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Abstract. The Neretin group Nd,k is the totally disconnected locally com-
pact group consisting of almost automorphisms of the tree Td,k. This group
has a distinguished open subgroup Od,k. We prove that this open subgroup
is not of type I. This gives an alternative proof of the recent result of P.-E.
Caprace, A. Le Boudec and N. Matte Bon which states that the Neretin group
is not of type I, and answers their question whether Od,k is of type I or not.

1. Introduction

The Neretin group Nd,k was introduced by Yu. A. Neretin in [11] as an analogue
of the diffeomorphism group of the circle. This group Nd,k consists of almost auto-
morphisms of the tree Td,k and is a totally disconnected locally compact Hausdorff
group. It has a distinguished open subgroup Od,k; for an accurate definition, see
Section 3. Recently, P.-E. Caprace, A. Le Boudec and N. Matte Bon proved that
the Neretin group Nd,k is not of type I by constructing two weakly equivalent but
inequivalent irreducible representations of Nd,k [4]. In their paper, they conjectured
that the subgroup Od,k of the Neretin group Nd,k is not type I either [4, Remark
4.8]. Our main theorem answers their question.

Theorem 1.1. The group von Neumann algebra of L(Od,k) of the open subgroup
Od,k of the Neretin group Nd,k is of type II. In particular, the open subgroup Od,k

of the Neretin group Nd,k is not of type I.

This theorem gives an alternative proof of the fact that the Neretin group Nd,k

is not of type I, since the type I property is inherited to open subgroups. In the
proof of our main theorem, we construct a nontrivial central sequence in the corner
of the group von Neumann algebra L(Od,k).

2. Preliminaries

2.1. von Neumann algebras. We refer the reader to [6] for basics about von
Neumann algebras. We review several topologies we use. Let H be a separable
Hilbert space. For ξ ∈ H, seminorms pξ, p

∗
ξ on B(H) are defined by pξ(x) =

‖xξ‖ and p∗ξ(x) = ‖x∗ξ‖. The topology defined by these seminorms {pξ | ξ ∈
H} ∪ {p∗ξ | ξ ∈ H} on B(H) is called strong-∗ operator topology. For {ξn} ∈
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�2 ⊗ H = {{ξn} | ξn ∈ H,
∑∞

n=1 ‖ξn‖2 < ∞}, seminorms q{ξn}, q
∗
{ξn} are defined

by q{ξn}(x) = (
∑∞

n=1 ‖xξn‖2)
1
2 and q∗{ξn}(x) = (

∑∞
n=1 ‖x∗ξn‖2)

1
2 . The topology

defined by these seminorms {q{ξn} | {ξn} ∈ �2 ⊗H} ∪ {q∗{ξn} | {ξn} ∈ �2 ⊗H} on

B(H) is called ultrastrong-∗ topology. Note that these two topologies coincide
on bounded subsets of B(H).

We also review definitions of types of von Neumann algebras (see [3, Section 1.3]).
A von Neumann algebra M is of type I if it is isomorphic to

∏
j∈J Aj ⊗̄ B(Hj)

for some set J of cardinal numbers, where Aj is an abelian von Neumann algebra
and Hj is a Hilbert space of dimension j. A von Neumann algebra M is of type
II1 if it has no nonzero summand of type I and there exists a separating family
of normal tracial states. A von Neumann algebra M is of type II∞ if it has no
nonzero summand of type I or II1 but there exists an increasing net of projections
{pi}i∈I ⊂ M converging strongly to 1M such that piMpi is of type II1 for every
i ∈ I. A von Neumann algebra M is of type II if it is a direct sum of a type II1
and a type II∞ von Neumann algebra. A von Neumann algebra M is of type III
if it has no nonzero summand of type I, II1 or II∞. Every von Neumann algebra
M has a unique decomposition M ∼= MI ⊕ MII ⊕MIII where MI,MII,MIII are of
type I, type II, type III respectively.

We review types of von Neumann algebras from the perspective of central se-
quences and obtain a criterion of having no nonzero type I summand.

Definition 2.1. LetM be a separable von Neumann algebra. A central sequence
of M is a sequence {un} of unitary elements in M such that [x, un] converges to
0 in the ultrastrong-∗ topology for all x ∈ M . A central sequence {un} of M is
trivial if there exists a sequence {zn} of unitary elements of the center of M such
that un − zn converges to 0 in the ultrastorong-∗ topology.

Remark 2.2. A sequence {un} of unitary elements in M is a central sequence if and
only if there exists M0 ⊂ M such that M ′′

0 = M and for all x ∈ M0, [x, un] → 0 in
the ultrastrong-∗ topology.

A. Connes showed that any type I factor has no nontrivial central sequence
[5, Corollary 3.10] and this fact can be easily extended to type I von Neumann
algebras.

