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This paper is dedicated to the memory of my brother Ben Goodrich (8 November 1988–25
February 2022), who was taken from this life much too soon

Abstract. We consider nonlocal differential equations with convolution coef-
ficients of the form

−M
((

a ∗ uq
)
(1)

)
u′′(t) = λf

(
t, u(t)

)
, t ∈ (0, 1),

and we demonstrate an explicit range of λ for which this problem, subject to
given boundary data, will not admit a nontrivial positive solution; if a ≡ 1,
then the model case

−M
(
‖u‖q

Lq(0,1)

)
u′′(t) = λf

(
t, u(t)

)
, t ∈ (0, 1)

is obtained. The range of λ is calculable in terms of initial data, and our results
allow for a variety of kernels, a, to be utilized, including, for example, those
leading to a fractional integral coefficient of Riemann-Liouville type. Two
examples are provided in order to illustrate the application of the result.

1. Introduction

For sufficiently regular functions a and u define by t �→ (a ∗ u)(t), t ≥ 0, the
finite convolution

(a ∗ u)(t) :=
∫ t

0

a(t− s)u(s) ds.

In this brief note we consider the convolution-type nonlocal differential equation

(1.1) −M
((

a ∗ uq
)
(1)

)
u′′(t) = λf

(
t, u(t)

)
, t ∈ (0, 1),

where λ > 0 and q ≥ 1 are parameters and both M and f are continuous functions.
We demonstrate that, subject to given boundary data, problem (1.1) will not admit
a positive solution when λ is sufficiently large. The lower bound on λ is explicitly
calculable in terms of initial data, and so, a specific range of λ can be provided.
Note that if the kernel a satisfies a(x) ≡ 1, then problem (1.1) reduces to the model
case

(1.2) −M
(
‖u‖qLq(0,1)

)
u′′(t) = λf

(
t, u(t)

)
, t ∈ (0, 1).

One motivation for studying the much more general convolution-type problem (1.1)
is because this includes as a special case fractional integral nonlocalities of Riemann-
Liouville type. Indeed, put b(t) := 1

Γ(α) t
α−1 for 0 < α < 1 and one has that
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(b ∗ uq)(1) is the α-th order fractional Riemann-Liouville integral of uq at t = 1—
see, for example, [6,25,26,28,41–43,47,48,51] for additional details on the fractional
calculus and, in particular, how convolution operators arise naturally in the study
of such operators. Our results also apply to a wide variety of boundary data, and
Examples 2.3 and 2.4 provide examples in the case of Dirichlet boundary conditions.

Our main result, Theorem 2.1, demonstrates that the integral operator T :
C
(
[0, 1]

)
→ C

(
[0, 1]

)
defined by

(1.3) (Tu)(t) := λ

∫ 1

0

(
M

(
(a ∗ uq)(1)

))−1

G(t, s)f
(
s, u(s)

)
ds

has no nontrivial fixed points under certain conditions, where the function G :
[0, 1]× [0, 1] → [0,+∞) is determined by the boundary conditions to which we wish
to subject (1.1). Since a lack of fixed points of T implies a lack of solution of (1.1)
when equipped with the boundary data encoded by G, in this way we are able to
consider a variety of boundary conditions simultaneously.

The study of nonlocal differential equations is quite extensive. The model case
(1.2) is a commonly studied case in the one-dimensional setting (or the analogous
problem in the PDEs setting)—see, for example, Alves and Covei [2], Corrêa [10],

Corrêa, Menezes, and Ferreira [11], do Ó, Lorca, Sánchez, and Ubilla [13], Goodrich
[17,18], Infante [32], Stańczy [45], Wang, Wang, and An [46], Yan and Ma [49], and
Yan and Wang [50]. Another commonly studied model case is

(1.4) −M
(
‖u′‖qLq(0,1)

)
u′′(t) = λf

(
t, u(t)

)
, t ∈ (0, 1),

which is an example of a one-dimensional Kirchhoff-type problem; various analogous
problems in the PDEs setting are also frequently studied—see, for example, Afrouzi,
Chung, and Shakeri [1], Azzouz and Bensedik [4], Boulaaras [7], Boulaaras and
Guefaifia [8], Chung [9], Goodrich [19, 23], and Infante [30, 31]. Kirchhoff-type
equations, in particular, arise from steady-state (i.e., time independent) solutions of
the nonlocal wave-type PDE utt−M

