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Abstract. Using techniques developed by Kanigowski, Lemańczyk, and
Radziwi�l�l [Fund. Math. 255 (2021), pp. 309–336], we verify Sarnak’s con-
jecture for two classes of rank-one subshifts with unbounded cutting parame-
ters. The first class of rank-one subshifts we consider is called almost complete

congruency classes (accc), the definition of which is motivated by the main
result of Foreman, Gao, Hill, Silva, and Weiss [Isr. J. Math., To appear],
which implies that when a rank-one subshift carries a unique nonatomic in-
variant probability measure, it is accc if it is measure-theoretically isomorphic
to an odometer. The second class we consider consists of Katok’s map and its
generalizations.

1. Introduction

The Möbius function, μ : N → {−1, 0, 1}, is defined such that: μ(n) = 0 if n is
divisible by p2 for some prime number p; and μ(n) = (−1)k if n = p1p2 · · · pk where
p1, p2, . . . , pk are distinct prime numbers. The Möbius function is one of the most
important functions in Number Theory, and in particular the study of the Möbius
function is highly consequential in Analytical Number Theory. For instance, the
fact that the respective numbers of 1s and −1s as values of the Möbius function
are almost the same is equivalent to the prime number theorem.

Theorem 1.1 (Landau; see [3, §4.9]). The statement that
∑

n≤N μ(n) = o(N) is

equivalent to the prime number theorem (PNT).

Furthermore, the Riemann hypothesis can be restated in terms of the rate of
cancellation in

∑
n≤N μ(n).

Theorem 1.2 (Littlewood, 1912; see [15]). The Riemann hypothesis is equivalent
to the statement that for every ε > 0 we have

∑
n≤N μ(n) = o(N1/2+ε).

In this paper we concentrate on the study of the random behavior of the Möbius
function and not necessarily the speed of the cancellation. One of the strongest
conjectures on the random nature of the sequence {μ(n)}n∈N is due to Chowla.
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Conjecture 1.3 (Chowla). Let 0 ≤ i1, i2, · · · , ik ≤ 2 be a sequence of integers with
at least one taking value 1. Then∑

n≤N

μ(n+ 1)i1μ(n+ 2)i2 · · ·μ(n+ k)ik = o(N).

Chowla’s conjecture seems out of reach for the moment and a weaker notion (see
[1, Theorem 4.10]; [14]) of pseudorandomness for the Möbius function, Sarnak’s
conjecture, is the main focus of the present work. In an attempt to formalize the
random behavior of Möbius function using tools from Dynamical Systems, Sarnak
suggested Conjecture 1.4.

Conjecture 1.4 (Sarnak). Let X be a compact metric space and T : X → X be
a homeomorphism. If the topological dynamical system (X,T ) is of entropy zero,
then we have ∑

n≤N

f(Tnx)μ(n) = o(N)

for every continuous function f : X → R and x ∈ X.

Following [12], we say that (X,T ) is Möbius disjoint if∑
n≤N

f(Tnx)μ(n) = o(N)

for every continuous function f : X → R and x ∈ X. Furthermore, we say a
continuous function f : X → R satisfies Sarnak’s property if∑

n≤N

f(Tnx)μ(n) = o(N)

for every x ∈ X.
Sarnak’s conjecture has been studied extensively in recent years (see, for example,

[2], [4], [7], [8], [11], [12], and [13]). In particular, the study of the conjecture
for symbolic systems corresponding to the class of rank-one transformations is of
interest.