Lemma 2.3. Let M be a separable von Neumann algebra. If M is of type I, then
every central sequence of M is trivial.

Proof. We may assume that M is isomorphic to A ⊗̄ B(H) for some separable
abelian von Neumann algebra A and some separable Hilbert space H. Let {un} be
a central sequence in M . Take some unit vector η0 ∈ H and let p ∈ B(H) be the
projection onto Cη0. Then there exist an ∈ A such that (1⊗p)un(1⊗p) = an⊗p ∈
A ⊗̄ pB(H)p ∼= A ⊗̄ Cp. Since A is abelian, there exists a unitary element vn ∈ A
such that an = vn|an|. We will show un−vn⊗1 → 0 in the strong-∗ topology. First,
we will show un−an⊗1 → 0 in the strong-∗ topology. Fix a faithful representation
A ⊂ B(K) and take ξ ∈ K, η ∈ H arbitrarily. Then, for sufficiently large n,

un(ξ ⊗ η) ≈ (1⊗ (η ⊗ η∗0))un(ξ ⊗ η0)

= (1⊗ (η ⊗ η∗0))(an ⊗ p)(ξ ⊗ η0)

= (an ⊗ 1)(ξ ⊗ η),
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where η⊗η∗0 is a Schatten form; η⊗η∗0(ζ) = 〈ζ, η0〉η. Similarly, one has u∗
n(ξ⊗η) ≈

(a∗n⊗1)(ξ⊗η) for sufficiently large n. Finally, we should prove |an| → 1 in A in the
ultrastrong-∗ topology; if this holds, then an⊗1−vn⊗1 = vn((|an|−1)⊗1) → 0 in

the ultrastrong-∗ topology. Since t �→
√
t ∨ 0 is a linear growth function, it suffices

to prove a∗nan → 1 in the strong-∗ topology. For arbitrary ξ ∈ K,

‖a∗nanξ − ξ‖ = ‖(a∗nan ⊗ p)ξ ⊗ η0 − ξ ⊗ η0‖
= ‖(1⊗ p)u∗

n(1⊗ p)un(1⊗ p)ξ ⊗ η0 − ξ ⊗ η0‖
→ 0.

Therefore, a central sequence {un} in M is trivial. �

Lemma 2.4. Let M be a separable von Neumann algebra. Suppose there exist a
faithful normal state ϕ and two central sequences {un}, {vn} such that
ϕ((unvnu

∗
nv

∗
n)

k) converges to 0 for every k ∈ Z \ {0}. Then M has no nonzero
type I summand.

Proof. For simplicity, we write unvnu
∗
nv

∗
n as wn. Note that for every f ∈ C(T),

ϕ(f(wn)) →
∫
T
f(z) dz where T = {z ∈ C | |z| = 1}, since trigonometric poly-

nomials are dense in C(T). Let p ∈ M be a central projection such that pM is
of type I. Since every central sequence in a type I von Neumann algebra is triv-
ial and {pun} and {pvn} are central sequences in pM , pwn converges to p in the
ultrastrong-∗ topology. Then for every f ∈ C(T), ϕ(pf(wn)) → ϕ(p)f(1). Take
ε > 0 arbitrarily and f ∈ C(T) such that f ≥ 0, f(1) = 1 and

∫
T
f(z) dz < ε. Then

ϕ(f(wn)) ≥ ϕ(pf(wn)), so ϕ(p) ≤
∫
T
f(z) dz < ε. Since ε is arbitrary, ϕ(p) = 0,

i.e., p = 0. Therefore M has no nonzero type I summand. �

2.2. Hecke algebras. We refer the reader to [9] and [10] for definitions and basic
properties of Hecke algebras.

Suppose (G,H) is a Hecke pair and H\G is a discrete space. Then the Hecke
algebra H(G,H) acts on �2(H\G) from left; define λ : H(G,H) → B(�2(H\G)) by

[λ(f)ξ] (Hx) =
∑

Hy∈H\G
f(Hxy−1)ξ(Hy)

for f ∈ H(G,H) and ξ ∈ �2(H\G). We may omit λ and write H(G,H) ⊂
B(�2(H\G)).

Let ρ : G → B(�2(H\G)) be the right quasi-regular representation defined by
[ρsξ](x) = ξ(xs). One can easily check that H(G,H) ⊂ ρ(G)′. Moreover, one
has H(G,H)′′ = ρ(G)′ (see [1, Theorem 1.4]). The unit vector δH ∈ �2(H\G)
is a separating vector for H(G,H), since δH is a ρ(G)-cyclic vector. Moreover, if
R(x) = R(x−1) for every x ∈ G, then it is not hard to see that δH is a tracial vector,
i.e., the vector state associated with δH is a trace on λ(H(G,H)). In particular, the
vector state x �→ 〈xδH , δH〉 is a faithful tracial state of H(G,H) for a unimodular
locally compact group G and its compact open subgroup H.

