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A NEW FAMILY OF IRREDUCIBLE SUBGROUPS

OF THE ORTHOGONAL ALGEBRAIC GROUPS

MIKAËL CAVALLIN AND DONNA M. TESTERMAN

Abstract. Let n ≥ 3, and let Y be a simply connected, simple algebraic group
of type Dn+1 over an algebraically closed field K. Also let X be the subgroup
of type Bn of Y, embedded in the usual way. In this paper, we correct an
error in a proof of a theorem of Seitz (Mem. Amer. Math. Soc. 67 (1987),
no. 365), resulting in the discovery of a new family of triples (X,Y, V ), where
V denotes a finite-dimensional, irreducible, rational KY -module, on which X
acts irreducibly. We go on to investigate the impact of the existence of the
new examples on the classification of the maximal closed connected subgroups
of the classical algebraic groups.

1. Introduction

LetK be an algebraically closed field of characteristic p ≥ 0. In the 1950s, Dynkin
determined the maximal closed connected subgroups of the simple classical type lin-
ear algebraic groups defined over K, assuming char(K) = 0 (see [11, 12]); in 1987,
Seitz [23] established an analogous classification in the case where char(K) > 0. The
main step in both of these classifications is the determination of all triples (X,Y, V ),
where Y is a simple linear algebraic group defined over K, X is a proper closed
connected subgroup of Y , and V is a non-trivial irreducible, finite-dimensional
(p-restricted if char(K) = p > 0) KY -module on which X acts irreducibly. The de-
termination of these so-called “irreducible triples” is covered in the work of Dynkin
[11, 12] (in case char(K) = 0), Seitz [23] (in case char(K) > 0 and Y is a classical
group), and Testerman [26] (in case char(K) > 0 and Y is of exceptional type).
The existence of an irreducible triple of the form (X,Y, V ) as above, arising from a
rational representation ρ : Y → GL(V ), indicates that ρ(X) is not maximal in the
smallest classical group Isom(V ) containing both ρ(X) and ρ(Y ), while the large
majority of tensor-indecomposable irreducible representations of a simple algebraic
group give rise to maximal subgroups of the smallest classical group containing the
image.

Recently, the second author’s PhD student Nathan Scheinmann discovered an
irreducible triple which does not appear in [23, Theorem 1, Table 1]. Namely, take
K to be of characteristic 3, and X = B3 embedded in the usual way in Y = D4

as the stabilizer of a non-singular 1-space on the 8-dimensional natural module for
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Y . Consider the irreducible KY -module with highest weight λ1 +λ2 +λ3 (here λi,
1 ≤ i ≤ 4, is a set of fundamental weights for D4, λ1 is the highest weight of the
natural KD4-module, and we label Dynkin diagrams as in [3]). The restriction of
the highest weight to a maximal torus of B3 shows the existence of a B3-composition
factor of highest weight ω1 + ω2 + ω3 (ωi, i = 1, 2, 3, a set of fundamental weights
for B3) and consulting [19], one sees that these modules are both of dimension 384,
and hence X acts irreducibly on V .

The absence of this example from [23, Table 1] is the result of an error in the
proof of [23, 8.7]. Here, we correct the error in this proof and, in so doing, establish
the existence of a whole new family of modules V for the group Y = Dn+1 on
which X = Bn acts irreducibly. For a fixed n and a fixed p, there are finitely many
modules V , but for each n there exist infinitely many primes p for which there
is a new example. The precise description of the family is given in Theorem 1.2
below. In addition to this infinite family, our investigations revealed one further
example of an irreducibly acting subgroup which does not appear in [23, Table 1],
namely the group Y = C4, defined over a field of characteristic 2, acting on V , the
irreducible module with highest weight λ3, has a subgroup X = B3, contained in a
maximal rank subgroup of type D4 ⊂ C4, both acting irreducibly on V . The triple
(D4, C4, V ) appears in [23, Table 1], as well as the triple (B3, D4, V |D4

). However,
the triple (B3, C4, V ) is omitted.

The goal of this paper is two-fold: first we concentrate on the embedding X =
Bn ⊂ Y = Dn+1 and determine all p-restricted irreducible representations of Y
whose restriction to X is irreducible, thereby correcting [23, 8.7]; see Theorem 1.2
below. The second goal of the paper is to show that the existence of the new ex-
amples has no further influence on the main results of [23] and [26]. Indeed, the
proofs of the main theorems in these two articles depend on an inductive hypoth-
esis, concerning the list of examples for smaller rank groups. The new family of
examples for the pair (Bn, Dn+1), as well as the one “new” example for the pair
(B3, C4), alters the inductive hypothesis and therefore requires one to take these
new examples into consideration when working through all other possible embed-
dings. This is precisely what has been carried out in the proofs of Proposition 1.5,
Proposition 1.7, and Theorem 1.8.

Remark 1.1. Combining the results [23, Theorem 1], [26, Main Theorem], Theo-
rem 1.2, Proposition 1.5, Proposition 1.7, and Theorem 1.8, we conclude that the
only new examples to be added to [23, Table 1] are those for pairs (X,Y ) as follows:

• (Bn, Dn+1), n ≥ 3, and irreducible modules described in Theorem 1.2, and
• (B3, C4), when p = 2 and B3 is embedded in a short root maximal rank
D4 subgroup of C4, each acting irreducibly on the irreducible KC4-module
with highest weight λ3. (Here λi, 1 ≤ i ≤ 4, is a set of fundamental weights
for C4 and we label Dynkin diagrams as in [3]).

Theorem 1.2 covers the embedding Bn ⊂ Dn+1 and the case of B3 ⊂ C4 is
discussed at the end of Section 4. This assertion of the completeness of the rectified
list is dependent upon our Hypothesis 1.4 below, where we state explicitly which
results from [23] are assumed for the proofs of our main results.

Statement of results. Let Y = Spin2n+2(K) (n ≥ 2) be a simply connected,
simple algebraic group of type Dn+1 over K. Also let X be the subgroup of type Bn,
embedded in Y in the usual way, as the stabilizer of a non-singular 1-dimensional
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subspace of the natural module for Y. Fix TY a maximal torus of Y and BY ⊂
Y a Borel subgroup containing TY . Denote by {λ1, . . . , λn+1} the corresponding
set of fundamental weights for TY , ordered as in [3], where the natural (2n + 2)-
dimensional KY -module has highest weight λ1. Let σ be a graph automorphism of
Y stabilizing TY , and with X = Y σ, the group of σ-fixed points. Our first main
result is the following; the proof is given in Section 3.

Theorem 1.2. Let Y = Spin2n+2(K) be a simply connected, simple algebraic group
of type Dn+1 over K, n ≥ 2, and let X be the subgroup of type Bn, as above.
Consider a non-trivial, irreducible KY -module V having p-restricted highest weight
λ =

∑n+1
r=1 arλr. Then X acts irreducibly on V if and only if λ or σ(λ) is equal to∑n

r=1 arλr, with an �= 0, such that for all 1 ≤ i < j ≤ n such that aiaj �= 0 and
ar = 0 for all i < r < j, we have p | (ai + aj + j − i).

The set of weights which is listed in [23, Table 1] for the pair (Bn, Dn+1) is

{cλn, aλk + bλn : abc �= 0, p | (a+ b+ n− k)}.
So we see that the new examples are a generalization of those found by Seitz, where
one congruence condition is replaced by a set of congruence conditions. (Note that
there are new examples only if n ≥ 3.) It is perhaps informative to point out
precisely what error occurs in the proof of [23, 8.7], where the embedding Bn⊂Dn+1

is considered. In the proof, Seitz defines a certain vector in the irreducible KY -
module of highest weight λ and shows that this vector is annihilated by all simple
root vectors in the Lie algebra of X, which then implies that X does not act
irreducibly. However if λ satisfies the congruence conditions, the vector is in fact
the zero vector in V and so does not give rise to a second composition factor as
claimed.

The omission of the triple (B3, C4, λ3) from [23, Table 1] is of a different nature,
and occurs in the proof of [23, 15.13]. In the first part of the proof, there is a
reduction to the case where X acts irreducibly on the natural KY -module with
highest weight μ, and the precise embedding we have here is for μ = δ3 (following
Seitz’s notation, δ3 is the third fundamental dominant weight), so Y = C4 or D4.
Then Seitz argues that λ = λk for some k. Since he is assuming that V is not the
natural KY -module, he invokes the inductive hypothesis and deduces that λ = λ3.
Now Seitz concludes that V is a spin module for Y . Evidently, he considers only
the embedding of X in D4, omitting to include the case of X in C4.

Returning to the family of examples described in Theorem 1.2, it is natural to
ask how one might discover the given set of congruence conditions, and here we
must give credit to the work of Ford in [13], where he studied irreducible triples
of the form (H,G, V ), G a simple classical type algebraic group over K, H a
disconnected closed subgroup of G with H◦ simple, and V an irreducible KG-
module on which H acts irreducibly. He discovered a family of irreducible triples
for the embedding Dn.2 ⊂ Bn, where the highest weight of the irreducible KBn-
module satisfies similar congruence conditions. His methods were later applied
by Cavallin in [9] when studying irreducible KBn-modules having precisely two
Dn-composition factors.

The second goal of this article is to show that the existence of the new exam-
ples for the pair (X,Y ) = (Bn, Dn+1), described by Theorem 1.2, and the fur-
ther omitted example (B3, C4) has no further influence on the main theorems in
[23, 26]. To explain the issue which must be addressed and our approach to the



48 MIKAËL CAVALLIN AND DONNA M. TESTERMAN

problem, we must describe to some extent the strategy of the proof of [23, The-
orem 1]. First note that the assumption that X acts irreducibly on some KY -
module implies that X is semisimple. One of the main techniques used to deter-
mine the triples (X,Y, V ) as above involves arguing inductively, working with a
suitable embedding PX = QXLX ⊂ PY = QY LY of parabolic subgroups, where
QX = Ru(PX) ⊂ Ru(PY ) = QY . Indeed, [23, 2.1] implies that if X acts irre-
ducibly on V, then the derived subgroup L′

X acts irreducibly on the commutator
quotient V/[V,QY ], an irreducible KL′

Y -module. Moreover, the highest weight of
V/[V,QY ] as a KL′

Y -module is the restriction of the highest weight of V to an
appropriate maximal torus of L′

Y . (This is a variation of a result of [24].) Thus,
Seitz and Testerman proceed by induction on the rank of X; Seitz treats the case
X of type A1 by ad hoc methods, exploiting the fact that all weights of an irre-
ducible KA1-module are of multiplicity one. Now Theorem 1.2 above introduces
a new family of examples of irreducible triples. As a consequence, one needs to
reinvestigate all embeddings X ⊂ Y where the pair Bm ⊂ Dm+1, m ≥ 3, may arise
when considering the projection of a Levi factor L′

X of X into a simple component
of a Levi factor L′

Y of Y , under the additional hypothesis that X acts irreducibly
on a KY -module whose highest weight has restriction to the Dm+1-component of
L′
Y among the new examples described by Theorem 1.2. This is precisely what we

consider in Proposition 1.5 below. A similar analysis must be carried out for the
one new example (B3, C4) as a potential embedding of Levi factors. This easier
case is covered by Proposition 1.7. In order to state the results, we introduce the
following terminology.

Definition 1.3. We will say a p-restricted dominant weight λ for Y = Dm+1,
m ≥ 3, satisfies the congruence conditions if

(i) λ =
∑m

i=1 aiλi,
(ii) am �= 0,
(iii) there exists i < j ≤ m− 1 with aiaj �= 0, and
(iv) for all 1 ≤ i < j ≤ m such that aiaj �= 0 and ar = 0 for all i < r < j, we

have p | (ai + aj + j − i).

Note that the above congruence conditions are precisely those satisfied by the
highest weights in Theorem 1.2 but not appearing in [23, Table 1]. (See the remark
following the statement of Theorem 1.2.)

