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A BOUND FOR THE IMAGE CONDUCTOR OF A

PRINCIPALLY POLARIZED ABELIAN VARIETY WITH OPEN

GALOIS IMAGE

JACOB MAYLE

(Communicated by Rachel Pries)

Abstract. LetA be a principally polarized abelian variety of dimension g over
a number field K. Assume that the image of the adelic Galois representation of

A is an open subgroup of GSp2g(Ẑ). Then there exists a positive integer m so
that the Galois image of A is the full preimage of its reduction modulo m. The
least m with this property, denoted mA, is called the image conductor of A.
Jones [Pacific J. Math. 308 (2020), pp. 307–331] recently established an upper
bound for mA, in terms of standard invariants of A, in the case that A is an
elliptic curve without complex multiplication. In this paper, we generalize the
aforementioned result to provide an analogous bound in arbitrary dimension.

1. Introduction

Let A be a principally polarized abelian variety of dimension g over a number
field K. Let T (A) := lim←−A[m] denote the adelic Tate module of A. The adelic
Galois representation of A is a continuous homomorphism of profinite groups

ρA : GK → GSp2g(Ẑ)

that encodes the action of GK := Gal(K/K) on T (A).
The image of ρA is called the Galois image of A and, in many cases, is known

to be an open subgroup of GSp2g(Ẑ). For instance, Serre established that this is
so for elliptic curves without complex multiplication in his celebrated 1972 open
image theorem [11]. Serre later generalized his result to certain higher dimensions.

Theorem 1.1 (Serre, 1986 [13]). Let A be a principally polarized abelian variety
of dimension g over a number field K. If EndK(A) = Z and g = 2, 6, or is odd,

then ρA(GK) ⊆ GSp2g(Ẑ) is an open subgroup.

Due to an example of Mumford [8, §4], it is known that the above result does
not generalize to arbitrary dimension without further hypotheses. In 2011 [2], Hall
gave a sufficient condition for a principally polarized abelian variety of arbitrary
dimension to have open Galois image. Kowalski proved, as a consequence, that
almost all Jacobians of hyperelliptic curves (in a suitable sense) have open Galois
image [2, Appendix].

Assume that A has open Galois image. For each positive integer m, we let

π̄m : GSp2g(Ẑ) � GSp2g(Z/mZ)
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be the natural projection map. The collection {ker π̄m}∞m=1 is a neighborhood basis

for the identity of GSp2g(Ẑ). Since ρA(GK) ⊆ GSp2g(Ẑ) is an open subgroup, there
exists an m so that ker π̄m ⊆ ρA(GK). The least m with this property is the image
conductor of A, and is denoted by mA. An important observation is that the Galois
image of A is the full preimage of the finite group π̄mA

(ρA(GK)), as we shall discuss
in §2.3.

In a recent paper [3], Jones established an upper bound for mA, in terms of
standard invariants of A, in the case that A is an elliptic curve without complex
multiplication. Further, he remarked that his techniques should be able to be
extended to prove an analogous result for principally polarized abelian varieties of
arbitrary dimension. In this paper, we do precisely that, proving Theorem 1.2.

Theorem 1.2. Let A be a principally polarized abelian variety of dimension g over
a number field K and assume that the image of the adelic Galois representation
ρA : GK → GSp2g(Ẑ) is open in GSp2g(Ẑ). Then

mA ≤ 2 · BA ·
[
GSp2g(Ẑ) : ρA(GK)

]
,

where mA denotes the image conductor of A and BA is the square-free constant,
depending on A, that is defined to be the product of each prime number � ∈ N that
satisfies at least one of the following conditions:

(1) K/Q is ramified at �;
(2) A has bad reduction at some prime ideal of OK that lies over �; or
(3) � = 2, in the case that g = 2.

Remark 1.3. We now consider sharpness of the bound in Theorem 1.2 when g = 2.
Let A be the Jacobian of a genus 2 curve C/Q. Let Δ denote the discriminant of
C. Write Δsf to denote the square-free part of Δ. It follows similarly as in the case
of elliptic curves [1, §2.4] that

(1.1) ρA(GQ) ⊆
{
γ ∈ GSp4(Ẑ) : ε(γ) = χA(γ)

}
where ε and χA are defined as follows: The character ε is the map

ε : GSp4(Ẑ) → GSp4(Z/2Z)
∼→ S6 → {±1}

given by projection modulo 2, followed by the signature character on the symmetric
group S6. For the character χA, first define the constant

dA =

{
Δsf Δsf ≡ 1 (mod 4),

4Δsf otherwise.

