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Abstract. Let G and N be two finite groups of the same order. It is known
that the existences of the following are equivalent.
(a) a Hopf-Galois structure of type N on any Galois G-extension
(b) a skew brace with additive group N and multiplicative group G
(c) a regular subgroup isomorphic to G in the holomorph of N

We shall say that (G,N) is realizable when any of the above exists. Fixing N

to be a cyclic group, W. Rump has determined the groups G for which (G,N)
is realizable. In this paper, fixing G to be a cyclic group instead, we shall give
a complete characterization of the groups N for which (G,N) is realizable.

1. Introduction

Let G and N be two finite groups of the same order. It is well-known that the
existences of the following are equivalent (see [12, Chapter 2] and [17]).

(a) a Hopf-Galois structure of type N on any Galois G-extension
(b) a skew brace with additive group N and multiplicative group G
(c) a regular subgroup isomorphic to G in the holomorph of N

Here, the holomorph of N is defined to be

Hol(N) = λ(N)�Aut(N) = ρ(N)�Aut(N),

where λ and ρ denote the left and right regular representations

λ(η) = (x �→ ηx), ρ(η) = (x �→ xη−1) for η, x ∈ N,

and a subgroup G of Hol(N) is called regular if G −→ N ; σ �→ σ(1N ) is bijective.
Following [13], we shall say that (G,N) is realizable when any of the above condi-
tions is satisfied. We remark that skew braces are ring-like structures introduced
to study set-theoretic solutions to the Yang-Baxter equation.

Notice that λ(N), ρ(N) � N are regular subgroups of Hol(N), so the pair (G,N)
is always realizable when G � N . But whether (G,N) is realizable depends upon
the groups G and N when G �� N . It is therefore natural to ask which pairs (G,N)
are realizable. For example, when G is fixed to be

• any group of squarefree order [1–3],
• any group of order p3 with p a prime [22],
• any non-abelian simple and more generally quasisimple group [9, 28],
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• the symmetric group Sn with n ≥ 5 [25],
• the automorphism group of any sporadic simple group [27],

the groups N for which the pair (G,N) is realizable are completely known. There
are also other papers (see [4,10,16,21,26] for example) which investigate necessary
relations between G and N in order for (G,N) to be realizable.

Cyclic groups have the simplest structure among all groups. It then seems natu-
ral to ask for which groups N is the pair (Cn, N) realizable, where Cn denotes the
cyclic group of order n. The purpose of this paper is to characterize all such N .

Let us first recall some known results. For n an odd prime power, we have:

Proposition 1.1. Let N be any group of order pm with p an odd prime. Then the
pair (Cpm , N) is realizable if and only if N � Cpm .

Proof. See [18, Theorem 4.5] or alternatively [24, Theorem 1.5]. �

For n a power of 2, the situation is different but has also been solved. To state
the result, we need some notation. For m ≥ 2, write

(1.1) D2m = 〈r, s | r2m−1

= 1, s2 = 1, srs−1 = r−1〉
for the dihedral group of order 2m, and note that D4 is the Klein four-group. For
m ≥ 3, similarly write

(1.2) Q2m = 〈r, s | r2m−1

= 1, s2 = r2
m−2

, srs−1 = r−1〉
for the generalized quaternion group of order 2m. It is known that:

Proposition 1.2. Let N be any group of order 2m. Then:

(a) For m ≤ 2, the pair (C2m , N) is always realizable.
(b) For m ≥ 3, the pair (C2m , N) is realizable if and only if N � C2m , D2m , Q2m .

Proof. See [6, Lemma 2] for (a) and [7, Corollary 5.3, Theorem 6.1] for (b). �

By [8, Theorem 1], using Propositions 1.1 and 1.2, we obtain a complete char-
acterization of nilpotent groups N for which (Cn, N) is realizable. We remark that
the exact number of Hopf-Galois structures of nilpotent type N on any Galois Cn-
extension is explicitly given in [8, Theorem 2]. But as the next proposition shows,
the pair (Cn, N) can also be realizable for non-nilpotent groups N .

A finite group is called a C-group (or Z-group) if all of its Sylow subgroups are
cyclic. The terminology comes from [19], where a very nice description of C-groups
was given. By [19, Lemma 3.5], every C-group may be presented as

C(e, d, k) = 〈x, y | xe = 1, yd = 1, yxy−1 = xk〉
for gcd(e, d) = gcd(e, k) = 1, and the order of k in (Z/eZ)× divides d. Then, it is
essentially known by work in the literature that:

Proposition 1.3. For any C-group N of order n, the pair (Cn, N) is realizable.

Proof. Since N is a C-group, by the above N � Ce�Cd with gcd(e, d) = 1. Then, it
is known and we shall also explain in Proposition 2.4 that (Ce×Cd, N) is realizable.
But Cn � Ce × Cd since n = ed with gcd(e, d) = 1, and the claim now follows. �

For n squarefree, every group N of order n is a C-group so the pair (Cn, N) is
always realizable. In fact, the number of Hopf-Galois structures of type N on any
Galois Cn-extension has been determined in terms of the orders of the center and
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commutator subgroup of N (see [1]). Similarly for the number of skew braces with
additive group N and multiplicative group Cn (see [3]).