For the proofs of Proposition 1.5, Proposition 1.7, and Theorem 1.8, we require
the following inductive hypotheses.

Hypothesis 1.4. Assume char(K) = p > 0. Let G be a simple algebraic group
defined over K and H a semisimple, proper, closed subgroup of G, where the pair
(H,G) is one of the following:

(i) (H,Bn), n ≥ 3,
(ii) (B�, An), � ≥ 2,
(iii) (C3, Dn), n ≥ 4,
(iv) (C3, A5).

Let V be a p-restricted irreducible KG-module, with corresponding representation
ρ : G→GL(V ). Then H acts irreducibly on V if and only if the triple (ρ(H), ρ(G), V )
appears in [23, Table 1], where the highest weight of V is given up to graph auto-
morphisms of G.
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The classical case. Let Y be of classical type. The next two results ensure
that, under the assumption of Hypothesis 1.4 for all embeddings H ⊂ G with
rank(G) < rank(Y ), the only new examples of irreducible triples (X,Y, V ) are
those described in Remark 1.1.

Proposition 1.5. Let Y be a simply connected, simple algebraic group of type
Dn+1, n ≥ 4, and X a semisimple, proper, closed subgroup of Y acting irreducibly
on a p-restricted irreducible KY -module V of highest weight λ, V not the natural
module for Y . Assume Hypothesis 1.4 for all embeddings H ⊂ G with rank(G) <
rank(Y ). Moreover, if X is simple, assume the following conditions are satisfied:

(i) PX is a proper parabolic subgroup of X, with Levi factor LX of type
Bm−1, m ≥ 4.
(ii) PY is a parabolic subgroup of Y with PX ⊂ PY and Ru(PX) ⊂ Ru(PY ).
(iii) For a Levi factor LY of PY , writing L′

Y = L1L2 · · ·Lt, a commuting
product of simple groups, Lt is of type Dm, and L′

X projects non-trivially
into Lt.
(iv) For the irreducible KL′

Y -module V/[V,QY ], write V/[V,QY ] = M1 ⊗
· · · ⊗Mt, where Mi is an irreducible KLi-module.
(v) The highest weight of the KLt-module Mt satisfies the congruence con-
ditions.

Then one of the following holds:

(a) X ⊂ Bk ×Bn−k for some 0 < k < n, and λ = λn or λn+1, or
(b) X = Bn and the embedding of X in Y is the usual embedding of Bn in
Dn+1, that is, Bn is the stabilizer of a non-singular 1-space on the natural
(2n+ 2)-dimensional KY -module.

Moreover, in case (a) above, the subgroup Bk × Bn−k acts irreducibly on the KY -
modules of highest weights λn and λn+1.

Remark 1.6. Now to go on to determine the irreducible triples satisfying (a), we
rely on Hypothesis 1.4(i), and for those satisfying (b), we apply Theorem 1.2.

Proposition 1.7. Assume p = char(K) = 2. Let Y be a simply connected, simple
algebraic group of type Cn, n ≥ 5, and X a semisimple, proper, closed subgroup of
Y with proper Levi factor of type B3. Let V be a p-restricted irreducible KY -module
of highest weight λ, V not the natural module for Y . Assume Hypothesis 1.4 for
all embeddings H ⊂ G with rank(G) < rank(Y ). Moreover, assume the following
conditions are satisfied:

(i) PX is a proper parabolic subgroup of X, with Levi factor LX of type B3.
(ii) PY is a parabolic subgroup of Y with PX ⊂ PY and Ru(PX) ⊂ Ru(PY ).
(iii) For a Levi factor LY of PY , writing L′

Y = L1L2 · · ·Lt, a commuting
product of simple groups, Lt is of type C4, and L′

X projects non-trivially
into Lt.
(iv) For the irreducible KL′

Y -module V/[V,QY ], write V/[V,QY ] = M1 ⊗
· · · ⊗Mt, where Mi is an irreducible KLi-module.
(v) The highest weight of the KLt-module Mt is the third fundamental
dominant weight for Lt.

Then X acts reducibly on V .
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The exceptional case. We now turn to the consideration of the case where Y is
a simply connected, simple algebraic group of exceptional type over K and X is
a proper closed, connected subgroup of Y acting irreducibly on some p-restricted
irreducible KY -module. As usual, X is then semisimple, and once again, we must
consider the possibility of a parabolic embedding PX ⊂ PY , with Levi factor LX

of PX , of type Bm, Levi factor LY of PY , having a simple factor of type Dm+1,
with the action on the commutator quotient arising from a weight which satisfies
the congruence conditions. (Note that the pair (B3, C4) will never occur as an
embedding of Levi factors when Y is exceptional.) In particular, Y is of type En

for n = 6, 7 or 8.

Theorem 1.8. Let Y be a simply connected, simple algebraic group of type En,
6 ≤ n ≤ 8, defined over K and let X be a semisimple, proper, closed, connected
subgroup of Y, having a proper parabolic subgroup with Levi factor of type Bm for
some m ≥ 3. Assume Hypothesis 1.4 for all embeddings H ⊂ G with rank(G) <
rank(Y ). Let V be a non-trivial irreducible KY -module with p-restricted highest
weight λ. Then X acts irreducibly on V if and only if Y = E6, X = F4, and one
of the following holds:

(i) λ = (p− 3)λ1 or λ = (p− 3)λ6, with p > 3.
(ii) λ = λ1 + (p− 2)λ3 or λ = (p− 2)λ5 + λ6, with p > 2.

Note that the existence of the examples arising in Theorem 1.8 had already been
established by Testerman [26, Main Theorem]. The proof of the “only if” direction
requires us to treat, eventually ruling out, several new potential configurations that
arise from Theorem 1.2 in the inductive process, as explained in Section 5.

About the proofs. We conclude this section with a brief discussion of the methods
and further remarks on our inductive assumption (Hypothesis 1.4). In order to
prove Theorem 1.2, we first show that it is enough to work with the Lie algebras of
Y and X. Indeed, as λ is p-restricted, the irreducible KY -module V is generated by
a maximal vector v+ for BY as a module for the universal enveloping algebra UY of
Lie(Y ). Therefore in order to show that V |X is irreducible, it suffices to show that
UY v

+ = UXv+, where UX is the universal enveloping algebra of Lie(X). We rely
on the fact that any irreducible module for Y is self-dual as a KX-module (see 3.1
below), and apply the techniques developed by Ford in [13], further investigated by
Cavallin in [9], to establish this generation result.

For the proof of Proposition 1.5, we carry out an analysis used by Seitz in
[23, Section 8], but applied specifically to the group Y = Dm+1. He first shows that
a proper closed connected subgroup X acts irreducibly on a non-trivial irreducible
KY -module only if either X acts irreducibly and tensor indecomposably on the
natural module for Y , or the triple (X,Y, V ) is known. This part of our proof
is not at all original, but we include it for completeness. At this point, however,
our proof proceeds along different lines; we compare the commutator series for
two different parabolic embeddings and obtain conditions on the highest weight
which are compatible with the given congruence conditions only if the pair (X,Y )
is (Bm, Dm+1), which is handled by Theorem 1.2. The proof of Proposition 1.7 is
much simpler given that we are dealing with a fixed-rank embedding.

For the proof of Theorem 1.8, we proceed differently than in [26]; we use the
classification of the maximal closed positive-dimensional subgroups of the excep-
tional type algebraic groups, given in [18], which was not available when [26] was
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written. Hence, we first consider the case where X is maximal, find only the two
examples of the theorem and conclude using the main result of [26] for the group
Y = F4.

In addition to Hypothesis 1.4, we rely upon two further results in [23], namely [23,
Theorem 4.1] and [23, 6.1]. The first result classifies the irreducible triples (X,Y, V )
when rank(X) = rank(Y ), the second covers the case where rank(X) = 1. The
proofs of these results are completely independent of the results in [23, Section 8].
Finally, we will use the results of [23, Section 2] concerning parabolic embeddings
and commutator series in irreducible modules for semisimple groups.

2. Preliminaries

In this section, we introduce the notation that shall be used in the remainder
of the paper, and recall some basic properties of rational modules for simple linear
algebraic groups. We rely on the standard reference [16] for a treatment of this
general theory.

2.1. Notation. Let K be an algebraically closed field of characteristic p ≥ 0, and
let G be a simply connected, simple linear algebraic group over K. (All algebraic
groups considered here will be linear algebraic groups, even if we omit to say so
explicitly.) Also fix a Borel subgroup B = UT of G, where T is a maximal torus of G
and U denotes the unipotent radical of B. Let rank(G) = � and let Π = {α1, . . . , α�}
be the corresponding base of the root system Φ = Φ+�Φ− of G, where Φ+ and Φ−

denote the sets of positive and negative roots, respectively. Throughout we use the
ordering of simple roots as in [3]. Let W be the Weyl group of G, W = NG(T )/T ,
and for α ∈ Φ, denote by sα the corresponding reflection. In addition, let

X(T ) = Hom(T,K∗)

denote the character group of T and write (−,−) for a fixed W -invariant inner
product on the space X(T )R = X(T )⊗Z R. Also let λ1, . . . , λ� be the fundamental
dominant weights for T corresponding to our choice of base Π, that is, 〈λi, αj〉 = δij
for 1 ≤ i ≤ j ≤ �, where

〈λ, α〉 = 2(λ, α)

(α, α)

for λ, α ∈ X(T ), α �= 0. Set X+(T ) = {λ ∈ X(T ) : 〈λ, α〉 ≥ 0 for all α ∈ Π} and
call a character λ ∈ X+(T ) a dominant T -weight (or simply dominant weight, if
the choice of torus is clear in the context). Finally, we say that μ ∈ X(T ) is under

λ ∈ X(T ) (and we write μ � λ) if λ − μ =
∑�

r=1 crαr for some c1, . . . , c� ∈ Z≥0.
We also write μ ≺ λ to indicate that μ � λ and μ �= λ.

2.2. Rational modules. In this section, we recall some elementary facts on
weights and multiplicities, as well as basic properties of Weyl and irreducible mod-
ules for G. Let V be a finite-dimensional, rational KG-module. Then

V =
⊕

μ∈X(T )

Vμ,

where, for μ ∈ X(T ), Vμ = {v ∈ V : tv = μ(t)v for all t ∈ T}. A weight μ ∈ X(T )
is called a weight of V if Vμ �= 0, in which case Vμ is said to be its corresponding
weight space. Also, we denote by mV (μ) the multiplicity of μ in V, and let
Λ(V ) = {μ ∈ X(T ) : Vμ �= 0} denote the set of weights of V and write
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Λ+(V ) = Λ(V ) ∩ X+(T ) for the set of dominant weights of V. It is well known
that each weight of V is W -conjugate to a unique dominant weight in Λ+(V ). Also,
if λ ∈ X+(T ), then wλ � λ for every w ∈ W , and all weights in a W -orbit have
the same multiplicity.

A non-zero vector v+ ∈ V is called a maximal vector of weight λ ∈ Λ(V ) for the
pair (B, T ) if v+ ∈ Vλ and Bv+ ⊆ 〈v+〉K . Now for λ ∈ X+(T ) a dominant weight,
we write VG(λ) for the Weyl module having highest weight λ, and denote by LG(λ)
the unique irreducible quotient of VG(λ). In other words,

LG(λ) = VG(λ)/ rad(λ),

where rad(λ) is the unique maximal submodule of VG(λ), called the radical of
VG(λ). We write Λ(λ) for Λ(VG(λ)) and Λ+(λ) for Λ+(VG(λ)). Also, we denote by
H0(λ) the induced KG-module having highest weight λ. Recall that H0(λ) has a
unique simple submodule, isomorphic to LG(λ), and that

Λ(H0(λ)) = Λ(−w0λ),

where w0 denotes the longest element in W . For μ ∈ X+(T ), we write [V, LG(μ)]
to denote the number of times the irreducible KG-module LG(μ) appears as a
composition factor of V. We also use the notation

Uα = {xα(c) : c ∈ K}
to denote the T -root subgroup of G corresponding to the root α ∈ Φ (that is,
xα : K → G is a morphism of algebraic groups inducing an isomorphism onto
Im(xα), such that txα(c)t

−1 = xα(α(t)c) for t ∈ T and c ∈ K). Finally, we fix a
Chevalley basis B = {fα, hr, eα : α ∈ Φ+, 1 ≤ r ≤ �} for the Lie algebra Lie(G)
of G, compatible with our choice of T ⊂ B, where eα ∈ Lie(G)α, fα ∈ Lie(G)−α

are root vectors for α ∈ Φ+ and hr = [eαr
, fαr

] for 1 ≤ r ≤ �. The proof of the
following result can be deduced from applying the Poincaré-Birkhoff-Witt Theorem
[4] to [10, A. 6.4].

