αiαj‖(xi − h)− (xj − h)‖22

=
m∑

i,j=1

αiαj‖(xi − h)‖22 +
m∑

i,j=1

αiαj‖(xj − h)‖22 − 2
m∑

i,j=1

αiαj〈xi − h, xj − h〉

=
n

2
− 2

∥∥ m∑
i=1

αi(xi − h)
∥∥2
2

=
n

2
− 2

∥∥ m∑
i=1

αixi − h
∥∥2
2
.

Maximizing I(μ) then gives the result.
One consequence of Theorem 5.1 is that the value of M(X) for X ⊆ Hn is

determined by the M -constant of any maximal affinely independent subset Y of
X. (Since, by Theorem 2.2, a maximal affinely independent subset of X is also a
maximal subset of strict 1-negative type, this can also be deduced from Theorem 2.7
of [12].) Such a set Y may be much smaller than X, and furthermore the value of
M(Y ) may be calculated algorithmically rather than by an optimization process.
Finding a suitable affinely independent subset can be easily done using Gaussian
elimination. The distance matrix for Y is then invertible, and Theorem 3.5 implies
that M(X) = M(Y ) = (〈D−1

Y 1,1〉)−1.
Alternatively, if Y = {y0, . . . , ym} and vi = yi − y0, i = 1, . . . ,m, then one may

use (3) to compute the centre c of the sphere in span(v1, . . . , vm) containing the
points 0, v1, . . . , vm. Then M(X) = M(Y ) = 2‖c‖22. In the case that X is affinely
independent, one may therefore use Theorem 1.1, the proof of Theorem 5.1, and
Pythagoras to see that 〈D−11,1〉 is equal to (2r2)−1 where r is the radius of the
smallest sphere containing all the points in X.

We finish with two small examples which illustrate Remark 1.3 concerning the
lack of an obvious relationship between the distance matrix D and the subspace
ZX which appear on the two sides of Equation (1).

Example 5.3. Let X1 = {(0, 0, 0), (1, 1, 1)} and let X2 = X1 ∪ {(1, 0, 0)}. In
this case ZX1

is different to ZX2
. The point h lies in both subspaces and hence

M(X1) = M(X2) =
3
2 . Of course the distance matrices are quite different with

D−1
X1

=

(
0 1

3
1
3 0

)
, D−1

X2
=

⎛
⎝− 1

3
1
6

1
2

1
6 − 1

12
1
4

1
2

1
4 − 3

4

⎞
⎠ ,

but the sum of the entries of each matrix inverse is 2
3 .

Example 5.4. Let X1 = {(0, 0, 0), (1, 0, 0), (0, 1, 0)} and let X2 = X1 ∪ {(1, 1, 0)}.
Then ZX1

= ZX2
and so by Theorem 5.1 we must have M(X1) = M(X2). Here

X1 is affinely independent and 〈D−1
X1

1,1〉 = M(X1)
−1 = 1. However X2 is not

affinely independent and DX2
is not invertible. (Using Lagrange multipliers, one

can confirm, directly from the definition, that M(X2) = 1. Alternatively, one may



134 IAN DOUST AND REINHARD WOLF

use Theorem 4.3 since X2 certainly lies in a sphere with centre in ZX2
and radius

1/
√
2.)
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