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ON A GENERALIZATION OF THE HÖRMANDER CONDITION

SOICHIRO SUZUKI

(Communicated by Dmitriy Bilyk)

Abstract. We consider a natural generalization of the classical Hörmander
condition in the Calderón–Zygmund theory. Recently the author [J. Fourier
Anal. Appl. 27 (2021)] proved the Lp boundedness of singular integral opera-
tors under the L1 mean Hörmander condition, which was originally introduced
by Grafakos and Stockdale [Bull. Hellenic Math. Soc. 63 (2019), pp. 54–63].
In this paper, we show that the L1 mean condition actually coincides with the
classical one. On the other hand, we introduce a new variant of the Hörmander
condition, which is strictly weaker than the classical one but still enough for
the Lp boundedness. Moreover, it still works in the non-doubling setting with
a little modification.

1. Introduction

Our aim is to generalize Theorem A, which is one of the most famous results in
the classical Calderón–Zygmund theory of singular integral operators.

Theorem A ([1, Lemma 2, Theorem 1], [2, (1.24)], [7, Theorem 2.2]). Let T be a
singular integral operator associated with a kernel K. Suppose that T is bounded on
Lp0(Rd) for some 1 < p0 < ∞ and its kernel K satisfies the Hörmander condition:

(1.1) [K]H∞ := sup
B⊂Rd

sup
y∈B

∫
x∈Rd\2B

|K(x, y)−K(x, c(B))| dx < ∞,

where the supremum supB⊂Rd is taken over all balls B ⊂ R
d, c(B) is the center of

B, 2B denotes the ball with the same center as B and whose radius is twice as long.
Then T is bounded from L1(Rd) to L1,∞(Rd) and from H1(Rd) to L1(Rd), thus on
Lp(Rd) for any 1 < p < p0.

In 2019, Grafakos and Stockdale [6] introduced an Lq mean Hörmander condition
(1.2)

[K]Hq
:= sup

B⊂Rd

(
1

|B|

∫
y∈B

(∫
x∈Rd\2B

|K(x, y)−K(x, c(B))| dx
)q

dy

)1/q

< ∞

in order to establish a “limited-range” version of Theorem A. The author [11]
improved Theorem A by assuming the L1 mean Hörmander condition using an
idea inspired by Fefferman [4, THEOREM 2’].
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Theorem B ([11, Theorem 1, Theorem 3]). Let T be a singular integral operator
associated with a kernel K. Suppose that T is bounded on Lp0(Rd) for some 1 <
p0 < ∞ and its kernel K satisfies the L1 mean Hörmander condition:

(1.3) [K]H1
= sup

B⊂Rd

1

|B|

∫
y∈B

∫
x∈Rd\2B

|K(x, y)−K(x, c(B))| dx dy < ∞.

Then T is bounded from L1(Rd) to L1,∞(Rd) and from H1(Rd) to L1(Rd), thus on
Lp(Rd) for any 1 < p < p0.

In this paper, we show that the L1 mean Hörmander condition (1.3) is the same
as the classical one (1.1) and therefore Theorems A and B are equivalent.

Theorem 1. The inequality

(1.4) [K]H1
≤ [K]H∞ � [K]H1

holds for any K ∈ L1
loc((R

d ×R
d) \Δ), where Δ denotes the diagonal set { (x, x) :

x ∈ R
d }.

Now we introduce a new variant of the Hörmander condition:
(1.5)

[K]H∗ := sup
B⊂Rd

1

|B|

∫
y∈B

∫
x∈Rd\2B

∣∣∣∣K(x, y)− 1

|B|

∫
z∈B

K(x, z) dz

∣∣∣∣ dx dy < ∞,

which is a natural generalization of the L1 mean Hörmander condition in terms of
BMO. Recall that a function f ∈ L1

loc(R
d) is in BMO(Rd) if

(1.6) ‖f‖BMO := sup
B⊂Rd

1

|B|

∫
y∈B

∣∣∣∣ f(y)− 1

|B|

∫
z∈B

f(z) dz

∣∣∣∣ dy < ∞.