Lemma 2.1. Let λ ∈ X+(T ) be a p-restricted dominant weight for T, and let
V = LG(λ). Also let v+ ∈ V be a maximal vector of weight λ for B, and let
μ ∈ Λ(V ). Then for any fixed ordering ≤ on Φ+, we have

Vμ=

〈
fγ1

· · · fγk
v+ : k∈Z≥0, γ1, · · · , γk∈Φ+, γ1 ≤ · · · ≤ γk,

k∑
r=1

γr = λ− μ

〉
K

.

We conclude this section by illustrating how Lemma 2.1 can provide information
on weight multiplicities in certain irreducible KG-modules in the case where G is of
type A� (� ≥ 2) over K. Consider the dominant T -weights λ = aλ1 + bλ� (a, b ≥ 1)
and μ = (a − 1)λ1 + (b − 1)λ�. Writing V = LG(λ), an application of Lemma 2.1
then shows that Vμ is spanned by

(1) {fα1+···+αr
fαr+1+···+α�

v+, 1 ≤ r ≤ �− 1} ∪ {fα1+···+α�
v+},

where v+ is a maximal vector in V for B. (We used the fact that fαi+···+αj
v+ = 0

for 1 < i ≤ j < � together with the commutator formula.) Finally, we set

V1,� = 〈fα1+···+αr
fαr+1+···+α�

v+ : 1 ≤ r ≤ �− 1〉K .

Proposition 2.2. Assume G is of type A� over K for some � ∈ Z≥2 and consider
the dominant T -weight λ = aλ1 + bλ� ∈ X+(T ), 1 ≤ a, b < p. Set V = LG(λ). Also
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let μ = (a− 1)λ1 + (b− 1)λ�. Then the following assertions are equivalent:

(i) The weight μ affords the highest weight of a composition factor of VG(λ).
(ii) The inequality mVG(λ)(μ) > mV (μ) is satisfied.
(iii) The generators in (1) are linearly dependent.
(iv) The element fα1+···+α�

v+ belongs to V1,�.
(v) The divisibility condition p | a+ b+ �− 1 is satisfied.

Proof. Clearly (i) implies (ii). Conversely, the only dominant weights ν ∈ Λ+(V )
such that μ ≺ ν ≺ λ are λ − α1 (if a > 1) and λ − α� (if b > 1). These weights
have multiplicity 1 in VG(λ) and hence none of them can afford the highest weight
of a composition factor of VG(λ) by [22]. Consequently (ii) implies (i). Now
an application of Freudenthal’s formula yields mVG(λ)(μ) = �, thus showing that
� = mVG(λ)(μ) > mV (μ) if and only if the � generators in (1) are linearly dependent.

Therefore (ii) and (iii) are equivalent as well. Finally, let (ηr)1≤r≤� ∈ K� and set

w+ =

�−1∑
r=1

ηrfα1+···+αr
fαr+1+···+α�

v+ + η�fα1+···+α�
v+.

A straightforward calculation shows that Bw+ = 〈w+〉K if and only if p | a+b+�−1
and η� �= 0, in which case w+ = 0 (since V is irreducible and w+ /∈ Vλ). This shows
that (iii), (iv), and (v) are equivalent, thus completing the proof. �

3. Proof of Theorem 1.2

Let K be an algebraically closed field having characteristic p ≥ 0 and let Y =
Spin2n+2(K) be a simply connected, simple algebraic group of type Dn+1 over K,
with n ≥ 2. Let X ⊂ Y be the subgroup of type Bn, embedded in the usual way,
as the stabilizer of a non-singular 1-dimensional subspace of the natural (2n+ 2)-
dimensional module for Y. Fix TY a maximal torus of Y and TX a maximal torus of
X such that TX ⊂ TY and let TY ⊂ BY , TX ⊂ BX denote Borel subgroups of Y,X,
respectively, with BX ⊂ BY . Let Π(Y ) = {α1, . . . , αn+1} be the corresponding
base for the root system of Y, and denote by {λ1, . . . , λn+1} the corresponding set
of fundamental weights for TY , where the natural KY -module has highest weight
λ1. Let σ be a graph automorphism of Y stabilizing TY , and with X = Y σ, the
group of σ-fixed points. Finally, let Π(X) = {β1, . . . , βn} be the base for the
corresponding root system of X, associated with the choice of Borel subgroup BX ,
and denote by {ω1, . . . , ωn} the associated set of fundamental dominant weights
for TX .

3.1. Preliminary considerations. For σ as above and for a KY -module V, let
σV denote the vector space V equipped with the Y -action gv = σ(g)v for g ∈ Y,
v ∈ V. Clearly σV is irreducible if and only if V is.

Lemma 3.1. Let V be an irreducible, finite-dimensional, rational KY -module.
Then V |X is self-dual.

Proof. Let λ ∈ X+(TY ) be the highest weight of V. Then V ∗ has highest weight
−w0λ. If n+1 is even, then −w0 = 1 by [25, Exercise 78] and so V is self-dual as a
KY -module, from which the desired result follows. If on the other hand n+1 is odd,
then σV ∼= V ∗ by [25, Lemma 78], yielding (V |X)∗ = (V ∗)|X ∼= (σV )|X = V |X ,
since σ(x) = x for all ∈ X. The result follows. �
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Let BY = {fα, hr, eα : α ∈ Φ+(Y ), 1 ≤ r ≤ n + 1} be a Chevalley basis for the
Lie algebra Lie(Y ) of Y, compatible with our choice of TY ⊂ BY , as in Section 2.2.
As in [23, Section 8], we may assume that the Bn-type subalgebra Lie(X) of Lie(Y )
is generated by the root vectors

eβr
= eαr

for 1 ≤ r ≤ n− 1,

eβn
= eαn

+ eαn+1
,(2)

fβr
= fαr

for 1 ≤ r ≤ n− 1,

fβn
= fαn

+ fαn+1
.

In particular, we get that αj |TX
= βj for 1 ≤ j ≤ n − 1, while αn+1|TX

=
αn|TX

= βn, so that λj |TX
= ωj for 1 ≤ j ≤ n − 1, λn|TX

= λn+1|TX
= ωn by

[14, Section 13.2, p. 69]. Also for 1 ≤ i ≤ j ≤ n+ 1, write fi,j = fαi+···+αj
, where

we set fi,i = fαi
for 1 ≤ i ≤ n + 1 and fn,n+1 = 0 by convention. In a similar

fashion, for 1 ≤ k ≤ n, we set

f̂k,n+1 = fαk+···+αn−1+αn+1
,

where again we adopt the convention f̂n,n+1 = fαn+1
. Finally, for 1 ≤ i < j ≤ n−1,

we set
Fi,j = fαi+···+αj−1+2αj+···+2αn−1+αn+αn+1

,

where Fi,i+1 = fαi+2αi+1+···+2αn−1+αn+αn+1
, Fi,n−1 = fαi+···+αn−2+2αn−1+αn+αn+1

for every 1 ≤ i ≤ n− 2. We will require the following relations in Lie(X).

Lemma 3.2. Adopting the notation introduced above, we have

(i) fβr+···+βs
= ±fr,s for 1 ≤ r ≤ s ≤ n− 1,

(ii) fβr+···+βn
= ±(fr,n ± f̂r,n+1) for 1 ≤ r ≤ n,

(iii) fr,n+1 ∈ Lie(X) for 1 ≤ r ≤ n− 1,
(iv) Fr,s+1 ∈ Lie(X) for 1 ≤ r ≤ s ≤ n− 2.

Proof. We start by showing (i), arguing by induction on 0 ≤ s− r ≤ n−2. If r = s,
then the assertion immediately follows from (2), so we assume 1 ≤ r < s ≤ n − 1
in the remainder of the proof. We then successively get

fβr+···+βs
= ±(fβr+1+···+βs

fβr
− fβr

fβr+1+···+βs
)

= ±N1(fr+1,sfαr
− fαr

fr+1,s)

= ±N1(N2fr,s + fαr
fr+1,s − fαr

fr+1,s)

= ±N1N2fr,s

for some N1, N2 ∈ {±1}, where the second equality follows from (2) and our induc-
tion assumption. Therefore (i) holds as desired. For the second assertion, we again
argue by induction on 0 ≤ n− r ≤ n− 1. In the case where r = n, then the result
holds by (2), hence we assume 1 ≤ r ≤ n − 1 in the remainder of the proof. We
then successively get

fβr+···+βn
= ±(fβr+1+···+βn

fβr
− fβr

fβr+1+···+βn
)

= ±N1(fr+1,nfαr
+N2f̂r+1,n+1fαr

− fαr
fr+1,n −N2fαr

f̂r+1,n+1)

= ±N1(N3fr,n +N2f̂r+1,n+1fαr
−N2fαr

f̂r+1,n+1)

= ±N1(N3fr,n +N2N4f̂r,n+1)

= ±N1N3(fr,n +N2N3N4f̂r,n+1)
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for some N1, N2, N3, N4 ∈ {±1}, where again the second equality follows from (2)
and our induction assumption. Therefore (ii) holds as well. Next we show the third
assertion, letting 1 ≤ r ≤ n − 1 be fixed, and setting μ = βr + · · · + βn−1 + 2βn.
The aforementioned root restrictions yield Lie(X)μ ⊂ Lie(Y )αr+···+αn+1

, and since
the latter TY -weight space is 1-dimensional, we get that Lie(X)μ is at most 1-
dimensional as well. Now as fβr+···+βn+2βn+1

∈ Lie(X)μ and Lie(Y )αr+···+αn+1
=

〈fr,n+1〉K , we get that fβr+···+βn+2βn+1
is a non-zero multiple of fr,n+1, from which

(iii) follows. Finally, the assertion (iv) can be dealt with in a similar fashion. �

In the remainder of this section, we let V = LY (λ) be a non-trivial, irreducible

KY -module having p-restricted highest weight λ =
∑n+1

r=1 arλr ∈ X+(TY ), and fix
a maximal vector v+ in V for BY . Setting λ|TX

= ω, one observes that v+ is a
maximal vector of weight ω in V for BX , since BX ⊂ BY . The following result
provides a necessary and sufficient condition for V to be irreducible in the case
where an �= 0 = an+1.

Lemma 3.3. Let V = LY (λ) be as above, and assume an �= 0 = an+1. Then X
acts irreducibly on V if and only if V = Lie(X)v+.

Proof. First assume X acts irreducibly on V, so that V |X ∼= LX(ω), and observe
that since anan+1 = 0, the TX -weight ω is p-restricted. Therefore the Lie algebra
Lie(X) of X acts irreducibly on V by [10, Theorem 1], from which the desired
assertion follows. Conversely, assume V = Lie(X)v+. Then V = 〈Xv+〉 and hence
V |X has a quotient isomorphic to LX(ω) by [16, II, Lemma 2.13 (b)]. Consequently
V ∗|X contains aKX-submodule isomorphic to LX(ω).Now V ∗|X ∼= V |X by Lemma
3.1, showing the existence of a submodule U of V |X such that U ∼= LX(ω). Since
(V |X)ω = 〈v+〉K , we get that v+ ∈ U and so V = 〈Xv+〉 ⊂ U ∼= LX(ω) as
desired. �

In view of Lemma 3.3, a necessary condition for X to act irreducibly on V =
LY (λ), with λ such that an �= 0 = an+1, is for fγv

+ to belong to Lie(X)v+ for
every γ ∈ Φ+(Y ). We conclude this section by showing that V |X is irreducible if
and only if fr,nv

+ ∈ Lie(X)v+ for every 1 ≤ r ≤ n (see Proposition 3.5 below). We
first need the following preliminary lemma.