Now χA is the map

χA : GSp4(Ẑ) → Ẑ× → (Z/ |dA|Z)× → {±1}

given by the multiplier map, followed by reduction modulo |dA|, followed by the
kronecker symbol

(
dA

·
)
.

Assume that A has the property that

(1.2) [GSp4(Ẑ) : ρA(GQ)] = 2.
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Then the inclusion in (1.1) is an equality. As in the case for Serre curves [1,
Proposition 17], it then follows that the image conductor for A is given by

mA = lcm(2, |dA|) =
{
2 |Δsf| Δsf ≡ 1 (mod 4),

4 |Δsf| otherwise.

Thus if A satisfies (1.2), the primes of bad reduction for A and C coincide and
include 2, and the discriminant Δ is square-free and congruent to 1 modulo 4, then
Theorem 1.2 is sharp for A. The author is not aware of any such abelian surface in
the literature, though an example satisfying (1.2) is given in [5, Theorem 1.2].

Remark 1.4. The third condition in Theorem 1.2 is rather unnatural. This as-
sumption on BA is used in the proof of Lemma 6.4, and arises from the failure of
a relevant lifting result in the case when � = 2 and g = 2. A careful analysis of
GSp4(Z/8Z) could perhaps lead to a refined condition (cf. [3, pp. 13-14]).

Remark 1.5. The constant BA is constructed in view of Corollary 6.2. Given this,
it seems that one should be able write Theorem 1.2 in terms of an arbitrary family
of GK-modules {M [n]}n≥1 of A(K) that satisfy the conclusion of Corollary 6.2.

2. Notation and preliminaries

2.1. Symplectic groups. Let R be a commutative ring with unity and let M be
a free R-module of rank 2g. A map 〈·, ·〉 : M ⊕M → R is called a symplectic form
on M if it is bilinear, non-degenerate, and alternating. Given a symplectic form
〈·, ·〉 on M , the general symplectic group and symplectic group of (M, 〈·, ·〉) are

GSp(M, 〈·, ·〉) :=
{
γ ∈ GL(M) : ∃m(γ) ∈ R× ∀v, w ∈ M 〈γv, γw〉 = m(γ)〈v, w〉

}
,

Sp(M, 〈·, ·〉) := {γ ∈ GL(M) : ∀v, w ∈ M 〈γv, γw〉 = 〈v, w〉}.

We may choose an R-basis for M under which the symplectic form 〈·, ·〉 is rep-
resented by the block matrix

Ω2g =

(
0 Ig

−Ig 0

)
,

where Ig ∈ Mat2g×2g(R) denotes the g × g identity matrix. Let μ : GL(M)
∼→

GL2g(R) be the isomorphism induced by our choice of basis. The images of
GSp(M, 〈·, ·〉) and Sp(M, 〈·, ·〉) under μ are, respectively,

GSp2g(R) :=
{
γ ∈ GL2g(R) : ∃m(γ) ∈ R× so that γᵀΩ2gγ = m(γ)Ω2g

}
,

Sp2g(R) := {γ ∈ GL2g(R) : γᵀΩ2gγ = Ω2g}.

The map mult : GSp2g(R) � R× defined by γ → m(γ) is a surjective homomor-
phism [9, p. 50] and we see that

Sp2g(R) = ker
(
GSp2g(R)

mult−−−→→ R×
)
.

The orders of Sp2g(R) and GSp2g(R) are, in the important case of R = F�, given
[9, Theorem 3.1.2] by

(2.1)
∣∣Sp2g(F�)

∣∣ = �g
2

g∏
i=1

(�2i − 1) and
∣∣GSp2g(F�)

∣∣ = (�− 1)�g
2

g∏
i=1

(�2i − 1).
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2.2. Notation. Throughout this paper, p and � denote prime numbers; m and n
denote positive integers.

Let Ẑ denote the ring of profinite integers and Z� denote the ring of �-adic
integers. The Chinese remainder theorem gives an isomorphism Ẑ

∼−→
∏

� Z�. The
ring of n-adic integers Zn and the ring of (n)-adic integers Z(n) are, respectively,

the quotients of Ẑ that correspond with Zn
∼=

∏
�|n Z� and Z(n)

∼=
∏

��n Z�.

We see that Ẑ ∼= Zn × Z(n), and hence

(2.2) GSp2g(Ẑ)
∼= GSp2g(Zn)×GSp2g(Z(n)).

Let rad(m) :=
∏

�|m � denote the radical of m. With (2.2) in mind, we define the

following projection maps

πn : GSp2g(Ẑ) → GSp2g(Zn)

π(n) : GSp2g(Ẑ) → GSp2g(Z(n))

πn∞,m : GSp2g(Zn) → GSp2g(Z/mZ) (provided rad(m) | n)
π̄n : GSp2g(Ẑ) → GSp2g(Z/nZ)

πn,m : GSp2g(Z/nZ) → GSp2g(Z/mZ) (provided m | n).