(∫
Ω
|Du|2 ds

)
(Δu)(x) = f

(
x, u(x)

)
,x ∈ Ω ⊂

R
n, which was studied by Kirchhoff in the late 1800s—see, for instance, the paper

by Graef, Heidarkhani, and Kong [29] for additional discussion. More generally,
nonlocal differential equations have been extensively studied, in part, due to their
application in diverse modeling such as beam deflection [33] and chemical reactor
theory [38]—see [5, 15, 16, 34–36,39, 40] for additional details.

Recently Goodrich together with Lizama [20–22, 24, 27] has introduced a new
methodology for treating problems such as (1.2) and (1.4). This methodology relies
on the nonstandard cone

(1.5) K :=
{
u ∈ C

(
[0, 1]

)
: u ≥ 0, (a ∗ u)(1) ≥ C0‖u‖∞

}
,

where C0 is a positive constant defined later in Section 2, and the associated open
set

(1.6) V̂ρ :=
{
u ∈ K : (a ∗ uq)(1) < ρ

}
.

Note that (1.5) demands that the functional u �→ (a ∗ u)(1) be coercive with coer-

civity constant C0. The key topological fact is that when u ∈ ∂V̂ρ it follows that
(a ∗ uq)(1) = ρ, which gives us direct control over the argument of M in (1.1). In
particular, when studying existence of positive solutions to (1.1) this allows us to
consider the case in which M is allowed to vanish and change sign, infinitely often;
really, it need only be the case that M(t) > 0 on a set of positive but, nonetheless,
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small measure. This is very different than most competing methodologies, in which
M(t) > 0 is demanded generally for all t ≥ 0. Even regarding the very recent
papers by Ambrosetti and Arcoya [3], Delgado, Morales-Rodrigo, Santos Júnior,
and Suárez [12], and Santos Júnior and Siciliano [44], which are rich in good math-
ematical ideas and insights, our new methodology avoids some of the restrictions
seen there.

In spite of the wide literature there are few nonexistence results. In fact, we
are not aware of any results of this type for the very general nonlocal equation
(1.1). Our goal in this paper is to make an effort to begin to fill this gap. The
methodology that we use to produce our nonexistence result is noteworthy because
we directly use the coercivity condition in (1.5) and the open set in (1.6) in order to
deduce the nonexistence result. This is unusual because typically when deducing
nonexistence for a one-dimensional boundary value problem it is more standard to
deduce a contradiction involving ‖ · ‖∞ (cf., Infante and Pietramala [37, Theorem
4.1]). We take a very different tactic, avoiding completely this type of “norm-wise”

contradiction. Instead we directly use V̂ρ together with the coercivity condition in

K in order to demonstrate that for each ρ > 0 there can be no u ∈ ∂V̂ρ such that
(1.3) admits a positive fixed point. Then as any nontrivial and, thus, positive fixed

point of (1.3) must live in
⋃

0<ρ<+∞ ∂V̂ρ, the desired result follows (note that this

uses the fact—see Section 2—that a(t) > 0, a.e. t ∈ [0, 1]).
This unusual approach allows us to take advantage of the fact that whenever

u ∈ ∂V̂ρ it follows that (a ∗ uq)(1) = ρ, which gives us more direct control over
the integral operator T in (1.3). We believe this novel methodology most likely
can be extended to other classes of nonlocal boundary problems such as the ones
mentioned earlier in this section.

2. Main result

Let T be the operator defined in (1.3) in Section 1. Throughout the remainder of
the note we denote by ‖ · ‖∞ the maximum norm on [0, 1], with which we equip the
space C

(
[0, 1]

)
. Furthermore, with abuse of notation we denote by 1 the constant

map 1(x) ≡ 1. Finally, we state some general restrictions, which we impose on the
functions a, f , G, and M in definition of the operator T . We note, in passing, that
although we state the domain of a as [0, 1], because a need only be L1, it is allowable
that a be defined, for example, only on (0, 1). The kernel a(t) = 1

Γ(α) t
α−1 described

in Section 1, for instance, is defined only for t > 0, but this is of no concern in what
follows. Note that condition (H1.1) implies that f satisfies “standard growth” from
below.