Given sequences of positive integers rn > 1 for n ∈ N and nonnegative integers
sn,i for n ∈ N and 0 < i ≤ rn, define a generating sequence vn of finite words
recursively by setting v0 = 0 and

(1.1) vn+1 = vn1
sn,1vn1

sn,2 · · · vn1sn,rn

for n ∈ N. An infinite rank-one word V ∈ 2N is then defined as V = limn→∞ vn
and the rank-one subshift (XV , T ) is given by

XV = {x ∈ 2Z : every finite subword of x is a subword of V }
and T (x)(a) = x(a + 1) for all x ∈ XV and a ∈ Z. The sequences (rn)n∈N and
(sn,i)n∈N,0<i≤rn are known as, respectively, the cutting parameter and the spacer
parameter of the rank-one subshift. A rank-one subshift (XV , T ) is nontrivial if XV

is infinite, or equivalently, V is aperiodic. In this paper we only consider nontrivial
rank-one subshifts. Note that a rank-one subshift is always of topological entropy
zero. (XV , T ) is bounded if there is M > 0 such that rn < M and sn,i < M for all
n ∈ N and 0 < i ≤ rn.

Bourgain [4] proved Sarnak’s conjecture for bounded rank-one subshifts for the
special case that sn,rn = 0 for all n ∈ N. This was extended to all bounded rank-one
subshifts by El Abdalaoui–Lemańczyk–de la Rue [2].
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Theorem 1.5 (Bourgain [4]; El Abdalaoui–Lemańczyk–de la Rue [2]). Let (X,T )
be a bounded rank-one subshift. Then (X,T ) is Möbius disjoint.

In this paper we consider two classes of rank-one subshifts with unbounded
cutting parameters. The consideration of the first class is motivated by the main
result of [9]. In that context the authors assumed that the generating sequence
satisfies the condition

(1.2)
∞∑

n=0

|vn+1| − rn|vn|
|vn+1|

< +∞,

which guarantees that (XV , T ) admits a unique nonatomic invariant probability
measure μ. The main result of [9] is a characterization of when the measure-
preserving transformation (XV , μ, T ) is measure-theoretically isomorphic to an
odometer. To state this characterization we need to make the following definition.
For n ≥ m, apply (1.1) inductively to write vn uniquely in the form

vn = vm1b1vm1b2 · · · vm1bt

and let Im,n be the set of indices for the starting positions of the copies of vm
(starting at index 0 for the starting position of the first copy). Note that I0,n is the
set of positions of all 0s in vm.

Theorem 1.6 (Foreman–Gao–Hill–Silva–Weiss [9]). The rank-one measure-
preserving transformation (XV , μ, T ) is measure-theoretically isomorphic to an
odometer if and only if for all l ∈ N and all ε > 0, there is some k ∈ N such
that for all η > 0 there exists an N ∈ N such that for all n > m ≥ N ,

(a) there is some j ∈ Z/kZ such that

|{i ∈ Im,n : [i]k �= j}|
|Im,n|

< η, and

(b) there is some D ⊆ Z/kZ such that

|{i ≤ |vm| : [i]k ∈ D}	Il,m|
|Il,m| < ε,

where [i]k denotes the congruency class of i mod k.

Note that if (XV , μ, T ) is isomorphic to an odometer and (XV , T ) is bounded,
then V is periodic and (XV , T ) is trivial. Motivated by Clause (b) with l = 0, we
introduce the following notion.

Definition 1.7. Let M ⊆ Z be nonempty and A ⊆ N be finite. We say A is a
building block of M if 0 ∈ A and there exists a nondecreasing sequence {ai,A}i∈Z of
integers such that M =

⋃
i∈Z

(A+ ai,A) and for every i ∈ Z we have ai+1,A−ai,A >
max(A) or ai+1,A = ai,A.

Definition 1.8. We say M ⊆ Z is an almost complete congruency class (accc) if
M = ∅ or for every ε > 0 there exist k ∈ N with the following property which we
denote as P (M, ε, k):

for every N ∈ N there exist a building block A of M and DA ⊆
Z/kZ such that max(A) ≥ N and

|{0 ≤ n ≤ max(A) : [n]k ∈ DA}	A|
max(A)

< ε.
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Thus Theorem 1.6 implies that if (XV , μ, T ) is isomorphic to an odometer then
the set of positions for 0s in V is an accc, and in this case it also follows that
for every x ∈ XV , the set of positions for 0s in x is an accc. Motivated by this
observation, we call a rank-one subshift (X,T ) an accc rank-one subshift if

Mx = {n ∈ Z : x(n) = 0}

is an accc for every x ∈ X.
Our first main result of the paper is the following.

