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HIGHER CONNECTIVITY OF THE MORSE COMPLEX

NICHOLAS A. SCOVILLE AND MATTHEW C. B. ZAREMSKY

(Communicated by Patricia Hersh)

Abstract. The Morse complex M(Δ) of a finite simplicial complex Δ is the
complex of all gradient vector fields on Δ. In this paper we study higher
connectivity properties of M(Δ). For example, we prove that M(Δ) gets
arbitrarily highly connected as the maximum degree of a vertex of Δ goes to
∞, and for Δ a graph additionally as the number of edges goes to ∞. We also
classify precisely when M(Δ) is connected or simply connected. Our main tool
is Bestvina–Brady Morse theory, applied to a “generalized Morse complex.”

Introduction

The Morse complex M(Δ) of a finite simplicial complex Δ is the simplicial com-
plex of all gradient vector fields on Δ. See Section 1 for a more detailed definition.
The Morse complex M(Δ) has several important properties. For example, two
connected simplicial complexes are isomorphic if and only if their Morse complexes
are isomorphic [CM17]. Additionally, outside a few sporadic cases, for connected
Δ the group of automorphisms of M(Δ) is isomorphic to that of Δ [LS21]. The
Morse complex may be viewed as a discrete analog of the space of gradient vector
fields on a manifold; see, e.g., [PdM82].

The homotopy type of M(Δ) is only known for a handful of examples of Δ, and
in general it is difficult to compute. In this paper, we relax the question to just
asking how highly connected M(Δ) is (meaning up to what bound the homotopy
groups vanish). Our first main result is the following:

Theorem 2.7. If Δ has a vertex with degree d in Δ(1) then M(Δ) is (d − 2)-
connected.

For example this holds if dim(Δ) ≥ d. It is harder to obtain good higher connec-
tivity bounds when the dimension of Δ is small and vertices of Δ have small degrees,
but for certain situations we can. First we focus on the case when dim(Δ) = 1, i.e.,
Δ is a graph Γ. Here we are able to use Bestvina–Brady Morse theory, applied to
the so called generalized Morse complex GM(Γ), to find higher connectivity bounds
for M(Γ). Let d(Γ) be the maximum degree of a vertex in the Hasse diagram. Our
main result for graphs is:

Theorem 4.3. The Morse complex M(Γ) is
(⌈

|E(Γ)|
d(Γ)

⌉
− 2

)
-connected.
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Combining Theorem 4.3 with Theorem 2.7 quickly shows that, as the number of
edges of Γ goes to ∞, M(Γ) becomes arbitrarily highly connected (see Corollary 4.4
for a precise statement). We conjecture that a similar result holds regardless of
dim(Δ) (Conjecture 2.8).

Our last main result is a classification of precisely which Δ have connected and
simply connected Morse complexes. Here we assume Δ has no isolated vertices just
to make the statement cleaner (isolated vertices can be deleted without affecting
M(Δ)).

Theorem 5.4. Suppose Δ has no isolated vertices. The Morse complex M(Δ) is
connected if and only if Δ is not an edge, and is simply connected if and only if
Δ is none of: an edge, a disjoint union of two edges, a path with three edges, a
3-cycle, or a 2-simplex.

This paper is organized as follows. In Section 1 we set up the Morse complex
M(Δ) and generalized Morse complex GM(Δ). In Section 2 we prove Theorem 2.7.
In Section 3 we discuss Bestvina–Brady discrete Morse theory and how to apply it to
GM(Δ). In Section 4 we focus on the situation for graphs and prove Theorem 4.3.
Finally, in Section 5 we discuss the situation for dim(Δ) > 1 and prove Theorem 5.4.

1. The Morse complex

Let Δ be a finite abstract simplicial complex. We will abuse notation and also
write Δ for the geometric realization of Δ. If σ is a p-dimensional simplex in Δ,
we may write σ(p) to indicate the dimension. A primitive discrete vector field on
Δ is a pair (σ(p), τ (p+1)) for σ < τ . A discrete vector field V on Δ is a collection of
primitive discrete vector fields

V = {(σ0, τ0), . . . , (σk, τk)}
such that each simplex of Δ is in at most one pair (σi, τi). If the two simplices
in (σ, τ ) are distinct from the two simplices in (σ′, τ ′), call the primitive discrete
vector fields (σ, τ ) and (σ′, τ ′) compatible; in particular a discrete vector field is a
set of pairwise compatible primitive discrete vector fields.

The Hasse diagram of Δ is the simple graph H(Δ) with a vertex for each (non-
empty) simplex of Δ and an edge between any pair of simplices such that one
is a codimension-1 face of the other. In particular the primitive discrete vector
fields on Δ are in one-to-one correspondence with the edges of H(Δ). Also, the
discrete vector fields on Δ are in one-to-one correspondence with thematchings, i.e.,
the collections of pairwise disjoint edges, on H(Δ). We will sometimes equivocate
between a discrete vector field on Δ and its corresponding matching on H(Δ).

Definition 1.1 (Generalized Morse complex). The generalized Morse complex
GM(Δ) of Δ is the simplicial complex whose vertices are the primitive discrete
vector fields on Δ, with a finite collection of vertices spanning a simplex whenever
the primitive discrete vector fields are pairwise compatible. Said another way, the
simplices of GM(Δ) are the discrete vector fields on Δ, with face relation given by
inclusion.

Note that GM(Δ) is a flag complex, i.e., if a finite collection of vertices pair-
wise span edges then they span a simplex, which makes it comparatively easy to
analyze. Viewed in terms of matchings on H(Δ), GM(Δ) is precisely the matching
complex of H(Δ), i.e., the simplicial complex of matchings with face relation given
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by inclusion. Matching complexes of graphs are well studied; see [BGM20] for an
especially extensive list of references.

