
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY, SERIES B
Volume 9, Pages 150–158 (April 12, 2022)
https://doi.org/10.1090/bproc/128

A RADON-NIKODYM THEOREM FOR NONLINEAR

FUNCTIONALS ON BANACH LATTICES

WILLIAM FELDMAN

(Communicated by Javad Mashreghi)

Abstract. A Radon-Nikodym theorem is established for a class of nonlinear
orthogonally additive monotone functionals on Dedekind complete Banach lat-
tices. A functional S is absolutely continuous with respect to T if T (f) = 0
implies S(f) = 0 for f in the domain. It is shown that S is absolutely contin-
uous with respect to T implies S is equal to the composition of an extension
of T with an appropriate generalized orthomorphism. In the special case that
S and T are linear, the generalized orthomorphism reduces to a multiplication
operator consistent with the classical formulation of this theorem.

1. Introduction

In this note, we will consider nonlinear and more specifically, orthogonally addi-
tive monotone functionals on Banach lattices with quasi-interior points.

We will review a few of the salient features of Banach lattices we will need for this
study. For further details, one may consult reference such as [8] or [11]. Since we are
in the setting of vector lattices (Riesz spaces), we use the usual notations of <,≤, ∧
for infimum, ∨ for supremum, and interval notation such as [f, g] = {h : f ≤ h ≤ g}.
We recall that an element e in a vector lattice E is an order unit if the order ideal
I(e) generated by e, i.e., ∪∞

n=1[−ne, ne], is equal to E. In the vector lattice C(X),
all continuous real-valued functions on a compact space X, the function of constant
value 1 is an order unit. For a Banach lattice E, an element e is a quasi-interior
point if the order ideal generated by e is dense in E. Many of the classical Lp spaces
are then Banach lattices with quasi-interior points. Throughout this note, E will
denote a Dedekind complete Banach lattice with quasi-interior point. Using the
representation theory for Banach lattices (e.g., see [11]), there exists an extremally
disconnected compact topological space X so that E is lattice isomorphic to an
order ideal in C∞(X), the collection of all the extended continuous real-valued
functions each finite on a dense subset of X. This order ideal contains C(X). An
order ideal I is a vector subspace with the property that if |f | ≤ |g| and g ∈ I then
f ∈ I. Further, the order ideal I(e) generated by the quasi-interior point e will
correspond to C(X) and the image of e will be the constant function 1. In what
follows, we identify E with its representation as functions on X.

The role of nonlinear operators in analysis has a rich history, notably the Urysohn
operators in integral equations (presentations in [1] provides an overview). The
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Urysohn operator defined by Tf(x) =
∫
K(x, y, f(y))dy with appropriate condi-

tions on the kernel K is orthogonally additive (defined below). Subsequent exten-
sive studies of nonlinear operators include ongoing analysis of orthogonally additive
and generalized Urysohn operators (e.g., [5], [7] and [9]). In a variety of applica-
tions, nonlinear operators related to linear operator play a significant role. Given a
linear operator L from E to another vector lattice, as a straight forward example,
we can consider T (f) = S(f2) which is then nonlinear and orthogonally additive.

Radon-Nikodym type theorems that extend the measure theoretic results have
been studied both for linear operators and nonlinear operators on vector lattices.
This author in [4] analyzed absolutely continuous operators between order unit
spaces (i.e, spaces of all continuous functions on a compact space X). The proofs
there depended on the classical results of the Radon-Nikodym theorem and Riesz
representation theorem. The analysis in [2] and [10] provide insights to an operator
T being absolutely continuous with respect to S related to relationship of Sf to
Tf for each f in the domain. The first investigations of extensions of Radon-
Nikodym theorems to linear maps on vector lattices (Riesz spaces) not directly
defined by measure theory was provided by Luxemburg and Schep in [6] (their proofs
used spectral theory). For functionals, they characterized order continuous linear
operators absolutely continuous with one another. The present analysis extends
these results for nonlinear functionals and our Corollary 1 is very much akin to the
characterization in [6].

In more generality, we will establish that a nonlinear functional S absolutely
continuous with a nonlinear functional T can be characterized in a manner quite
similar to the result in classical measure theory where S is realized as T composed
with a multiplication operator.