Theorem 1.9. Let (X,T ) be an accc rank-one subshift. Then (X,T ) is Möbius
disjoint.

Theorem 1.9 will be proved in Section 2. In Sections 3 and 4 we will consider
another class of rank-one subshifts which are generalizations of Katok’s map studied
in [2]. Katok’s map is a rank-one subshift where for all n ∈ N, rn is even and

sn,i =

{
0, for 0 < i ≤ rn/2,
1, for rn/2 < i ≤ rn.

In [2] Sarnak’s conjecture for Katok’s map was verified under the condition

lim
n→∞

rn
|vn|

= +∞.

Here we prove Sarnak’s conjecture for a class of generalized Katok’s maps under a
weaker condition.

The key technique used in all of our proofs is an estimate of the Möbius func-
tion on short intervals along arithmetic progressions developed by Kanigowski–
Lemańczyk–Radziwi�l�l [12].

Theorem 1.10 (Kanigowski–Lemańczyk–Radziwi�l�l [12]). For each ε ∈ (0, 1
100 )

there exists L0 such that for each L ≥ L0 and q ≥ 1 with

(1.3)
∑
p|q

p prime

1

p
≤ (1− ε)

∑
p≤L

p prime

1

p
,

we can find N0 = N0(q, L) such that for all N ≥ N0, we have

(1.4)

N/Lq∑
j=0

q−1∑
a=0

∣∣∣ ∑
m∈[z+jLq,z+(j+1)Lq)

m≡a mod q

μ(m)
∣∣∣ ≤ εN

for some 0 ≤ z < Lq.

2. Accc rank-one subshifts

Definition 2.1. Let M ⊆ Z. We say M is orthogonal to the Möbius function if

lim
N→∞

1

N

∑
n∈M

1≤n≤N

μ(n) = 0.

Note that by Theorem 1.1, if N ⊆ M ⊆ Z then M is orthogonal to the Möbius
function. Trivially the empty set is orthogonal to the Möbius function.
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Theorem 2.2. Let M ⊆ Z be an accc and n1, n2, . . . , nl be integers. Then

M ′ = {n ∈ Z : n+ n1, n+ n2, . . . , n+ nl ∈ M}
is orthogonal to the Möbius function.

Proof. Fix 0 < ε < 1
100 . Assume M is nonempty. Since M is an accc, there exists

k ∈ N such that property P (M, ε, k) holds. Applying Theorem 1.10 with q = k, we
obtain L0 and L ≥ L0 satisfying (1.3), and there exists N0 = N0(k, L) > 0 such
that for every N ≥ N0 we have

N/Lk∑
j=0

k−1∑
a=0

∣∣∣ ∑
m∈[z+jLk,z+(j+1)Lk)

m≡a mod k

μ(m)
∣∣∣ ≤ εN

for some 0 ≤ z < Lk.
From property P (M, ε, k) we obtain a building block A of M with

max(A) ≥ 2N0Lk/ε, |2n1/ε|, . . . , |2nl/ε|,
DA ⊆ Z/kZ, and a nondecreasing sequence {ai,A}i∈Z of integers such that for every
i ∈ Z we have ai+1,A − ai,A > max(A) or ai+1,A = ai,A, M =

⋃
i∈Z

(A+ ai,A), and

|{0 ≤ n ≤ max(A) : [n]k ∈ DA}	A|
max(A)

< ε.

Let

D′
A =

l⋂
λ=1

(−nλ +DA) ⊆ Z/kZ.

Fix an arbitrary i ∈ Z. Let B = {0 ≤ n ≤ max(A) : [n]k ∈ D′
A} and Bi = {0 ≤

n ≤ max(A) : n+ ai,A ∈ M ′}. We claim that

|B	Bi|
max(A)

≤ (l + 1)ε.

To see this, let δ = max(|n1|, . . . , |nl|), C = {δ ≤ n ≤ max(A) − δ : [n]k ∈ D′
A},

and Ci = {δ ≤ n ≤ max(A)− δ : n+ ai,A ∈ M ′}. Note that

|(C	Ci)	(B	Bi)| ≤ 2δ ≤ εmax(A).