The Morse complex M(Δ) of Δ, introduced by Chari and Joswig in [CJ05],
is the subcomplex of GM(Δ) consisting of all discrete vector fields arising from a
Forman discrete Morse function, or equivalently all acyclic discrete vector fields. To
define all this, we need some setup, which we draw mostly from [Sco19, Section 2.2].
Given a discrete vector field V on Δ, a V -path is a sequence of simplices

σ
(p)
0 , τ

(p+1)
0 , σ

(p)
1 , τ

(p+1)
1 , σ

(p)
2 , . . . , τ

(p+1)
m−1 , σ(p)

m

such that for each 0 ≤ i ≤ m− 1, (σi, τi) ∈ V and τi > σi+1 �= σi. Such a V -path is
non-trivial if m > 0, and closed if σm = σ0. A closed non-trivial V -path is called
a V -cycle. If there exist no V -cycles, call V acyclic. A V -cycle is simple if σ0, . . . ,
σm−1 are pairwise distinct and τ0, . . . , τm−1 are pairwise distinct. We will identify
V -cycles up to cyclic permutation, e.g., we consider σ0, τ0, σ1, . . . , τm−1, σ0 to be
the same cycle as σ1, τ1, σ2, . . . , τm−1, σ0, τ0, σ1, and so forth.

Every acyclic discrete vector field on Δ is the gradient vector field of a Forman
discrete Morse function on Δ. A Forman discrete Morse function on Δ (developed
by Forman in [For98]) is a function h : Δ → R such that for every σ(p), there is
at most one τ (p+1) > σ(p) with h(τ ) ≤ h(σ), and for every τ (p+1) there is at most
one σ(p) < τ (p+1) with h(σ) ≥ h(τ ). The gradient vector field of h is the discrete
vector field whose primitive vector fields are all the (σ(p), τ (p+1)) with h(σ) ≥ h(τ ).
A discrete vector field is the gradient vector field of some Forman discrete Morse
function if and only if it is acyclic [Sco19, Theorem 2.51].

Definition 1.2 (Morse complex). The subcomplex M(Δ) of GM(Δ) consisting of
all acyclic V is the Morse complex of Δ.

Note that any subset of an acyclic discrete vector field is itself acyclic, so M(Δ)
really is a subcomplex. We should remark that the term “Morse complex” also
means a certain algebraic chain complex obtained from an acyclic matching, e.g.,
see [Koz08, Definition 11.23], but in this paper “Morse complex” will always mean
M(Δ).

Observation 1.3 will be important later when relating M(Δ) and GM(Δ).

Observation 1.3 (1-skeleton). The 1-skeleton ofM(Δ) coincides with that of GM(Δ).

Proof. Since Δ is simplicial, fewer than three compatible primitive discrete vector
fields cannot form a cycle. �

Let us discuss two examples that are instructive and will be specifically relevant
later.

Example 1.4. Let Δ = C3 be the 3-cycle, i.e, the cyclic graph with 3 vertices. See
Figure 1 for drawings of H(C3), GM(C3), and M(C3). We see that GM(C3) �
S1 ∨ S1 and M(C3) � S1 ∨ S1 ∨ S1 ∨ S1 (this computation of M(C3) agrees with
Kozlov’s computation in [Koz99, Proposition 5.2]). In particular neither M(C3)
nor GM(C3) is simply connected.

Example 1.5. Let Δ = Δ2 be the 2-simplex. See Figure 2 for drawings of H(Δ2),
GM(Δ2), and M(Δ2). We see that GM(Δ2) � S1 ∨ S1 and M(Δ2) � S1 ∨
S1 ∨ S1 ∨ S1 (this computation of M(Δ2) agrees with Chari and Joswig’s [CJ05,
Proposition 5.1]). In particular neither M(Δ2) nor GM(Δ2) is simply connected.
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Figure 1. The Hasse diagram H(C3) (left), the generalized Morse
complex GM(C3) (top), and the Morse complex M(C3) (bottom)
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Figure 2. The Hasse diagramH(Δ2) (left), the generalized Morse
complex GM(Δ2) (top), and the Morse complex M(Δ2) (bottom)

It will become necessary later to consider the following generalization of GM(Δ)
and M(Δ), in which certain simplices are “illegal” and cannot be used. Specifically,
this will be needed in the proof of Proposition 4.2 to get an inductive argument to
work.

Definition 1.6 (Relative (generalized) Morse complex). Let Ω be a subset of the
set of simplices of Δ. The relative generalized Morse complex GM(Δ,Ω) is the
full subcomplex of GM(Δ) spanned by those vertices, i.e., primitive discrete vector
fields (σ, τ ), such that σ, τ �∈ Ω. The relative Morse complex M(Δ,Ω) is the
subcomplex M(Δ) ∩ GM(Δ,Ω).

We can also phrase things using H(Δ).
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Definition 1.7 (Relative Hasse diagram). The relative Hasse diagram H(Δ,Ω) is
the induced subgraph of H(Δ) with vertex set given by all simplices of Δ not in Ω.

If we view GM(Δ) as the matching complex of H(Δ), then clearly GM(Δ,Ω) is
the matching complex of H(Δ,Ω).

2. First results on higher connectivity

In this section we establish some higher connectivity bounds for the various
complexes in question. In subsequent sections we will use Bestvina–Brady Morse
theory to obtain more sophisticated higher connectivity bounds in certain cases.
First we focus on the relative generalized Morse complex GM(Δ,Ω). We will use
the “Belk–Forrest groundedness trick,” introduced by Belk and Forrest in [BF19].

Definition 2.1 (Ground, grounded). Call a simplex in a simplicial complex an
r-ground if every vertex of the complex is adjacent to all but at most r vertices
of the simplex. The complex is (k, r)-grounded if it admits a k-simplex that is an
r-ground.