H1: The functions M : [0,∞) → R, f : [0, 1] × [0,∞) → [0,∞), and
a : [0, 1] → [0,∞) satisfy the following properties.
(1) Both M and f are continuous. Moreover, f satisfies the inequality

f(t, u) ≥ c1u
r, t ∈ [0, 1], u > 0,

where c1 > 0 is a constant and r > q.
(2) a ∈ L1

(
(0, 1)

)
(3) a(t) > 0, a.e. t ∈ [0, 1]

H2: The function G : [0, 1]× [0, 1] → [0,∞) satisfies the following properties.
(1) It is continuous.
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(2) Putting G (s) := maxt∈[0,1] G(t, s), 0 ≤ s ≤ 1, the set S0 :=
{
s ∈

[0, 1] : G (s) �= 0
}
⊆ [0, 1] has full measure and

C0 := inf
s∈S0

1

G (s)

(
a ∗G(·, s)

)
(1) = inf

s∈S0

1

G (s)

∫ 1

0

a(1− t)G(t, s) dt.

is finite and positive.
(3) With a−

r
q−r ∈ L1

(
(0, 1)

)
the quantity

G0 := sup
t∈S0

((
a−

r
q−r ∗

(
G(t, ·)

) q
q−r

)
(1)

) q−r
q

is well defined and satisfies 0 < G0 < ∞, where r is the number from
condition (H1).

We now present our nonexistence result.

Theorem 2.1. Assume that each of conditions (H1) and (H2) is true. If

λ > sup
ρ>0 : A(ρ)>0

ρ
1−r
q M(ρ)

c1C0G0((a ∗ 1)(1))
1−q
q

,

then the integral operator T cannot have a positive fixed point.

Proof. For contradiction assume that the operator T has a nontrivial positive fixed
point—namely, that (Tu0)(t) = u0(t) for each t ∈ [0, 1] and with u0 ∈ C

(
[0, 1]

)
such that both ‖u0‖ > 0 and u0(t) ≥ 0 for all t ∈ [0, 1]. Since ‖u0‖ > 0, there exists

a number ρ > 0 such that u0 ∈ ∂V̂ρ—that is, since a(t) > 0, a.e. t ∈ [0, 1], it holds
that

(2.1)
(
a ∗ uq

0

)
(1) = ρ.

We will consider three cases.

(A) M(ρ) > 0
(B) M(ρ) = 0
(C) M(ρ) < 0

Obviously, for a given ρ > 0, cases (A), (B), and (C) are exhaustive. Our goal
is to show that for each ρ > 0 each of these cases leads to a contradiction under
the assumptions of the theorem, and so, T cannot have a nontrivial fixed point, as
claimed.

So, let us first consider case (A)—i.e., we will assume that M(ρ) > 0. A simple
calculation (see, for example, either [17, Lemma 2.3] or [22, Lemma 2.3]) demon-
strates that for any u ∈ C

(
[0, 1]

)
the operator T satisfies the coercivity inequality

(2.2) (a ∗ Tu)(1) ≥ C0‖Tu‖∞,
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which is simply a consequence of the definition of C0 in condition (H3.2). Then
using inequality (2.2) together with the fact that u0 is a fixed point of T we calculate

(
a ∗ uq

0

)
(1) =

(
a ∗ Tuq

0

)
(1) =

∫ 1

0

a(1− s)
(
(Tu0)(s)

)q
ds

=

∫ 1

0

(
a(1− s)

)1−q(
a(1− s)(Tu0)(s)

)q
ds

≥
(∫ 1

0

a(1− s) ds

)1−q (∫ 1

0

a(1− s)(Tu0)(s) ds

)q

=
(
(a ∗ 1)(1)

)1−q(
(a ∗ Tu0)(1)

)q
≥ Cq

0‖Tu0‖q∞
(
(a ∗ 1)(1)

)1−q
,

(2.3)

where we have used the reverse Hölder inequality to obtain the first inequality.
Next, using that we are in case (A) together with identity (2.1), observe that

‖Tu0‖∞ = max
t∈[0,1]

λ

∫ 1

0

(
M

(
(a ∗ uq)(1)

))−1

︸ ︷︷ ︸
>0

G(t, s)f
(
s, u0(s)

)
ds

= sup
t∈S0

λ

∫ 1

0

(
M(ρ)

)−1
G(t, s)f

(
s, u0(s)

)
ds

=

(
λ

M(ρ)

)(
sup
t∈S0

∫ 1

0

G(t, s)f
(
s, u0(s)

)
ds

)
,

(2.4)

from which it follows that

(2.5) ‖Tu0‖q∞ =

(
λ

M(ρ)

)q (
sup
t∈S0

∫ 1

0

G(t, s)f
(
s, u0(s)

)
ds

)q

.