For n arbitrary, however, not every group N of order n is a C-group and the pair
(Cn, N) can certainly be realizable for a non-C-group N because of Proposition 1.2.
The only known general restriction on N so far is:

Proposition 1.4. Let N be any group of order n such that (Cn, N) is realizable.
Then N is both supersolvable and metabelian.

Proof. See [26, Theorem 1.3(a),(b)]. �

Unfortunately, the converse of Proposition 1.4 is false. For example, we checked
in Magma [5] that the group N = SmallGroup(84, 8) is both supersolvable and
metabelian, yet the pair (C84, N) is not realizable.

In this paper, by building upon the four propositions mentioned above, we shall
give a complete characterization of the groups N of order n for which (Cn, N) is
realizable, without imposing any assumptions on n or N . By Proposition 1.3, it is
enough to consider non-C-groups N . Our main theorem is:

Theorem 1.5. Let N be any non-C-group of order n. Then (Cn, N) is realizable
if and only if N � M �α P for some C-group M of odd order and (P, α) satisfying
one of the following conditions:

(1) P = D4 or P = Q8, and α(P ) has order 1 or 2;
(2) P = D2m with m ≥ 3 or P = Q2m with m ≥ 4, and α(r) = IdM .

Here α : P −→ Aut(M) is the homomorphism that defines the semidirect product,
and r is the element of P in the presentation (1.1) or (1.2).

Corollary 1.6. Let N be any group of order n for n �≡ 0 (mod 4). Then (Cn, N)
is realizable if and only if N is a C-group.

Proof. The forward implication holds by Theorem 1.5 because there M is a group
of odd order while P is a 2-group of order at least 4. The backward implication is
Proposition 1.3. �

Remark 1.7. Instead of fixing G to be cyclic, one can also fix N to be cyclic and
ask for which groups G is the pair (G,Cn) realizable. This case has already been
solved completely in [20, Corollary 1 to Theorem 2], which states that

(G,Cn) is realizable ⇐⇒ G is solvable, 2-nilpotent, almost Sylow-cyclic.

Here G being 2-nilpotent means that it has a normal Hall 2′-subgroup M . By the
Schur-Zassenhaus theorem, this simply means that G = M � P , where P denotes
any Sylow 2-subgroup of G. The term almost Sylow-cyclic means that every Sylow
p-subgroup is cyclic for odd primes p and any non-trivial Sylow 2-subgroup admits
a cyclic subgroup of index 2. We then see that the pair (G,Cn) is realizable if and
only if G � M �α P , where

(a) M is any C-group of odd order,
(b) P is trivial or any 2-group admitting a cyclic subgroup of index 2,

and there is no restriction on the homomorphism α : P −→ Aut(M). Notice that
such a group G is always solvable because C-groups are solvable.

Comparing this with our Theorem 1.5, we deduce that realizability of (Cn,Γ)
implies that of (Γ, Cn), but the converse fails to hold for certain values of n.
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2. Methods to study realizability

Let G and N be two finite groups of the same order. Below, we review a couple
of techniques that can be used to study the realizability of (G,N).

2.1. Characteristic subgroups and induction. To prove that the pair (G,N)
is not realizable, one approach is to use characteristic subgroups M of N , namely
subgroups M such that π(M) = M for all π ∈ Aut(N). This was developed by the
author in [24, Section 4] and was inspired by work of [9].

First, recall that given f ∈ Hom(G,Aut(N)), a map g : G −→ N is said to be a
crossed homomorphism (with respect to f) if it satisfies

(2.1) g(στ ) = g(σ) · f(σ)(g(τ )) for all σ, τ ∈ G.

Let us write Z1
f (G,N) for the set of all such crossed homomorphisms.

Proposition 2.1. The regular subgroups of Hol(N) isomorphic to G are precisely
the subsets of Hol(N) of the form

{ρ(g(σ)) · f(σ) : σ ∈ G}, where

{
f ∈ Hom(G,Aut(N)),

g ∈ Z1
f (G,N) is bijective.

Proof. This is because Hol(N) = ρ(N)�Aut(N); or see [24, Proposition 2.1]. �
The next proposition gives us a way to show that (G,N) is not realizable using

characteristic subgroups M of N and induction (by passing to the subgroup M or
the quotient N/M). We remark that (a) was previously known but (b) is new.

Proposition 2.2. Let f ∈ Hom(G,Aut(N)) and let g ∈ Z1
f (G,N) be bijective. Let

M be any characteristic subgroup of N and define H = g−1(M). Then:

(a) H is a subgroup of G and the pair (H,M) is realizable;
(b) H is a normal subgroup of G and the pair (G/H,N/M) is realizable, as

long as H lies in the center Z(G) of G.

Proof. By (2.1) and the fact that M is a characteristic subgroup of N , plainly H
is a subgroup of G, which has the same order as M because g is bijective.

That (H,M) is realizable was shown in [26, Proposition 3.3]. The idea was that
via restriction f induces a homomorphism

f
M

∈ Hom(H,Aut(M)); f
M
(τ ) = (η �→ f(τ )(η))

since M is characteristic, and g induces a bijective crossed homomorphism

g
M

∈ Z1
f
M
(H,M); g

M
(τ ) = g(τ )

since M = g(H). From Proposition 2.1, we then get a regular subgroup of Hol(M)
isomorphic to H, whence the pair (H,M) is realizable.