Theorem 2.2 (Groundedness trick). [BF19, Theorem 4.9] Every (k, r)-grounded
flag complex is

(⌈
k+1
r

⌉
− 2

)
-connected.

Note that in [BF19, Theorem 4.9] the complex is assumed to be finite and k, r are
assumed to be at least 1, but this is not necessary: see, e.g., [SWZ19, Remark 4.12].
Also note that in these references the bound is written

⌊
k
r

⌋
− 1, but this equals⌈

k+1
r

⌉
− 2, and this form will be notationally convenient for us later.

In GM(Δ,Ω) it is clear that every k-simplex is a (k, 2)-ground. This is because
any primitive discrete vector field only “uses” two simplices of Δ, and so can fail
to be compatible with at most two vertices of a given simplex. In particular this
shows:

Observation 2.3. If GM(Δ,Ω) contains a k-simplex then it is
(⌈

k+1
2

⌉
− 2

)
-

connected. �
Note that this only works because GM(Δ,Ω) is a flag complex, and in particular

Theorem 2.2 does not apply to M(Δ,Ω).
This next result will be useful later when using Bestvina–Brady Morse theory

and inductive arguments. Let h(Δ,Ω) be the number of edges in H(Δ,Ω), and let
d(Δ,Ω) be the maximum degree of a vertex in H(Δ,Ω).

Proposition 2.4. The complex GM(Δ,Ω) is
(⌈

h(Δ,Ω)
2d(Δ,Ω)

⌉
− 2

)
-connected.

Proof. We first claim that GM(Δ,Ω) contains a simplex of dimension
⌈
h(Δ,Ω)
d(Δ,Ω)

⌉
−1.

A k-simplex in GM(Δ,Ω) consists of k+1 pairwise disjoint edges in H(Δ,Ω), so we

need to show that H(Δ,Ω) admits
⌈
h(Δ,Ω)
d(Δ,Ω)

⌉
pairwise disjoint edges. Since H(Δ,Ω)

is a simple bipartite graph, by Kőnig’s Theorem it suffices to show that every vertex

cover of H(Δ,Ω) has at least
⌈
h(Δ,Ω)
d(Δ,Ω)

⌉
vertices. (Here a vertex cover is a subset

S of the vertex set such that every edge is incident to at least one element of S.)
Indeed for any graph Θ, if S is a vertex cover of Θ then

|S|max{deg(v) | v ∈ V (Θ)} ≥
∑
v∈S

deg(v) ≥ |E(Θ)|,
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and we have |E(H(Δ,Ω))| = h(Δ,Ω) and max{deg(v) | v ∈ V (H(Δ,Ω))} =
d(Δ,Ω), so this follows.

Now set k =
⌈
h(Δ,Ω)
d(Δ,Ω)

⌉
−1, so we have shown that GM(Δ,Ω) contains a simplex of

dimension k. Then GM(Δ,Ω) is (k, 2)-grounded, and is flag, so Theorem 2.2 implies

that GM(Δ,Ω) is (�k+1
2 � − 2)-connected, hence

(⌈
h(Δ,Ω)
2d(Δ,Ω)

⌉
− 2

)
-connected. �

Note that in Proposition 2.4 we obtain a higher connectivity bound that is better
when the maximal degree d(Δ,Ω) is small. We can also find a better, higher
connectivity bound when the maximal degree is large. We will only need this in the
Ω = ∅ case (since we will not need to use Morse theory or induction later), so for
simplicity we will only phrase it in that case, but one could state an analog when
Ω �= ∅.

Lemma 2.5. Suppose Δ has a vertex that has degree d in Δ(1). Then GM(Δ) is
(d− 1, 1)-grounded, and hence (d− 2)-connected.

Proof. Let u be a vertex of degree d in Δ(1). Let V be the (d − 1)-simplex
{(v1, e1), . . . , (vd, ed)} with each ei an edge incident to u and each vi the endpoint
of ei not equal to u. We claim that V is a (d − 1, 1)-ground. Indeed, for i �= j
we have that vi is not incident to ej , so if (σ, τ ) is an arbitrary vertex in GM(Δ)
then {σ, τ} can intersect {vi, ei} for at most one i. This shows that GM(Δ) is
(d−1, 1)-grounded, and since it is flag Theorem 2.2 says it is (d−2)-connected. �

Of course the actual goal of this paper is to find higher connectivity results
for M(Δ). Even though M(Δ) is not flag, and so the groundedness trick does
not apply, we can still prove the analog of Lemma 2.5 for M(Δ) using a more
complicated argument. First let us record an easy lemma that will be important in
many arguments that follow.

Lemma 2.6. Let (v(0), e(1)) be a primitive discrete vector field in a discrete vector
field V on Δ. Then (v, e) lies in at most one simple V -cycle.

Proof. Let v′ be the endpoint of e not equal to v. Assume that (v, e) lies in a
simple V -cycle. Then v′ must be matched in V to some edge e′. Since v′ cannot be
matched in V to more than one edge, e′ is the unique edge with (v′, e′) ∈ V . Hence
every V -cycle containing (v, e) also contains (v′, e′). Repeating this argument, we
see that if (v, e) lies in a simple V -cycle this simple V -cycle is unique. �

Note that the analog of Lemma 2.6 is not true for (σ(p), τ (p+1)) with p > 0, since
then τ can have more than two codimension-1 faces.

Recall that the star stX(σ) of a simplex σ in a simplicial complex X is the sub-
complex of all simplices containing σ along with their faces. Let us say two simplices
of X are joinable (in X) if they lie in a common simplex in X, or equivalently if
they lie in each other’s stars.

Theorem 2.7. If Δ has a vertex with degree d in Δ(1) then M(Δ) is (d − 2)-
connected.