Letting E+ denote the positive cone of E, we will consider functionals T from
E+ to R

+ that are

(i) monotone, i.e., T (f) ≤ T (g) whenever f ≤ g and
(ii) orthogonally additive, i.e., T (f +g) = T (f)+T (g) whenever f is orthogonal

to g (i.e., f ∧ g = 0).

In the remainder of this note, S and T will denote monotone, orthogonally
additive functionals on E+

We begin with a definition in this setting analogous to that in measure theory.
Here, S and T are monotone orthogonally additive functionals on E+.

Definition 1. Given S and T functionals on E+, the functional S is absolutely
continuous with respect T (S << T ) if Tf = 0 for f ∈ E+ implies Sf = 0.

We will show in Theorem 2 that if S << T , there exists a generalized ortho-
morphism ϕ (defined below) with domain E+ so that S(f) = T̂ (ϕ(f)) where T̂ is
an extension of T to extended continuous real-valued functions on X. Theorem 2
expresses this in a bit more generality. Given the absence of linearity, our proofs
will not use measure theory. We also discuss consequences for more restrictive sit-
uation of S being dominated by T (defined in Definition 7). We conclude with a
corollary for the situation where the functionals are linear. In this linear case, in
analogy to the classical result, we have ϕ(f) = gf for a fixed element g ∈ C∞(X)+

so that Sf = T (gf).
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2. Radon-Nikodym theorem

Definition 2. The functional T on E+ is unconstrained if T (f) > 0 implies that
∨{T (nf) : n ∈ N} = ∞ and 0 < α < β implies 0 < T (αf) < T (βf).

Let K denote all clopen (open and closed) subsets of X. We set

G = {g ∈ E+ : ∀K ∈ K, T (gχK) ≤ S(χK)}.

Lemma 1. Given g1 and g2 in G, then (g1 ∨ g2) is in G

Proof. Given K and g1, g2 in G, let K1 = {x : g1(x) > g2(x)}∩K and K2 = K−K1.
We have (g1 ∨ g2)(χK) = g1(χK1

) + g2(χK2
). Then T (g1χK1

) ≤ S(χK1
) and

T (g2χK2
) ≤ S(χK2

). Now orthogonal additivity implies that
T (g1 ∨ g2)(χK) = T (g1χK1

) + T (g2χK2
) ≤ S(χK1

) + S(χK2
) = S(χK). �

Clearly G is not empty since it contains the zero functional. We will consider

ĝ = ∨{g ∈ G},
where the supremum is in the space C(X,R∗) of all continuous functions from
X (the representation space for E) to R

∗ = [0,∞]. We verify that C(X,R∗) is
Dedekind complete. Consider the order isomorphism from R

∗ to [0, 1/2] defined by
ρ(x) = 1

1+e−x − 1
2 for x 
= ∞ and ρ(∞) = 1

2 and define the order isomorphis ω from

C(X,R∗) to C([0, 12 ]) by ω(f) = f ◦ ρ−1. Since C(X) (X extremally disconnected)
is Dedekind complete, C(X,R∗) is as well.

Definition 3. For the functional T , we define an extension of T to a map from
C(X,R∗) to R

∗ by

T̂ (h) = ∨nT (h ∧ ne)

for each h in C(X,R∗).

In this context, we will use the following version of order continuity.

Definition 4. T is order continuous if given {fα} increasing to f , then T (fα)
converge to T (f)

Lemma 2. Let T be an unconstrained functional and order continuous on C(X,R+).

Then T̂ is monotone, orthogonally additive and

T̂ (ĝ) = ∨{Tg : g ∈ G}.
There exists a unique ĝ∗ ∈ (C∞(X))+ with the properties that if T̂ (ĝ∗χK) = 0 for
a clopen set K ⊂ X, then ĝ∗χK = 0 and for every clopen K ⊂ X,

T̂ (ĝχK) = T̂ (ĝ∗χK).

Proof. It is clear that T̂ is monotone. If h1 is orthogonal to h2 in C(X,R∗), then
T ((h1 + h2) ∧ ne) = T (h1 ∧ ne) + T (h2 ∧ ne) since T is orthogonally additive. It

follows directly that T̂ is orthogonally additive. G can be viewed as an increasing
net (in light of Lemma 1).

