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REMARKS ON THE NAVIER-STOKES EQUATIONS IN SPACE

DIMENSION n ≥ 3

JISHAN FAN AND TOHRU OZAWA

(Communicated by Catherine Sulem)

Abstract. In this paper, we prove some new Lp-estimates of the velocity by
the technique of Lp-energy method.

1. Introduction

In this paper, we consider the Cauchy problem for the Navier-Stokes equations:

∂tu+ (u · ∇)u+∇π −Δu = 0 in R
n × (0, T ),(1.1)

div u = 0 in R
n × (0, T ),(1.2)

u(·, 0) = u0, div u0 = 0 in R
n.(1.3)

Here u is the velocity field and π is the pressure. In this paper, both are supposed
to exist in a suitable class of function spaces on R

n × [0, T ) with n ≥ 3.
In [1], Beirão da Veiga showed the well-known estimate:

(1.4) ‖u(·, t)‖Lp ≤ ‖u0‖Lp exp{C‖u‖qLq(0,t;Lp)}

for p ∈ (n,+∞) with 2
q + n

p = 1, where C > 0 is a constant depending on n, p, q.

The proof of (1.4) depends on the standard Lp-energy method.
The Navier-Stokes equation (1.1) is written in the form of the following nonlinear

heat equation

(1.5) ∂tu−Δu = − div(u⊗ u)−∇π.

Using the L∞-estimate of the heat equation, we have

‖u‖L∞(Rn×(0,T )) � ‖u⊗ u‖Ls(Rn×(0,T )) + ‖π‖Ls(Rn×(0,T )) + ‖u0‖2L∞

� ‖u‖2L2s(Rn×(0,T )) + ‖u0‖2L∞(1.6)

for s ∈ (n+ 2,+∞) and u0 ∈ L2 ∩ L∞, where we have used the Hölder inequality,
the well-known relation

(1.7) π =

n∑
j,k=1

RjRkujuk

with the Riesz operator Rj , and its boundedness in Ls. For other types of L∞-
estimates of the velocity, we refer to [8, 11].
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The estimate (1.6) shows that L2s(Rn×(0, T ))-control governs the uniform space-
time control, while the estimate (1.4) preserves the space integrability on both sides.
The first purpose of this paper is to broaden the range of admissible space-time
integrability on the RHS of (1.4) in the framework of the Serrin condition. We will
prove

Theorem 1.1. Let n ≥ 3 and p ∈ [4,+∞). Let (q, r) satisfy 2
q + n

r = 1 and

r ∈ (n,+∞]. Then there exists a constant C such that

(1.8) ‖u(·, t)‖Lp ≤ ‖u0‖Lp exp
(
C‖u‖qLq(0,t;Lr)

)

for any t ∈ [0, T ) and u0 ∈ Lp.

Remark 1.1. By (1.6) and (1.8), we give a different proof of the classic Ladyzhenskaya-
Prodi-Serrin criterion [7].

Similarly, we have

Theorem 1.2. Let n ≥ 3 and p ∈ (2,+∞). Let (q, r) satisfy 2
q + n

r = 2 and

r ∈ (n2 ,+∞]. Then there exists a constant C such that

(1.9) ‖u(·, t)‖Lp ≤ ‖u0‖Lp exp

(
C

∫ t

0

‖∇u‖qLrdτ

)

for any t ∈ [0, T ) and u0 ∈ Lp.

Remark 1.2. Beirão da Veiga [2] gave a different proof of Theorem 1.2.

Remark 1.3. In the two dimensional case, the estimate (1.9) with p = 4 and q = r =
2 is shown in [5]. The method depends on the div-curl lemma and the Hardy-BMO
duality.

The next purpose of this paper is to formulate the Lp-bound of the velocity in
terms of the pressure or its gradient with admissible space-time integrability in the
Serrin condition as in Theorems 1.1 and 1.2.