Proof. As in the proof of Lemma 2.5, let u be a vertex of degree d in Δ(1). Let V
be the (d−1)-simplex {(v1, e1), . . . , (vd, ed)} with each ei an edge incident to u and
each vi the endpoint of ei not equal to u. Note that V is acyclic, hence a simplex
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in M(Δ), since every ei has u as its endpoint different than vi. We first claim that
the union of stars

d⋃
i=1

stM(Δ)(vi, ei)

is contractible. Since stars are contractible, and these stars all intersect, e.g., they
all contain V , it suffices by the Nerve Lemma [BLVŽ94, Lemma 1.2] to show that
the intersection of the stars of any subcollection of the (vi, ei) is contractible. We
claim that for any face V ′ of V , we have⋂

(vi,ei)∈V ′

stM(Δ)(vi, ei) = stM(Δ)(V
′).

This will prove the claim since stM(Δ)(V
′) is contractible. The reverse inclusion

holds trivially, so we need to prove the forward inclusion. Let W be a simplex
in M(Δ) that is joinable in M(Δ) to (vi, ei) for each vertex (vi, ei) in V ′. Since
GM(Δ) is flag, this implies W and V ′ span a simplex W ∪ V ′ in GM(Δ), and we
need to show that W ∪ V ′ is acyclic. Any simple cycle in W ∪ V ′ can contain at
most one (vi, ei), since every ei has u as its endpoint, u �= vi. Since W is joinable
in M(Δ) to each vertex of V ′, no such cycles can exist. We conclude that W lies

in stM(Δ)(V
′), so

⋃d
i=1 stM(Δ)(vi, ei) is contractible.

Now we claim that this union contains the (d− 2)-skeleton of M(Δ). Let U be
a (d − 2)-simplex in M(Δ). Since GM(Δ) is a (d − 1, 1)-grounded flag complex,
with (d− 1, 1)-ground V by the proof of Lemma 2.5, every vertex of U is adjacent
(in GM(Δ)) to all but at most one vertex of V . Since V has d vertices and U
has d − 1 vertices, this implies there exists a vertex (vi, ei) of V such that every
vertex of U is compatible with (vi, ei). Since GM(Δ) is flag, this shows U lies in
stGM(Δ)(vi, ei). As a first case, suppose U lies in more than one such star, say
stGM(Δ)(v1, e1) and stGM(Δ)(v2, e2). If U does not lie in stM(Δ)(v1, e1) then the
discrete vector field U � {(v1, e1)} has a cycle. Since U has no cycles, this means
there is a cycle in U � {(v1, e1)} containing (v1, e1). This cycle necessarily contains
a primitive discrete vector field of the form (u, ej) for some j. Since (u, ej) can lie
in at most one simple cycle in the discrete vector field U ∪ {(v1, e1), (v2, e2)}, by
Lemma 2.6, and since (v1, e1) and (v2, e2) cannot lie in a common cycle, we conclude
that (v2, e2) lies in no cycles in U ∪ {(v1, e1), (v2, e2)}. In particular (v2, e2) lies in
no cycles in U ∪ {(v2, e2)}, so U is in stM(Δ)(v2, e2), which finishes this case.

For the other case, suppose U only lies in one stGM(Δ)(vi, ei), say without loss
of generality in stGM(Δ)(v1, e1). Then for every 2 ≤ i ≤ d, U has a vertex Pi that
is a primitive discrete vector field incompatible with (vi, ei), i.e., Pi contains either
vi or ei but not both. Since no vi is incident to any ej for i �= j, the function
i �→ Pi must be injective, so P2, . . . , Pd are precisely the d − 1 vertices of U . If
Pi �= (u, ei) for any i, then U � {(v1, e1)} cannot contain a cycle. Hence suppose,
without loss of generality, that P2 = (u, e2). Then for each i ≥ 3, Pi either contains
vi or is of the form (ei, fi) for some 2-simplex fi. In particular no Pi contains
v2. Hence no cycle in U � {(v1, e1)} can contain (u, e2), which implies no cycle in
U � {(v1, e1)} can contain (v1, e1), which implies there are no cycles. We conclude
U is in stM(Δ)(v1, e1), which finishes this case.

We have shown that M(Δ)(d−2) lies in a contractible subcomplex of M(Δ).
Hence the inclusion M(Δ)(d−2) → M(Δ) induces the trivial map in all homotopy
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groups. We also know this map induces a surjection in all πk for k ≤ d − 2, so
M(Δ) is (d− 2)-connected. �

It seems much more difficult to prove the analog of Proposition 2.4 for M(Δ),
but we conjecture that it holds. Let us record this here (with Ω = ∅ for simplicity):

Conjecture 2.8. The Morse complex M(Δ) is
(⌈

h(Δ)
2d(Δ)

⌉
− 2

)
-connected. In par-

ticular if h(Δ) > 2m · d(Δ) then M(Δ) is (m− 1)-connected.

In the following sections we will use Bestvina–Brady Morse theory to prove this
conjecture in the case when dim(Δ) = 1, i.e., for graphs, and for the special cases
m = 1, 2 regardless of dim(Δ).

3. Bestvina–Brady Morse theory

An important tool we will use now is Bestvina–Brady discrete Morse theory.
This is related to Forman’s discrete Morse theory, and in fact can be viewed as
a generalization of it, as explained in [Zar]. For our purposes the definition of a
Bestvina–Brady discrete Morse function is as follows. (This is a special case of the
situation considered in [Zar].)

Definition 3.1. Let X be a simplicial complex and φ, ψ : X(0) → R two functions
such that for any adjacent vertices x, y ∈ X(0) we have (φ, ψ)(x) �= (φ, ψ)(y).
Extend φ and ψ to maps X → R by extending affinely to each simplex. Then we
call

(φ, ψ) : X → R× R

a Bestvina–Brady discrete Morse function provided the following holds: for any
infinite sequence x1, x2, . . . of vertices such that for each i, xi is adjacent to xi+1

and (φ, ψ)(xi) > (φ, ψ)(xi+1) lexicographically, the set {φ(x1), φ(x2), . . . } has no
lower bound in R.