We call (1.5) a BMO Hörmander condition. Note that we can easily see [K]H∗ ≤
2[K]H∞ , which is analogous to ‖f‖BMO ≤ 2‖f‖∞. We will show the following:

Theorem 2. Let T be a singular integral operator associated with a kernel K.
Suppose that T is bounded on Lp0(Rd) for some 1 < p0 < ∞ and its kernel K
satisfies [K]H∗ < ∞. Then T is bounded from H1(Rd) to L1(Rd), thus on Lp(Rd)
for any 1 < p < p0. On the other hand, T is not bounded from L1(Rd) to L1,∞(Rd)
in general. In particular, the BMO Hörmander condition is strictly weaker than
the classical one.

Moreover, Theorem 2 still holds in the non-doubling setting with an appropriate
modification. Let μ be a Radon measure on R

d which satisfies the polynomial
growth condition: there exists a constant Cμ > 0 and 0 < n ≤ d such that

(1.7) μ(B(c, r)) ≤ Cμr
n

for any balls B(c, r). In this case, the following generalization of Theorem A is
known.

Theorem C ([9, Theorem 6.1], [12, Theorem 4.2]). Let T be a singular integral
operator associated with a kernel K. Suppose that T is bounded on Lp0(μ) for some
1 < p0 < ∞ and its kernel K satisfies the Hörmander condition with respect to μ:

(1.8) [K]H∞ := sup
B⊂Rd

sup
y∈B

∫
x∈Rd\2B

|K(x, y)−K(x, c(B))| dμ(x) < ∞,
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and |K(x, y)| � |x − y|−n. Then T is bounded from L1(μ) to L1,∞(μ) and from
H1

atb(μ) to L1(μ), thus on Lp(μ) for any 1 < p < p0, where H1
atb(μ) is the atomic

block Hardy space introduced by Tolsa [12].

The L1(μ) → L1,∞(μ) boundedness was proved by Nazarov, Treil and Volberg
[9], and the H1

atb(μ) → L1(μ) boundedness by Tolsa [12]. Also Tolsa [13] gave
another proof of the L1(μ) → L1,∞(μ) boundedness. We will give a natural gen-
eralization of Theorem C in the sense of Theorem 2 (see Theorem 3 in Section 4
for details). To establish the theorem, we modify the BMO Hörmander condition
into an RBMO version, where RBMO is the Regularized Bounded Mean Oscillation
space, which is also introduced by Tolsa [12].

This paper is organized as follows. In Section 2, we discuss the equivalence of
the L1 mean Hörmander condition and the classical one (Theorem 1). In Section
3, we prove the H1-L1 estimate and the failure of the L1-L1,∞ estimate under the
BMO Hörmander condition (Theorem 2). In Section 4, we show that Theorem 2
still works in the non-doubling setting with a little modification (Theorem 3).

2. The equivalence of [K]H1
and [K]H∞

In this section, we prove the equivalence of [K]H1
and [K]H∞ . The argument

here is based on the idea suggested by Professor Akihiko Miyachi. At first, we
prepare an elementary fact.

Proposition 1. The inequality

(2.1)
1

2
[K]H∞ ≤ sup

B⊂Rd

sup
y∈B

∫
x∈Rd\3B

|K(x, y)−K(x, c(B))| dx ≤ [K]H∞

holds for any K ∈ L1
loc((R

d × R
d) \Δ).

Proof of Proposition 1. We consider the first inequality. Fix a ball B = B(c, 2r) ⊂
R

d, y ∈ B and write z := (y + c)/2. Since B(z, 3r) ⊂ 2B and c, y ∈ B(z, r), we
have∫

x∈Rd\2B
|K(x, y)−K(x, c)| dx

≤
∫
x∈Rd\2B

|K(x, y)−K(x, z)| dx+

∫
x∈Rd\2B

|K(x, z)−K(x, c)| dx

≤
∫
x∈Rd\B(z,3r)

|K(x, y)−K(x, z)| dx+

∫
x∈Rd\B(z,3r)

|K(x, c)−K(x, z)| dx

≤ 2 sup
B⊂Rd

sup
y∈B

∫
x∈Rd\3B

|K(x, y)−K(x, c(B))| dx.