It is therefore sufficient to verify that |C	Ci| ≤ lεmax(A). Observe that if δ ≤
n ≤ max(A) − δ and 1 ≤ λ ≤ l, then n + ai,A + nλ ∈ M iff n + nλ ∈ A. Fix any
n with δ ≤ n ≤ max(A) − δ. If n + ai,A ∈ M ′ and [n]k /∈ D′

A, then there exists
1 ≤ λ ≤ l such that n+nλ ∈ A and [n+nλ]k /∈ DA. Similarly, if n+ai,A /∈ M ′ and
[n]k ∈ D′

A, then there exists 1 ≤ λ ≤ l such that n+ nλ /∈ A and [n+ nλ]k ∈ DA.
In either case, we have

n+ nλ ∈ {0 ≤ m ≤ max(A) : [m]k ∈ DA}	A.

Now |C	Ci| ≤ lεmax(A) follows from the fact that we have l-many different
possibilities for λ and

|{0 ≤ m ≤ max(A) : [m]k ∈ DA}	A| ≤ εmax(A).

This proves the claim.
Let M ′′ =

⋃
i∈Z

(B + ai,A). We next claim that for every N ≥ 2max(A)/ε, we
have

|{n ∈ M ′ : 1 ≤ n ≤ N}	{n ∈ M ′′ : 1 ≤ n ≤ N}|
N

≤ (l + 1)ε+ ε.
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To see this, let s = min{i : 1 ≤ ai,A ≤ N} and r = max{i : 1 ≤ ai,A ≤ N}. Then
(r − s)max(A) ≤ N . Note that

M ′ ∩ [1, N ] =

r−1⋃
i=s

(Bi + ai,A) ∪D0

and

M ′′ ∩ [1, N ] =
r−1⋃
i=s

(B + ai,A) ∪D1

for some D0, D1 ⊆ [1, as,A) ∪ [ar,A, N ]. Thus by the preceding claim we have

|(M ′ ∩ [1, N ])	(M ′′ ∩ [1, N ])| ≤ 2max(A) +
r−1∑
i=s

|B	Bi|

≤ 2max(A) + (r − s)(l+ 1)εmax(A)

≤ εN + (l + 1)εN = (l + 2)εN.

It now follows that∣∣∣ 1
N

∑
n∈M ′

1≤n≤N

μ(n)
∣∣∣ ≤ (l + 2)ε+

∣∣∣ 1
N

∑
n∈M ′′

1≤n≤N

μ(n)
∣∣∣.

We conclude the proof by showing that, for N > 3max(A)/ε,

∣∣∣ ∑
n∈M ′′

1≤n≤N

μ(i)
∣∣∣ ≤ εN + εN +

N/Lk∑
j=0

k−1∑
a=0

∣∣∣ ∑
m∈[z+jLk,z+(j+1)Lk)

m≡a mod k

μ(m)
∣∣∣ ≤ 3εN.

To see this, for each s ≤ i ≤ r, let ti = max{j ∈ Z : z + jLk ≤ ai,A} and
ui = max{j ∈ Z : z + jLk ≤ ai,A + max(A)}. Then in the above inequality
the first error term of εN allows us to consider, instead of M ′′ ∩ [1, N ], the set
M ′′ ∩ [z + tsLk, z + trLk), since the difference is bounded by 2max(A) + Lk ≤
3max(A) ≤ εN . Since N > 3max(A)/ε > N0, we may apply Theorem 1.10 to get
the third term of the above inequality, which is an over-estimate of the sum∣∣∣ ∑

n∈M ′′∩[z+tsLk,z+trLk)

μ(m)
∣∣∣

except over the intervals [z + tiLk, z + (ti + 1)Lk) and [z + uiLk, z + (ui + 1)Lk)
for s ≤ i < r. Finally, the total error on these intervals is bounded by (r− s)2Lk ≤
[N/max(A)]2Lk ≤ εN , which gives the second error term of εN . �

Corollary 2.3. Let M ⊆ Z be an accc. Then M is orthogonal to the Möbius
function.