Lemma 3.4. Let V = LY (λ) be as above, with an �= 0 = an+1, and assume
fγv

+ ∈ Lie(X)v+ for every γ ∈ Φ+(Y ). Then fγfη1
· · · fηs

v+ ∈ Lie(X)v+ for every
γ ∈ Φ+(Y ) and η1, . . . , ηs ∈ Φ+(X).

Proof. We proceed by induction on s ≥ 1. First take η ∈ Φ+(X) and consider
fγfηv

+, with γ∈Φ+(Y ). Since fγfηv
+=[fγ , fη]v

++fηfγv
+ and as fγv

+∈Lie(X)v+

by assumption, it suffices to show that [fγ , fη]v
+ ∈ Lie(X)v+. If fγ ∈ Lie(X), then

clearly [fγ , fη]v
+ lies in Lie(X)v+, so assume fγ �∈ Lie(X). By Lemma (3.2), we

then have that

γ ∈ {αn, αn+1} ∪ {αi + · · ·+ αn, αi + · · ·+ αn−1 + αn+1}1≤i≤n−1.

Take first γ =
∑n

r=i αr for some 1 ≤ i ≤ n, so fγ = fi,n, and consider [fγ , fη]v
+.

If the latter equals zero, then we immediately get the desired result. So we may
assume the contrary and thus we have fη is one of the following:

(i) fj,i−1, 1 ≤ j ≤ i− 1.
(ii) fαn

+ fαn+1
(if i �= n).
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(iii) fk,n ± f̂k,n+1, i+ 1 ≤ k ≤ n.

(iv) fj,n ± f̂j,n+1, 1 ≤ j ≤ i− 1.

We now calculate [fγ , fη]v
+ in each case.

(i) [fi,n, fj,i−1]v
+ = ±fj,nv

+, which lies in Lie(X)v+ by assumption.
(ii) [fi,n, fαn

+ fαn+1
]v+ =±fi,n+1v

+, which lies in Lie(X)v+ since fi,n+1 ∈
Lie(X) by Lemma (3.2)(iii).

(iii) [fi,n, fk,n± f̂k,n+1]v
+ = ±Fi,kv

+, which again lies in Lie(X)v+ as Fi,k ∈
Lie(X) by Lemma (3.2)(iv).

(iv) [fi,n, fj,n ± f̂j,n+1]v
+ = ±Fj,iv

+, which as in the previous case lies in
Lie(X)v+.

Consequently fγfηv
+ ∈ Lie(X)v+ for γ =

∑n
r=i αr as desired. Arguing in a similar

fashion, one shows that the same holds for γ =
∑n−1

r=i αr + αn+1 and γ = αn+1 as
well, where 1 ≤ i ≤ n− 1. Therefore the lemma holds in the situation where s = 1,
and hence we assume s > 1 in the remainder of the proof. For η1, . . . , ηs ∈ Φ+(X),
we have

fγfη1
· · · fηs

v+ = [fγ , fη1
]fη2

· · · fηs
v+ + fη1

fγfη2
· · · fηs

v+.

Now fγfη2
· · · fηs

v+ ∈ Lie(X)v+ by induction and hence so does fη1
fγfη2

· · · fηs
v+.

On the other hand, we either have [fγ , fη1
] = 0 or [fγ , fη1

] = ξfδ for some ξ ∈ K
and δ ∈ Φ+(Y ) by (i), (ii), (iii), (iv) above, in which case [fγ , fη1

]fη2
· · · fηs

v+ =
ξfδfη2

· · · fηs
v+ ∈ Lie(X)v+ by induction, thus completing the proof. �

We now establish the following necessary and sufficient condition for V |Lie(X) to

be generated by v+ as a Lie(X)-module (and hence for V |X to be irreducible by
Lemma 3.3), where V has highest weight λ with an �= 0 = an+1.

Proposition 3.5. Let V = LY (λ) be an irreducible KY -module having p-restricted
highest weight λ =

∑n
r=1 arλr, with an �= 0. Then V = Lie(X)v+ if and only if

fr,nv
+ ∈ Lie(X)v+ for every 1 ≤ r ≤ n.

Proof. If V = Lie(X)v+, then clearly fγv
+ ∈ Lie(X)v+ for every γ ∈ Φ+(Y ). Hence

in particular fr,nv
+ ∈ Lie(X)v+ for every 1 ≤ r ≤ n as desired. Conversely, suppose

that fr,nv
+ ∈ Lie(X)v+ for every 1 ≤ r ≤ n and notice that since λ ∈ X+(TY ) is

p-restricted, we have

V =
〈
fγ1

· · · fγs
v+ : s ∈ Z≥0, γ1, . . . , γs ∈ Φ+(Y )

〉
K

by [10, Theorem 1]. Hence in order to show that V = Lie(X)v+, it suffices to show
that fγ1

· · · fγs
v+ ∈ Lie(X)v+ for every s ∈ Z>0 and γ1, . . . , γs ∈ Φ+(Y ). Assume

for a contradiction that this is not the case and let m ∈ Z≥0 be minimal such
that there exists γ1, . . . , γm ∈ Φ+(Y ) with fγ1

· · · fγm
v+ /∈ Lie(X)v+. Lemma (3.2)

implies fγv
+ ∈ Lie(X)v+ for γ ∈ Φ+(Y ) and so m ≥ 2. Now by minimality, we

have fγ2
· · · fγm

v+ ∈ Lie(X)v+ and hence an application of Lemma 3.4 completes
the proof. �

3.2. Conclusion. Let V = LY (λ) be an irreducibleKY -module having p-restricted

non-zero highest weight λ =
∑n+1

r=1 arλr ∈ X+(TY ), and set ω = λ|TX
. In this sec-

tion, we will complete the proof of Theorem 1.2. We first show that for certain
weights λ, it is straightforward to see that V |X is reducible. Although the proof
of the following proposition can be found in [23, Section 8], we include it here for
completeness.
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Proposition 3.6. Let λ ∈ X+(TY ) and let V be as above. Then the following
assertions hold:

(i) If anan+1 �= 0, or if an = an+1 = 0, then V |X is reducible.
(ii) If λ ∈ {aλn, aλn+1 : a ∈ Z>0}, then X acts irreducibly on V.
(iii) If V |X is irreducible, so anan+1 = 0 by (i), and λ is not as in (ii), then

taking 1 ≤ k < n maximal such that ak �= 0, we have p | (ak + an + an+1 +
n− k).

Proof. For (i), first consider the case where anan+1 �= 0. Here the TX -weight ω′ =
ω − βn has multiplicity at most 1 in LX(ω), while each of λ − αn and λ − αn+1

is a TY -weight of V restricting to ω′. Therefore the latter occurs in a second KX-
composition factor of V, showing that V |X is reducible as desired. Next assume
an = an+1 = 0, and let 1 ≤ k ≤ n − 1 be maximal such that ak �= 0. Then
the TX -weight ω′′ = ω − (βk + · · · + βn) has multiplicity at most 1 in LX(ω)
(since the corresponding weight space is generated by fβk+···+βn

v+), while each of
λ− (αk + · · ·+αn) and λ− (αk + · · ·+αn−1 +αn+1) restricts to ω′′. Consequently
V |X is reducible in this case as well, and (i) holds as desired.

Now turn to (ii) and let λ = aλn for some a ∈ Z>0, and assume for a contradiction
that V |X is reducible. By [23, 8.5], there exist 1 ≤ i ≤ n and a maximal vector
w+ ∈ V for BX such that

0 �= eαi+···+αn
w+ ∈ 〈v+〉K .

In particular w+ ∈ Vλ−(αi+···+αn), and one checks that the only TY -weight of V

restricting to ω − (βi + · · ·+ βn) is λ− (αi + · · ·+ αn). So w+ ∈ Vλ−(αi+···+αn) =
〈fαi+···+αn

v+〉K , thus yielding eβi
w+ = eαi

w+ �= 0, a contradiction. Therefore (ii)
holds as desired.

For (iii), we assume V |X is irreducible, and by (i), we suppose, without loss of
generality, that an �= 0 = an+1. Assume as well that λ is not as in (ii), and seeking
a contradiction, take k as in (iii), and suppose that p � (ak + an + n− k). Consider
the TX -weight ω′′ = ω − (βk + · · · + βn) ∈ X+(TX). Then λ − (αk + · · · + αn)
and λ− (αk + · · ·+αn−1 +αn+1) are both TY -weights of V restricting to ω′′. Now
mLX(ω)(ω

′′) ≤ mVX(ω)(ω
′′) = n − k + 1, while an application of Proposition 2.2

yields mV (λ− (αk+ · · ·+αn)) = n−k+1. (Recall that we assumed an �= 0 = an+1

and p � (ak+an+n−k).) Now mV (λ− (αk + · · ·+αn−1+αn+1)) = 1, as the latter
weight is conjugate to λ− αk under the action of the Weyl group for Y. Therefore
mV |X (ω′′) ≥ n−k+2 > n−k+1 ≥ mLX(ω)(ω

′′), yielding the existence of a second
composition factor of V for X, a contradiction. The proof is complete. �

In view of Proposition 3.6, we may and shall assume λ =
∑n

r=1 arλr, with an �= 0
throughout the rest of the section, as well as the existence of 1 ≤ k ≤ n−1 maximal
such that ak �= 0. For 1 ≤ i ≤ n, set P (i, i) = ∅ and for 1 ≤ i < j ≤ n, set

P (i, j) = {(mr)
s
r=1 : 1 ≤ s ≤ j − i, i ≤ m1 < · · · < ms < j} .

For any sequence (m) = (mr)
s
r=1 ∈ P (i, j), write f(m) = fi,m1

fm1+1,m2
· · · fms+1,j .

By Lemma 2.1, we have that for every 1 ≤ i < j ≤ n, the weight space Vλ−(αi+···+αj)

is spanned by the vectors

{f(m)v
+ : (m) ∈ P (i, j)} ∪ {fi,jv+},

where v+ ∈ V is a maximal vector of weight λ for BY . We set

Vi,j =
〈
f(m)v

+ : (m) ∈ P (i, j)
〉
K
.
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The following special case of [8, Theorem A.7], inspired by [13, Proposition 3.1],
shall play a key role in the proof of Theorem 1.2.

Theorem 3.7. Let Y be a simple algebraic group of type Dn+1 over K, and
consider an irreducible KY -module V = L(λ) having p-restricted highest weight
λ =

∑n
r=1 arλr, with an �= 0. Then fr,nv

+ ∈ Vr,n for every 1 ≤ r ≤ n − 1 if and
only if p | (ai + aj + j − i) for every 1 ≤ i < j ≤ n such that aiaj �= 0 and as = 0
for i < s < j.

Proof. The result follows from an application of [8, Theorem A.7] to the An-Levi
subgroup of Y corresponding to the simple roots α1, . . . , αn. �

For 1≤ i≤n−1, we let V̂i,n+1 denote the K-span of {fi,j f̂j+1,n+1v
+ : i≤j≤n−1}

and {f(m)f̂j+1,n+1v
+ : i < j ≤ n− 1, (m) ∈ P (i, j)}. The proof of the main result

of this section (namely, Theorem 3.9) relies on the following preliminary result.