For a closed subgroup G ⊆ GSp2g(Ẑ), we employ the following notation

Gn := πn(G), G(n) := π(n)(G), and G(n) := π̄n(G).

Because Theorem 1.2 is known [3] for g = 1, in order to simplify our exposition,
g will always denote an integer that is at least two, unless otherwise stated. We
shall often use the abbreviation �g, which denotes

(2.3) �g :=

{
3 g = 2

2 g ≥ 3
.

2.3. Conductor. Let G ⊆ GSp2g(Ẑ) be any open subgroup. Then {ker π̄m}∞m=1

is a neighborhood basis for the identity of GSp2g(Ẑ). Hence, there exists an m for
which ker π̄m ⊆ G. The conductor of G is

(2.4) mG := min {m ∈ N : ker π̄m ⊆ G}.

It is sometimes helpful to understand the conductor in the ways described in Lem-
mas 2.1 and 2.2.

Lemma 2.1. We have that G = π̄−1
m (G(m)) if and only if ker π̄m ⊆ G. Conse-

quently,

mG = min
{
m ∈ N : G = π̄−1

m (G(m))
}
.

Proof. We have G ⊆ π̄−1
m (G(m)), and both of these groups surject onto G(m) via

π̄m. Further, we see that

ker
(
π̄−1
m (G(m))

π̄m−−→→ G(m)
)
= ker π̄m and ker

(
G

π̄m−−→→ G(m)
)
= G ∩ ker π̄m.

Thus, G = π̄−1
m (G(m)) if and only if ker π̄m = G ∩ ker π̄m, which happens if and

only if ker π̄m ⊆ G. �
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For Lemma 2.2, we give some terminology (see, [7, I §1.1]). We say that m splits
G if

(πm × π(m))(G) = Gm ×GSp2g(Z(m)).

We say that m is stable for G if

Gm = π−1
m∞,m(G(m)).

Lemma 2.2. We have that G = π̄−1
m (G(m)) if and only if m splits and is stable

for G. Consequently,

mG = min {m ∈ N : m splits and is stable for G}.

Proof. The map πm × π(m) : GSp2g(Ẑ) → GSp2g(Zm)×GSp2g(Z(m)) is an isomor-
phism. We see that

(πm × π(m))(π̄
−1
m (G(m))) = π−1

m∞,m(G(m))×GSp2g(Z(m)).

Thus G = π̄−1
m (G(m)) if and only if m splits and is stable for G. The conclusion

follows from Lemma 2.1. �

2.4. Galois representations. Let A be a principally polarized abelian variety of
dimension g over a number fieldK. Let T (A) := lim←−A[m] be the adelic Tate module

of A. Recall that T (A) is a free Ẑ-module of rank 2g. The Weil pairing and a choice

of principal polarization on A yield a symplectic form 〈·, ·〉 : T (A) ⊕ T (A) → Ẑ×.
The continuous action of GK on T (A) is compatible with this symplectic form and
hence induces a representation GK → GSp(T (A), 〈·, ·〉). With a choice of basis, we
obtain the continuous homomorphism of profinite groups

ρA : GK → GSp2g(Ẑ)

known as the adelic Galois representation of A. The Galois image of A is the
subgroup G := ρA(GK) of GSp2g(Ẑ). If G is open in GSp2g(Ẑ), the image conductor
of A is defined to be the conductor of G as in (2.4).

Remark 2.3. Below are three key observations relating to the Galois image G of A.

(1) We see that G is a closed subgroup of the profinite group GSp2g(Ẑ). A

consequence is that G is an open subgroup of GSp2g(Ẑ) if and only if the

group index [GSp2g(Ẑ) : G] is finite.

(2) For a subset S ⊆ A(K), let K(S) be the extension of K obtained by
adjoining to K the coordinates of the points in S. Let A[n] be the n-
torsion subgroup of A(K), A[n∞] :=

⋃∞
k=0 A[nk], and Ators := ∪∞

n=1A[n].
We have

G ∼= Gal(K(Ators)/K)

Gn
∼= Gal(K(A[n∞])/K)

G(n) ∼= Gal(K(A[n])/K).