T ((∨g∈Gg) ∧ ne) = T (∨g∈G(g ∧ ne)) = ∨g∈GT (g ∧ ne)

since T is order continuous. In turn, ∨g∈GT (g ∧ ne) ≤ ∨g∈GT (g). This tells
us that T ((∨g∈Gg) ∧ ne) ≤ ∨g∈GT (g) and taking the supremum in n, we have
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T̂ (ĝ) ≤ ∨g∈GT (g). On the other hand, T (g) = ∨nT (g∧ne) by order continuity and

∨nT (g ∧ ne) ≤ ∨nT (ĝ ∧ ne) = T̂ (ĝ). Thus T (g) ≤ T̂ (ĝ) and, in turn, ∨g∈GT (g) ≤
T̂ (ĝ) establishing the equality.

LetH = ∪{K : T̂ (ĝχK) = 0} whereK ⊂ X is clopen. T̂ (ĝχH) = ∨nT (ĝχH∧ne).
Let (Kα) be an increasing net of clopen sets whose union is dense in H. By order
continuity T (ĝχHχKα

∧ ne) = 0 and is convergent to T (ĝχH ∧ ne) and in turn,

T̂ (ĝχH) = 0. Now, for any clopen K ⊂ X, we have shown that T̂ is orthogonally
additive and thus

T̂ (ĝχK) = T̂ (ĝχK∩H) + T̂ (ĝχK∩(H)c) = T̂ (ĝχK∩(H)c) = T̂ (gχKχHc)

since T̂ (ĝχH) = 0 (therefore, T̂ (ĝχK∩H = 0). Setting ĝ∗ = ĝχ(H)c for any K, we

have T̂ (ĝχK) = T̂ (ĝ∗χK).

To verify that ĝ∗ is in (C∞(X))+, letM = {x : ĝ∗(x) = ∞}o. If the interior of M
is not empty, then for any non-zero g ∈ G, any clopen K ⊂ Mo, and any n ∈ N , we
have ngχK ≤ ĝ∗. Since an increasing net (ngχKα

) can be chosen with supremum

ngχM , we have ngχM ≤ ĝ∗. Assume T (gχM ) > 0. Then T (ngχM ) ≤ T̂ (ĝχM ) =
∨g∈GT (gχM ) ≤ S(χM ), but S(χM ) is finite while T (ngχM ) is unbounded as n

increases (since T is unconstrained), a contradiction. Thus T̂ (ĝχM ) = 0 so that
M ⊂ H and thus ĝ∗ is an element of C∞(X).

We observe that given T̂ (ĝ∗χK) = 0, we have K ⊂ H and hence ĝ∗χK = 0.
To verify the uniqueness, assume ĝ∗1 and ĝ∗2 both satisfy the conditions of the

Lemma. Assume that ĝ∗1 > ĝ∗2 (and not equal). Let K be such that ĝ∗1χK > aĝ∗2χK

for a number a > 1. We observe that K ∩ H = ∅ (H as above). If not, then
T (ĝ∗2χK∩H) = 0 and T (ĝ∗1χK∩H) = 0 which implies that ĝ∗1χK∩H = ĝ∗2χK∩H = 0
which contradicts our assumption. By considering a clopen subset ofK if necessary,
we can assume that ((ĝ∗1∧me)χK) > a((ĝ∗2∧me)χK) > 0 and ĝ∗2χK = (ĝ∗2∧me)χK .
We note that even with a subset of K, T (ĝ∗2χK) > 0 (if zero, then K ⊂ H). The

unconstrained condition tells us that T̂ (ĝ∗1χK) ≥ T ((ĝ∗1∧me)χK ≥ T (a((ĝ∗2∧me)) >

T ((ĝ∗2 ∧me)χK) = T̂ (ĝ∗2χK), a contradiction. �

Proposition 1. Given T order continuous on E+, the functional T̂ is order con-
tinuous.