Lemma 3.8. Adopt the notation introduced above and let 1 ≤ r ≤ k − 1 be such

that f̂r,n+1v
+ ∈ V̂r,n+1. Then fr,nv

+ ∈ Vr,n.

Proof. Let 1 ≤ r ≤ k − 1 be as in the statement of the lemma. If ar = 0, then
fαr

v+ = 0 and hence fr,nv
+ = ±fαr

fr+1,nv
+, so that fr,nv

+ ∈ Vr,n, as claimed.

Therefore we assume ar �= 0 in the remainder of the proof. As f̂r,n+1v
+ ∈ V̂r,n+1

and since f̂s,n+1v
+ = 0 for k < s ≤ n, we get the existence of (ξs, ξ

s
(m) : r ≤ s ≤

k − 1, (m) ∈ P (r, s)) ⊂ K such that

(3) f̂r,n+1v
+ =

k−1∑
s=r

⎛
⎝ ∑

(m)∈P (r,s)

ξs(m)f(m)f̂s+1,n+1v
+ + ξsfr,sf̂s+1,n+1v

+

⎞
⎠.

Now observe that fαn
eαn+1

f̂t,n+1v
+ =N1ft,nv

++N2ft,n−1fαn
v+ for every r ≤

t≤k, where N1, N2 ∈ {±1}. Also, for every r ≤ s ≤ k− 1 and every (m) ∈ P (r, s),
we have [eαn+1

, fr,s] = [eαn+1
, f(m)] = 0, as well as [fαn

, fr,s] = [fαn
, f(m)] = 0.

Consequently successively applying eαn+1
, fαn

to each side of (3) yields N1fr,nv
++

N2fr,n−1fαn
v+ ∈ Vr,n for some N1 �= 0, N2 ∈ {±1}, from which the desired result

follows. �
In the next result, we show that in order to determine whether V |X is irreducible

or not, it is enough to determine whether fr,nv
+ ∈ Vr,n or not, this for every

1 ≤ r ≤ n− 1.

Theorem 3.9. Let λ =
∑n

r=1 arλr be a p-restricted dominant weight such that
akan �= 0. Let V = LY (λ) be an irreducible KY -module having highest weight λ.
Then V |X is irreducible if and only if fr,nv

+ ∈ Vr,n for every 1 ≤ r ≤ n− 1.

Proof. First assume fr,nv
+ ∈ Vr,n for every 1 ≤ r ≤ n − 1. By Proposition 3.5, in

order to show that V |X is irreducible, it suffices to show that fs,nv
+ ∈ Lie(X)v+ for

every 1 ≤ s ≤ n.We proceed by induction on 0 ≤ n−s ≤ n−1, starting by assuming
s = n. Now since an+1 = 0, we immediately get that fαn+1

v+ = 0 and hence
fβn

v+ = fαn
v+ by (2), that is, fαn

v+ ∈ Lie(X)v+. Next assume 1 ≤ s ≤ n − 1.
Since fs,nv

+ ∈ Vs,n by assumption, there exists (ξi, ξ
i
(m) : s ≤ i ≤ n − 1, (m) ∈

P (s, i)) ⊂ K such that

fs,nv
+ =

n−1∑
i=s

⎛
⎝ξifs,ifi+1,nv

+ +
∑

(m)∈P (s,i)

ξi(m)f(m)fi+1,nv
+

⎞
⎠.
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By Lemma (3.2), fs,i ∈ Lie(X) and f(m) ∈ Lie(X) for every s ≤ i ≤ n−1 and every

(m) ∈ P (s, i). Furthermore, we also have fi+1,nv
+ ∈ Lie(X)v+ for s ≤ i ≤ n − 1

by induction. Therefore fs,nv
+ ∈ Lie(X)v+ as desired.

Conversely, assume V |X is irreducible, and let 1 ≤ r ≤ n− 1 be fixed. If ar = 0,
then fαr

v+ = 0 and hence fr,nv
+ = ±fαr

fr+1,nv
+, so that fr,nv

+ ∈ Vr,n in this
situation. In addition, observe that p | (ak + an + n − k) by Proposition 3.6(iii),
thus yielding fk,nv

+ ∈ Vk,n by Proposition 2.2. Therefore we assume ar �= 0 in
the remainder of the proof, and r < k. By Lemma 3.3, we have V = Lie(X)v+, in
which case Proposition 3.5 applies, thus yielding fr,nv

+ ∈ Lie(X)v+. Since fr,nv
+ ∈

(Lie(X)v+)ω−(βr+···+βn), we get the existence of ξ ∈ K, x ∈ Vr,n, and y ∈ V̂r,n+1

such that fr,nv
+ = ξfr,nv

+ ± ξf̂r,n+1v
+ + x+ y. Comparing TY -weights yields

(ξ − 1)fr,nv
+ ∈ Vr,n and ± ξf̂r,n+1v

+ ∈ V̂r,n+1.

If ξ �= 1, then the assertion is immediate, while if on the other hand ξ = 1, then an
application of Lemma 3.8 yields the desired result. �

We are now able to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. First assume X acts irreducibly on V. By Proposition 3.6(i),
we then have that, up to a graph automorphism of Y , an �= 0 = an+1, and if
λ = aλn, then λ is as in the statement of the result. So assume the existence
of 1 ≤ k ≤ n − 1 maximal with ak �= 0. Then Theorem 3.9 applies, yielding
fr,nv

+ ∈ Vr,n for every 1 ≤ r ≤ n− 1. An application of Theorem 3.7 then implies
the desired divisibility conditions.

Conversely, assume λ ∈ X+(TY ) satisfies the conditions in Theorem 1.2. In
the case where λ = aλn for some a ∈ Z>0, then the result follows from Proposi-
tion 3.6(ii), hence we assume the existence of 1 ≤ k ≤ n − 1 maximal such that
akan �= 0, and assume moreover the divisibility conditions as in the theorem. Here
an application of Theorem 3.7 yields fr,nv

+ ∈ Vr,n for every 1 ≤ r ≤ n − 1, and
hence Theorem 3.9 then shows that X acts irreducibly on V as desired. �

4. Proof of Propositions 1.5 and 1.7

We first prove Proposition 1.5. Let Y = Spin2n+2(K) be a simply connected,
simple algebraic group of type Dn+1 over K, with n ≥ 2. Let X ⊂ Y be a semisim-
ple, connected, proper, closed subgroup of Y. Fix TY a maximal torus of Y and let
TY ⊂ BY denote a Borel subgroup of Y. Also let {λ1, . . . , λn+1} be the correspond-
ing set of fundamental dominant weights for TY . In this section, we give a proof
of Proposition 1.5, starting with three results, proven in a more general setting in
[23, Section 5]. For the convenience of the reader, and in order to render the current
manuscript more self-contained, we include the proofs of these special cases here.

Proposition 4.1. Let Y be a simply connected, simple algebraic group of type Dn+1

with natural module W and let X be a semisimple, connected, proper, closed sub-
group of Y acting irreducibly on a non-trivial, p-restricted, irreducible KY -module
V = LY (λ). Then one of the following holds:

(i) W |X is irreducible.
(ii) W |X is reducible and X ⊂ Bk ×Bn−k for some 0 ≤ k < n.

Proof. Suppose W |X is reducible. Let W1 be a minimal non-zero X-invariant sub-
space of W . Then W1∩W⊥

1 = W1 or {0}. Suppose W1∩W⊥
1 = W1. Note that W1
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is not totally singular, else X lies in a proper parabolic subgroup of Y and so cannot
act irreducibly on V . Therefore, we have p = 2; the set of singular vectors in W1

being an X-invariant subspace of W1 forces W1 to be generated by a non-singular
vector, and so (ii) holds with k = 0. In case W1∩W⊥

1 = {0}, set W2 = W⊥
1 , so that

W = W1 ⊕W2, an orthogonal direct sum and the image of X in Isom(W ) lies in
Isom(W1)

′×Isom(W2)
′. If dimW1 is even, then X ⊂ Ds×Dn+1−s, a maximal rank

subgroup of Y and we may invoke [23, Theorem 4.1] to see that X acts reducibly
on V . So dimW1 is odd and X ⊂ Bk ×Bn−k as in (ii). �
Proposition 4.2. Let Y and V be as in Proposition 4.1( ii) for some 0 < k < n,
and let V be of highest weight λ. Then the closed, connected subgroup H ⊂ Y of
type Bk ×Bn−k acts irreducibly on V if and only if λ = λn or λn+1.

Proof. To see that H acts irreducibly on the two half-spin modules for Y , we simply
compute the restriction of the highest weight to a maximal torus of H, note that
the restriction induces the tensor product of the spin modules for the two simple
factors of H, and then a dimension comparison completes the proof.

We now assume H acts irreducibly on V , the irreducible KY -module of highest
weight λ. We proceed by induction on n and first consider the case n = 2, so that
Y is of type D3 = A3 and the image of H in SO6 lies in the subgroup SO3 × SO3 ⊂
SO6. Since H acts irreducibly on V , H does not lie in a parabolic subgroup of
Y and so acts irreducibly on the 4-dimensional p-restricted KY -modules, which
correspond to the highest weights as in the statement of the result. Thus the
preimage of SO3 × SO3 in SL4 acts on the 4-dimensional module via the tensor
product representation of A1 ×A1 on E⊗E, where E is the natural 2-dimensional
representation of SL2. To see that SL2 × SL2 acts reducibly (and henceH as well) on
all other non-trivial, p-restricted, irreducibles for Y, we require a further argument
(and some additional notation).

Let T be a maximal torus of SL2 × SL2 with T ⊂ TY . Moreover, choose a base
Π = {α, β} of the root system of SL2 × SL2, and a base Π(Y ) = {α1, α2, α3} of
the root system of Y , viewing Y as D3. Now it is straightforward to see that up
to conjugation we may assume that α1|T = β − α, αj |T = α for j = 2, 3. Now we
apply [23, 6.1] to see that λ ∈ {cλj , bλ1 + aλj , c ≥ 1, b > 0, a+ b = p− 1, j = 2, 3}.
In case λ = cλj , V |SL2 × SL2

= Sc(E ⊗ E) which is easily seen to be reducible if
c > 1. In any case, V |SL2 × SL2

has a composition factor with highest weight λ|T . In
the cases λ = bλ1+aλj , we see that the weight λ−α1 restricts to T as λ|T −β+α
and hence lies in a second composition factor of V |SL2 × SL2

. The result then holds
for n = 2.

Assume now that n ≥ 3 and that the result holds for Y = D� with � < n + 1.
Assume as well that p > 2; we will treat the case p = 2 at the end of the proof. Let
W1 and W2 be as in the previous proof so that Bk acts on W1 and Bn−k acts on W2.
Let U1, respectively U2, be maximal totally isotropic subspaces of W1, respectively
W2. Then U0 = U1 ⊕ U2 is an n-dimensional totally isotropic subspace of W . Let
P ⊂ Y be the preimage of the stabilizer in Isom(W1)

′× Isom(W2)
′ of U0 and R the

preimage in Y of the stabilizer in Isom(W ) of U0. Then P ⊂ R, Ru(P ) ⊂ Ru(R),
and (P/Ru(P ))′ ∼= SL(U1) × SL(U2), while (R/Ru(R))′ ∼= SL(U0) = SLn. In
particular, the image of the Levi factor of P in R/Ru(R) stabilizes U1 and so lies
in a proper parabolic subgroup of R/Ru(R), and hence can act irreducibly on no
non-trivial (R/Ru(R))′-module. Then the above remarks and an application of the
main proposition of [24] shows that λ = aλn + bλn+1 for some a, b.
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Assume dimW1 ≥ dimW2, so dimW1 ≥ 5. (Recall that dimV ≥ 8.) Let P1 be
the stabilizer in SO(W1)

′ of a singular 1-space. Then P1 × SO(W2)
′ is a proper

parabolic subgroup of SO(W1)
′ × SO(W2)

′ and is contained in the image (under
the natural projection Y → SO(W )) of the stabilizer in Y of this 1-space. As
P1 = Bk−1Ru(P1), we have the Levi factor Bk−1Bn−k projecting into the Levi
factor of type Dn. Another application of [24] and the induction hypothesis yield
the result.