For a finite group G and its subgroup H ≤ G, note that the Hecke algebra
H(G,H) is identical to pHC[G]pH where pH = 1

|H|
∑

h∈H h ∈ C[G] is a projection

(see [9, Corollary 4.4]).
Proposition 2.5 is a special case of [10, Proposition 1.3].

Proposition 2.5. Let G be a finite group acting on a finite group V , and let Γ be
a subgroup of G leaving a subgroup V0 of V invariant. Then we have a canonical
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embedding H(V, V0)
Γ ↪→ H(V � G, V0 � Γ). Moreover, the canonical traces are

consistent with this embedding.

Proof. We will prove that there exists a canonical, trace preserving embedding
(pV0

C[V ]pV0
)Γ ↪→ pV0�ΓC[V �G]pV0�Γ where pH = 1

|H|
∑

h∈H h for a subgroup H.

Since Γ leaves V0 invariant, pV0
commutes with every element of Γ in C[V0 � Γ].

In particular, pV0
commutes with pΓ and pV0�Γ = pV0

pΓ = pΓpV0
. Note that

pΓ commutes with every element in C[V ]Γ. Therefore, multiplication with pΓ is
a ∗-homomorphism from (pV0

C[V ]pV0
)Γ ∼= pV0

C[V ]ΓpV0
to pV0�ΓC[V ]ΓpV0�Γ ⊂

pV0�ΓC[V � G]pV0�Γ. This map preserves the canonical trace, since it is spatially
implemented by the canonical isometry W : �2(V0\V ) → �2((V0�Γ)\(V �G)), and
W ∗δV0�Γ = δV0

. Since the canonical traces are faithful, this ∗-homomorphism is an
embedding. �

Corollary 2.6. In addition to the assumptions of Proposition 2.5, suppose G leaves
V0 invariant. Then there is a canonical trace preserving embedding H(G,Γ) ↪→
H(V �G, V0 � Γ) and H(V, V0)

G ⊂ H(G,Γ)′ in H(V �G, V0 � Γ).

Proof. The same argument as above shows that the first assertion holds. To show
the second assertion, we identify H(V, V0)

G and H(G,Γ) with pV0
C[V ]GpV0

and
pΓC[G]pΓ, respectively. The assertion follows from the fact that pV0

pΓ = pΓpV0
and

C[V ]G ⊂ C[G]′. �

2.3. Locally compact groups. In this paper, topological groups are assumed to
be Hausdorff. Let G be a locally compact second countable group and μ be its left
Haar measure. The left regular representation of G is a unitary representation
λ : G → U(L2(G)) defined by (λgf)(h) = f(g−1h) for f ∈ L2(G) where L2(G) is a
Haar square integrable function on G. The von Neumann algebra {λg | g ∈ G}′′ ⊂
B(L2(G)) is called the group von Neumann algebra. The representation λ extends
to a representation of L1(G): λ(f)g = f ∗ g for f ∈ L1(G) and g ∈ L2(G).

A unitary representation (π,H) of G is called of being type I if the associated
von Neumann algebra π(G)′′ ⊂ B(H) is of type I. A locally compact group G is
called of being type I if all its unitary representations are of type I. See [2, Chapter
6, 7] for more details and properties of type I groups.

3. Neretin groups

Let d, k ≥ 2 be integers and Td,k be a rooted tree such that the root has k adjacent
vertices and the others have d+ 1 adjacent vertices. An almost automorphism
of Td,k is a triple (A,B, ϕ) where A,B ⊂ Td,k are finite subtrees containing the root
with |∂A| = |∂B| and ϕ : Td,k \ A → Td,k \ B is an isomorphism. The Neretin
group Nd,k is the quotient of the set of all almost automorphisms by the relation
which identifies two almost automorphisms (A1, B1, ϕ1), (A2, B2, ϕ2) if there exists

a finite subtree Ã ⊂ Td,k containing the root such that A1, A2 ⊂ Ã and ϕ1|Td,k\Ã =

ϕ2|Td,k\Ã. One can easily check that Nd,k is a group.

Let d be the graph metric on Td,k, v0 be the root of Td,k and Bn := {v ∈ Td,k |
d(v0, v) ≤ n} for n ≥ 0. Every automorphism of Td,k leaves Bn invariant. For

each n ≥ 0, O(n)
d,k denotes the subgroup consisting of automorphisms on Td,k \ Bn

and we write Od,k :=
⋃∞

n=0 O
(n)
d,k . Each O(n)

d,k is a subgroup of Nd,k containing
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K := Aut (Td,k). Let Vn := ∂Bn = {v ∈ Td,k | d(v, v0) = n}. Note that O(n)
d,k

∼=
Aut (Td,d) �S|Vn| = Aut (Td,d)|Vn|

�S|Vn| and O(l)
d,d �S|Vn| < O(n+l)

d,k .
The Neretin group Nd,k admits a totally disconnected locally compact group

topology such that the inclusion mapK ↪→ Nd,k is continuous and open [7, Theorem
4.4]. The Neretin group Nd,k is compactly generated and simple; see [7].