Proof. Let ĝα be directed up and order converge to ĝ. If T̂ (ĝ) is finite, then since

T̂ (ĝ) = ∨T (ĝ ∧ ne), given ε > 0, there exists N so that |T̂ (ĝ) − T (ĝ ∧ Ne)| < ε.
Further, there exists α0 so that |T (ĝ ∧ Ne) − T (ĝα0

∧ Ne)| < ε since T is order

continuous. Now, for α > α0, we have T̂ (ĝ) ≥ T̂ (ĝα) ≥ T (ĝα0
∧ Ne) and thus

|T̂ (ĝ)− T̂ (ĝα)| ≤ |T̂ ĝ − T (ĝα0
∧Ne)| ≤ 2ε, establishing the convergence. If T̂ (ĝ) is

infinite, then for any number M , there exists a N so that T (ĝ∧Ne) > M . Then by
order convergence, there exists a α0 with T (ĝα0

∧Ne) > M . It follows, for α > α0,

that T̂ (ĝα) ≥ T̂ (ĝα0
) > T (ĝα0

∧Ne)) > M establishing the convergence. �
In the absence of linearity, we adopt the following:

Definition 5. The map T is uniformly continuous if for every ε > 0, there exist
δ > 0 so that if ‖f − g‖ < δ for any f and g in the domain, then |Tf − Tg| < ε.

Examples: We note that given a linear functional L that is uniformly continuous,
there are a variety of associated nonlinear functionals that will also be uniformly
continuous.
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For example, we can consider T1(f) = L(f ∧ n) for a fixed n ∈ N (here n
represents ne, the constant function n). T1 is not linear but is uniformly continuous
since if ‖f − g‖ < δ in the formulation of uniform continuity, then |(f ∧ n) − (g ∧
n)| ≤ |f − g| and since the norm is monotone ‖(f ∧ n) − (g ∧ n)‖ < δ so that
‖T1(f)− T1(g)‖ = ‖L(f ∧ n)− L(g ∧ n)‖ < ε.

For another example among analogous types of compositions, we let T2(f) =
L((f ∧ 1)2). Given ‖f − g‖ < δ/2 in the inequality for the uniform continuity of L,
we have |(f ∧ 1)2 − (g ∧ 1)2| = |((f ∧ 1) + (g ∧ 1))((f ∧ 1) − (g ∧ 1))| ≤ 2|f − g|.
Since the norm is monotone, if ‖f − g‖ < δ/2, then ‖(f ∧ 1)2 − (g ∧ 1)2‖ ≤ δ so
that |T2(f)− T2(g)| ≤ ε.

Theorem 1. Let S and T be order continuous functionals on E+ with T uncon-
strained and uniformly continuous. If S is absolutely continuous with respect to T ,
then

S(χK) = T̂ (ĝ∗χK)

for every clopen set K ⊂ X where ĝ∗ is as described in Lemma 2.

Proof. We have by definition, T (gχK) ≤ S(χK) for each K and by order continuity

T̂ (ĝχK) = T̂ (ĝ∗χK) ≤ S(χK). We assume that the equality is not satisfied. This

means there exists a clopen set K∗ such that T̂ (ĝχK∗) is strictly less than S(χK∗)

and we let α be such that T̂ (ĝχK∗) < α < S(χK∗). For any g ∈ G , ‖(g + (1/j)e−
g)‖ ≤ ‖(1/j)e‖. Thus for a sufficiently large j, we have |T (g + (1/j)e) − T (g)| is
as small as desired for all g ∈ E by the uniform continuity assumption. Therefore,
for sufficiently large j, T ((g + (1/j)e)χK∗) ≤ α < S(χK∗) and in turn, T̂ ((ĝ +
(1/j)e)χK∗) ≤ α < S(χK∗). We note that ∨g∈G(g + (1/j)e) = (∨g∈Gg) + (1/j)e.
For a fixed j satisfying the above and any clopen K, we define

M(χK) = S(χK)− T̂ ((ĝ + (1/j)e)χK).

M is orthogonally additive and M(χK∗) > 0. We will demonstrate that there is a

K̂ ⊂ K∗ such that M(χK) ≥ 0 for every clopen K contained in K̂.

We consider W = ∪{K : T (χK) = 0}. We can assume that S 
= 0 since if
equal to zero, then the theorem is trivial. Thus W 
= X (since T (χK) = 0

implies S(χK) = 0 and both are order continuous). It follows that T̂ (ĝ∗χK) =

T̂ (ĝ∗χKχW ) + T̂ (ĝ∗χKχW c). The last term is 0 since it is less than or equal to
S(χW c). In our following argument, we can assume that K∗ ⊂ W c.