Proof. This is a direct consequence of Theorem 2.2 with l = 1 and n1 = 0. �

Theorem 2.4. Let (X,T ) be an accc rank-one subshift. Then (X,T ) is Möbius
disjoint.

Proof. Let

F = {fn1
fn2

· · · fnl
: l ∈ N and n1, n2, . . . , nl ∈ Z} ∪ {fconst},
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where fn : X → R is the projection onto the n-th coordinate and fconst : X → R

is the constant function fconst(x) = 1. Note that F separates points since for every
x, y ∈ X with x �= y there exists n ∈ Z such that fn(x) = x(n) �= y(n) = fn(y).
Since F contains a nonzero constant function, by the Stone–Weierstrass Theorem
the algebra generated by functions in F is dense in the space of all continuous
functions onX with the uniform convergence topology. Furthermore, since Sarnak’s
property is closed under taking the limit with uniform convergence topology, it is
enough to show Sarnak’s property for every continuous function in the algebra
(closed under taking linear combinations and multiplication) generated by F . Note
that since F is closed under multiplication, the algebra generated by F is equal to

{c1g1 + · · ·+ clgl : l ∈ N, c1, c2, . . . , cl ∈ R, and g1, g2, . . . , gl ∈ F}.
We next show Sarnak’s property for f = fn1

fn2
· · · fnl

∈ F . Let x ∈ X. Then
Mx = {n ∈ Z : x(n) = 0} is an accc. For any subset I ⊆ {1, . . . , l}, say I =
{i1, . . . , ip}, and for N ∈ N, we have

1

N

∑
n+ni1

,...,n+nip∈Mx

1≤n≤N

μ(n) =
1

N

∑
1≤n≤N

μ(n)(1− x(n+ ni1)) · · · (1− x(n+ nip)),

which approaches 0 as N → ∞ by Theorem 2.2. Now observe

1

N

∑
1≤n≤N

μ(n)fn1
(Tnx)fn2

(Tnx) · · · fnl
(Tnx)

=
1

N

∑
1≤n≤N

μ(n)x(n+ n1)x(n+ n2) · · ·x(n+ nl)

=
1

N

∑
1≤n≤N

μ(n)(1− (1− x(n+ n1))) · · · (1− (1− x(n+ nl)))

=
∑

I⊆{1,...,l}
I={i1,...,ip}

(−1)p
1

N

∑
1≤n≤N

μ(n)(1− x(n+ ni1)) · · · (1− x(n+ nip)).

Thus, by applying Theorem 2.2 as above 2l-many times, we get

1

N

∑
1≤n≤N

μ(n)fn1
(Tnx)fn2

(Tnx) · · · fnl
(Tnx) → 0.

Finally, we show Sarnak’s property for f = c1g1 + · · ·+ clgl assuming that each gi
satisfies Sarnak’s property. Here, for every ε > 0 there exists N0 ∈ N such that for
every N ≥ N0 we have

∣∣∣ 1
N

∑
n≤N

μ(n)f(Tnx)
∣∣∣ =∣∣∣ l∑

i=1

ci
1

N

∑
n≤N

μ(n)gi(T
nx)

∣∣∣ ≤
(

l∑
i=1

|ci|
)
ε.

�

Corollary 2.5. Let (X,μ, T ) be a symbolic rank-one transformation that is mea-
sure theoretically isomorphic to an odometer. Then the rank-one subshift (X,T ) is
Möbius disjoint.

Proof. This is a direct consequence of Theorem 1.6(b) and Theorem 2.4. �
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We note that Corollary 2.5 also follows from Theorem 1.2 in [10]. In fact, The-
orem 1.2 in [10] shows Sarnak’s conjecture for all topological dynamical systems
(X,T ) such that every invariant Borel probability measure on X has discrete spec-
trum. Our method is different from the approach in [10] and allows us to verify
Sarnak’s conjecture for accc rank-one subshifts.