Theorem 1.3. Let n ≥ 3 and p ∈ (2,+∞). Let (q, r) satisfy 2
q + n

r = 2 and

r ∈ (n2 ,+∞]. Then there exists a constant C such that

‖u(·, t)‖Lp ≤ ‖u0‖Lp exp

(
C

∫ t

0

‖π‖qLrdτ

)
,(1.10)

‖u(·, t)‖Lp ≤ ‖u0‖Lp exp

(
C

∫ t

0

‖π‖BMOdτ

)
(1.11)

for any t ∈ [0, T ) and u0 ∈ Lp.

Theorem 1.4. Let n ≥ 3 and p ∈ (2,+∞). Let (q, r) satisfy 2
q + n

r = 3 and

r ∈ (n3 ,+∞]. Then there exists a constant C such that

(1.12) ‖u(·, t)‖Lp ≤ ‖u0‖Lp exp

(
C

∫ t

0

‖∇π‖qLrdτ

)

for any t ∈ [0, T ) and u0 ∈ Lp.

Remark 1.4. Recently, Kanamaru and Yamamoto [9] show (1.12) with p = 2n.



NAVIER-STOKES EQUATION 319

Remark 1.5. When r = ∞ and q = 2
3 , one can prove the regularity criterion

(1.13)

∫ T

0

‖∇π‖
2
3

Ḃ0
∞,∞

log
1
3 (e+ ‖∇π‖Ḃ0

∞,∞
)
dτ < +∞

by the method in [3, 9]. Details are omitted.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We assume that the solution
is smooth and only need to show the a priori estimates. Below we consider the case
where r is finite since the case r = +∞ is treated in a similar and simpler way.

First, we take p = 4.
Testing (1.1) by |u|2u and using (1.2), we see that

1

4

d

dt

∫
|u|4dx+

∫
|u|2|∇u|2dx+

1

2

∫
|∇|u|2|2dx

=

∫
πu · ∇|u|2dx

� ‖u‖Lr‖π‖
L

2r
r−2

‖∇|u|2‖L2

� ‖u‖Lr‖|u|2‖
L

2r
r−2

‖∇|u|2‖L2

� ‖u‖Lr‖|u|2‖1−
n
r

L2 ‖∇|u|2‖1+
n
r

L2

≤ 1

4
‖∇|u|2‖2L2 + C‖u‖qLr‖u‖2L4 ,(2.1)

where we have used the Hölder inequality, the estimate

(2.2) ‖π‖Ls � ‖|u|2‖Ls

with 1 < s < +∞ via (1.7), and the Gagliardo-Nirenberg inequality

(2.3) ‖v‖
L

2r
r−2

� ‖v‖1−
n
r

L2 ‖∇v‖
n
r

L2

with n < r < +∞, namely, 0 < n
r < 1. The estimate (1.8) with p = 4 follows by

the Gronwall lemma applied to (2.1).
Second, we assume p > 4.
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Testing (1.1) by |u|p−2u and using (1.2), (2.2), and (2.3), we find that

1

p

d

dt

∫
|u|pdx+

∫
|u|p−2|∇u|2dx+ 4

p− 2

p2

∫
|∇|u|

p
2 |2dx

= −
∫
(u · ∇π)|u|p−2dx =

∫
πu∇|u|p−2dx

�
∣∣∣∣
∫

uπ|u|
p
2−2∇|u|

p
2 dx

∣∣∣∣
� ‖u‖Lr‖π‖Lr1‖|u|

p
2−2‖Lr2‖∇|u|

p
2 ‖L2

� ‖u‖Lr‖|u|
p
2 ‖

4
p

L
4
p
r1
‖|u|

p
2 ‖

2
p (

p
2−2)