We first note that
∗ (ĝ + (1/j)e)χK) 
= ĝχK

for every clopen set K ⊂ K∗ (here, T (χK) 
= 0). If (ĝ + (1/j)e)χK) = ĝχK , then
ĝχK = ∞χK . Then for any m, we have T ((ĝ∧me)χK) = T (mχK) ≤ S(χK) which
is not possible as {T (mχK)} is unbounded by the unconstrained assumption. Let

t1 = ∧{M(χK) : K ⊂ K∗}. We note that since T̂ ((ĝ + (1/j)e)χK) ≤ T̂ ((ĝ +
(1/j)e)χK∗) which we observed above is less than or equal to α, it follows that
t1 > −α. If t1 ≥ 0, then we would have M(χK) ≥ 0 for every K ⊂ K∗ as desired.
Thus we can assume t1 < 0. Choose K1 ⊂ K∗ with M(χK1

) < t1/2. Clearly
K1 is a proper subset of K∗. Continuing inductively, let tn+1 = ∧{M(χK) :
K ⊂ K∗ − ∪n

i=1Ki} and choose Kn+1 ⊂ K∗ − ∪n
i=1K with the property that

M(χKn+1
) < tn+1/2. Again, we can assume each tn is less than zero (otherwise we

would have the desired result). We note that K∗ − ∪n
i=1Ki is not empty. Indeed,

if this set is empty, then by orthogonal additive, we would have
∑n

i=1 M(χKi
) =
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M(χK∗). However, the left side of the above equality is negative while the right
side is positive. Further, ∪∞

i=1Ki is not dense in K∗. If it were, then since the
partial sums

∑m
i=1 χKi

increase to χ∪∞
i=1Ki

and {Ki} are pairwise disjoint, order

continuity of S and T̂ (together with the fact that the range of S is [0,∞)) would
imply that

∑m
i=1 M(χKi

) = M(∪m
i=1Ki) converges toM(χK∗). It then would follow

that M(χK∗) ≤ 0 which is not that case.

We set K̂ = K∗ − ∪∞
i=1Ki. Now for any K ⊂ K̂, we have K ⊂ K∗ − ∪n

i=1Ki so
that M(χK) > tn for each n. We next verify that tn converges to zero. Assume to
the contrary that there is an β < 0 so that for every N , there is an n > N with
tn < β < 0. Letting Hi = ∪i

l=1Kl, we then have, using the order continuity,

M(χ∪∞
l=1Kl

) = S(χ∪∞
i=1Hi

)− T̂ ((ĝ + (1/j)e)(χ∪∞
i=1Hi

))

= lim
i→∞

S(χHi
)− lim

i→∞
T̂ ((ĝ + (1/j)e)χHi

).

Since
∑∞

i=1 M(χKi
) = −∞, we have limi→∞ M(χHi

) = −∞. It follows that
M(χ∪∞

i=1Ki
) = −∞. Now, M(χK∗) = M(χK∗−∪∞

i=1Ki
) + M(χ∪∞

i=1Ki
). We note

that from the definition of M , since S is finite, M(χK∗−∪∞
i=1Ki

) < +∞. Thus the

right hand side of the above equation is negative while the left side, M(χK∗), is

positive. Therefore, we conclude that tn → 0 and M(χK) ≥ 0 for all K ⊂ K̂ or

T̂ ((ĝ+ (1/j)e)χK) ≤ S(χK). We will now see that this contradicts the maximality
of G. Assume that all the vectors g′ = (g + (1/j)e)χK̂ + gχ(X−K̂) for g ∈ G are

in G. Then ∨g∈G(g + (1/j)e)χK̂ = (ĝ + (1/j)e)χK̂ ≤ ĝχK̂ , a contradiction to the

inequality (*) above. Thus T̂ (ĝχK) = S(χK). In view of Lemma 2, we can replace
ĝ with ĝ∗. �

In order to extend our result to all vectors in E+, we first establish the following.
Here we define a generalized orthomorphism similar to the formulation in [5].

An extended analysis of nonlinear orthomorphisms can be found in [3]. A operator
ϕ is an orthomorphism on a vector lattice E if ϕ is an order bounded operator from
E to E with the property that if |f | ∧ |g| = 0 for f , g in E, then |ϕ(f)| ∧ |g| = 0.