Note that if X is finite, as it will be in our forthcoming applications, then this
condition about infinite sequences holds vacuously, but for now we will continue
working in full generality.

Definition 3.1 is a bit unwieldy, but we will only need the following special case:

Example 3.2. Let X = Y ′ be the barycentric subdivision of a simplicial complex
Y , so the vertices of X are the simplices of Y and adjacency in X is determined
by incidence in Y . Let φ : X(0) → R be any function. Let dim: X(0) → R be the
function sending σ (viewed as a vertex of X) to dim(σ) (viewed as a simplex of Y ).
If Y is finite dimensional and φ(X(0)) ⊆ R is closed and discrete (for example this
holds if X is finite), then (φ,− dim): X → R is a Bestvina–Brady discrete Morse
function. Indeed, adjacent vertices of X have different dim values (hence different
(φ,− dim) values), and the finite dimensionality of Y plus the fact that φ(X(0)) is
closed and discrete ensures that the last condition of Definition 3.1 is satisfied.

Given a Bestvina–Brady discrete Morse function (φ, ψ) : X → R, we can deduce
topological properties of the sublevel complexes Xφ≤t by analyzing topological
properties of the descending links of vertices. Here the sublevel complex Xφ≤t

for t ∈ R ∪ {∞} is the full subcomplex of X spanned by vertices x with φ(x) ≤ t.

The descending link lk↓x of a vertex x is the space of directions out of x in which
(φ, ψ) decreases in the lexicographic order. More rigorously, since φ and ψ are affine
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on simplices and not simultaneously constant on edges, the lexicographic pair (φ, ψ)
achieves its maximum value on a given simplex at a unique vertex of the simplex,
called its top. The descending star st↓x is the subcomplex of X consisting of all
simplices with top x, and their faces. Then lk↓x is the link of x in st↓x.

The claim that an understanding of descending links leads to an understanding
of sublevel complexes is made rigorous by the following Morse Lemma. This is
essentially [BB97, Corollary 2.6], and is more precisely spelled out in this form in,
e.g., [Zar, Corollary 1.11].

Lemma 3.3 (Morse Lemma). Let (φ, ψ) : X → R be a Bestvina–Brady discrete

Morse function on a simplicial complex X. Let t < s in R∪{∞}. If lk↓x is (n−1)-
connected for all vertices x with t < φ(x) ≤ s then the inclusion Xφ≤t → Xφ≤s

induces an isomorphism in πk for all k ≤ n− 1, and an epimorphism in πn.

Let us return to the special case from Example 3.2, so X = Y ′ for Y finite
dimensional, and φ : X → R is closed and discrete on vertices. Given a vertex σ
in X (i.e., a simplex in Y ), there are two types of vertex in lk↓σ: we can either
have a face σ∨ < σ with φ(σ∨) < φ(σ), or a coface σ∧ > σ with φ(σ∧) ≤ φ(σ).
This is because − dim goes up when passing to faces and down when passing to
cofaces. Since every face of σ is a face of every coface of σ, the descending link lk↓σ
decomposes as join

lk↓σ = lk↓∂ σ ∗ lk↓δ σ,
where lk↓∂ σ, the descending face link, is spanned by all σ∨ < σ with φ(σ∨) < φ(σ),

and lk↓δ σ, the descending coface link, is spanned by all σ∧ > σ with φ(σ∧) ≤ φ(σ).

For example if at least one of lk↓∂ σ or lk↓δ σ is contractible, so is lk↓σ. More generally,

an understanding of the topology of lk↓∂ σ and lk↓δ σ yields an understanding of the

topology of lk↓σ.

3.1. Applying Bestvina–Brady Morse theory to the relative generalized
Morse complex. Now we will apply Bestvina–Brady Morse theory to GM(Δ,Ω).
The broad strokes of this strategy are inspired by the Morse theoretic approach
in [BFM+16, Proposition 3.6] to higher connectivity properties of the matching
complex of a complete graph. Let X = GM(Δ,Ω)′, and let φ : X(0) → N ∪ {0} be
the function sending V to the number of simple V -cycles (since Δ is finite, any V
only has finitely many simple V -cycles). In particular Xφ≤0 = M(Δ,Ω)′, so if we

can understand lk↓V for all V with φ(V ) > 0, using the Bestvina–Brady discrete
Morse function (φ,− dim) as in Example 3.2, then the Morse Lemma will tell us
information about M(Δ,Ω)′ ∼= M(Δ,Ω).

Let us inspect the descending face link.

Lemma 3.4 (Descending face link, case 1). Let V ∈ X(0) with φ(V ) > 0, so V is
a discrete vector field on Δ (avoiding Ω) with at least one V -cycle. If there exists a

primitive discrete vector field in V that is not contained in any V -cycle, then lk↓∂ V
is contractible.

Proof. Say V = {(σ0, τ0), . . . , (σk, τk)}, and say without loss of generality that

(σ0, τ0) is not contained in any V -cycle. Now let W be any vertex of lk↓∂ V , so W is
a simplex of GM(Δ,Ω) with W < V and φ(W ) < φ(V ). Then φ(W ∪{(σ0, τ0)}) =
φ(W ) < φ(V ), so W ∪ {(σ0, τ0)} ∈ lk↓∂ V . Since W ≤ W ∪ {(σ0, τ0)} ≥ {(σ0, τ0)},
[Qui78, Section 1.5] says lk↓∂ V is contractible. �
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Lemma 3.5 (Descending face link, case 2). Let V ∈ X(0) with φ(V ) > 0, say V is
a k-simplex of GM(Δ,Ω). If every primitive discrete vector field in V is contained

in a V -cycle, then lk↓∂ V is homeomorphic to Sk−1.