Also, we note that Sarnak’s conjecture is preserved under topological isomor-
phisms but not necessarily under measure-theoretical isomorphisms. In [5], the
authors show Sarnak’s conjecture for specific strictly ergodic topological dynamical
systems that are models of (measure theoretically isomorphic to) an odometer.

3. Generalized Katok’s maps

In this section we verify Sarnak’s conjecture for a class of rank-one subshifts
which generalize Katok’s map studied in [2]. We first define this class. Recall that
a generating sequence {vn}n∈N of a rank-one subshift is defined recursively from the
cutting parameter {rn}n∈N and the spacer parameter {sn,i}n∈N,0<i≤rn by v0 = 0
and

vn+1 = vn1
sn,1vn1

sn,2 · · · vn1sn,rn

for n ∈ N. For each integer m ≥ 2, let Km be the set of all infinite rank-one words
V ∈ 2N with generating sequences {vn}n∈N such that there are natural numbers
0 ≤ tn,1, tn,2, . . . , tn,m ≤ m− 1 for each n ∈ N, satisfying

(1) rn is divisible by m.
(2) sn,i = tn,
 m

rn
i� for 0 < i ≤ rn.

(3) lim inf
n→∞

log log(rn)

log log log(|vn|)
≥ 2.

Note that the original Katok’s map is a special case in K2, and Condition (3)
is weaker than the condition in [2] which requires limn→∞ rn/|vn| = +∞. Let
K =

⋃
m≥2 Km. We show Sarnak’s conjecture for (XV , T ) for all V ∈ K.

Theorem 3.1. Let V ∈ K, x ∈ XV , and n1, n2, . . . , nl be integers. Let Mx = {n ∈
Z : x(n) = 0} and

M ′
x = {n ∈ Z : n+ n1, n+ n2, . . . , n+ nl ∈ Mx}.

Then M ′
x is orthogonal to the Möbius function.

Proof. Fix m ≥ 2 such that V ∈ Km. We may assume Mx is nonempty since
otherwise M ′

x is the empty set and therefore orthogonal to the Möbius function.
By Condition (3) of the definition of Km, there exists N0 ∈ N such that for every
n ≥ N0 we have log log(rn) ≥ 2 log log log(|vn|). For each n ∈ N, let An = {0 ≤ i <
|vn| : vn(i) = 0}. Then 0 ∈ An, An is a building block of Mx and we have

max(An) = |vn| − tn−1,m − tn−2,m − · · · − t0,m − 1 = |vn| −Om(1).

For every n ∈ N fix a nondecreasing sequence {aj,An
}j∈Z of integers such that

Mx =
⋃

j∈Z
(An + aj,An

) and that aj+1,An
− aj,An

> max(An) or aj+1,An
= aj,An

,
for every j ∈ Z.

Let δ = max(|n1|, . . . , |nl|). For a moment, fix j ∈ Z and n ∈ N, and consider
the set An+1 + aj,An+1

, which is one of the translations of the building block An+1

in Mx. By the definition of Km, we can write

vn+1 = (vn1
tn,1)

rn
m (vn1

tn,2)
rn
m · · · (vn1tn,m)

rn
m = un,1un,2 · · ·un,m,
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where un,k = (vn1
tn,k)

rn
m for 1 ≤ k ≤ m. For each 0 ≤ � < m, let σn,� be the

starting position of un,�+1 in vn+1, that is,

σn,� = (|vn|+ tn,1 + · · ·+ |vn|+ tn,�)
rn
m

,

and let σn,m = |vn+1|. We say B ⊆ Z is a complete congruency class mod q (ccc
mod q) on an interval [a, b) if for every n ∈ [a, b − q), n ∈ B iff n + p ∈ B.
Then for each 0 ≤ � < m, An+1 is a ccc mod |vn| + tn,�+1 on [σn,�, σn,�+1), and
An+1 + aj,An+1

is a ccc mod |vn| + tn,�+1 on [aj,An+1
+ σn,�, aj,An+1

+ σn,�+1).
Since Mx ∩ [aj,An+1

, aj+1,An+1
) = An+1 + aj,An+1

, it follows that Mx is a ccc
mod |vn| + tn,�+1 on [aj,An+1

+ σn,�, aj,An+1
+ σn,�+1), and that M ′

x is a ccc mod
|vn|+ tn,�+1 on [aj,An+1

+ σn,� + δ, aj,An+1
+ σn,�+1 − δ).