The second inequality is trivial. �

Proof of Theorem 1. Fix r > 0 and c, y ∈ R
d with |y − c| ≤ r. We write

I(c, y) :=

∫
x∈Rd\B(c,2r)

|K(x, y)−K(x, c)| dx,

J(c, y) :=

∫
x∈Rd\B(c,3r)

|K(x, y)−K(x, c)| dx,

A := B(c, r) ∩B(y, r).



ON A GENERALIZATION OF THE HÖRMANDER CONDITION 289

Since B(y, 2r) ∪B(c, 2r) ⊂ B(c, 3r), we obtain

J(c, y) =

∫
x∈Rd\B(c,3r)

|K(x, y)−K(x, c)| dx

≤
∫
x∈Rd\B(c,3r)

|K(x, y)−K(x, z)| dx+

∫
x∈Rd\B(c,3r)

|K(x, z)−K(x, c)| dx

≤
∫
x∈Rd\B(y,2r)

|K(x, z)−K(x, y)| dx+

∫
x∈Rd\B(c,2r)

|K(x, z)−K(x, c)| dx

= I(y, z) + I(c, z)

for any z ∈ A. Therefore, letting J = J(c, y), we have

A ⊂ { z ∈ A : I(c, z) ≥ J/2 } ∪ { z ∈ A : I(y, z) ≥ J/2 },

which implies at least one of the following:

|A|/2 ≤ |{ z ∈ A : I(c, z) ≥ J/2 }|,(2.2)

|A|/2 ≤ |{ z ∈ A : I(y, z) ≥ J/2 }|.(2.3)

By the symmetry between c and y, we assume that (2.2) holds without loss of
generality. Now we have

|A|J/4 ≤
∫
z∈A:I(c,z)≥J/2

J/2 dz ≤
∫
z∈A

I(c, z) dz ≤
∫
z∈B(c,r)

I(c, z) dz

≤ |B(c, r)|[K]H1
.

Since

(2.4) |A| ≥ |B((c+ y)/2, r/2)| = 2−d|B(c, r)|,

we get J ≤ 2d+2[K]H1
. By Proposition 1, we conclude that the inequality

(2.5) [K]H∞ ≤ 2d+3[K]H1

holds. �

Remark. Let μ be a Radon measure on R
d which satisfies the doubling property:

there exists a constant Cμ > 0 such that

(2.6) μ(B(c, 2r)) ≤ Cμμ(B(c, r))

for any balls B(c, r), and consider [K]H∞ and [K]H1
with respect to μ:

[K]H∞ := sup
B⊂Rd

sup
y∈B

∫
x∈Rd\2B

|K(x, y)−K(x, c(B))| dμ(x),

[K]H1
:= sup

B⊂Rd

1

μ(B)

∫
y∈B

∫
x∈Rd\2B

|K(x, y)−K(x, c(B))| dμ(x) dμ(y).

We can show the inequality [K]H∞ � [K]H1
still holds by the same argument. To

see this, note that μ satisfies

μ(A) ≥ μ(B((c+ y)/2, r/2)) � μ(B((c+ y)/2, 3r/2)) ≥ μ(B(c, r)),

which can be a replacement of (2.4).
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3. A BMO Hörmander condition

In this section, we study the BMO Hörmander condition,
(1.5)

[K]H∗ := sup
B⊂Rd

1

|B|

∫
y∈B

∫
x∈Rd\2B

∣∣∣∣K(x, y)− 1

|B|

∫
z∈B

K(x, z) dz

∣∣∣∣ dx dy < ∞,

which is a natural generalization of the L1 mean Hörmander condition (1.3) in the
sense of BMO. At first we observe that [K]H∗ satisfies an elemental property, which
is analogous to that of the BMO norm (see [3, Proposition 6.5], [5, Proposition 3.1.2]
for example).