Suppose now that H lies in Z(G). It is clear that H is a normal subgroup of G.
First, we show that f induces a well-defined homomorphism

fM ∈ Hom(G/H,Aut(N/M)); fM (σH) = (ηM �→ f(σ)(η)M).

For any σ ∈ G and τ ∈ H, since H lies in Z(G), by (2.1) we have

g(τ ) · f(τ )(g(σ)) = g(τσ) = g(στ ) = g(σ) · f(σ)(g(τ )).
But M = g(H) is characteristic, so reducing mod M then yields

f(τ )(g(σ)) ≡ g(σ) (mod M).
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Since g is bijective, it follows that f(τ ) induces the identity automorphism on N/M
for all τ ∈ H, so indeed fM is well-defined. Similarly g induces a bijective crossed
homomorphism

gM ∈ Z1
fM

(G/H,N/M); gM (σH) = g(σ)M,

which is well-defined by (2.1) since M = g(H) is characteristic. From Proposition
2.1, we then get a regular subgroup of Hol(N/M) isomorphic to G/H, whence the
pair (G/H,N/M) is realizable. �

2.2. Fixed point free pairs of homomorphisms. To prove that (G,N) is real-
izable, one approach is to use homomorphisms f, h ∈ Hom(G,N) such that (f, h)
is fixed point free, namely f(σ) = h(σ) if and only if σ = 1G. This was introduced
by N. P. Byott and L. N. Childs in [11].

Proposition 2.3. Let there exist f, h ∈ Hom(G,N) such that (f, h) is fixed point
free. Then (G,N) is realizable.

Proof. Since elements in λ(N) and ρ(N) commute, plainly

{ρ(h(σ))λ(f(σ)) : σ ∈ G}
is a subgroup of Hol(N) isomorphic to G, whose regularity follows from the fixed-
point freeness of (f, h); see [11, Proposition 1] for a proof. Let us note that in the
notation of Proposition 2.1, this corresponds to

f ∈ Hom(G,Aut(N)); f(σ) = conj(f(σ)),

where conj(η) = (x �→ ηxη−1) denotes conjugation by η, and

g ∈ Z1
f (G,N); g(σ) = h(σ)f(σ)−1,

which is bijective because (f, h) is fixed point free. �

The next proposition is from [10, Lemma 7.1].

Proposition 2.4. Suppose that N = N1N2 for subgroups N1 and N2 such that
N1 ∩N2 = 1. Then (N1 ×N2, N) is realizable.

Proof. Trivially (f, h) is a fixed point free pair for f, h ∈ Hom(N1 ×N2, N) defined
by f(η1, η2) = η1 and h(η1, η2) = η2. The claim then holds by Proposition 2.3. �

As noted in Proposition 1.3, an easy application of Proposition 2.4 shows that
(Cn, N) is always realizable for C-groups N of order n. However, as we shall prove
below, there is no fixed point free pair of homomorphisms from Cn to N for non-C-
groups N . Therefore, we cannot simply use Proposition 2.3 to show realizability in
Theorem 1.5. We shall exhibit the existence of a cyclic regular subgroup in Hol(N)
using a direct approach.

Proposition 2.5. Let N be any group of order n such that there is a fixed point
free pair (f, h) with f, h ∈ Hom(Cn, N). Then N is a C-group.

Proof. Let σ be a generator of Cn, and put

df = |f(σ)|, dh = |h(σ)|, g = gcd(df , dh).

Then σdfdh/g = 1G because (f, h) is fixed point free and

f(σ)df (dh/g) = 1N = h(σ)dh(df/g).
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But dfdh/g divides n since both df , dh/g divide n and gcd(df , dh/g) = 1. It then
follows that dfdh/g = n and so n = lcm(df , dh). Hence, we may write

df = pe11 · · · peaa gf and dh = p
ea+1

a+1 · · · pebb gh,

where p1, . . . , pa, pa+1, . . . , pb are distinct primes and gf , gh ∈ N, such that

n = pe11 · · · peaa p
ea+1

a+1 · · · pebb
is the prime factorization of n. Then

|f(σ)gf | = pe11 · · · peaa , |h(σ)gh | = p
ea+1

a+1 · · · pebb , |f(σ)gf ||h(σ)gh | = n.

We deduce that N = 〈f(σ)gf 〉〈h(σ)gh〉 is the product of two cyclic subgroups of
coprime orders, and thus N is a C-group. �

3. Preliminary restriction

Let us first prove a preliminary version of Theorem 1.5:

Theorem 3.1. Let N be any group of order n such that (Cn, N) is realizable. Then
either N is a C-group or N � M � P for some C-group M of odd order and for
P = D2m with m ≥ 2 or P = Q2m with m ≥ 3.

Proof. Let n = pe11 · · · pebb be the prime factorization of n with p1 > · · · > pb. For
each 1 ≤ a ≤ b, let Pa be a Sylow pa-subgroup of N . Put

M = P1 · · ·Pb−1 and P = Pb.

Since N has to be supersolvable by Proposition 1.4, by [23, Corollary VII.5.h] for
example, we know that M is a normal subgroup of N and N = M �P . But plainly
M is a characteristic subgroup of N , so by Proposition 2.2, there is a subgroup H
of Cn (of the same order as M) such that the pairs (H,M) and (Cn/H,N/M) are
both realizable. Note that

H � C
p
e1
1 ···peb−1

b−1
and Cn/H � Cp

eb
b

are both cyclic. Thus, we may prove the claim using induction on b.
First, consider the case when n is odd. For b = 1, we know by Proposition 1.1

that N � Cp
e1
1

is a C-group. For b ≥ 2, by induction we may assume that M is a

C-group, which implies that P1, . . . , Pb−1 are all cyclic. But P � N/M is cyclic by
Proposition 1.1, whence N is a C-group.