Proof. The hypothesis ensures that φ(W ) < φ(V ) for every proper face W < V ,
i.e., removing any part of V eliminates at least one V -cycle (note that removing

part of V cannot create new cycles, so these are in fact equivalent). Hence lk↓∂ V
is homeomorphic to the boundary of V (viewed as a simplex in GM(Δ,Ω)), so
homeomorphic to Sk−1. �

At this point we know that the descending link of a k-simplex V with φ(V ) > 0

is either contractible or else is the join of Sk−1 with lk↓δ V (so the k-fold suspension

of lk↓δ V ). It remains to analyze lk↓δ V . In Section 4 we will discuss the case when

dim(Δ) = 1, where it turns out we can fully analyze lk↓δ V . Then in Section 5

we will consider arbitrary Δ, where at least we will be able to tell when lk↓δ V is
non-empty.

4. Graphs

In the special case when dim(Δ) = 1, i.e., Δ = Γ is a graph, the descending
coface link of those V satisfying the hypotheses of Lemma 3.5 can be related to
a “smaller” Morse complex (see Proposition 4.1), which allows for inductive argu-
ments. Throughout this section Γ denotes a finite graph, and Ω is a subset of the
set of simplices of Γ. To us “graph” will always mean a 1-dimensional simplicial
complex, often called a “simple graph”.

Proposition 4.1 (Modeling the descending coface link). Let V be a k-simplex in
GM(Γ,Ω) such that every primitive discrete vector field in V lies in a V -cycle.

Let Υ be the set of simplices of Γ used by V . Then lk↓δ V in X is isomorphic to
M(Γ,Ω ∪Υ)′.

Proof. Define a simplicial map ψ : lk↓δ V → M(Γ,Ω ∪ Υ)′ as follows. A vertex of

lk↓δ V is a discrete vector field on Γ (avoiding Ω) of the form V �W for non-trivial
W such that any V � W -cycle is a V -cycle. In particular W is acyclic, and so
W ∈ M(Γ,Ω ∪ Υ). Setting ψ : (V � W ) �→ W gives a well defined map on the
level of vertices. If V �W < V �W ′ then W < W ′, so this extends to a simplicial

map ψ : lk↓δ V → M(Γ,Ω ∪ Υ)′. Now we have to show ψ is bijective. It is clearly
injective, since W = W ′ implies V �W = V �W ′. It is also clear that as long as
ψ is surjective on vertices, it will be surjective. To see it is surjective on vertices,
let W be a vertex in M(Γ,Ω ∪Υ)′, and we have to show that any V �W -cycle is

a V -cycle, since then V �W will be a vertex in lk↓δ V . Note that for any primitive
discrete vector field (v, e) in V , our assumptions say that (v, e) lies in a V -cycle.
Since any V -cycle is also a V � W -cycle, Lemma 2.6 says (v, e) cannot lie in any
V �W -cycles other than this one. Hence any V �W -cycle that contains a primitive
discrete vector field in V must be completely contained in V . Finally, note that
any non-trivial V �W -cycle cannot be fully contained in W since W is acyclic. We
conclude that any V �W -cycle is a V -cycle. �

We reiterate that the analog of Lemma 2.6 is not true for simplicial complexes
of dimension greater than 1, so this proof does not work outside the graph case.
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Proposition 4.2. The Morse complex M(Γ,Ω) is
(⌈

h(Γ,Ω)
2d(Γ,Ω)

⌉
− 2

)
-connected.

Proof. We induct on h(Γ,Ω). The base case is that M(Γ,Ω) is non-empty once
h(Γ,Ω) > 0, which is clear. Now assume h(Γ,Ω) > 2d(Γ,Ω). By the Morse
Lemma 3.3 and Proposition 2.4, it suffices to show that for V a k-simplex in

GM(Γ,Ω) with φ(V ) > 0, the descending link lk↓V is
(⌈

h(Γ,Ω)
2d(Γ,Ω)

⌉
− 2

)
-connected.

If there exists a primitive discrete vector field in V that is not contained in any

V -cycle, then lk↓∂ V (and hence lk↓V ) is contractible by Lemma 3.4. Now as-
sume every primitive discrete vector field in V is contained in a V -cycle. Then by

Lemma 3.5, lk↓∂ V
∼= Sk−1, and by Proposition 4.1, lk↓δ V

∼= M(Γ,Ω ∪Υ), where Υ

is the set of simplices used in V . Since lk↓V = lk↓∂ V ∗ lk↓δ V , it now suffices to show

that M(Γ,Ω ∪Υ) is
(⌈

h(Γ,Ω)
2d(Γ,Ω)

⌉
− k − 2

)
-connected. By induction M(Γ,Ω ∪Υ) is(⌈

h(Γ,Ω∪Υ)
2d(Γ,Ω∪Υ)

⌉
− 2

)
-connected. Note that h(Γ,Ω∪Υ) ≥ h(Γ,Ω)− ((k+1)(d(Γ,Ω)+

1) − 1). This is because removing k + 1 edges and their endpoints and all their
incident edges would normally remove at most (k+1)(d(Γ,Ω)+1) total edges from
H(Γ,Ω) (here we use the fact that a vertex of H(Γ,Ω) representing an edge of Γ
has degree at most 2), but since V has at least one cycle we know that we only
removed at most (k+1)(d(Γ,Ω)+1)−1 total edges. Also, d(Γ,Ω∪Υ) ≤ d(Γ,Ω), so

M(Γ,Ω ∪ Υ) is
(⌈

h(Γ,Ω)−((k+1)(d(Γ,Ω)+1)−1)
2d(Γ,Ω)