Proposition 2. The following are equivalent:

(i) [K]H∗ < ∞.
(ii) There exists a collection of functions {mB}B such that

(3.1) sup
B⊂Rd

1

|B|

∫
y∈B

∫
x∈Rd\2B

|K(x, y)−mB(x)| dx < ∞.

Proof of Proposition 2. (i)⇒(ii) is obvious: consider mB(x) =
1

|B|
∫
z∈B

K(x, z) dz.

(ii)⇒(i) is also easy to check:

1

|B|

∫
y∈B

∫
x∈Rd\2B

∣∣∣∣K(x, y)− 1

|B|

∫
z∈B

K(x, z) dz

∣∣∣∣ dx dy
≤ 1

|B|

∫
y∈B

∫
x∈Rd\2B

|K(x, y)−mB(x)| dx dy

+
1

|B|

∫
y∈B

∫
x∈Rd\2B

∣∣∣∣mB(x)−
1

|B|

∫
z∈B

K(x, z) dz

∣∣∣∣ dx dy
≤ 1

|B|

∫
y∈B

∫
x∈Rd\2B

|K(x, y)−mB(x)| dx dy

+
1

|B|

∫
y∈B

(
1

|B|

∫
z∈B

∫
x∈Rd\2B

|K(x, z)−mB(x)| dx dz
)
dy

=
2

|B|

∫
y∈B

∫
x∈Rd\2B

|K(x, y)−mB(x)| dx dy.

�

We write

(3.2) [K]H∗∗ := inf
{mB}B

sup
B⊂Rd

1

|B|

∫
y∈B

∫
x∈Rd\2B

|K(x, y)−mB(x)| dx dy,

where the infimum is taken over all collections {mB}B . By the proof of Proposition
2, we have

(3.3) [K]H∗∗ ≤ [K]H∗ ≤ 2[K]H∗∗ .

Also note that [K]H∗∗ ≤ [K]H1
: consider mB(x) = K(x, c(B)). Therefore, we have

(3.4) [K]H∗ ≤ 2[K]H1
,

it means that the classical Hörmander condition implies the BMO version. We will
show later that the converse is not true.
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Now we are going to discuss the boundedness of singular integral operators under
the BMO Hörmander condition.

Proposition 3. Let T be a singular integral operator associated with a kernel K.
Suppose that T is bounded on Lp0(Rd) for some 1 < p0 < ∞ and its kernel K
satisfies [K]H∗∗ < ∞. Then T is bounded from H1(Rd) to L1(Rd) with a constant
proportional to ‖T‖Lp0→Lp0 + [K]H∗∗ .

Proof of Proposition 3. Let a ∈ H1(Rd) be an atom, that is,

supp a ⊂ B, ‖a‖∞ ≤ |B|−1,

∫
B

a = 0

for some ball B ⊂ R
d. Since T is bounded on Lp0(Rd), it is enough to show that

‖Ta‖1 � ‖T‖Lp0→Lp0 + [K]H∗∗ .

We decompose ‖Ta‖1 as

‖Ta‖1 = ‖Ta‖L1(2B) + ‖Ta‖L1(Rd\2B)

and prove

‖Ta‖L1(2B) � ‖T‖Lp0→Lp0 ,(3.5)

‖Ta‖L1(Rd\2B) � [K]H∗∗ .(3.6)

(3.5). By the Hölder inequality and the Lp0 boundedness of T , we have

‖Ta‖L1(2B) ≤ |2B|1/p′
0‖Ta‖p0

≤ 2d/p
′
0‖T‖Lp0→Lp0 |B|1/p′

0‖a‖p0

≤ 2d/p
′
0‖T‖Lp0→Lp0 |B|‖a‖∞

≤ 2d/p
′
0‖T‖Lp0→Lp0 .