Next, consider the case when n is even, so then pb = 2. Since M has odd order,
we already know that M must be a C-group. If P is cyclic, then N is a C-group
as above. If P � N/M is non-cyclic, then necessarily

P � D4 when eb = 2 and P � D2eb , Q2eb when eb ≥ 3

by Proposition 1.2. This completes the proof of the theorem. �

Remark 3.2. The converse of Theorem 3.1 is false. For example, as mentioned in
the introduction, the pair (C84, N) is not realizable for N = SmallGroup(84, 8)
but N � C21 �α D4, as one can check using Magma [5]. Alternatively, this group
N corresponds to the case when α : D4 −→ Aut(C21) embeds D4 into the unique
Sylow 2-subgroup of Aut(C21). One sees that N � D14 ×D6. Since both factors
D14 and D6 are characteristics, we have

Hol(N) � Hol(D14)×Hol(D6).
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The automorphism group of dihedral groups is well-understood (see [14, Theorem
1.4] for example). It is not hard to see that Hol(D14) and Hol(D6) do not have any
elements of order 4. This means that Hol(N) does not even have a cyclic subgroup
of order 84, let alone a regular one. Hence, indeed (C84, N) is not realizable.

4. Groups of the shape M �α P

Throughout this section, let M denote the C-group

C(e, d, k) = 〈x, y | xe = 1, yd = 1, yxy−1 = xk〉

for gcd(e, d) = gcd(e, k) = 1, and the order orde(k) of k in (Z/eZ)× divides d. Also,
let P denote the dihedral group

D2m = 〈r, s | r2m−1

= 1, s2 = 1, srs−1 = r−1〉

with m ≥ 2 or the generalized quaternion group

Q2m = 〈r, s | r2m−1

= 1, s2 = r2
m−2

, srs−1 = r−1〉

with m ≥ 3. To prove Theorem 1.5, we shall need to understand the structure of
the semidirect products M �α P for α ∈ Hom(P,Aut(M)).

4.1. Automorphism group of C-groups. Let us first determine the automor-
phism group Aut(M) of M in a way that is analogous to [1, Lemma 4.1], which
treats the special case when ed is squarefree.

For h ∈ Z and 	 ∈ N≥0, let us define

S(h, 	) =
�−1∑
a=0

ha = 1 + h+ · · ·+ h�−1,

with the empty sum S(h, 0) representing 0. For i, j ∈ Z, a simple calculation using
induction on 	 and the relation yxy−1 = xk yields

(xiyj)� = xiS(kj ,�)yj�.

We shall use this identity without reference in what follows. Also put

z = gcd(e, k − 1) and g = e/z.

Further, consider the multiplicative groups

U(e) = (Z/eZ)× and Uk(d) = {v ∈ (Z/dZ)× | v ≡ 1 (mod orde(k))}.

Recall that orde(k) denotes the order of k in (Z/eZ)× and it divides d.

Lemma 4.1. For any u ∈ U(e) and v ∈ Uk(d), the definitions{
θ(x) = x

θ(y) = xzy

{
φu(x) = xu

φu(y) = y

{
ψv(x) = x

ψv(y) = yv

extend to automorphisms on M . Moreover, we have the relations

(4.1) θg = IdM , φuθφ
−1
u = θu, θψv = ψvθ, φuψv = ψvφu.
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Proof. We may assume that k �= 1, for otherwise M � Ce × Cd (with z = e and so
θ is the identity), in which case all of the claims are trivial.

First, let us check that the three relations xe = 1, yd = 1, yxy−1 = xk in the
presentation of M are preserved under these maps. Clearly

θ(x)e = φu(x)
e = ψv(x)

e = 1 and φu(y)
d = ψv(y)

d = 1

are satisfied. We compute that

θ(y)d = (xzy)d = xzS(k,d)yd = xzS(k,d).

Since orde(k) divides d, we have(
k − 1

z

)
zS(k, d) ≡ kd − 1 ≡ 0 (mod e).

But gcd(k−1
z , e) = 1, so then zS(k, d) ≡ 0 (mod e) and we obtain θ(y)d = 1. A

simple calculation also yields

θ(y)θ(x)θ(y)−1 = (xzy)x(xzy)−1 = xk = θ(x)k,

φu(y)φu(x)φu(y)
−1 = yxuy−1 = xuk = φu(x)

k,

ψv(y)ψv(x)ψv(y)
−1 = yvxy−v = xkv

= xk = ψv(x)
k,

where xkv

= xk because v ∈ Uk(d) implies kv ≡ k (mod e). Thus, all of θ, φu, ψv

extend to endomorphisms on M . It is clear that their images all contain x, y, so in
fact θ, φu, ψv extend to automorphisms on M .

Next, let us verify the relations in (4.1). The first and last equalities are both
obvious. For the second equality, a simple calculation shows that

(φuθ)(x) = xu = (θuφu)(x) and (φuθ)(y) = xuzy = (θuφu)(y).