For any n ∈ N and 0 ≤ � < m, let

Cn,� =
⋃
j∈Z

(
M ′

x ∩ [aj,An+1
+ σn,� + δ, aj,An+1

+ σn,�+1 − δ)
)
,

qn,� = |vn| + tn,�+1, and λn,� = qn,�
rn
m − 2δ. Then each Cn,� is a union of arith-

metic progressions each of which has approximately rn/m-many terms of common
difference qn,�, contained within an interval of length no longer than λn,�. Let

Cn =
⋃m−1

�=0 Cn,�. We will find large enough n to apply Theorem 1.10 to each Cn,�.
Fix 0 < ε < 1

100 and a bound L0 corresponding to ε given by Theorem 1.10. For
each n ≥ N0, we first find Ln ≥ L0 such that for all 0 ≤ � < m,∑

p|qn,�

p prime

1

p
≤ (1− ε)

∑
p≤Ln
p prime

1

p
.

By [12, Lemma 3.2] we have∑
p|q

p prime

1

p
≤ log log log(q) +O(1)

and from [3, Theorem 4.12] we have∑
p≤L

p prime

1

p
= log log(L) +O(1).

Since log log log(qn,�) = log log log(|vn|) +O(1) and log log(rn) ≥ 2 log log log(|vn|),
there exists N1 ≥ N0 such that, for every n ≥ N1, we have |vn| ≥ m and, setting
Ln = εrn/4m, Ln ≥ L0. Now log log(Ln) = log log(rn) +Oε(1) and∑

p|qn,�

p prime

1

p
≤ (1− ε)

∑
p≤Ln
p prime

1

p

for all 0 ≤ � < m. Note that Ln ≥ L0 but

Lnqn,� ≤ ε
rn
4m

(|vn|+m) ≤ ε
rn|vn|
2m

≤ ε
|vn+1|
2m

for all 0 ≤ � < m.
Finally let L = LN1

and let

N2 = max{N1, N0(qN1,�, L) : 0 ≤ � < m},
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where N0(·, ·) is given by Theorem 1.10. Denote H = |vN1+1| and let N ≥
2N2H/ε > N2. By Theorem 1.10, for each p = 0, . . . ,m − 1 and q = |vN1

| + p
we have

N/Lq∑
j=0

q−1∑
a=0

∣∣∣ ∑
i∈[zq+jLq,zq+(j+1)Lq)

i≡a mod q

μ(i)
∣∣∣ ≤ εN.

On the other hand, let s = min{j ∈ Z : 1 ≤ aj,AN1+1
≤ N}, r = max{j ∈ Z : 1 ≤

aj,AN1+1
≤ N}, E� = CN1,� ∩ [as,AN1+1

, ar,AN1+1
), and E =

⋃m−1
�=0 E�. Then the

sum
|vN1

|+m−1∑
q=|vN1

|

N/Lq∑
j=0

q−1∑
a=0

∣∣∣ ∑
i∈[zq+jLq,zq+(j+1)Lq)

i≡a mod q

μ(i)
∣∣∣

is an over-estimate of ∣∣∣ ∑
i∈E

1≤i≤N

μ(i)
∣∣∣

with an error no bigger than

m(r − s)2L(|vN1
|+m) ≤ m

N

H
2ε

H

2m
= εN.