(3.6). Since

‖Ta‖L1(Rd\2B) =

∫
x∈Rd\2B

∣∣∣∣
∫
y∈B

K(x, y)a(y) dy

∣∣∣∣ dx
=

∫
x∈Rd\2B

∣∣∣∣
∫
y∈B

K(x, y)a(y) dy −mB(x)

∫
y∈B

a(y) dy

∣∣∣∣ dx
≤ ‖a‖∞

∫
y∈B

∫
x∈Rd\2B

|K(x, y)−mB(x)| dx dy

≤ 1

|B|

∫
y∈B

∫
x∈Rd\2B

|K(x, y)−mB(x)| dx dy

for any collections {mB}B, we have ‖Ta‖L1(Rd\2B) ≤ [K]H∗∗ . �

We can see that the assumption [K]H∗∗ < ∞ is reasonable (thus [K]H∗ < ∞
is) for the H1-L1 estimate. On the other hand, it is not enough for the L1-L1,∞

estimate. It follows from a simple example.
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Proposition 4. Let ϕ ∈ (L1(Rd)∩L2(Rd))\{0}, ψ ∈ (L2(Rd)∩BMO(Rd))\L∞(Rd)
and K(x, y) := ϕ(x)ψ(y). Then

T : f �→
∫
Rd

K(·, y)f(y) dy is bounded on L2(Rd),(3.7)

[K]H∗ < ∞,(3.8)

T is not bounded from L1(Rd) to L1,∞(Rd).(3.9)

Proof of Proposition 4.

(3.7). It is obvious that ‖T‖L2→L2 ≤ ‖ϕ‖2‖ψ‖2.

(3.8). We have

1

|B|

∫
y∈B

∫
x∈Rd\2B

∣∣∣∣K(x, y)− 1

|B|

∫
z∈B

K(x, z) dz

∣∣∣∣ dx dy
=

(∫
x∈Rd\2B

|ϕ(x)| dx
)
·
(

1

|B|

∫
y∈B

∣∣∣∣ψ(y)− 1

|B|

∫
z∈B

ψ(z) dz

∣∣∣∣ dy
)

≤ ‖ϕ‖1‖ψ‖BMO

for any ball B ⊂ R
d, thus [K]H∗ ≤ ‖ϕ‖1‖ψ‖BMO.

(3.9). For each f ∈ L1(Rd) ∩ L2(Rd), Tf is given by

Tf(x) =

∫
Rd

ϕ(x)ψ(y)f(y) dy = ϕ(x)

∫
Rd

ψ(y)f(y) dy,

hence

‖Tf‖1,∞ = ‖ϕ‖1,∞
∣∣∣∣
∫
Rd

ψ(y)f(y) dy

∣∣∣∣.
Since ψ 
∈ L∞(Rd), there exists a sequence of measurable sets {Aj}j∈N such that

0 < |Aj | < ∞, Aj ⊂ { y ∈ R
d : |ψ(y)| > j }.

Define fj ∈ L1(Rd) ∩ L2(Rd) by

fj :=
χAj

|Aj |
· ψ

|ψ| ,

then fj satisfies ‖fj‖1 = 1 and∣∣∣∣
∫
Rd

ψ(y)fj(y) dy

∣∣∣∣ = 1

|Aj |

∫
Aj

|ψ(y)| dy ≥ j

for each j, thus T is not bounded from L1(Rd) to L1,∞(Rd). �

4. The H1
atb-L

1
estimate with non-doubling measures

In this section, we consider a Radon measure μ on R
d which satisfies the poly-

nomial growth condition: there exists a constant Cμ > 0 and 0 < n ≤ d such
that

(1.7) μ(B(c, r)) ≤ Cμr
n

for any balls B(c, r). In this case, unlike in the case of the Lebesgue measure, the
Hardy space H1(μ) (see Mateu et al. [8]) is not suitable for the Calderón–Zygmund
theory since Verdera [15] pointed out that the Cauchy integral does not satisfy
the H1(μ)-L1(μ) estimate in general. After that, Tolsa [12] developed the atomic
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block Hardy space H1
atb(μ) and established the H1

atb(μ)-L
1(μ) estimate of singular

integral operators (Theorem C). We will show that our BMO Hörmander condition
still works in this setting with a little modification.