Further, let Ators,(n) :=
⋃

gcd(m,n)=1 A[m]. We have that

G(n)
∼= Gal(K(Ators,(n))/K).
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(3) Let μn be the group of nth roots of unity in K. Let μ�∞ :=
⋃

k μ(�
k) and

μ∞ :=
⋃

n μ(n). The composition mult ◦ρA : GK → GSp2g(Ẑ) → Ẑ× is the
cyclotomic character of K. Thus,

mult(G) ∼= Gal(K(μ∞)/K)

mult(G�) ∼= Gal(K(μ�∞)/K)

mult(G(n)) ∼= Gal(K(μn)/K).

We now give a generalization of a variant of [12, IV-18 Lemma (2)].

Lemma 2.4. As before, let G := ρA(GK). If � is such that Sp2g(Z�) ⊆ G�, then
G� = GSp2g(Z�) if and only if K ∩Q(μ�∞) = Q. In particular, if Sp2g(Z�) ⊆ G� �=
GSp2g(Z�), then K/Q is ramified at �.

Proof. Since Sp2g(Z�) ⊆ G�, both mult : GSp2g(Z�) � Z×
� and the restriction

mult |G�
: G� → Z×

� have kernel Sp2g(Z�). Therefore, G� = GSp2g(Z�) if and only

if mult(G�) = Z×
� . By Remark 2.3(3) and Galois theory,

mult(G�)∼=Gal(K(μ�∞)/K) ∼= Gal(Q(μ�∞)/(K∩Q(μ�∞)))⊆Gal(Q(μ�∞)/Q) ∼= Z×
� .

It follows that mult(G�) = Z×
� if and only if the extension K ∩ Q(μ�∞)/Q is non-

trivial.
Now assume Sp2g(Z�) ⊆ G� �= GSp2g(Z�). By the above, the extension K ∩

Q(μ�∞)/Q is nontrivial. Thus, this extension is ramified at � as it is a sub-extension
of Q(μ�∞)/Q, which is well-known to be totally ramified at �. Thus, K/Q is ramified
at � because it has a ramified sub-extension. �

2.5. Fiber product. Let G1, G2, and Q be groups. Let ψ1 : G1 � Q and ψ2 :
G2 � Q be surjective homomorphisms. The fiber product of G1 and G2 over
(ψ1, ψ2) is the group

G1 ×(ψ1,ψ2) G2 := {(g1, g2) ∈ G1 ×G2 : ψ1(g1) = ψ2(g2)}.
Observe that G1 ×(ψ1,ψ2) G2 ⊆ G1 ×G2 is a subgroup that surjects onto both G1

and G2 via the relevant projection maps. Writing ψ = (ψ1, ψ2), we say that a fiber
product G1 ×ψ G2 is trivial if G1 ×ψ G2 = G1 ×G2.

Let L1/K and L2/K be Galois extensions, both contained in K. The entangle-
ment field of L1 and L2 is the intersection L1 ∩L2. The compositum of L1 and L2,
denoted L1L2, is the smallest (by inclusion) subfield of K containing both L1 and
L2. The Galois group of L1L2/K may be described using the fiber product.

Lemma 2.5. Let L1/K and L2/K be Galois extensions, contained in K. Then
L1L2/K is Galois and

Gal(L1L2/K) ∼= Gal(L1/K)×(ψ1,ψ2) Gal(L2/K),

where each ψi : Gal(Li/K) � Gal(L1 ∩ L2/K) is the canonical restriction homo-
morphism.

Proof. See [6, Theorem VI 1.14]. �

3. Symplectic groups

In §2.1, we introduced the symplectic groups GSp2g(R) and Sp2g(R). In this
section, we derive some useful properties of these groups when R = F� and R = Z�.



278 JACOB MAYLE

3.1. Normal subgroups. The objective of this subsection is to understand the
normal subgroups of GSp2g(F�) for � ≥ �g, where �g is as in (2.3). We begin by
considering the projective symplectic groups.

The center of GSp2g(F�) is the scalar subgroup Λ2g(F�) of GL2g(F�) [9, 4.2.5(5)].
Let π be the projection

π : GSp2g(F�) � GSp2g(F�)/Λ2g(F�).

The projective general symplectic group PGSp2g(F�) and projective symplectic group
PSp2g(F�) are the images of GSp2g(F�) and Sp2g(F�) under π, respectively. We give
some useful properties of these groups below. Here and later, we let [·, ·] denote a
commutator and write G′ to denote the commutator subgroup of a group G.

Lemma 3.1. Assume � ≥ �g. Each of the following statements hold.

(1) The center of PGSp2g(F�) is trivial;
(2) GSp2g(F�)

′ = Sp2g(F�)
′ = Sp2g(F�);

(3) PGSp2g(F�)
′ = PSp2g(F�); and

(4) PSp2g(F�) is simple.