L
2
p (

p
2
−2)r2

‖∇|u|
p
2 ‖L2

� ‖u‖Lr‖|u|
p
2 ‖

L
2r

r−2
‖∇|u|

p
2 ‖L2

� ‖u‖Lr‖|u|
p
2 ‖1−

n
r

L2 ‖∇|u|
p
2 ‖1+

n
r

L2

≤ p− 2

p2
‖∇|u|

p
2 ‖2L2 + C‖u‖qLr‖|u|

p
2 ‖2L2 ,(2.4)

provided that

1

r
+

1

r1
+

1

r2
=

1

2
,(2.5)

4

p
r1 =

2

p

(p
2
− 2

)
r2 =

2r

r − 2
,(2.6)

where we have used the Hölder inequality with (2.5), (2.2) with s = r1, and (2.3)

with v = |u| p2 . The system of elementary equations (2.5) and (2.6) is solved by

(2.7) r1 =
p

2
· r

r − 2
and r2 =

2p

p− 4
· r

r − 2

if p > 4. The estimate (1.1) with p > 4 follows by the Gronwall lemma applied to
(2.4).

This completes the proof.

3. Proof of Theorem 1.2

We only need to show (1.9). Below we consider the case where r is finite since
the case r = +∞ is treated in a similar and simpler way.
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Testing (1.1) by |u|p−2u and using (1.2) and (2.3), we derive

1

p

d

dt

∫
|u|pdx+

∫
|u|p−2|∇u|2dx+ 4

p− 2

p2

∫
|∇|u|

p
2 |2dx

=

∫
πu∇|u|p−2dx

� ‖∇u‖Lr‖π‖Lr3‖|u|p−2‖Lr4

� ‖∇u‖Lr‖|u|
p
2 ‖

4
p

L
4
p
r3
‖|u|

p
2 ‖

2
p (p−2)

L
2
p
(p−2)r4

� ‖∇u‖Lr‖|u|
p
2 ‖2

L
2r

r−1

� ‖∇u‖Lr‖|u|
p
2 ‖2−

n
r

L2 ‖∇|u|
p
2 ‖

n
r

L2

≤ p− 2

p2
‖∇|u|

p
2 ‖2L2 + C‖∇u‖qLr‖|u|

p
2 ‖2L2 ,(3.1)

provided that

1

r
+

1

r3
+

1

r4
= 1,(3.2)

4

p
r3 =

2

p
(p− 2)r4 =

2r

r − 1
,(3.3)

where we have used the Hölder inequality with (3.2), (2.2) with s = r3, and the
Gagliardo-Nirenberg inequality

(3.4) ‖v‖
L

2r
r−1

� ‖v‖1−
n
2r

L2 ‖∇v‖
n
2r

L2

with n
2 < r < +∞, namely 0 < n

2r < 1, and v = |u| p2 . The system of elementary
equations (3.2) and (3.3) is solved by

(3.5) r3 =
p

2

r

r − 1
and r4 =

p

p− 2

r

r − 1

if p > 2. The estimate (1.9) follows by the Gronwall lemma applied to (3.1).
This completes the proof.

4. Proof of Theorem 1.3

We only need to show the estimates (1.10) and (1.11). Below we consider the
case where r is finite since the case r = +∞ is treated in a similar and simpler way.

We start with the first two equalities in (3.1) and estimate them as

1

p

d

dt

∫
|u|pdx+

∫
|u|p−2|∇u|2dx+ 4

p− 2

p2

∫
|∇|u|

p
2 |2dx

=

∫
πu∇|u|p−2dx

�
∫

|π||u|
p
2−1|∇|u|

p
2 |dx

� ε‖∇|u|
p
2 ‖2L2 +

1

ε

∫
π2|u|p−2dx(4.1)

for any 0 < ε < 1.
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We use (2.2) and (3.5) with v = |u| p2 to bound the last integral in (4.1) as

∫
π2|u|p−2dx � ‖π‖Lr‖π‖Lr3‖|u|p−2‖Lr4

� ‖π‖Lr‖|u|
p
2 ‖

4
p

L
4
p
r3
‖|u|

p
2 ‖

2
p (p−2)

L
2
p
(p−2)r4

� ‖π‖Lr‖|u|
p
2 ‖2

L
2r

r−1

� ‖π‖Lr‖|u|
p
2 ‖2−

n
r

L2 ‖∇|u|
p
2 ‖

n
r

L2

� ε2‖∇|u|
p
2 ‖2L2 + ε−2(q−1)‖π‖qLr‖|u|

p
2 ‖2L2 ,(4.2)

where r3 and r4 are given by (3.5). The estimate (1.10) follows by taking ε small
enough in (4.1) and (4.2) and using the Gronwall lemma on (4.1).