For the third equality, plainly (θψv)(x) = x = (ψvθ)(x). We also have

(θψv)(y) = (xzy)v = xzS(k,v)yv and (ψvθ)(y) = xzyv.

But v ∈ Uk(d) implies that kv ≡ k (mod e), so then(
k − 1

z

)
zS(k, v) ≡ kv − 1 ≡ k − 1 ≡

(
k − 1

z

)
z (mod e).

Since gcd(k−1
z , e) = 1, this implies that

(4.2) zS(k, v) ≡ z (mod e) and hence (θψv)(y) = (ψvθ)(y).

It follows that θψv = ψvθ, as desired. �

Proposition 4.2. We have

Aut(M) =
(
〈θ〉� {φu}u∈U(e)

)
× {ψv}v∈Uk(d).

Proof. It is easy to see that 〈θ〉, {φu}u∈U(e), {ψv}v∈Uk(d) are subgroups of Aut(M)
having trivial pairwise intersections. By the relations in (4.1), it is then enough to
show that every π ∈ Aut(M) lies in their product.

First, since gcd(e, d) = 1, clearly

π(x) = xu with u ∈ U(e), and let us write π(y) = xcyv.

We must have gcd(v, d) = 1, for otherwise there would exist 	 ∈ N which is strictly
less than d such that d divides v	, and

π(y)� = (xcyv)� = xcS(kv,�)yv� = xcS(kv,�).
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But 〈π(y)〉, which has order d, cannot contain a non-trivial element of order dividing
e because gcd(e, d) = 1. This then implies that π(y)� = 1, which is impossible since
1 ≤ 	 ≤ d− 1. Next, observe that

xukv

= (xcyv)xu(xcyv)−1 = π(y)π(x)π(y)−1 = π(x)k = xuk.

Since gcd(u, e) = 1, it follows that

kv ≡ k (mod e), and hence v ∈ Uk(d).

We also have the equalities

1 = π(y)d = (xcyv)d = xcS(kv,d)ydv = xcS(kv,d).

Recall that z = gcd(e, k − 1). Then, the above in particular implies that

cd ≡ cS(1, d) ≡ cS(kv, d) ≡ 0 (mod z),

and so c is divisible by z because gcd(z, d) = 1.
Finally, we compute that

(θ
c
z φuψv)(x) = (θ

c
z φu)(x) = θ

c
z (xu) = xu,

(θ
c
z φuψv)(y) = (θ

c
z φu)(y

v) = θ
c
z (yv) = (x

c
z ·zy)v = x

c
z ·zS(k,v)yv = xcyv,

where the last equality follows from the congruence in (4.2). Thus π = θ
c
z φuψv,

and this completes the proof. �

4.2. Dihedral and generalized quaternion groups. Let us record a few facts
that we shall need concerning the commutator subgroup P ′ of P and the automor-
phism group Aut(P ) of P .

Lemma 4.3. We have P ′ = 〈r2〉 and P/P ′ � D4.

Proof. Note that r2 ∈ P ′ because srs−1r−1 = r−2, and clearly 〈r2〉 is a normal
subgroup of order 2m−2. Since P/〈r2〉 has order 4, whose exponent is easily seen
to be 2, we must have P/〈r2〉 � D4. The fact that r2 ∈ P ′ and P/〈r2〉 is abelian
implies that P ′ = 〈r2〉. �

Proposition 4.4. The following hold.

(a) The definitions {κ1(r) = s, κ1(s) = r} and {κ2(r) = rs, κ2(s) = s} extend
to automorphisms on D4.

(b) The definitions {κ1(r) = s, κ1(s) = rs2} and {κ2(r) = rs, κ2(s) = r} extend
to automorphisms on Q8.

(c) Assume that P = D2m with m ≥ 3 or P = Q2m with m ≥ 4. For any
a, b ∈ Z with a odd, the definition {κ(r) = ra, κ(s) = rbs} extends to an
automorphism on P . Conversely, all automorphisms on P arise in this
way.

Proof. Part (a) is obvious and part (b) follows from a simple calculation. As for
part (c), see [14, Theorem 1.4] and [15, Theorem 4.7]. �

Remark 4.5. In Proposition 4.4, the κ1, κ2 in (a) do not extend to automorphisms
on D2m for m ≥ 3, and those in (b) do not extend to automorphisms on Q2m for
m ≥ 4. This is the reason why there are two cases to consider in Theorem 1.5.
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4.3. Properties of the homomorphism α. Let α ∈ Hom(P,Aut(M)) be fixed,
and let N = M �α P be the semidirect product defined by α. For each t ∈ P , let
us write αt = α(t) for short. Then, in the group N we have

txt−1 = αt(x) and tyt−1 = αt(y).

We shall study properties of α using results from the previous subsections.

Assumptions. Henceforth, we shall assume that the order ed of M is odd since
this is the only case of interest for us. In the presentation of M , by [19], without
loss of generality, we may assume that orde(k), which has to divide d, is divisible
by all prime factors of d.

Lemma 4.6. The homomorphism α satisfies the following:

(a) α(P ) lies in 〈θ〉� {φu}u∈U(e);
(b) ker(α) contains P ′;
(c) α(P ) is elementary 2-abelian of order 1, 2, or 4;
(d) αt1(x) = αt2(x) implies αt1 = αt2 for any t1, t2 ∈ P .