Proof. Statements (1), (2), and (4) are found in [9, 4.2.5(2), 3.3.6, 3.4.1]. For (3),
we apply (2) to see that

PGSp2g(F�)
′ =

(
π(GSp2g(F�))

)′
= π(GSp2g(F�)

′) = π(Sp2g(F�)) = PSp2g(F�). �
Using the properties of Lemma 3.1, we now determine the normal subgroups of

PGSp2g(F�). Our target lemma regarding the normal subgroups of GSp2g(F�) then
follows. We make the abbreviation Λ2g := Λ2g(F�).

Lemma 3.2. Assume that � ≥ �g. If N � PGSp2g(F�), then either N = {Λ2g} or
PSp2g(F�) ⊆ N .

Proof. Assume that N � PGSp2g(F�) is nontrivial. Since the center of PGSp2g(F�)
is trivial, we have

{Λ2g} � [PGSp2g(F�), N ] ⊆ N ∩ PGSp2g(F�)
′ = N ∩ PSp2g(F�) � PSp2g(F�).

By the simplicity of PSp2g(F�), this implies that N∩PSp2g(F�) = PSp2g(F�). Thus,
PSp2g(F�) ⊆ N . �
Lemma 3.3. Assume that � ≥ �g. If N � GSp2g(F�), then either N ⊆ Λ2g or
Sp2g(F�) ⊆ N .

Proof. Assume that N �⊆ Λ2g. Then π(N) � PGSp2g(F�) is nontrivial. So, by
Lemma 3.2, PSp2g(F�) ⊆ π(N) and hence Sp2g(F�)Λ2g ⊆ NΛ2g. By taking com-
mutators, we now see that

N ⊇ N ′ = (NΛ2g)
′ ⊇ (Sp2g(F�)Λ2g)

′ = (Sp2g(F�))
′ = Sp2g(F�). �

3.2. Index bound. Here we use Lemma 3.3 and a standard lemma from group
theory to obtain a lower bound on the index of each subgroup of GSp2g(F�) that
does not contain Sp2g(F�). We write n! to denote the factorial of n.

Lemma 3.4. Let G be a finite group and H ⊆ G a subgroup. The normal core of
H in G, denoted HG, is the largest (by inclusion) subgroup of H that is normal in
G. One has that [G : HG] divides [G : H]!.

Proof. See [10, 1.6.9]. �
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Lemma 3.5. Let G ⊆ GSp2g(F�) be a subgroup. If Sp2g(F�) �⊆ G, then[
GSp2g(F�) : G

]
≥ �.

Proof. The result is clear for � = 2, so we assume that � ≥ 3. Let N be the normal
core of G in GSp2g(F�). Then N � GSp2g(F�) and Sp2g(F�) �⊆ N , so N ⊆ Λ2g(F�),
by Lemma 3.3. Now, by (2.1) and Lemma 3.4,

� divides
∣∣PGSp2g(F�)

∣∣ divides [GSp2g(F�) : N ] divides [GSp2g(F�) : G]!.
�

3.3. Subgroup lifting. We state a lifting lemma for Sp2g(Z�) that extends [12, IV-
23 Lemma 3]. Then, we give two corollaries and state a lifting lemma GSp2g(Z�).
As before, we shall assume that g ≥ 2.

Proposition 3.6. Let H� ⊆ Sp2g(Z�) be a closed subgroup. If H(�) = Sp2g(Z/�Z),
then H� = Sp2g(Z�).

Proof. See [4, Theorem 1]. �

For a subgroup H ⊆ G�, we let H denote the topological closure of H in G�.

Corollary 3.7. Assume that � ≥ �g and let G� ⊆ GSp2g(Z�) be a closed subgroup.
If Sp2g(Z/�Z) ⊆ G(�), then Sp2g(Z�) ⊆ G�.

Proof. We have that (G�)′ ⊆ Sp2g(Z�) is a closed subgroup. Further, as G� surjects
onto G(�), we have

(G�)
′(�) = (G(�))′ = Sp2g(Z/�Z),

by Lemma 3.1(2). Thus, (G�)′(�) = Sp2g(Z/�Z). So, by Proposition 3.6, G� ⊇
(G�)′ = Sp2g(Z�). �

Corollary 3.8. Assume that � ≥ 3 and let N� � GSp2g(Z�) be a closed normal

subgroup. If mult(N�) = Z×
� , then N� = GSp2g(Z�).