⌉
− 2

)
-connected. Since φ(V ) > 0 we

know k ≥ 2 by Observation 1.3. Also, if d(Γ,Ω) = 1 thenM(Γ,Ω) = GM(Γ,Ω) and
we are done, so we can assume d(Γ,Ω) ≥ 2. Putting all this together we compute:(⌈

h(Γ,Ω)− ((k + 1)(d(Γ,Ω) + 1)− 1)

2d(Γ,Ω)

⌉
− 2

)

=

(⌈
h(Γ,Ω)− (kd(Γ,Ω) + k + d(Γ,Ω))

2d(Γ,Ω)

⌉
− 2

)

≥
(⌈

h(Γ,Ω)− 2kd(Γ,Ω)

2d(Γ,Ω)

⌉
− 2

)

=

(⌈
h(Γ,Ω)

2d(Γ,Ω)

⌋
− k − 2

)

and we are done. �
In the special case where Ω = ∅, we can now draw conclusions about M(Γ). Let

us write h(Γ) = h(Γ, ∅) and d(Γ) = d(Γ, ∅), so h(Γ) = 2|E(Γ)| and d(Δ) is the
maximum degree of a vertex in the Hasse diagram (which is usually the same as
the maximum degree of a vertex in Γ, unless every vertex of Γ has degree 0 or 1).

Theorem 4.3. The Morse complex M(Γ) is
(⌈

|E(Γ)|
d(Γ)

⌉
− 2

)
-connected. In partic-

ular M(Γ) is connected once |E(Γ)| > d(Γ), simply connected once |E(Γ)| > 2d(Γ),
and (m− 1)-connected once |E(Γ)| > m · d(Γ).

Proof. By Proposition 4.2 M(Γ) is
(⌈

2|E(Γ)|
2d(Γ)

⌉
− 2

)
-connected, i.e.,

(⌈
|E(Γ)|
d(Γ)

⌉
− 2

)
-

connected. �
This proves Conjecture 2.8 when dim(Δ) = 1. Combining this with Theorem 2.7

we can obtain a higher connectivity bound that only depends on |E(Γ)|. Let η(Γ) :=⌈√
|E(Γ)|

⌉
.
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Corollary 4.4. The Morse complex M(Γ) is (η(Γ) − 2)-connected. In particular
M(Γ) is connected once |E(Γ)| > 1, simply connected once |E(Γ)| > 4, and (m−1)-
connected once |E(Γ)| > m2.

Proof. If Γ has no vertices of degree d(Γ) then Γ is a disjoint union of edges, and so
is (|E(Γ)| − 2)-connected, hence (η(Γ)− 2)-connected. Now assume Γ has a vertex
of degree d(Γ). By Theorem 2.7, M(Γ) is (d(Γ)−2)-connected. If d(Γ) ≥ η(Γ) then

we are done, so assume d(Γ) ≤ η(Γ)− 1. Then
⌈
|E(Γ)|
d(Γ)

⌉
≥

⌈
|E(Γ)|
η(Γ)−1

⌉
≥

⌈
|E(Γ)|√
|E(Γ)|

⌉
=

η(Γ), and so we are done by Theorem 4.3. �

4.1. Examples. Now we discuss a couple of examples. First let us discuss an
example where the homotopy type of M(Γ) is already known, namely when Γ is
a complete graph. This example will show that, while our results are powerful in
that they apply to any Γ, they do not necessarily yield optimal bounds.

Example 4.5. Let Kn be the complete graph on n vertices, so |E(Kn)| =
(
n
2

)
.

By Corollary 4.4 M(Kn) is (m − 1)-connected once
(
n
2

)
> m2, i.e., once n >

(1 +
√
1 + 8m2)/2. For example it is connected once n > 2 and simply connected

once n > 3. Kozlov computed the homotopy type M(Kn), namely M(Kn) is
homotopy equivalent to a wedge of spheres of dimension n−2 [Koz99, Theorem 3.1],
so in fact M(Kn) is already (m − 1)-connected once n > m + 1. This shows our
bounds are not always optimal.

As a remark, Kozlov also computed the homotopy type ofM(Cn) [Koz99, Propo-
sition 5.2] for Cn the n-cycle graph. Since |E(Cn)| = n it is easy to compare our
higher connectivity bounds to the actual higher connectivity, and again we see our
bounds are not optimal.

Now we discuss an example where the homotopy type of M(Γ) is (to the best
of our knowledge) not known, namely when Γ is complete bipartite, and compute
what our results reveal.

Example 4.6. Let Kp,q be the complete bipartite graph with p vertices of one
type and q vertices of the other type, so |E(Kp,q)| = pq. By Corollary 4.4 M(Kp,q)
is (m − 1)-connected once pq > m2. For example it is connected once pq > 1 and
simply connected once pq > 4. Later in Theorem 5.4 we will see that actually it is
also simply connected once pq > 1, i.e., every M(Kp,q) is simply connected except
M(K1,1), which is not even connected.

5. Higher dimensional Δ

Now we consider arbitrary dimensional Δ, and prove some results about higher
connectivity properties of M(Δ). First we observe that M(Δ) gets arbitrarily
highly connected as dim(Δ) goes to ∞.

Theorem 5.1. Suppose that Δ contains a k-simplex. Then M(Δ) is (k − 2)-
connected.

Proof. Since Δ contains a k-simplex, Δ(1) contains a vertex of degree k. The result
is now immediate from Theorem 2.7. �

Our next goal is to completely classify when M(Δ) is connected and simply
connected. To do this we will first prove that M(Δ) is (simply) connected if and
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only if GM(Δ) is, for which we will use Bestvina–Brady Morse theory applied to
X = GM(Δ)′, as in Section 4. The key is that, even without a full understanding

of lk↓δ V in the dim(Δ) > 1 case, we will only need to care that lk↓δ V is non-empty.
Bestvina–Brady Morse theory is probably a more powerful tool than necessary to
relate M(Δ) to GM(Δ) in this way, but it makes for an elegant argument.