Note that to switch to the supremum in (2.4) we use the fact that Tu is continuous
on [0, 1] by virtue of condition (H2.1) together with the fact that S0 has full measure.

We next work on estimating the second factor appearing in identity (2.5). To
this end recall that f(t, u) ≥ c1u

r, for all t ∈ [0, 1] and u ≥ 0, and where r > q.
Then, again recalling from condition (H2.3) that [0, 1] \ S0 is Lebesgue null, we
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estimate

∫ 1

0

G(t, s)f
(
s, u0(s)

)
ds

≥
∫ 1

0

G(t, s) · c1
(
u0(s)

)r
ds

= c1

∫
S0

G(t, s)
(
a(1− s)

)− r
q
(
a(1− s)

) r
q
(
u0(s)

)r
ds

≥ c1

(∫
S0

(
a(1− s)

)− r
q−r

(
G(t, s)

) q
q−r ds

) q−r
q

(∫
S0

a(1− s)
(
u0(s)

)q
ds

) r
q

= c1

(∫
S0

(
a(1− s)

)− r
q−r

(
G(t, s)

) q
q−r ds

) q−r
q (

(a ∗ uq
0)(1)

) r
q

= c1

(∫
S0

(
a(1− s)

)− r
q−r

(
G(t, s)

) q
q−r ds

) q−r
q

· ρ r
q

= c1ρ
r
q

((
a−

r
q−r ∗

(
G(t, ·)

) q
q−r

)
(1)

) q−r
q

,

(2.6)

where we have used the reverse Hölder inequality, again keeping in mind that r > q,
together with identity (2.1) again. Consequently, putting (2.6) into (2.5) we see
that

‖Tu0‖q∞

=

(
λ

M(ρ)

)q
(

sup
t∈[0,1]

∫ 1

0

G(t, s)f
(
s, u0(s)

)
ds

)q

≥
(

λ

M(ρ)

)q
(
sup
t∈S0

c1

(∫
S0

(
a(1− s)

)− r
q−r

(
G(t, s)

) q
q−r ds

) q−r
q

· ρ r
q

)q

= ρr
(

c1λ

M(ρ)

)q

⎛⎜⎜⎜⎝sup
t∈S0

((
a−

r
q−r ∗

(
G(t, ·)

) q
q−r

)
(1)

) q−r
q

︸ ︷︷ ︸
=G0

⎞⎟⎟⎟⎠
q

= ρr
(
c1λG0

M(ρ)

)q

.

(2.7)

Therefore, upon combining estimates (2.3) and (2.7) we deduce that
(2.8)

ρ = (a ∗ uq
0)(1) ≥ Cq

0‖Tu0‖q∞
(
(a ∗ 1)(1)

)1−q ≥ Cq
0ρ

r

(
c1λG0

M(ρ)

)q (
(a ∗ 1)(1)

)1−q
.

But recall that by assumption it holds that

λ > sup
ρ>0 : A(ρ)>0

ρ
1−r
q M(ρ)

c1C0G0((a ∗ 1)(1))
1−q
q

.

Therefore, from inequality (2.8) together with the lower bound on λ we deduce that

ρ ≥ Cq
0ρ

r

(
c1λG0

M(ρ)

)q (
(a ∗ 1)(1)

)1−q
> ρ,
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and so, we arrive at a contradiction. In other words, it must be the case that
u0 �= Tu0. Consequently, the operator T cannot have a fixed point u0 satisfying

u0 ∈ ∂V̂ρ. In fact, since in the definition of λ the supremum is taken over all ρ such
that A(ρ) > 0, we conclude that T cannot have a fixed point in the set

X1 :=
{
u ∈ C

(
[0, 1]

)
: M

(
(a ∗ uq)(1)

)
> 0

}
.