Proof. Since mult(N(�)) = (Z/�Z)× and mult(Λ2g(F�)) = (Z/�Z)×2, we have
N(�) �⊆ Λ2g(F�). Hence, Sp2g(Z/�Z) ⊆ N(�) by Lemma 3.3. Thus, by Corol-

lary 3.7, we find that Sp2g(Z�) ⊆ N�. As both GSp2g(Z�) and N� surject onto Z×
� ,

via mult, with kernel Sp2g(Z�), we conclude that N� = GSp2g(Z�). �

We now state a lifting lemma for GSp2g(Z�). Let α� denote the quantity

(3.1) α� :=

{
2 if � = 2

1 if � ≥ 3
.

Lemma 3.9. Let G� ⊆ GSp2g(Z�) be a closed subgroup. We have that if G(�α�+1) =

GSp2g(Z/�
α�+1Z), then G� = GSp2g(Z�).

Proof. See [3, Remark 3.2], the proof of which generalizes directly to arbitrary g,
mutatis mutandis. �
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4. Proof of Theorem 1.2, assuming two propositions

We begin by stating two propositions, which we shall prove in §5 and §7. The first
proposition is purely group-theoretic, whereas the second depends on the arithmetic
of the abelian variety A. Due to group-theoretic differences relating to the prime 2
(visible in the statement of Lemma 3.9), we employ a variant of the radical function.
This modified radical is denoted rad′ and is defined by

rad′(n) :=

{
2 rad(n) 4 | n
rad(n) otherwise,

where rad(n) =
∏

�|n � is the usual radical of n. Our main propositions are as

follows.

Proposition 4.1. Let g be an integer, G ⊆ GSp2g(Ẑ) be an open subgroup, and
mG be as in (2.4). Then

mG

rad′(mG)
divides

[
π−1
mG,rad′(mG)(G(rad′(mG))) : G(mG)

]
.

Proposition 4.2. Let g ≥ 2 be an integer and let A be as in the statement of
Theorem 1.2. Then

rad′(mA) ≤ 2 · BA ·
[
GSp2g(Z/ rad

′(mA)Z) : G(rad′(mA))
]
,

where G is the Galois image of A, mA is the image conductor of A, and BA is as
in Theorem 1.2.

We now prove Theorem 1.2, assuming Proposition 4.1 and Proposition 4.2.

Proof of Theorem 1.2. Write G := ρA(GK) and r′ := rad′(mA). Using Lemma 2.1
initially, we see

[GSp2g(Ẑ) : G] = [GSp2g(Ẑ) : π̄
−1
mA

(G(mA))]

= [GSp2g(Z/mAZ) : G(mA)]

= [GSp2g(Z/mAZ) : π
−1
mA,r′(G(r′))][π−1

mA,r′(G(r′)) : G(mA)]

= [GSp2g(Z/r
′Z) : G(r′)][π−1

mA,r′(G(r′)) : G(mA)].

With the above in mind, applying Proposition 4.1 and Proposition 4.2 now yields

mA = r′ · mA

r′

≤ 2 · BA ·
[
GSp2g(Z/r

′Z) : G(r′)
]
· [π−1

mA,r′(G(r′)) : G(mA)]

= 2 · BA · [GSp2g(Ẑ) : G]. �

5. Proof of Proposition 4.1

For the case of g = 1, a proof of Proposition 4.1 is given in [3, Proposition
1.6]. This purely group-theoretic proof immediately generalizes, mutatis mutandis,
to prove Proposition 4.1 for arbitrary g. For this reason, in this section we shall
explain the structure of the proof and refer the reader to [3] for the details.

Let G ⊆ GSp2g(Ẑ) be any open subgroup and write mG =:
∏

�|mG
�β� for the

prime factorization of its conductor. For each k, write N�k := ker(π�k+1,�k). Using
a lifting lemma [3, Lemma 3.1], we may describe [3, Corollary 3.5] each β� as

β� = min
{
β ≥ 0 : ∀k ∈ [β,max {β, α�}] ∩ Z, N�k × {1(�)} ⊆ (π�∞,�k+1 × π(�))(G)

}
,
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where α� is defined in (3.1) and 1(�) denotes the identity of GSp2g(Z(�)). As a
corollary, it follows [3, Lemma 3.8] that if d is a positive integer that satisfies the
divisibility condition rad′(mG) | d | d� | mG, then

(5.1) � divides [π−1
�d,d(G(d)) : G(�d)].

Write r′ := rad′(mG). Let � be a prime dividing mG

r′ . Let β� and r� be such that

�β� || mG and �r� || r′, respectively. Applying (5.1) with d = �kr′ for each integer k
such that 0 ≤ k < β� − r�, we obtain that

�β�−r� divides
∏

0≤k<β�−r�

[π−1
�k+1r′,�kr′

(G(�kr′)) : G(�k+1r′)]

divides [π−1
�β�−r�r′,r′

(G(r′)) : G(�β�−r�r′)]

divides [π−1
mG,r′(G(r′)) : G(mG)].