Recall that H1
atb(μ) and RBMO(μ) are defined as follows.

The coefficient δ(B0, B): Let (B0, B) be a pair of balls such that B0 ⊂ B. The
coefficient δ(B0, B) is defined by

(4.1) δ(B0, B) :=

∫
y∈2B\B0

1

|y − c(B0)|n
dμ(y).

The atomic block: A function b ∈ L1
loc(μ) is called an atomic block if there exist

a ball B, a pair of balls {Bj}2j=1, functions {aj}2j=1 and numbers {λj}2j=1

such that

(4.2)

supp b ⊂ B, supp aj ⊂ Bj , Bj ⊂ B,∫
B

b dμ = 0,

‖aj‖L∞(μ) ≤ ((1 + δ(Bj , B))μ(2Bj))
−1,

b = λ1a1 + λ2a2

and write

(4.3) |b|H1
atb(μ)

:= |λ1|+ |λ2|.

The atomic block Hardy space H1
atb(μ): The atomic block Hardy space

H1
atb(μ) is defined by

(4.4) H1
atb(μ) :=

⎧⎨
⎩

∞∑
j=1

bj : bj are atomic blocks such that

∞∑
j=1

|bj |H1
atb(μ)

< ∞

⎫⎬
⎭

and its norm is
(4.5)

‖f‖H1
atb(μ)

:= inf

⎧⎨
⎩

∞∑
j=1

|bj |H1
atb(μ)

: bj are atomic blocks such that f =
∞∑
j=1

bj

⎫⎬
⎭.

The regularized bounded mean oscillation space RBMO(μ): A function f
∈ L1

loc(μ) is in RBMO(μ) if there exists a collection of numbers {mB}B
such that

(4.6) sup
B⊂Rd

1

μ(2B)

∫
y∈B

|f(y)−mB | dμ(y)+ sup
B0⊂B⊂Rd

1

1 + δ(B0, B)
|mB0

−mB| < ∞,

and its norm is defined by ‖f‖RBMO(μ) := inf{mB}B
(LHS of (4.6)), where

supremum supB⊂Rd , supB0⊂B⊂Rd and infimum inf{mB}B
are taken over all

balls B with μ(B) > 0, all pairs of balls (B0, B) such that B0 ⊂ B, and all
collections {mB}B, respectively.

It is known that these spaces H1
atb(μ) and RBMO(μ) satisfy properties analogous to

those of usual H1(Rd) and BMO(Rd) with the Lebesgue measure, such as the John–
Nirenberg inequality, the H1

atb(μ)-RBMO(μ) duality, interpolation inequalities, T1
and Tb theorems (see [10], [12], [14], [16]).
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Now we introduce an RBMO Hörmander condition: there exists a collection of
functions {mB}B such that

(4.7)

sup
B⊂Rd

1

μ(2B)

∫
y∈B

∫
x∈Rd\2B

|K(x, y)−mB(x)| dμ(x) dμ(y)

+ sup
B0⊂B⊂Rd

1

1 + δ(B0, B)

∫
x∈Rd\2B

|mB0
(x)−mB(x)| dμ(x) < ∞,

and write [K]H∗∗ := inf{mB}B
(LHS of (4.7)). Note that we can easily see [K]H∗∗ ≤

2[K]H∞ . We are going to prove the non-doubling version of Proposition 3.

Theorem 3. Let T be a singular integral operator associated with a kernel K.
Suppose that T is bounded on Lp0(μ) for some 1 < p0 < ∞ and its kernel K
satisfies the RBMO Hörmander condition [K]H∗∗ < ∞ and |K(x, y)| ≤ A|x− y|−n

for some constant A > 0. Then T is bounded from H1
atb(μ) to L1(μ) with a constant

proportional to A+ ‖T‖Lp0 (μ)→Lp0 (μ) + [K]H∗∗ .

Proof of Theorem 3. Let b =
∑2

j=1 λjaj ∈ H1
atb(μ) be an atomic block. Since T is

bounded on Lp0(μ), it is enough to show that

‖Tb‖L1(μ) � (A+ ‖T‖Lp0 (μ)→Lp0 (μ) + [K]H∗∗)|b|H1
atb(μ)

.