All in all, therefore, we conclude that in case (A) the operator T cannot have a
positive fixed point.

Next we consider case (B). If M(ρ) = 0, then the operator T itself is not well
defined. However, this case can be safely excluded from consideration because if
M(ρ) = 0, then differential equation itself degenerates to

(2.9) 0 = f
(
t, u0(t)

)
, t ∈ (0, 1).

But by the restriction on f in the statement of the theorem we know that f(t, u) ≥
c1u

r > 0 whenever u > 0. Hence, t �→ f
(
t, u(t)

)
cannot be identically zero if

t �→ u(t) itself is not zero identically, and so, it follows that T cannot have a positive
fixed point in this case or else identity (2.9) would contradict the assumption on f .

Finally, we consider case (C)—i.e., the case M(ρ) < 0. Supposing that T did
have a fixed point u0 ∈ C

(
[0, 1]

)
, if u0 was a positive fixed point so that u0(t) ≥ 0,

t ∈ [0, 1], then we would calculate

0 ≤ u0(t) = λ

∫ 1

0

(
M(ρ)

)−1︸ ︷︷ ︸
<0

G(t, s)f
(
s, u0(s)

)︸ ︷︷ ︸
>0

ds

︸ ︷︷ ︸
<0

< 0,

which is evidently a contradiction. Consequently, Tu0 �≡ u0 whenever u ∈ ∂V̂ρ with
M(ρ) < 0.

In summary, for any u0 ∈ C
(
[0, 1]

)
satisfying both ‖u0‖∞ > 0 and u0(t) ≥ 0,

t ∈ [0, 1], in each of cases (A), (B), and (C) the function u0 cannot have be a fixed
point of the operator T . Therefore, we conclude that T has no nontrivial fixed
points under the hypotheses of the theorem. And this completes the proof. �

Remark 2.2. Notice that in the local case Theorem 2.1 is consistent with a known
result. In particular, suppose that

M(ρ) ≡ 1

so that problem (1.1) reduces to

−u′′(t) = λf
(
t, u(t)

)
, t ∈ (0, 1).

Then the condition in the statement of Theorem 2.1 becomes

λ > sup
ρ>0

ρ
1−r
q

c1C0G0((a ∗ 1)(1))
1−q
q

= +∞.

And this means that the nonexistence theorem does not apply. But this is exactly
what we would expect. Indeed, condition (H1.1) is compatible with the configura-
tion (uniformly in t)

lim
u→0+

f(t, u)

u
= 0 and lim

u→∞

f(t, u)

u
= ∞.
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But this configuration, which occurs when f is superlinear, yields existence of
solution in the local case—see, for example, the landmark paper by Erbe and Wang
[14, Theorem 1 part (i), p. 744]. Thus, the conclusion of Theorem 2.1 is consistent
with the known result in case M(ρ) ≡ 1.

To conclude this note we provide an application of Theorem 2.1 to problem (1.1)
in the case of Dirichlet boundary conditions. We do this first in case a ≡ 1 and
then in case a(t) = 1

Γ(α) t
α−1, t ∈ (0, 1].

Example 2.3. Suppose that f : [0, 1] × [0,+∞) → [0,+∞) satisfies condition
(H1) with r = 8 and c1 = 1—i.e., f(t, u) ≥ u8, 0 ≤ t ≤ 1, u ≥ 0, and that the
function M : [0,+∞) → R satisfies

M(ρ) :=

{
−ρ cos ρ, 0 ≤ ρ < π

2(
ρ− π

2

)
sin ρ, π

2 ≤ ρ < +∞
.

Let us consider the following boundary value problem, in which we have selected
a ≡ 1.

−M
(
‖u‖4L4(0,1)

)
u′′(t) = λf

(
t, u(t)

)
, 0 < t < 1

u(0) = 0

u(1) = 0.

(2.10)

In other words, in problem (2.10) the nonlocal coefficient is M
(
(1∗u4

)
(1)

)
. Notice

that this corresponds to the differential equation (1.1) equipped with Dirichlet
boundary conditions and with the kernel a selected to be the function 1. Moreover,
we have selected

q := 4 < 8 =: r.