To justify this error estimate, note that each application of Theorem 1.10 with
q = |vN1

|+ p where p = qN1,� gives an over-estimate of∣∣∣ ∑
i∈Ep

1≤i≤N

μ(i)
∣∣∣

with an error occurring near each end of the interval

[aj,AN1+1
+ σN1,� + δ, aj,AN1+1

+ σN1,�+1 − δ)

within an interval of length LqN1,�.
Finally, since |(M ′

x ∩ [1, N ])	E| ≤ 2H ≤ εN , we obtain∣∣∣ ∑
i∈M ′

x
1≤i≤N

μ(i)
∣∣∣ ≤ εN+

∣∣∣ ∑
i∈E

1≤i≤N

μ(i)
∣∣∣ ≤ εN +mεN + εN = (m+ 2)εN.

�

With an argument similar to the proof of Theorem 2.4, we obtain Corollary 3.2
of Theorem 3.1.

Corollary 3.2. Let V ∈ K. Then (XV , T ) is Möbius disjoint.

4. Further generalizations

In this last short section we note that the results in Section 3 can be generalized
further. We use the same notation from previous sections for rank-one subshifts. In
particular, let An = {0 ≤ i ≤ |vn| − 1 : vn(i) = 0}. In general, our techniques can
only be applied in case there exists m ∈ N such that An for arbitrarily large n can
be approximated with a union of long arithmetic progressions with at most m-many
common differences. In order to apply Theorem 1.10, these common differences and
the lengths of the arithmetic progressions need to be constrained by (1.3), which



470 M. ETEDADIALIABADI AND S. GAO

usually results in some growth conditions on the cutting parameter and moderation
(or bounded) conditions on the spacer parameter of the rank-one subshift.

Here we specify one concrete class of rank-one subshifts that is broader than K
and satisfies Sarnak’s conjecture. Define

Cn = {1, rn} ∪ {2 ≤ i ≤ rn − 1 : sn,i−1 �= sn,i}

and enumerate the members of Cn in increasing order as cn,1, cn,2, . . . , cn,pn
. The

arguments in Section 3 can be repeated to show Sarnak’s conjecture for (XV , T )
under the following conditions:

(i) lim
n→∞

log log(rn/pn)

log log(rn)
= 1,

(ii) K = lim sup
n→∞

∑rn
i=1 sn,i
rn|vn|

< +∞,

(iii) lim sup
n→∞

log log(rn)

log log log(|vn|)
> 1, and

(iv) there existsm ∈ N such that for every ε > 0 there existsN ∈ N such that for
n ≥ N there exists A ⊆ [1, rn] with |A| ≥ (1−ε)rn and |{sn,a : a ∈ A}| ≤ m.

We sketch the proof to illustrate how the conditions are applied. Fix 0 < ε < 1
100 .

The strategy is to approximate An+1 (with a suitably defined, large enough n) with
a union of arithmetic progressions with common difference qi = |vn| + sn,cn,i

and
length Li = cn,i+1 − cn,i such that (1.3) is satisfied. Note that condition (i) lets

us guarantee that Li ≥
√

rn
pn

by removing at most ε|vn+1| many points, that is, we

may assume that log log(rn)− log log(Li) = O(1). Condition (ii) lets us guarantee
qi ≤ |vn|2 by removing at most ε|vn+1| many points, that is, we may assume
log log log(|vn|)− log log log(qi) = O(1). In light of conditions (i) and (ii), condition
(iii) lets us choose n large enough such that (1.3) holds for every i with q = qi and
L = Li. Finally, condition (iv) guarantees that there are at most m-many different
values of qi (and therefore we only need to apply Theorem 1.10 m-many times) by
removing at most ε|vn+1| many points.

Conditions (i)–(iv) define a class of rank-one subshifts that is more general than
K. In addition, they also include rank-one subshifts correspondent to certain flat
stacks. A flat stack is a rank-one transformation T on a probability measure space
(X,μ) (see [6, Definition 2]) with the extra condition that for every ε > 0 we can
choose F in Definition 2 in [6] such that μ(ThFΔF ) ≤ εμ(F ). In particular, if
(XV , T ) is a rank-one subshift correspondent to a flat stack then

lim
n→∞

|{1 ≤ i ≤ rn : sn,i �= 0}|
rn

= 0.

Thus, it satisfies conditions (ii) and (iv).
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