Proof. Since orde(k) is divisible by all prime factors of d, the order of Uk(d) divides d
and so is odd. Since P is a 2-group, the projection of α(P ) onto {ψv}v∈Uk(d) � Uk(d)
must then be trivial. This gives (a).

The order of 〈θ〉 divides e by (4.1) and so is also odd. This means that {φu}u∈U(e)

contains a Sylow 2-subgroup of Aut(M). But {φu}u∈U(e) � U(e) is abelian, whence
α(P ) is abelian. This proves (b), and (c) follows as well by Lemma 4.3.

Let t1, t2 ∈ P be such that αt1(x) = αt2(x). By (a), we may write

αt1 = θc1φu1
and αt2 = θc2φu2

, where c1, c2 ∈ Z, u1, u2 ∈ U(e).

That αt1(x) = αt2(x) means xu1 = xu2 and hence φu1
= φu2

. By (c), we know that
αt1 , αt2 have order dividing 2 and they commute. It follows that

αt1 · α−1
t2 = θc1φu1

· φ−1
u2

θ−c2 = θc1−c2

also has order dividing 2. But θ has odd order, so we have θc1 = θc2 . Thus, indeed
αt1 = αt2 , and this proves (d). �

Before proceeding, let us make two observations. First, recall that P ′ = 〈r2〉 by
Lemma 4.3, and that ker(α) contains P ′ by Lemma 4.6(b). It follows that ker(α)
is equal to one of the following:

(4.3) 〈r2〉, 〈r2, s〉, 〈r2, rs〉, 〈r〉, 〈r, s〉.
For these five possibilities, the order of α(P ) is respectively given by

4, 2, 2, 2, 1.

Second, notice that M , whose order is assumed to be odd, is a characteristic sub-
group of N . Then 〈x〉, being characteristic in M because gcd(e, d) = 1, is also a
characteristic and in particular normal subgroup of N .

Lemma 4.7. Elements in N of order a power of 2 all lie in 〈x〉�α P .

Proof. Let xiyjt ∈ N be of order 2� with t ∈ P . By Lemma 4.6(a), we have

αt(y) ≡ y (mod 〈x〉),
so then y and t commute modulo 〈x〉. It follows that

y2
�jt2

� ≡ (yjt)2
� ≡ (xiyjt)2

� ≡ 1 (mod 〈x〉).
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But then y2
�j = 1, which implies that yj = 1 because y has odd order. Therefore,

indeed xiyjt = xit belongs to 〈x〉�α P . �

To prove necessity in Theorem 1.5, consider the natural homomorphism

(4.4) Aut(N) Aut(N/M) Aut(P ).
ξ �→(ηM �→ξ(η)M) identification

We shall require the next proposition.

Proposition 4.8. Let κ ∈ Aut(P ) be in the image of (4.4).

(a) We always have κ(r) ≡ r (mod ker(α)) and κ(s) ≡ s (mod ker(α)).
(b) Assume that P = D2m with m ≥ 3 or P = Q2m with m ≥ 4. If αr �= IdM ,

then we have κ(r) ≡ r (mod P ′) and κ(s) ≡ s (mod P ′),

Proof of (a). By Lemma 4.6(d), it suffices to show that

(4.5) ακ(r)(x) = αr(x) and ακ(s)(x) = αs(x).

Let ξ ∈ Aut(N) be such that its image under (4.4) is κ. Since ξ(P ) lies in 〈x〉�α P
by Lemma 4.7, we may write

ξ(r) = xi1κ(r) and ξ(s) = xi2κ(s).

Since 〈x〉 is characteristic in both M and N , we also have

αt(x) ∈ 〈x〉 for all t ∈ P and ξ(x) = xu for some u ∈ U(e).

Now, applying ξ to the relation rxr−1 = αr(x) yields

xi1κ(r) · xu · κ(r)−1x−i1 = αr(x)
u and so ακ(r)(x

u) = αr(x
u).

Similarly, applying ξ to the relation sxs−1 = αs(x) yields

xi2κ(s) · xu · κ(s)−1x−i2 = αs(x)
u and so ακ(s)(x

u) = αs(x
u).

Since gcd(u, e) = 1, it follows that (4.5) indeed holds, as desired. �

Proof of (b). Since P = D2m with m ≥ 3 or P = Q2m with m ≥ 4, we know from
Proposition 4.4(c) that there exist a, b ∈ Z with a odd such that

κ(r) = ra and κ(s) = rbs.

We then have κ(r)r−1 ∈ P ′ because a − 1 is even. We also have κ(s)s−1 ∈ ker(α)
by (a). Since αr �= IdM , the last two possibilities in (4.3) are ruled out. Thus, for
κ(s)s−1 to lie in ker(α), necessarily b is even, which means that κ(s)s−1 ∈ P ′ as
well. This completes the proof. �

To prove sufficiency in Theorem 1.5, we first show that α may be modified to
satisfy certain nice conditions.

Proposition 4.9. The following hold.

(a) Assume that P = D4 or P = Q8, and α(P ) has order 1 or 2. Then there
exists β ∈ Hom(P,Aut(M)) with βr = IdM such that N � M �β P .