Given the boundary conditions in (2.10) it is known that the associated Green’s
function is

G(t, s) :=

{
t(1− s), 0 ≤ t ≤ s ≤ 1

s(1− t), 0 ≤ s ≤ t ≤ 1
.

Then with G selected as above it follows that a fixed point of T is a solution of
the differential equation and conversely. Consequently, Theorem 2.1 can be used to
exhibit nonexistence of a positive solution to problem (2.10).

Now, for 0 < t < 1 we calculate∫ 1

0

(
G(t, s)

) q
q−r ds =

∫ 1

0

(
G(t, s)

)− 1
2 ds

=

∫ t

0

(
s(1− t)

)− 1
2 ds+

∫ 1

t

(
t(1− s)

)− 1
2 ds =

2√
t
√
1− t

.

But then

sup
t∈(0,1)

(∫ 1

0

(
G(t, s)

) q
q−r ds

) q−r
q

= sup
t∈(0,1)

(
2√

t
√
1− t

)−2

=
1

16
.

Note that here we selected S0 := (0, 1), which does have full measure. Thus,
G0 = 1

16 . It can also be shown that in this case (see, for example, [17, Example
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2.7]) C0 = 1
2 . Consequently,

sup
ρ>0 : A(ρ)>0

ρ
1−r
q M(ρ)

c1C0G0((a ∗ 1)(1))
1−q
q

= sup
ρ>0 : A(ρ)>0

32ρ−
7
4M(ρ) ≈ 5.468,

where we have estimated the supremum to three decimal places of accuracy. So, we
conclude that problem (2.10) does not have a positive solution (i.e., the associated
operator T does not have a positive fixed point) for (to three decimal places of
accuracy)

λ > 5.468.

Note that our result applies even though lim infρ→+∞ M(ρ) = −∞. As mentioned
in Section 1, this is unusual.

Example 2.4. Although we chose a ≡ 1 in Example 2.3, this was purely for the
sake of convenience so as to illustrate the application of the result in a cleaner
setting. So, in this example let us consider problem (1.1) subjected again to Dirich-
let boundary conditions but with a not identically 1. Indeed, for t > 0 consider
the kernel a(t) := 1

Γ(α) t
α−1, α > 0, which was mentioned in Section 1 as playing

an important role in the theory of the Riemann-Liouville fractional integral. In
consideration of the previous example, since(

a(1− s)
)− r

q−r =

(
1

Γ(α)
(1− s)α−1

)2

=
1

(Γ(α))
2 (1− s)2(α−1),

we see that(
a(1−s)

)− r
q−r

(
G(t, s)

) q
q−r =

1

(Γ(α))2

{
t−

1
2 (1− s)2α−

5
2 , 0 ≤ t ≤ s ≤ 1

s−
1
2 (1− s)2(α−1)(1− t)−

1
2 , 0 ≤ s ≤ t ≤ 1

,

from which it follows, for 0 < t < 1, that∫ 1

0

(
a(1− s)

)− r
q−r

(
G(t, s)

) q
q−r ds

=
1

(4α− 3)
√
t
√
1− t (Γ(α))

2

[
2(1− t)2α−1 + 2t(4α− 3)2F1

(
1

2
, 2− 2α;

3

2
; t

)]
,

provided that α > 3
4 (so that the integral converges). Note that 2F1

(
1
2 , 1− 2α; 32 ; t

)
is the hypergeometric function. It can then be deduced that

sup
t∈(0,1)

∫ 1

0

(
a(1− s)

)− r
q−r

(
G(t, s)

) q
q−r ds

is positive and finite. In other words, in the case of Dirichlet boundary conditions
the result is applicable with an α-th order Riemann-Liouville fractional integral
coefficient provided that α > 3

4 .
Consequently, the result applies to physically meaningful settings in which a �≡ 1.

Note that this result covers the case when the argument of M is ‖u‖qLq(0,1). Indeed,

when α = 1 we note that (b ∗ uq)(1) = (1 ∗ uq)(1) = ‖u‖qLq(0,1). In a certain sense,

then, the restriction α > 3
4 is the sort of restriction one might a priori guess since

it asserts that if the operator u �→ (b ∗ uq)(1) is “too” fractional (i.e., in a certain
sense possesses too strong of a singular nonlocal kernel), then the result may not
apply.
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