Turn now to the case n > 2 and p = 2. In this case we have that the subgroup
Bk × Bn−k stabilizes a non-singular 1-space and so lies in a subgroup of type Bn.
Now the subgroup Bk × Bn−k is a maximal rank subgroup of Bn and we can
appeal to [23, Theorem 4.1] applied to the pair (Bk × Bn−k, Bn) to see that the
irreducible KBn-module V |Bn

is a twist of the spin module and hence we deduce
that λ = λn + λn+1, λn, or λn+1. However, LY (λn + λn+1)|Bn

is not irreducible,
as the highest weight affords a twist of the spin module for Bn and this is of
dimension strictly less than the dimension of LY (λn + λn+1). So λ = λn or λn+1

as claimed. �

Propositions 4.1 and 4.2 show that under the hypotheses of Proposition 1.5,
either Proposition 1.5(a) holds, or X acts irreducibly on the natural KY -module
W , or X ⊂ Bn is as in Proposition 4.1(ii) with k = 0. Theorem 1.2 handles
the latter situation in case X = Bn. The resolution of this case will follow from
induction; see the end of this section. Now for the case where X acts irreducibly
on W , we first show that X must act tensor indecomposably.

Proposition 4.3. Let Y, X, V be as in Proposition 1.5, and let W be the natu-
ral (2n + 2)-dimensional KY -module. If W |X is irreducible, then W |X is tensor
indecomposable.

Proof. Suppose the contrary. Then write W |X = W
(f1)
1 ⊗ · · · ⊗ W

(ft)
t , where Wi

is a p-restricted KX-module, f1, . . . , ft are distinct p-powers, and t ≥ 2. Then the
criterion on the highest weights of self-dual modules shows that each Wi carries an
X-invariant non-degenerate bilinear form. Write W = D⊗F , where each of D and
F is a KX-module and the image of X in Isom(W )′ lies in Isom(D)′ ◦ Isom(F )′,
where this latter denotes the image of the natural morphism Isom(D)′×Isom(F )′ →
Isom(W ), a commuting product of subgroups isomorphic to Isom(D)′ and Isom(F )′.
Set dimD = d and dimF = f and assume d ≥ f ≥ 2 (and so at least one of d and
f is even).

Extracting part of the argument given on page 76 of [23], we will now show
that Y contains a semisimple group inducing Isom(D)′ ◦ Isom(F )′. As pointed out
above, X stabilizes the product bilinear form on W . But then the irreducibility
of X on W forces this to be a scalar multiple of the form defining Y . Adjusting
the form on D if necessary, we may assume that the product form is precisely the
form defining Y . This establishes the claim unless p = 2. In this case, we have
Isom(D)′ ◦ Isom(F )′ ⊂ Sp(D)◦Sp(F ). The latter group preserves a quadratic form
Q on W , such that Q has the same polarization as the bilinear form on W and
also such that Q(x ⊗ y) = 0 for all x ∈ D and y ∈ F (see [17, Section 4.4]). By
[2, 4.9], X fixes a unique quadratic form with prescribed bilinear form, and so this
must necessarily be the form Q and we again have the claim. Hence we now have
that X lies in a closed subgroup J of Y which is the preimage in Y of the group
Isom(D)′ ◦ Isom(F )′. In particular J acts irreducibly on V as well. Let D1 be an
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isotropic 1-space in D; then D = D1 ⊕D2 ⊕D3, where D⊥
1 = D1 ⊕D2, D2 is non-

degenerate, and D3 is an isotropic 1-space. Similarly decompose F = F1⊕F2⊕F3.
Now consider the flag of subspaces in V :

0 = V0 ⊂ V1 ⊆ V2 ⊆ V3 ⊆ V4 ⊂ V5 = V,

where V1 = D1 ⊗ F1, V2 = (D1 ⊗ F⊥
1 ) + (D⊥

1 ⊗ F1), V3 = V ⊥
2 , and V4 = V ⊥

1 . Then
V1 and V2 are totally isotropic (totally singular if p = 2), dimV1 = 1 = dim(V/V4),
dim(V2/V1) = dim(V4/V3) = d+ f − 4, and dim(V3/V2) = (d− 2)(f − 2) + 2.

Set PJ to be the stabilizer in J of the above flag, and PY the stabilizer in Y
of this flag. Then PJ is the product of the preimages of the parabolic subgroups
PD and PF of Isom(D) and Isom(F ) which are the stabilizers of the isotropic 1-
spaces D1 and F1, respectively. So Ru(PD) acts trivially on D1, D⊥

1 /D1, and
D/D⊥

1 , and similarly for Ru(PF ). On the other hand, Ru(PY ) is precisely the
subgroup of Y which acts trivially on Vj+1/Vj for 0 ≤ j ≤ 4. One then sees
that Ru(PJ) ⊂ Ru(PY ). Now (PY /Ru(PY ))

′ ∼= (Isom(V3/V2))
′ ◦ SL(V2/V1) and

(PJ/Ru(PJ))
′ ∼= (Isom(D⊥

1 /D1))
′ ◦ (Isom(F⊥

1 /F1))
′.

Assume for the moment that f > 2; then V3/V2 is an orthogonal space of dimen-
sion at least 4. We note that the subspace ((D1⊗F3)+V2)/V2 is a non-zero singular
subspace in V3/V2 left invariant by (Isom(D⊥

1 /D1))
′ ◦ (Isom(F⊥

1 /F1))
′ and so the

projection of this latter group in Isom(V3/V2) is contained in a proper parabolic.
It then follows from an application of [24] to the irreducible KY -module V and
the subgroup J that the portion of the Dynkin diagram for Y corresponding to the
subgroup Isom(V3/V2) has zero labels, when representing λ by a labeled diagram.
But this contradicts our assumption on λ.

Consider now the case where f = 2, so dimW = 2n + 2 and d = n + 1. Since
we are assuming Y = Dn+1 with n ≥ 4, we have d ≥ 5. Now Isom(D2) ◦ Isom(F2)
stabilizes the image of D1⊗F⊥

1 in V2/V1 and so lies in a proper parabolic subgroup
of Isom(V2/V1). Note that dim(V2/V1) = n − 1, and arguing as above we deduce
that the nodes corresponding to SL(V2/V1) in the Dynkin diagram are labelled
zero. So now we have λ = a1λ1 + anλn, with an �= 0. Moreover, the image of X
in Isom(W )′ lies in Isom(D)′ ◦ Isom(F )′ = Isom(D)′ ◦ Sp2, which then implies that
D is even-dimensional and the latter group is Sp(D) ◦ Sp2, and acts irreducibly on
V . The factor Sp(D) lies in the derived subgroup of an An-type Levi factor L of
Y , indeed is the naturally embedded Spn+1 subgroup of An. Moreover, Sp(D) acts
homogeneously on V . Now λ and λ− αn, or λ− αn−1 − αn − αn+1, depending on
whether the root system of L contains αn+1 or αn, afford the highest weights of
irreducible summands of V |L. It is then straightforward to see that the restrictions
of these weights to the subgroup Sp(D) provide non-isomorphic composition factors.
This provides the final contradiction in case f = 2 and completes the proof of the
result. �

For the proof of Proposition 1.5, we continue with our consideration of the case
where X acts irreducibly and, by the previous result, tensor-indecomposably on
the natural KY -module W . In particular, we may now assume that X is a simple,
proper, closed subgroup of Y . The hypotheses of Proposition 1.5 then imply that
X is of type Bm or of type F4. Moreover, we have the full set of hypotheses on the
embedding of a parabolic subgroup of X in a parabolic subgroup of Y , in particular,
with respect to the restriction of the highest weight λ to a Levi factor. We will in
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fact show that the irreducibility of W |X and the hypotheses of Proposition 1.5 are
incompatible.

Taking X a simple counterexample of minimal rank, we see that we may assume
PX is a maximal parabolic subgroup of X. In each case, we will require some
detailed information about the commutator series of an irreducible KX-module
with respect to a fixed maximal parabolic subgroup. We start by considering:

Case 1: X of type Bm, m ≥ 4. Fix a maximal torus TX of X. Let Π(X) =
{β1, . . . , βm} be a base of the root system of X, BX the corresponding Borel sub-
group containing TX , and {ω1, . . . , ωm} a set of fundamental dominant weights
chosen with respect to the fixed base Π(X). Set si to be the reflection correspond-
ing to the root βi for 1 ≤ i ≤ m. For a torus S of X, write X(S) for the group
of rational characters of S. Let PX be a maximal parabolic subgroup of X cor-
responding to the subset {βi : 2 ≤ i ≤ m}, and containing the opposite Borel
subgroup B−

X . Let QX = Ru(PX) and PX = LXQX for a Levi factor LX of PX .
Let ω =

∑m
i=1 diωi be a p-restricted dominant weight in X(TX), set M = LX(ω)

and assume X preserves a non-degenerate quadratic form on M , and let us denote
this by Q and the associated bilinear form by ( , ) : M ×M → K.

For a unipotent group J and a KJ-module N , we recall the standard notation
[N, J ] for the subspace spanned by the set of vectors n − xn, where x ∈ J and
n ∈ N . We introduce an additional notation: set [N, J0] = N and set [N, J i+1] =
[[N, J i], J ] for i ≥ 0, so [N, J1] = [N, J ].

Definition 4.4. Let M = LX(ω) be as above.

(i) We will say a TX -weight ν in M has level i if ν = ω − iβ1 −
∑m

j=2 cjβj for
some integers i, cj ≥ 0.

(ii) Let e(ω) denote the maximum level of a weight. (When ω is fixed, we will
simply write e.)

Lemma 4.5. Let M = LX(ω). Then the following assertions hold:

(i) For i ≥ 0, [M,Qi
X ] =

∑
Mν , where the sum ranges over all TX-weights ν

of level at least i.
(ii) For i ≥ 0, the L′

X-module [M,Qi
X ]/[M,Qi+1

X ] is isomorphic to the module∑
ν∈X(TX) of level i

Mν .

(iii) The maximum level of weights in M is e = 2(
∑m−1

i=1 di) + dm. If a weight
ν is of level j, then −ν is of level e− j.

(iv) Let S be a subtorus of TX . For weights η, χ ∈ X(S), with η �= −χ, we have
Vη ⊆ V ⊥

χ . Moreover, if η �= 0, then Q(u) = 0 for all u ∈ Vη.

(v) The subspace [M,Qi
X ] is totally singular for i ≥ (e+ 1)/2.

(vi) If e is even, then the subspace∑
ν∈X(TX) of level e/2

Mν

is non-degenerate.
(vii) For i ≥ (e+ 1)/2, we have [M,Qi

X ]⊥ = [M,Qe−i+1
X ].

(viii) For all i ≥ (e/2), the quadratic form on M induces an L′
X-invariant qua-

dratic form on [M,Qi
X ]/[M,Qi+1

X ]. If the form is non-degenerate on this
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quotient space, then there exists ν of level i such that −ν is also of level i.
In particular, in this case, dm is even.

Proof. We start by proving (i), arguing by induction on i, the case i = 0 being
trivial by definition. Let i ≥ 1, and fix an ordering on Φ+(X) such that any root
having a non-zero coefficient of β1 when expressed in terms of the simple roots is
smaller than the others. By [15, Section 27], we clearly have that [M,Qi

X ] ⊆
∑

Mν ,
where the sum ranges over all TX -weights ν of level at least i, and so it remains to
show that Mν ⊆ [M,Qi

X ] for all such TX -weights ν. It is enough to show the latter
for TX -weights of level exactly i. Let then ν be a TX -weight of level i in M, and

let γ1 ≤ · · · ≤ γk be roots in Φ+(X) such that
∑k

r=1 γr = λ − ν. We show that
fγ1

· · · fγk
v+ ∈ [M,Qi

X ], where v+ is a maximal vector in M. (This will be enough
by Lemma 2.1.) Set w = fγ2

· · · fγk
v+. Then w has level i − 1, as γ1 involves β1

thanks to our choice of ordering on Φ+, and hence w ∈ [M,Qi−1
X ] by induction.