The group Od,k is an open subgroup of Nd,k. It is unimodular and amenable

since Od,k is an increasing union
⋃∞

n=1 O
(n)
d,k of its compact subgroups.

4. Proof of theorem

We normalize the Haar measure μ on Od,k so that μ(K) = 1. Let p = λ(χK) be
the projection onto the subspace of left K-invariant functions. This subspace can
be identified with �2(K\Od,k). The Hecke algebra H(Od,k,K) ⊂ B(�2(K\Od,k)) is
a dense subalgebra of the corner pL(Od,k)p ⊂ B(�2(K\Od,k)) with respect to the
weak operator topology. We will show that pL(Od,k)p is of type II.

SinceK acts on Vn, there exists a canonical group homomorphism K → Aut (Vn)
∼= S|Vn|. The range of this homomorphism is denoted by Pn = Aut (Bn) <
S|Vn|. Similarly, let Qn be the range of the canonical group homomorphism
Aut (Td,d) → Aut (Wn), where Wn is the subset {v ∈ Td,d | d(v, v0) = n} of

Td,d. One has H(Od,k,K) ∼= ∪∞
n=1H(O(n)

d,k ,K) and H(O(n)
d,k ,K) ∼= H(S|Vn|, Pn).

We use this identification freely. For finite groups G1, G2 and their subgroups
Hi < Gi, H(G1, H1) ⊗ H(G2, H2) ∼= H(G1 × G2, H1 × H2). Proposition 2.5 for

G = S|Vn|,Γ = Pn, V = S
|Vn|
dl , V0 = Q

|Vn|
l implies

((H(O(l)
d,d,Aut (Td,d)))⊗|Vn|)Pn ∼= (H(S

|Vn|
dl , Q

|Vn|
l ))Pn

↪→ H(S
|Vn|
dl �S|Vn|, Q

|Vn|
l � Pn)

= H(S
|Vn|
dl �S|Vn|, Pn+l)

⊂ H(S|Vn+l|, Pn+l)

for l ∈ N. Moreover, Corollary 2.6 implies (H(S
|Vn|
dl , Q

|Vn|
l ))S|Vn| ⊂ H(S|Vn|, Pn)

′.

Since H(O(l)
d,d,Aut (Td,d)) ∼= H(Sdl , Ql) and (Sdl , Ql) is not a Gelfand pair for l ≥ 3

(see [8, Theorem 1.2]), H(O(3)
d,d,Aut (Td,d)) is noncommutative.

Let τ be the vector state associated with δK ∈ �2(K\Od,k). This is a trace,
since Od,k is a unimodular locally compact group and K is its compact open

subgroup. Note that τ (x⊗|Vn|) = (τ (x))|Vn| for x ∈ H(O(3)
d,d,Aut (Td,d)) where τ

also denotes the canonical trace on H(O(3)
d,d,Aut (Td,d)). Since H(O(3)

d,d,Aut (Td,d))
is a noncommutative finite dimensional algebra, there exist two unitaries u, v ∈
H(O(3)

d,d,Aut (Td,d)) such that |τ ((u∗v∗uv)k)| < 1 and |τ ((v∗u∗vu)k)| < 1 for all

k ∈ Z \ {0}. Set un := u⊗|Vn| ∈ H(O(n)
d,k ,K)′ and vn := v⊗|Vn| ∈ H(O(n)

d,k ,K)′.

Then for every x ∈ H(Od,k,K)′′ = pL(Od,k)p, [x, un] → 0 and [x, vn] → 0 in the
ultrastrong-∗ topology. Thus {un} and {vn} are central sequences. In addition,
τ ((unvnu

∗
nv

∗
n)

k) = τ ((uvu∗v∗)k)n → 0 as n → ∞ for every k ∈ Z \ {0}. So by
Lemma 2.4, pL(Od,k)p has no nonzero type I summand and it is of type II.



316 RYOYA ARIMOTO

Let Kn := {ϕ ∈ K | ϕ|Bn
= idBn

} and pn := 1
μ(Kn)

λ(χKn
) ∈ L(Od,k). Then

{pn} converges 1L(Od,k) in the strong operator topology. Applying the same argu-
ment as above to pnL(Od,k)pn, one finds that pnL(Od,k)pn is of type II. Therefore
L(Od,k) is of type II.
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