Since the above holds for each prime � dividing mG

rad′(mG) , it follows that

mG

rad′(mG)
=

∏
�|mG

r′

�β�−r� divides [π−1
mG,rad′(mG)(G(rad′(mG))) : G(mG)].

6. Constraints on prime divisors of the image conductor

Let A be as in the statement of Theorem 1.2. We give constraints on the primes
that divide the image conductor of A. To do so, we employ a variant of the Néron-
Ogg-Shafarevich criterion for abelian varieties.

Theorem 6.1 (Serre-Tate, 1968 [14]). Let A be an abelian variety over a number
field K. Let L ⊆ OK be a prime ideal of K, lying over a rational prime �. The
following are equivalent:

(1) A has good reduction at L;
(2) For each positive integer m that is not divisible by �, the prime L is unram-

ified in K(A[m])/K; and
(3) The prime L is unramified in K(Ators,(�))/K, where Ators,(�) is defined in

Remark 2.3(2).

Recall that the constant BA is defined in the statement of Theorem 1.2.

Corollary 6.2. Assume that � ≥ �g. Then � divides BA if and only if K(Ators,(�))/Q
is ramified at �.

Proof. Since � ≥ �g, we have that � divides BA if and only if K/Q is ramified at � or
A has bad reduction at some prime ideal of OK that lies over �. By Theorem 6.1,
the second condition is equivalent to the condition that K(Ators,(�))/K is ramified
at some prime ideal of OK that lies over �. �

Recall the notation of Remark 2.3(2) and that G denotes the Galois image of A.
Lemma 6.3 is key. It uses our understanding of BA from Corollary 6.2 to give a
constraint on odd primes � that divide mA for which G� = GSp2g(Z�).

Lemma 6.3. Let � be an odd prime that divides mA. If G� = GSp2g(Z�), then �
divides BA.
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Proof. We see that mA �= � for otherwise, by Lemma 2.1, we would have that
G = π−1

� (GSp2g(Z�)) = GSp2g(Ẑ) and hence mA = 1 is not divisible by �. Thus,
as � is stable for G, it follows from Lemma 2.2 that � does not split G. Let F be
the entanglement field F := K(A[�∞])∩K(Ators,(�)). Then, by Lemma 2.5, G may
be expressed as the nontrivial fiber product

G ∼= Gal(K(A[�∞])K(Ators,(�))/K) ∼= GSp2g(Z�)×(ψ�,ψ(�)) Gal(K(Ators,(�))/K),

where ψ� and ψ(�) are, upon making the identifications of Remark 2.3(3), the re-
striction homomorphisms

ψ� : GSp2g(Z�) � Gal(F/K) and ψ(�) : Gal(K(Ators,(�))/K) � Gal(F/K).

As the fiber product is nontrivial, in particular Gal(F/K) is nontrivial. Consider
the following field diagram.

K(Ators) = K(A[�∞])K(Ators,(�))

����
����

����
����

����
����

����
����

K(A[�∞])

����
����

����
����

�
K(Ators,(�))

����
����

����
����

K(μ�∞) F = K(A[�∞]) ∩K(Ators,(�))

����
����

����
����

F ∩K(μ�∞)

����
����

����
����

����

K.

If K/Q is ramified at �, then � divides BA, so we are done. As such, we assume
K/Q is unramified at �. Note that then K(μ�∞)/K is totally ramified at each prime
ideal of OK that lies over �. To show that � divides BA, it suffices by Corollary 6.2
to show that K(Ators,(�))/K is ramified at some prime ideal of OK that lies over �.
Hence, it suffices merely to show that the extension F ∩K(μ�∞)/K is nontrivial.

Because ψ� is a surjective group homomorphism with nontrivial image, its kernel
ker(ψ�) �GSp2g(Z�) is proper. Thus, by Corollary 3.8, we have that mult(kerψ�) is

a proper subgroup of Z×
� . So we see,

mult(〈kerψ�, Sp2g(Z�)〉) = mult(kerψ�) � Z×
� .

Hence 〈kerψ�, Sp2g(Z�)〉 �GSp2g(Z�) is a proper subgroup. Thus, by Galois theory,

F ∩K(μ�∞) = K(A[�∞])kerψ� ∩K(A[�∞])Sp2g(Z�)

= K(A[�∞])〈kerψ�,Sp2g(Z�)〉

� K(A[�∞])GSp2g(Z�)

= K.