Also, we have

x−γ1
(1)w − w ∈ fγ1

· · · fγk
v+ +

∞∑
r=1

Mν−rγ1
,

and hence x−γ1
(1)w−w has non-zero coefficient of fγ1

· · · fγk
v+, and all other terms

in the sum are weight vectors of weights different from ν. One then deduces that
[M,Qi

X ] must contain fγ1
· · · fγk

v+ as desired, showing that (i) holds.
The statement of (ii) now follows by induction on i.
For (iii), set w0 to be the longest word of the Weyl group of X. Writing the ωi

in terms of the simple roots βj , we see that

w0(ω) = −ω = ω − 2(d1 + d2 + · · ·+ dm−1 +
1

2
dm)β1 −

m∑
i=2

ciβi

for some non-negative integers ci, giving the result. For the final statement, suppose
that ν = ω − jβ1 −

∑m
i=2 ciβi, then −ν = ω − 2ω + jβ1 +

∑m
i=2 ciβi = ω − (e −

j)β1 −
∑m

i=2 biβi for some non-negative integers bi.
The statement of (iv) is standard, and (v) and (vi) follow from (iv).
For (vii), note that by (i) and (iv), we have [M,Qe−i+1

X ] ⊆ [M,Qi
X ]⊥. Then the

result follows from a dimension argument using (ii) and (iii).
For (viii), we note that for i ≥ (e/2), [M,Qi+1

X ] is totally singular and so the
given quadratic form induces an L′

X -invariant form on the quotient. Now if p �= 2,

the second statement follows directly from (iv). If p = 2 and [M,Qi
X ]/[M,Qi+1

X ] is
odd-dimensional, so that the bilinear form has a 1-dimensional non-singular radical,
then (iv) implies that the radical is generated by a vector of weight 0. So the weight
ν = 0 satisfies the given condition. For the claim about the parity of dm, we recall
that for ν of level j, −ν is of level e− j. So we deduce that e is even, and so dm as
well. �

In case e is even, we will consider a certain TX -weight at level (e/2), namely the
weight

μ := ω − (e/2)β1 − (e/2− d1)β2 − · · · − (dm−1 + (dm/2))βm−1 − (dm/2)βm.

Note that

(4) μ = −(e/2)ω1 +

m−1∑
i=2

di−1ωi + (2dm−1 + dm)ωm.
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Lemma 4.6. Assume dm is even. For each 0 ≤ j ≤ dm, there exists a unique
weight νj ∈ X(TX), of level j +

∑m−1
i=1 di, such that νj |TX∩L′

X
= μ|TX∩L′

X
. In

addition, each νj is of multiplicity 1 and if ν ∈ X(TX) with ν|TX∩L′
X

= μ|TX∩L′
X
,

then ν = νj for some j. In particular, there exists an odd number of weights ν such
that ν|TX∩L′

X
= μ|TX∩L′

X
.

Proof. Let ν ∈ X(TX) such that ν|TX∩L′
X

= μ|(TX∩L′
X ). Then ν = ω −

∑m
i=1 ciβi,

and the ci must satisfy the equations

dj+1 + cj − 2cj+1 + cj+2 = dj for 1 ≤ j ≤ m− 2, and

dm + 2cm−1 − 2cm = 2dm−1 + dm.

Solving these equations leads to the relations cj = cm+
∑m−1

i=j di for 1 ≤ j ≤ m−1.
Now note as well that for ν as given, sm−1sm−2 · · · s1ν = ω − cmβm. Hence ν has
multiplicity at most 1 and has multiplicity 1 if and only if cm ≤ dm. So for all
0 ≤ j ≤ dm, there exists a weight νj of multiplicity 1 and of level j +

∑m−1
i=1 di

whose restriction to TX ∩ L′
X is equal to μ|(TX∩L′

X ). �

Proposition 4.7. Assume the hypotheses of Proposition 1.5 with X = Bm. Then
X acts reducibly on the natural KY -module.

Proof. Suppose the contrary, that is, let W be the natural KY -module and suppose
that W |X is irreducible. Then by Proposition 4.3, W |X is tensor indecomposable.
If W |X is not p-restricted, then we replace W |X by a p-restricted representation

ρ of a simply-connected cover X̃ of X, and consider W |ρ(X̃). For the purposes of

the argument, we may replace X by ρ(X̃). Let W = LX(ω) for ω =
∑m

i=1 diωi, a
p-restricted dominant weight.

As in the hypotheses of Proposition 1.5, let PY be a parabolic subgroup of Y
containing PX with QX ⊂ Ru(PY ) = QY . Fix a maximal torus TY of PY with
TX ⊂ TY . We choose a base Π(Y ) = {α1, . . . , αn+1} of the root system of Y so
that PY contains the opposite Borel B−

Y subgroup with respect to this base.
Now let {0} = W0 � W1 � · · · � Wt−1 be a flag of totally singular subspaces,

such that PY is the full stabilizer in Y of this flag; so PY is the stabilizer of the flag

{0} = W0 � · · · � Wt−1 ⊆ W⊥
t−1 � W⊥

t−2 · · · � W⊥
0 = W.

Setting Wt−1+j = W⊥
t−j for 0 ≤ j ≤ t, we have the flag

{0} = W0 � · · · � Wt−1 ⊆ Wt � Wt+1 · · · � W2t−1 = W,

of which PY is the full stabilizer. By our hypotheses on PY , we have that Wt/Wt−1

is an orthogonal space of dimension at least 8 (so Wt−1 �= Wt) and we have Lt =

(Isom(Wt/Wt−1))
′, a group of type Dm for m ≥ 4. Note that Wj = [W,Q2t−1−j

Y ]
for all j ≥ 0.

Recall that by hypothesis, L′
X is of type Bm−1. If m > 4, L′

X is the stablizer in
Lt of a non-singular 1-space of Wt/Wt−1. Note that if m = 4, so L′

X is of type B3

and (Isom(Wt/Wt−1))
′ = D4, it may be that L′

X acts irreducibly on Wt/Wt−1 as
a spin module. We will take care to consider the latter possibility in what follows.

We need to see how the two flags which are stabilized by PX are related, i.e.,
the flag of subspaces {[W,Qj

X ]}j≥0 and the flag of subspaces {Wi}i≥0. We first
show that e (as defined in Lemma 4.5(iii)) is even. Indeed, suppose the contrary.

Then PX lies in the stabilizer in Y of [W,Q
e+1
2

X ], a totally singular subspace of
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dimension 1
2 dimW (using Lemma 4.5(vii)). Set P = QL to be this stabilizer, a

maximal parabolic subgroup of Y with Levi factor L of type An and Q = Ru(P ).
Consider now the action of L′

X and L′ on the commutator quotient V/[V,Q]. By
[24], each group acts irreducibly. But given that the restriction of λ to TY ∩ L′

has at least two non-zero labels, we see that there are no compatible configurations
coming from Table 1 of [23]. (Here we are invoking Hypothesis 1.4(ii).) Hence e is
even as claimed. In particular, the weight μ of (4) exists and Lemma 4.6 applies.

Choose s minimal such that [W,Q
(e/2)
X ] ⊆ Ws. Then s ≥ t because [W,Q

(e/2)
X ]

is not totally singular by Lemma 4.5(vi). If s = t, then [W,Q
(e/2)
X ] ⊆ Wt and

[W,Q
(e/2)
X ] is not contained in Wt−1. If Wμ �⊂ Wt−1, then μ|L′

X∩TX
occurs as a

weight in the quotient module (Wt/Wt−1)|L′
X
. But the only dominant TX ∩ L′

X

weights in this module are either the zero weight or the first fundamental dominant
weight, or m = 4 and Wt/Wt−1 is the spin module for L′

X . But comparing each
of these weights and μ|TX∩L′

X
(see (4)), we see that either ω = 0, or ω = ω1, or

m = 4 and μ affords the spin module. The first two possibilities are not consistent
with our assumption that X acts irreducibly on the natural module for Y . In
the last case, when m = 4 and μ affords the spin module for L′

X , we deduce
that 2dm−1 + dm = 1, contradicting the fact that dm is even. Hence we have
Wμ ⊆ Wt−1. Choose r minimal such that Wμ ⊆ Wr. Then μ occurs in the quotient
module Wr/Wr−1, which is dual to W⊥

r−1/W
⊥
r , and so the weight μ|TX∩L′

X
occurs

here as well. But by Lemma 4.6, there are an odd number of weights, each of which
is of multiplicity 1, whose restriction to TX ∩L′

X is μ and so there exists ν ∈ X(TX)
such that ν|TX∩L′

X
= μ and Wν ⊆ Wt with Wν �⊂ Wt−1. Now we conclude as above

by comparing ν|TX∩L′
X

and the weights occurring in (Wt/Wt−1)|L′
X
.

Now consider the case that s > t. Then [W,Q
(e/2)+j
X ] ⊆ Ws−j is an LX -invariant

subspace. In particular, taking j = s − t we have a totally singular L′
X -invariant

subspace of Wt. But since the image of L′
X in Isom(Wt/Wt−1) does not lie in a

proper parabolic we see that in fact [W,Q
(e/2)+s−t
X ] ⊆ Wt−1. Then we have W⊥

t−1 ⊂
[W,Q

(e/2)+s−t
X ]⊥ by Lemma 4.5(vii), which implies that Wt ⊆ [W,Q

(e/2)−s+t+1
X ].

Now consider the inclusions

[W,Q
(e/2)+s−t
X ] ⊆ Wt−1 ⊆ Wt ⊆ [W,Q

(e/2)−s+t+1
X ].

We again ask where our weight μ occurs. If Wμ ⊆ Wt and Wμ �⊂ Wt−1, we can
argue as before. If Wμ ∩Wt = {0} (recall dimWμ = 1), then μ occurs as a weight

in the quotient module [W,Q
(e/2)−s+t+1
X ]/Wt and therefore must also occur in the

dual, which is the quotient moduleWt−1/[W,Q
(e/2)+s−t
X ] and now we argue as above

to see that there exists ν whose restriction to TX ∩ L′
X is μ and occurring in the

quotient Wt/Wt−1, leading to a contradiction as above. This completes the proof
of the proposition. �

Case 2: X = F4.

Proposition 4.8. Assume the hypotheses of Proposition 1.5 with X = F4. Then
the natural KY -module W is a reducible KX-module.

Proof. Fix a maximal torus TX of X. Let Π(X) = {β1, . . . , β4} be a base of the root
system ofX, BX the corresponding Borel subgroup containing TX , and {ω1, . . . , ω4}
a set of fundamental dominant weights chosen with respect to the fixed base Π(X).
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Suppose that W |X is irreducible. Then by Proposition 4.3, we have W |X tensor-
indecomposable and so without loss of generality we will assume the highest weight

ω is p-restricted, that is, ω =
∑4

i=1 diωi, with di < p for all i. We will treat the
case p = 2 separately below.

Assume for now that p > 2.

Let PX be the maximal parabolic subgroup of X corresponding to the simple
root β1, containing the opposite Borel subgroup. We extend the notion of “level”
to this setting and rely on [23, 2.3]. Note that the maximum level of weights with
respect to this parabolic is e := 2(2d1+3d2+2d3+d4). Consider the flag of totally
singular subspaces

{0} = [W,Qe+1
X ] ⊆ [W,Qe

X ] ⊆ · · · ⊆ [W,Q
(e/2)+1
X ].