(b) There always exists β ∈ Hom(P,Aut(M)) with βs ∈ {φu}u∈U(e) such that
αt, βt are conjugates in Aut(M) for all t ∈ P and N � M �β P .
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Proof of (a). Since α(P ) has order 1 or 2, from (4.3) we see that

αε = IdM for at least one ε ∈ {r, s, rs}.
Since P = D4 or P = Q8, by Proposition 4.4(a),(b), there exists κ ∈ Aut(P ) such
that κ(r) = ε. Let us take

β ∈ Hom(P,Aut(M)); β(t) = α(κ(t)).

Then clearly βr = αε = IdM . To show that N � M �β P , define{
ξ(η) = η for η ∈ M,

ξ(t) = κ−1(t) for t ∈ P,

where the inputs are regarded as elements of M �α P and the outputs as elements
of M �β P . The relation tηt−1 = αt(η) in N is preserved under ξ because

ξ(t)ξ(η)ξ(t)−1 = κ−1(t)ηκ−1(t)−1 = βκ−1(t)(η) = αt(η) = ξ(αt(η)).

It follows that ξ extends to a homomorphism from N = M �α P to M �β P , which
is easily seen to be an isomorphism. �

Proof of (b). We saw in the proof of Lemma 4.6(b) that {φu}u∈U(e) has to contain
a Sylow 2-subgroup of Aut(M). Since αs has order dividing 4, it follows that there
exists π ∈ Aut(M) such that παsπ

−1 ∈ {φu}u∈U(e). Let us take

β ∈ Hom(P,Aut(M)); β(t) = πα(t)π−1.

Then clearly βs = παsπ
−1 ∈ {φu}u∈U(e). To show that N � M �β P , define{

ξ(η) = π(η) for η ∈ M,

ξ(t) = t for t ∈ P,

where the inputs are regarded as elements of M �α P and the outputs as elements
of M �β P . The relation tηt−1 = αt(η) in N is preserved under ξ because

ξ(t)ξ(η)ξ(t)−1 = tπ(η)t−1 = βt(π(η)) = π(αt(η)) = ξ(αt(η)).

It follows that ξ extends to a homomorphism from N = M �α P to M �β P , which
is easily seen to be an isomorphism. �

Proposition 4.10. Assume that αr = IdM and αs ∈ {φu}u∈U(e). Then

ξ(η) = (αsφ
−1
k )(η) for η ∈ M, ξ(r) = r−1, ξ(s) = rs

extend to an automorphism on N of order dividing 2d, and

(4.6) N = {η0ξ(η0) · · · ξ�−1(η0) : 	 ∈ N} with η0ξ(η0) · · · ξn−1(η0) = 1

for the element η0 = xyrs and for n = 2med.

Proof. First, a straightforward calculation (c.f. Proposition 4.4(c)) shows that the
relations in P are preserved under ξ. Put π = αsφ

−1
k . That αr = IdM implies the

relation rηr−1 = αr(η) = η is preserved under ξ because

ξ(r)ξ(η)ξ(r)−1 = r−1π(η)r = αr−1(π(η)) = π(η) = ξ(η).

Similarly, that αs ∈ {φu}u∈U(e) implies αs and π commute, so then sηs−1 = αs(η)
is also preserved under ξ because

ξ(s)ξ(η)ξ(s)−1 = rsπ(η)s−1r−1 = (αrαsπ)(η) = (παs)(η) = ξ(αs(η)).
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We deduce that ξ extends to an endomorphism on N , which clearly has to be an
automorphism. That αs ∈ {φu}u∈U(e) implies αs and φ−1

k commute, so

π2d = (αsφ
−1
k )2d = α2d

s φ−1
k2d = IdM .

Here α2
s = IdM by Lemma 4.6(c) and kd ≡ 1 (mod e) because orde(k) divides d.

Since ξ2 is clearly the identity on P , indeed ξ has order dividing 2d.
Next, we shall use induction on 	 ∈ N to show that

(4.7) (xyrs)ξ(xyrs) · · · ξ�−1(xyrs) =

{
x�y�r

�+1
2 s� for 	 odd,

x�y�r
�
2 s� for 	 even.

The case 	 = 1 is clear. For 	 odd, observe that

ξ�(xyrs) = π�(xy) · r−1 · rs = (α�
sφ

−1
k� )(xy)s = (αsφ

−1
k� )(xy)s.

Assuming that (4.7) holds for 	, we compute that

(xyrs)ξ(syrs) · · · ξ�(xyrs) = x�y�r
�+1
2 s� · (αsφ

−1
k� )(xy)s

= x�y� · (α
�+1
2

r α�+1
s φk−�)(xy) · r

�+1
2 s� · s

= x�y� · xk−�

y · r
�+1
2 s�+1 (since αr, α

2
s = IdM )

= x�+1y�+1r
�+1
2 s�+1

and so (4.7) also holds for 	+ 1. Similarly, for 	 even, observe that

ξ�(xyrs) = π�(xy) · r · s = (α�
sφ

−1
k� )(xy)rs = φ−1

k� (xy)rs.

Assuming that (4.7) holds for 	, we compute that

(xyrs)ξ(xyrs) · · · ξ�(xyrs) = x�y�r
�
2 s� · φ−1

k� (xy)rs

= x�y� · (α
�
2
r α

�
sφk−�)(xy) · r �

2 s� · rs

= x�y� · xk−�

y · r
�+2
2 s�+1 (since αr, α

2
s = IdM )

= x�+1y�+1r
�+2
2 s�+1.

and so (4.7) also holds for 	+ 1. Hence, by induction, indeed we have (4.7) for all
	 ∈ N, and this immediately implies the second equality in (4.6).