Definition 6. A monotone map ϕ from E+ to C(X,R∗) is a generalized ortho-
morphism if f ∧ h = 0 for f, h in E+ implies that ϕf ∧ h = 0.

We are now able to establish that if S << T , then S(f) = T̂ (ϕ(f)) expressed in
a bit more generality.

Theorem 2. Let S and T be order continuous functionals on E+ with T uncon-
strained and uniformly continuous. If S absolutely continuous with respect to T ,
then there exists a generalized orthomorphism ϕ from E+ to C(X,R∗)+ so that for
each f ∈ E+ and clopen K ⊂ X,

S(fχK) = T̂ (ϕ(f)χK).

Proof. We first establish that S(f) = T̂ (ϕ(f)) for appropriately defined ϕ. Given
f ∈ E+, it was established in [5], that there is an increasing sequence of vector
fn with supremum f with the property that each fn can be expressed as fn =∑mn

i=1 αiχKi
where {Ki} is a finite collection of disjoint clopen sets and each αi is

a real number. For a fixed αi and each h ∈ E+, we define Si(h) = S(αih) and
Ti(h) = T (αih) and note that Si << Ti. Theorem 1 tells us that there exists
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ĝ∗i with Si(χK) = T̂i(ĝ
∗
i χK) for each clopen K. Now for a fixed n, we define

ĝ∗n =
∑mn

i=1 αiĝ
∗
nχKi

. Then, since S and T are orthogonally additive, we have

∗ T̂ (ĝ∗n) =
m∑

i=1

T̂ (ĝ∗i χKi
) =

m∑

i=1

S(αiχKi
) = S(

m∑

i=1

αiχKi
) = S(fn).

We will verify that ĝ∗n ≤ ĝ∗n+1 for all n. Assume to the contrary that there exists
a point z with ĝ∗n(z) > ĝ∗n+1(z). Let H be a clopen set with ĝ∗nχH > cĝ∗n+1χH for
a constant c > 1. We can also choose H as a subset of some Ki. Restricting H
further if necessary, we can assume that ĝ∗n(x) < ∞ for all x ∈ H. We will use the

notation that fnχH(x) = α and fn+1χH(x) = β for all x ∈ X. If T̂ (ĝ∗n+1χH) >

0, then since T is unconstrained, we have S(αχH) = T̂ (ĝ∗nχH) > T̂ (ĝ∗n+1χH) =

S(βχH), a contradiction since fn ≤ fn+1. If T̂ (ĝ
∗
n+1χH) = 0, then 0 = S(βχH) and

ĝ∗n+1χH = 0 as a consequence of Lemma 2. However, again since fn ≤ fn+1, we

have 0 = S(βχH) ≥ S(αχH) = T̂ (ĝ∗nχH). It follows from Lemma 2 that ĝ∗nχH = 0
which contradicts our assumption that ĝ∗nχH > ĝ∗n+1χH .

We define

ϕ(f) = ∨(ĝ∗n)
and conclude from order continuity that S(fn) → S(f) and T̂ (ĝ∗n) → T̂ (ϕf) and

therefore S(f) = T̂ (ϕ(f)).
We verify that ϕ is monotone. Given f ≤ h, we can express the approximating

functions on the same set {Ki} so that fn ≤ hn. Then by the same argument as
above, ĝ∗n corresponding to fn is less than or equal to q̂∗n corresponding to hn. Thus
ϕ(f) ≤ ϕ(h).

Given f ∧ h = 0, it follows that each fn in the sequence {fn} convergent to f
will be orthogonal to each h. For fn =

∑m
i=1 αiχKi

, we have ĝ∗n =
∑m

i=1 ĝ
∗
i χKi

and
so also orthogonal to h. Thus ϕf ∧ h = 0.

For S(fχK) for anyK, we note that it follows from Theorem 1, that the equalities
in (*) are valid with multiplications by χK and in turn the limits. �

Examples: We note that there are a variety of nonlinear functionals T for which
T is unconstrained, uniformly continuous, and order continuous. Often these are
associated with linear operators.