We see that the extension F ∩K(μ�∞)/K is nontrivial, and hence � divides BA. �

Following Lemma 6.3, which considers a odd prime �, Lemma 6.4 offers a con-
straint when � = 2 divides mA.
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Lemma 6.4. Assume that 2 divides mA. Write r′ := rad′(mA) and s := 1
2r

′. We
have

(π̄2 × π̄s)(G) �= GSp2g(Z/2Z)×G(s) =⇒ 2 ≤
[
π−1
r′,s (G(s)) : G(r′)

]
,(6.1)

(π̄2 × π̄s)(G) = GSp2g(Z/2Z)×G(s) =⇒ 2 divides BA.(6.2)

Proof. Assume first that the hypothesis of (6.1) holds. Then

(πr′,2 × πr′,s)(G(r′)) �= GSp2g(Z/2Z)×G(s) = (πr′,2 × πr′,s)(π
−1
r′,s (G(s))).

Thus G(r′) is a proper subgroup of π−1
r′,s (G(s)), so the conclusion of (6.1) follows.

Now assume that the hypothesis of (6.2) holds. If g = 2, then 2 divides BA by
definition. As such, we assume g ≥ 3. By hypothesis, G(2) = GSp2g(Z/2Z), so
Sp2g(Z2) ⊆ G2 by Corollary 3.7. If G2 �= GSp2g(Z2), then by Lemma 2.4, the prime
2 is ramified in K/Q, so 2 divides BA. Assume, therefore, that G2 = GSp2g(Z2).

We have that 2 properly divides mA by Lemma 2.1. Thus, it follows from Lemma
2.2 that

Gr′
∼= (π2 × πs)(G) = GSp2g(Z2)×ψ Gs

is a nontrivial fiber product. Observe that each nontrivial finite quotient of
GSp2g(Z2) has even order whereas each nontrivial finite quotient of ker(πs∞,s) has
odd order. For this reason, the fiber product

(π2 × π̄s)(G) = GSp2g(Z2)×ψ G(s)

is nontrivial as well. Making the identifications of Remark 2.3(3), we conclude that
the entanglement field F := K(A[2∞]) ∩K(A[s]) is a nontrivial extension of K.

Consider the Galois group H := Gal(K(Ators)/F ). As F/K is nontrivial, we
have that

H2 = Gal(K(A[2∞])/F ) � Gal(K(A[2∞])/K) = GSp2g(Z2).

Further, H(2) = GSp2g(Z/2Z) holds by the hypothesis of (6.2). Thus, applying
Lemma 2.4 and Corollary 3.7 to A/F , and observing that H2 = Gal(F (A[2∞])/F ),
we find that F/Q is ramified at 2. As F is a subfield of K(Ators,(2)), this implies
that K(Ators,(2))/Q is ramified at 2. Thus 2 divides BA by Corollary 6.2. �

7. Proof of Proposition 4.2

We apply the constraints of §6 to prove Proposition 4.2. Let A and g be as in the
statement of the proposition. Let � be an odd prime that divides mA. By Lemmas
2.4, 3.5, 6.3 and Corollary 3.7, we know

� divides BA or � ≤ [GSp2g(Z/�Z) : G(�)],

depending on whether Sp2g(Z/�Z) ⊆ G(�) or not, respectively. Set r′ := rad′(mA)
and let r′(2) and BA(2) denote the odd-parts of r

′ and BA, respectively (the odd part

of an integer n is n
2k

where 2k || n). Then,

r′(2) ≤
∏

odd �|mA

Sp2g(Z/�Z)⊆G(�)

�
∏

odd �|mA

Sp2g(Z/�Z) 
⊆G(�)

[GSp2g(Z/�Z) : G(�)]

≤ BA(2) ·
[
GSp2g(Z/r

′
(2)Z) : G(r′(2))

]
.(7.1)
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If 4 � mA, then multiplying (7.1) through by 2, we obtain

r′ ≤ 2 ·r′(2) ≤ 2 ·BA(2) ·
[
GSp2g(Z/r

′
(2)Z) : G(r′(2))

]
≤ 2 ·BA ·

[
GSp2g(Z/r

′Z) : G(r′)
]
.

If 4 | mA, then in particular 2 | mA, so by Lemma 6.4, we have that

2 · [GSp2g(r
′
(2)) : G(r′(2))] ≤ [GSp2g(r

′) : G(r′)] or 2 · BA(2) = BA.

With this in mind, multiplying (7.1) through by 4, we find that

r′ = 4r′(2) ≤ 4 · BA(2) ·
[
GSp2g(Z/r

′
(2)Z) : G(r′(2))

]
≤ 2 · BA ·

[
GSp2g(Z/r

′Z) : G(r′)
]
.

In either case, we see that the bound of Proposition 4.2 holds, completing its proof.
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