To show the first equality in (4.6), since N has order n = 2med, it suffices to
show that the set in (4.6) has at least n elements. So suppose that

(4.8) (xyrs)ξ(xyrs) · · · ξ�1−1(xyrs) = (xyrs)ξ(xyrs) · · · ξ�2−1(xyrs).

By (4.7), this implies that s�1 ≡ s�2 (mod 〈r〉) in the group P . But then 	1, 	2 have
the same parity because 〈s〉 ∩ 〈r〉 = 〈s2〉. Again by (4.7), we have{

x�1y�1r
�1+1

2 s�1 = x�2y�2r
�2+1

2 s�2 for 	1, 	2 odd,

x�1y�1r
�1
2 s�1 = x�2y�2r

�2
2 s�2 for 	1, 	2 even.

Since N = M �α P and M = 〈x〉 � 〈y〉, in both cases, we deduce that x�1 = x�2

and y�1 = y�2 , which respectively imply that

	1 ≡ 	2 (mod e) and 	1 ≡ 	2 (mod d).

In both cases, we also have r
�1−�2

2 = s�2−�1 . Let us now prove that s�2−�1 = 1 so

in particular r
�1−�2

2 = 1. Note that 	2 − 	1 is always even.
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• For P = D2m with m ≥ 2, since s has order 2, clearly s�2−�1 = 1.
• For P = Q2m with m ≥ 3, since s has order 4, clearly s�2−�1 = 1 unless
	2 − 	1 ≡ 2 (mod 4). So suppose that 	2 − 	1 ≡ 2 (mod 4). Then

r
�1−�2

2 = s�2−�1−2 · s2 = r2
m−2

and so
	1 − 	2

2
≡ 2m−2 (mod 2m−1).

But m− 1 ≥ 2, so we obtain 	1 − 	2 ≡ 0 (mod 4), which is a contradiction.
This means that 	2 − 	1 ≡ 2 (mod 4) does not occur.

We have thus shown that r
�1−�2

2 = 1, which implies

	1 − 	2
2

≡ 0 (mod 2m−1) and thus 	1 ≡ 	2 (mod 2m).

Since 2m, e, d are pairwise coprime, it now follows that 	1 ≡ 	2 (mod n). Therefore,
indeed the set in (4.6) contains at least n distinct elements. �

5. Proof of Theorem 1.5

Let N be a non-C-group of order n. By Theorem 3.1, we may assume that

N = M �α P with α ∈ Hom(P,Aut(M)),

where M is a C-group of odd order, and P is either D2m with m ≥ 2 or Q2m with
m ≥ 3. We wish to show that (Cn, N) is realizable if and only if

(5.1)

{
α(P ) has order 1 or 2 when P = D4 or P = Q8,

α(r) = IdM otherwise.

The main ingredients are Propositions 4.8, 4.9, and 4.10.
First, suppose that (Cn, N) is realizable. By Proposition 2.1, this implies that

there exist f ∈ Hom(Cn,Aut(N)) and a bijective g ∈ Z1
f (Cn, N). Let us consider

the characteristic subgroup M0 = M �α P ′ of N . Put H = g−1(M0), which is a
subgroup of Cn by Proposition 2.2. Trivially H lies in the center of Cn, so by the
proof of Proposition 2.2(b), we have a well-defined homomorphism

fM0
∈ Hom(Cn/H,Aut(N/M0)); fM0

(σH) = (ηM0 �→ f(σ)(η)M0),

and a well-defined bijective crossed homomorphism

gM0
∈ Z1

fM0

(Cn/H,N/M0); gM0
(σH) = g(σ)M0.

Observe that fM0
cannot be trivial, for otherwise gM0

would be an isomorphism by
(2.1), which cannot happen because Cn/H is cyclic while N/M0 � P/P ′ � D4 by
Lemma 4.3.

Now, assume for contradiction that (5.1) does not hold. Then ker(α) = P ′ when
P = D4 or P = Q8 in view of (4.3), and α(r) �= IdM otherwise. From Proposition
4.8, it follows that the canonical homomorphism

Aut(N) Aut(N/M0) Aut(P/P ′).
ξ �→(ηM0 �→ξ(η)M0) identification

is trivial. But then fM0
would be trivial, which we know is impossible. This implies

that (5.1) must hold, as desired.
Conversely, assume that (5.1) holds. Then, by Proposition 4.9 we may modify α

(without changing the isomorphism class of N) if necessary so that the hypothesis
of Proposition 4.10 is satisfied. Thus, there exist ξ ∈ Aut(N) and η0 ∈ N such that

(i) ξn = IdN and η0ξ(η0) · · · ξ(η0)n−1 = 1;
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(ii) N = {η0ξ(η0) · · · ξ�−1(η0) : 	 ∈ N}.
Consider ρ(η0)ξ, which is an element of Hol(N). For any 	 ∈ N, we have

(ρ(η0)ξ)
� = ρ(η0ξ(η0) · · · ξ�−1(η0)) · ξ�.

Then ρ(η0)ξ has order dividing n by (i) and 〈ρ(η0)ξ〉 acts transitively on N by (ii).
It follows that 〈ρ(η0)ξ〉 is a regular subgroup of Hol(N) whose order is exactly n.
This proves that (Cn, N) is realizable.
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