Lemma 5.2 (Descending link simply connected). Assume Δ has no isolated ver-
tices, and is not a 2-simplex or a 3-cycle. Then for any V ∈ X(0) with φ(V ) > 0,

either lk↓∂ V is simply connected or lk↓∂ V is connected and lk↓δ V is non-empty. In

particular, the descending link lk↓V is always simply connected.

Proof. Say V is a k-simplex of GM(Δ). The fact that φ(V ) > 0 implies k ≥ 2, by

Observation 1.3. We see from Lemmas 3.4 and 3.5 that lk↓∂ V is either contractible
or homeomorphic to Sk−1. If k ≥ 3 this is simply connected. Now we have to prove

that if k = 2 then lk↓δ V is non-empty.
Say V = {(σ0, τ0), (σ1, τ1), (σ2, τ2)}. Since φ(V ) > 0 we know that σ0, τ0, σ1, τ1,

σ2, τ2, σ0 is a V -cycle, so the σi all have the same dimension, say p, and the τi all
have dimension p+ 1. First suppose p > 0. Then dim(τ0) ≥ 2, so we can choose a
1-face e < τ0 and 0-face v < e such that e is disjoint from σ0 and σ1. In particular
V � {(v, e)} is a discrete vector field, and it is clear that φ(V � {(v, e)}) = φ(V ), so

lk↓δ V �= ∅.
Now suppose p = 0, so the σi are vertices and the τi are edges. If Δ contains

an edge e not equal to any τi then e must have at least one vertex v not equal
to any σi. In this case V � {(v, e)} is a discrete vector field, and it is clear that

φ(V �{(v, e)}) = φ(V ), so lk↓δ V �= ∅. Finally, suppose Δ does not contain any edges
besides the τi. Since isolated vertices do not contribute to the Morse complex we
can assume Δ has none, so the only options are that Δ equals a 2-simplex or a
3-cycle, but we ruled these out. �

Corollary 5.3. We have that M(Δ) is connected if and only if GM(Δ) is con-
nected, and M(Δ) is simply connected if and only if GM(Δ) is simply connected.

Proof. First note that M(Δ)(1) = GM(Δ)(1) by Observation 1.3, so the connectiv-
ity result is true. Now we prove the simple connectivity result. If Δ is a 2-simplex
or a 3-cycle, then Examples 1.4 and 1.5 show that the result holds. Now assume Δ
is neither of these (and note that we may assume Δ has no isolated vertices). By
Lemma 5.2 the descending link of every V with φ(V ) > 0 is simply connected. Thus
by the Morse Lemma 3.3, the inclusion M(Δ) → GM(Δ) induces an isomorphism
in π1. �

Now we can completely classify when M(Δ) is connected and simply connected.

Theorem 5.4. Suppose Δ has no isolated vertices. The Morse complex M(Δ) is
connected if and only if Δ is not an edge, and is simply connected if and only if
Δ is none of: an edge, a disjoint union of two edges, a path with three edges, a
3-cycle, or a 2-simplex.

Proof. First we prove the connectivity statement. If Δ(1) has a vertex with degree
more than 1 then GM(Δ), and hence M(Δ), is connected by Lemma 2.5 and
Corollary 5.3. Now assume Δ(1) has no vertices with degree more than 1, so Δ is
a disjoint union of edges. If Δ has at least two edges (or, for trivial reasons, zero
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edges) then it is easy to check that M(Δ) is connected. If Δ has one edge then
M(Δ) = S0 is not connected.

Now we prove the simple connectivity statement. If Δ(1) has a vertex with degree
more than 2 then GM(Δ), and hence M(Δ), is simply connected by Lemma 2.5
and Corollary 5.3. Now assume Δ(1) has no vertices with degree more than 2. Then
Δ is a disjoint union of some number of 2-simplices, cycle graphs, and path graphs.
If Δ has more than one connected component, and is not a disjoint union of two
edges, then M(Δ) is a join of at least two non-empty complexes, at least one of
which is connected, and so M(Δ) is simply connected. If Δ is a disjoint union of
two edges then M(Δ) � S1 is not simply connected. Now assume Δ is connected.
If it is a 2-simplex then M(Δ) is not simply connected (Example 1.5). If Δ is an
n-cycle then M(Δ) is simply connected unless n = 3 [Koz99, Proposition 5.2]. If
Δ is a path with n edges then GM(Δ) is the matching complex of a path with 2n
edges, which is easily seen to be simply connected unless n is 1 or 3, so the same is
true of M(Δ) by Corollary 5.3. �

A consequence of Theorem 5.4 is that we can now verify the connectivity and
simple connectivity cases of Conjecture 2.8. Let us use the notation h(Δ) = h(Δ, ∅)
and d(Δ) = d(Δ, ∅) as before, so h(Δ) is the number of edges in the Hasse diagram
of Δ and d(Δ) is the maximum degree of a vertex in the Hasse diagram.

Corollary 5.5. If h(Δ) > 2d(Δ) then M(Δ) is connected. If h(Δ) > 4d(Δ) then
M(Δ) is simply connected.

Proof. Since isolated vertices do not contribute to h(Δ), d(Δ), or M(Δ), we can
assume there are none. IfM(Δ) is not connected then Δ is an edge by Theorem 5.4,
so h(Δ) = 2 < 4 = 2d(Δ). If M(Δ) is not simply connected then Δ is either an
edge, a disjoint union of two edges, a path with three edges, a 3-cycle, or a 2-simplex.
In all these cases one can compute that h(Δ) ≤ 4d(Δ). �
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