Let L be an order continuous and uniformly continuous linear functional on E.
We define T3(f) = L(f + (f ∧ n)) for a fixed n ∈ N. Arguing as we did for the
functional T1, we have |(f+(f ∧n))−(g+(g∧n))| < |f−g| and then it follows that
T3 is uniformly continuous. It is also easy to see that T3 is order continuous. Note
that if T3(f) > 0, then L(f) > 0 and T3(mf) = L(mf + (mf ∧ n)) > mL(f) and
thus goes to infinity as m goes to infinity. If 0 < α < β, T3(αf) = L(αf + (αf ∧
n)) < L(βf + (βf ∧ n)) = T3(βf). Therefore T3 is nonlinear but order continuous,
uniformly continuous and unconstrained.

Let T4(f) = L(
√
f). Since the square root function is uniformly continuous, it

follows that T4 is uniformly continuous (we could have used any monotone uniformly
continuous function). It is easy to see that T4 is order continuous. It is also a routine
verification to see that T4 is unconstrained.

Now by Theorem 3, all the generalized orthomorphisms on E characterize all
the operator absolutely continuous with respect to T3 or T4.

We consider special cases which will ensure that ĝ∗ is in E.
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Definition 7. S is dominated by T if S << T and there exists an element l ∈ E+

so that S(f) ≤ T (lf) for every f ∈ I(e)+ (the positive elements in I(e)).

Theorem 3. Let S and T be order continuous functionals on E+ with T uncon-
strained and uniformly continuous. If S is dominated by T , then there exists a
generalized orthomorphism ϕ from E+ to E+ so that for each f ∈ E+ and clopen
K ⊂ X,

S(fχK) = T (ϕ(f)χK).

Proof. We first consider S(χK) for K clopen. For ĝ∗ as in Theorem 1, we have
T ((ĝ∗ ∧ ne)χK) ≤ S(χK) ≤ T (lχK) for each clopen K ⊂ X where l is proscribed
by the dominated property. We will verify that ĝ∗ ≤ l. Assume that this is not
the case. Let K∗ be a non-empty clopen subset of {x : (ĝ∗ ∧ ne)(x) > αl(x)} for
some fixed n and α > 1. Note that if T (lχK∗) = 0, then S(χK∗) = 0 and in turn

T̂ (ĝ∗χK∗) = 0 which implies ĝ∗χK∗ = 0 by Lemma 2, but this is not possible since
ĝ∗χ∗

K > αlχ∗
K . We now have (the strict inequality below a consequence of the

unconstrained assumption on T )

S(χK∗) ≥ T ((ĝ∗ ∧ ne)χK∗) ≥ T (αlχK∗) > T (lχK∗),

but T (lχK∗) ≥ S(χK∗), a contradiction. Thus ĝ∗ ≤ l.
Following the pattern in the proof of Theorem 2, we will have for S(αiχKi

), the
corresponding ĝ∗i χKi

≤ αiχKi
l. In turn, for fn, so that we will have ĝ∗n ≤ l. Thus

ϕ(f) ≤ l, i.e. an element of E+ as desired. �

We will say that T is a linear functional on E+ if T (αf + g) = αT (f)+ T (g) for
α ≥ 0. Now in analogy to Theorems 2 and 3, given S and T are linear, we have the
following formulation without the use of measure theory.

Corollary 1. Let S and T be order continuous linear functionals on E+ with T
uniformly continuous.

(i) If S << T , there exists g ∈ (C∞(X))+ so that for every f ∈ E+,

S(f) = T̂ (gf).

(ii) If S is dominated by T , there exists g ∈ E+ so that

S(f) = T (gf).

Proof. We first note that in Theorem 1, S(χK) = T̂ (ĝ∗χK). Then by linearity, we

have S(αχK) = T̂ (ĝ∗αχK). For any f ∈ E+, we consider the sequence of vectors
fn as in the proof of Theorem 2. For a fixed n, noting the orthogonal additivity of
T̂ , we have

S(fn) = S(

m∑

i=1

αiχKi
) =

m∑

i=1

T̂ (ĝ∗αiχKi
) = T̂ (

m∑

i=1

ĝ∗αiχKi
) = T̂ (ĝ∗fn).

Now, S(fn) → S(f) and T̂ (ĝ∗fn) → T̂ (ĝ∗f). Thus we have S(f) = T (ĝ∗f) for
every f ∈ E+. Setting g = ĝ∗, we have the desired result for (i). For (ii), Theorem
3 assures that ĝ∗ = ϕ(f) is in E+ and we set g = ĝ∗. �
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