To prove (1.11), we use the interpolation inequality [4, 6, 10]:

(4.3) ‖π2‖
L

p
2
� ‖π‖

L
p
2
‖π‖BMO.

We use (2.2) with s = p
2 and (4.3) to bound the last integral in (4.1) as

∫
π2|u|p−2dx � ‖π2‖

L
p
2
‖|u|p−2‖

L
p

p−2

� ‖π‖
L

p
2
‖π‖BMO‖u‖p−2

Lp

� ‖u‖2Lp‖π‖BMO‖u‖p−2
Lp

� ‖π‖BMO‖u‖pLp .(4.4)

Inserting (4.4) into (4.1), taking ε small enough, and using the Gronwall lemma,
we arrive at (1.11).

This completes the proof.

5. Proof of Theorem 1.4

We only need to show the estimate (1.12). Below we consider the case where r
is finite since the case r = +∞ is treated in a similar and simpler way.

Since we have the Sobolev inequality

(5.1) ‖π‖
L

nr
n−r

� ‖∇π‖Lr

with 1 < r < n and

(5.2) ‖π‖BMO � ‖∇π‖Ln ,

(1.12) with r ∈ (1, n] follows from (1.10) and (1.11). Therefore, from now on
consider the case r ∈ (n,+∞).
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We start with the first equality in (3.1) and estimate it with Λ = (−Δ)1/2 as

1

p

d

dt

∫
|u|pdx+

∫
|u|p−2|∇u|2dx+ 4

p− 2

p2

∫
|∇|u|

p
2 |2dx

= −
∫

Λ− 1
2−

n
2r ∇π · Λ 1

2+
n
2r (|u|p−2u)dx

� ‖Λ 1
2−

n
2r π‖Lp‖Λ 1

2+
n
2r (|u|p−2u)‖

L
p

p−1

� ‖π‖
1
2

L
p
2
‖∇π‖

1
2

Lr · ‖|u|p−2u‖
1
2−

n
2r

L
p

p−1
‖∇(|u|p−2u)‖

1
2+

n
2r

L
p

p−1

� ‖u‖Lp‖∇π‖
1
2

Lr · ‖u‖(
1
2−

n
2r )(p−1)

Lp ‖|∇u||u|
p
2−1‖

1
2+

n
2r

L2 ‖|u|
p
2−1‖

1
2+

n
2r

L
2p

p−2

� ‖∇π‖
1
2

Lr‖u‖1+( 1
2−

n
2r )(p−1)+( 1

2+
n
2r )(

p
2−1)

Lp ‖|∇u||u|
p
2−1‖

1
2+

n
2r

L2

� ε‖|∇u||u|
p
2−1‖2L2 + ε−

r+n
3r−n ‖∇π‖

1
3
2
− n

2r

Lr ‖u‖pLp ,(5.3)

which implies (1.12) by taking ε small enough and using the Gronwall lemma.
Here we have used (2.2) with s = p

2 and the Gagliardo-Nirenberg inequalities

‖Λ 1
2−

n
2r π‖2Lp � ‖π‖

L
p
2
‖∇π‖Lr ,(5.4)

‖Λ 1
2+

n
2r (|u|p−2u)‖

L
p

p−1
� ‖|u|p−2u‖

1
2−

n
2r

L
p

p−1
‖∇(|u|p−2u)‖

1
2+

n
2r

L
p

p−1
.(5.5)

This completes the proof.
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