We decompose ‖Tb‖L1(μ) as

‖Tb‖L1(μ) ≤
2∑

j=1

λj(‖Taj‖L1(2Bj ,μ) + ‖Taj‖L1(2B\2Bj ,μ)) + ‖Tb‖L1(Rd\2B,μ)

and prove

‖Taj‖L1(2Bj ,μ) � ‖T‖Lp0 (μ)→Lp0 (μ),(4.8)

‖Taj‖L1(2B\2Bj ,μ) � A,(4.9)

‖Tb‖L1(Rd\2B,μ) � [K]H∗∗ |b|H1
atb(μ)

.(4.10)

(4.8). By the Hölder inequality and the Lp0(μ) boundedness of T , we have

‖Taj‖L1(2Bj ,μ) ≤ μ(2B)1/p
′
0‖Taj‖Lp0 (μ)

≤ ‖T‖Lp0 (μ)→Lp0 (μ)μ(2Bj)
1/p′

0‖aj‖Lp0 (μ)

≤ ‖T‖Lp0 (μ)→Lp0 (μ)μ(2Bj)
1/p′

0μ(Bj)
1/p0‖aj‖L∞(μ)

≤ ‖T‖Lp0 (μ)→Lp0 (μ).
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(4.9). For each x ∈ 2B \ 2Bj , we have a pointwise estimate

|Taj(x)| =
∣∣∣∣∣
∫
y∈Bj

K(x, y)aj(y) dμ(y)

∣∣∣∣∣
≤

∫
y∈Bj

|K(x, y)aj(y)| dμ(y)

≤ ‖aj‖L∞(μ)

∫
y∈Bj

A

|x− y|n dμ(y)

≤ 1

(1 + δ(Bj , B))μ(2Bj)

∫
y∈Bj

2nA

|x− cj |n
dμ(y)

≤ 2nA

1 + δ(Bj , B)

1

|x− cj |n
.

Therefore, we obtain

‖Taj‖L1(2B\2Bj ,μ) ≤
2nA

1 + δ(Bj , B)
δ(Bj , B) ≤ 2nA.

(4.10). Since

‖Tb‖L1(Rd\2B,μ)

=

∫
x∈Rd\2B

∣∣∣∣
∫
y∈B

K(x, y)b(y) dμ(y)

∣∣∣∣ dμ(x)
=

∫
x∈Rd\2B

∣∣∣∣
∫
y∈B

K(x, y)b(y) dμ(y)−mB(x)

∫
y∈B

b(y) dμ(y)

∣∣∣∣ dμ(x)
≤

∫
y∈B

∫
x∈Rd\2B

|K(x, y)−mB(x) | dμ(x) |b(y)| dμ(y)

≤
2∑

j=1

|λj |‖aj‖L∞(μ)

∫
y∈Bj

∫
x∈Rd\2B

|K(x, y)−mB(x) | dμ(x) dμ(y)

≤
2∑

j=1

|λj |
(

1

(1 + δ(Bj , B))μ(2Bj)

∫
y∈Bj

∫
x∈Rd\2Bj

∣∣K(x, y)−mBj
(x)

∣∣dμ(x) dμ(y)
+

1

(1 + δ(Bj , B))μ(2Bj)

∫
y∈Bj

∫
x∈Rd\2B

∣∣mBj
(x)−mB(x)

∣∣dμ(x) dμ(y))

≤
2∑

j=1

|λj |
(

1

μ(2Bj)

∫
y∈Bj

∫
x∈Rd\2Bj

∣∣K(x, y)−mBj
(x)

∣∣ dμ(x) dμ(y)
+

1

1 + δ(Bj , B)

∫
x∈Rd\2B

∣∣mBj
(x)−mB(x)

∣∣ dμ(x))

for any collections {mB}B, we have ‖Tb‖L1(Rd\2B) ≤ [K]H∗∗ |b|H1
atb(μ)

. �
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