Then PX lies in the stabilizer of this flag, which is the stabilizer of the full flag

{0} = [W,Qe+1
X ] ⊆ [W,Qe

X ] ⊆ · · · ⊆ [W,Q
(e/2)+1
X ]

⊆ [W,Q
(e/2)
X ] ⊆ · · · ⊆ [W,QX ] ⊆ W.

The quotient [W,Q
(e/2)
X ]/[W,Q

(e/2)+1
X ] is a non-degenerate subspace and we claim

that it is non-trivial of dimension at least 6, which then implies that the Levi factor

L′
X of type C3 projects non-trivially into Isom([W,Q

(e/2)
X ]/[W,Q

(e/2)+1
X ]), a group

of type D� with � ≥ 4 (as there is no non-trivial morphism from C3 into D� for
� ≤ 3. Indeed, consider the weight

s1s2s3s4s2s3(ω − d1β1 − d2β2) = ω − e
2β1 − e

2β2 − (2d1 + 4d2 + 3d3 + d4)β3

− (2d2 + d3 + d4)β4.

This weight is of level (e/2), occurs in W by [22], and affords the dominant TX∩L′
X

weight (2d2 + d3)ω2 + d4ω3 + (2d1 + d3)ω4, where here we write ωi for ωi|TX∩L′
X
.

Hence dim([W,Q
(e/2)
X ]/[W,Q

(e/2)+1
X ]) ≥ 6 as claimed.

Now consider the action of X on the irreducible module V = LY (λ), where λ
satisfies the congruence relations. Since C3 projects non-trivially into the D� factor
of PY , we must have that C3 acts irreducibly on the D� module with the highest
weight as given. But there is no such example in [23, Table 1], giving the desired
contradiction. (Here we invoked Hypothesis 1.4(iii).)

Finally, consider the case where p = 2. Since W |X is tensor-indecomposable,
[23, 1.6] implies that ω = d1ω1 + d2ω2 or d3ω3 + d4ω4. Moreover, using the graph
automorphism of F4, it suffices to consider the second situation, in which case
[23, 2.3] still applies. Using [19], we see that the weight lattice of W |X is as in
characteristic 0, in particular, we can exhibit as above in each case a non-zero
dominant weight of level e/2 and the above argument goes through. If ω = ω3,
when e = 4, we take ω − 2β1 − 2β2 − 3β3 − β4; if ω = ω4 and e = 2, take
ω−β1−β2−β3−β4; if ω = ω3+ω4 and e = 6, take ω− 3β1− 3β2− 4β3− 2β4. �

Proof of Proposition 1.5. We can now complete the proof of Proposition 1.5. Let
X, Y , and V be as in the statement of the proposition and assume Hypothesis 1.4
for all embeddings H ⊂ G such that rankG < rankY. By Propositions 4.1, 4.2, 4.3,
4.7, and 4.8, we have that either Proposition 1.5(a) holds, or X acts reducibly on W
and X ⊂ Bn ⊂ Y . If X = Bn, Proposition 1.5(b) holds; so assume X � Bn. The
restriction of V to Bn affords a p-restricted irreducible KBn-module with highest



68 MIKAËL CAVALLIN AND DONNA M. TESTERMAN

weight having at least three non-zero coefficients when expressed in terms of the
fundamental dominant weights for Bn. Moreover, X has a Levi subgroup of type
Bm, by hypothesis. We now refer to [23, Table 1], invoking Hypothesis 1.4(i),
to see that there are no such irreducible triples (X,Bn, λ|TBn

), where TBn
is a

maximal torus of Bn lying in the maximal torus TY . This completes the proof of
the result. �

We conclude this section by showing that the one fixed-rank example B3 ⊂ C4

acting irreducibly on V = LC4
(λ3) has no impact on the inductive proof of the

main result of [23].

Proof of Proposition 1.7. Let X, Y , and V be as in the statement of the proposition
and assume Hypothesis 1.4 for all embeddingsH ⊂ G such that rank(G) < rank(Y ).
Suppose first that X is not simple. Then V |X = E ⊗ F and X lies in a subgroup
Sp(F ) ◦ Sp(E) ⊂ Y . As discussed in the proof of Proposition 4.3, X preserves
a quadratic form on V as well, so X lies in a maximal rank subgroup Dn of Y .
Moreover, V |Dn

has highest weight with non-zero coefficients of the two fundamen-
tal dominant weights corresponding to the two half-spin modules (see [23, Table 1,
MR4]). Proposition 1.5 then gives the result.

Now assume X is simple and let PX , PY , and V be as in the statement of
the result. Taking X a minimal counterexample, that is, acting irreducibly on
V , we may assume rank(X) = 4, so X = B4 or F4. Let ωi, 1 ≤ i ≤ 4, be a
set of fundamental dominant weights with respect to a fixed maximal torus and
Borel subgroup of X. Then hypothesis (v) of the proposition implies that λ|X =∑4

i=1 aiωi with a2a4 �= 0, respectively a1a3 �= 0, if X is of type B4, respectively
F4. Then [23, 1.6] implies that V |X preserves a tensor product decomposition on
V , and we argue as in the previous paragraph to obtain a contradiction. �

5. Proof of Theorem 1.8

Let Y be a simply connected, simple algebraic group of type En, n = 6, 7, 8,
defined over K. We start by considering a maximal, closed, connected semisimple
subgroup X of Y , satisfying the hypotheses of Theorem 1.8, namely, X has a proper
parabolic subgroup whose Levi factor is of type Bm for some m ≥ 3. Referring to
[18, Theorem 1], we see that we must consider the following pairs (X,Y ):

• (F4, E6),
• (A1F4, E7),
• (G2F4, E8).

We start by dealing with the two latter possibilities.

Proposition 5.1. The maximal subgroup A1F4 ⊂ E7 acts reducibly on all non-
trivial irreducible KE7-modules. The maximal subgroup G2F4 ⊂ E8 acts reducibly
on all non-trivial irreducible KE8-modules.

Proof. We assume the contrary. Let X = M1F4 ⊂ Y be a maximal subgroup of
Y = En for M1 = A1, respectively G2, and n = 7, respectively 8. The factor
F4 is embedded in the usual way as a maximal subgroup of an E6 Levi factor
of Y . Assume that X acts irreducibly on V = LY (λ), where λ is a non-zero p-
restricted dominant weight. Adopting the usual notation as in previous results, we
set λ =

∑n
i=1 aiλi, where {λ1, . . . , λn} are the fundamental dominant weights with

respect to a fixed choice of base for the root system of Y . Since X acts irreducibly
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on V , F4 acts homogeneously. Let {ω1, ω2, ω3, ω4} be a set of fundamental dominant
weights for F4 again with respect to a fixed choice of base of the root system which
is compatible with the given choice for Y . By [24] we have one F4 composition
factor of V with highest weight ω = a2ω1 + a4ω2 + (a3 + a5)ω3 + (a1 + a6)ω4.
The homogeneity of V |F4

implies that a7 = 0, and a8 = 0 if n = 8, as otherwise
λ− α7 (resp. λ− α7 − α8) would afford the highest weight of a composition factor
different from LX(ω). Now let i0 be maximal such that ai0 �= 0 (such exists since
λ �= 0). If i0 = 2, then λ − α2 − α4 − α5 − α6 − α7 affords an F4 composition
factor of V not isomorphic to that already given. Hence i0 �= 2. If i0 = 1, then
λ−α1−α3−α4−α5−α6−α7 has the same property. For all other cases, we take

λ −
∑7

i=i0
αi, which again affords an F4-composition factor with highest weight

different from ω. This is the final contradiction. �

The remainder of this section is devoted to the proof of the following result, first
proven by Testerman [26, Theorem 5.0 (i)] under the assumption that [23, Table 1,
IV1, IV1′] formed a complete family of irreducible triples for the usual embedding
Bn ⊂ Dn+1.

Theorem 5.2. Let Y be a simply connected, simple algebraic group of type E6

over K and let X be the subgroup of type F4, embedded in Y in the usual way.
Also let V = LY (λ) be a non-trivial, irreducible KY -module having p-restricted
highest weight λ ∈ X+(TY ). Assume Hypothesis 1.4 for all embeddings H ⊂ G
with rank(G) < rank(Y ). Then X acts irreducibly on V if and only if one of the
following holds, where we give λ up to graph automorphisms:

(i) λ = (p− 3)λ1, with p > 3.
(ii) λ = λ1 + (p− 2)λ3, with p > 2.

The proof relies on some detailed knowledge of the structure of certain Weyl
modules for E6 and F4. Section 5.1 below provides some results based on the Jantzen
p-sum formula. In Section 5.2, we apply the methods from Section 5.1 to various
Weyl modules in order to obtain insight on their structure, as well as information
on certain weight multiplicities in the corresponding irreducible quotient. These
results shall then prove useful in Section 5.3, in which we conclude by showing that
Theorem 5.2 holds. Finally, at the end of the section, we see how these results lead
to a proof of Theorem 1.8.

5.1. Understanding Weyl modules. Let G be a semisimple algebraic group over
K, and let B be a Borel subgroup of G containing a fixed maximal torus T. Let
Π = {α1, . . . , αn} denote the corresponding base for the root system Φ = Φ+ �Φ−

of G, and let λ1, . . . , λn denote the corresponding fundamental dominant weights
for T. Let ρ denote the half-sum of all positive roots in Φ, or equivalently, the sum
of all fundamental dominant weights. Also for λ, μ ∈ X+(T ) such that μ ≺ λ,
define

d(λ, μ) = 2(λ+ ρ, λ− μ)− (λ− μ, λ− μ).

The following corollary to the strong linkage principle [1] gives a necessary condition
for μ to afford the highest weight of a KG-composition factor of VG(λ), in the case
where p > 2 and G is not of type G2. We refer the reader to [23, 6.2] for a proof.

Proposition 5.3. Assume p > 2 and let G be a simple algebraic group of type
different from G2. Also let λ and μ be as above, and assume the inner product on



70 MIKAËL CAVALLIN AND DONNA M. TESTERMAN

ZΦ is normalized so that long roots have length 1. If μ affords the highest weight of
a composition factor of VG(λ), then

2d(λ, μ) ∈ pZ.

Let {eμ}μ∈X(T ) denote the standard basis of the group ring Z[X(T )] over Z. The
Weyl group W of G acts on Z[X(T )] by weμ = ewμ, w ∈ W , μ ∈ X(T ), and we
write Z[X(T )]W to denote the set of fixed points. The formal character of a given
KG-module V is the linear polynomial chV ∈ Z[X(T )]W defined by

chV =
∑

μ∈X(T )

mV (μ)e
μ.

Also, for λ ∈ X+(T ), we write

χ(λ) = chVG(λ) = chH0(λ)

(see [16, II, 2.13], for instance). The Jantzen p-sum formula [16, II, Proposition
8.19] yields the existence of a filtration VG(λ) = V 0 � V 1 ⊇ · · · ⊇ V k ⊇ V k+1 = 0 of

VG(λ), such that V 0/V 1 ∼= LG(λ) and such that the sum
∑k

r=1 chV
r ∈ Z[X(T )]W ,

denoted νc(Tλ), satisfies certain properties (loc. cit.). Throughout this section, we
call such a filtration the Jantzen filtration of VG(λ). Moreover, since {χ(λ)}λ∈X+(T )

forms a Z-basis of Z[X(T )]W (see [16, II, Remark 5.8]), there exists (aν)ν∈X+(T ) ⊂ Z
such that

(5) νc(Tλ) =
∑

ν∈X+(T )

aνχ(ν).

Consider a T -weight μ ∈ X(T ) with μ ≺ λ. Following [7, Section 3.2], we now
define a “truncated” version of νc(Tλ), which shall prove useful in computations,
by setting

(6) νcμ(Tλ) =
∑

ν∈X+(T )
μ�ν≺λ

aνχμ(ν),

where the aν (ν ∈ X+(T )) are as in (5), and where for every ν ∈ X+(T ), we have
χμ(ν) =

∑
η∈X+(T )μ�η�ν [VG(ν), LG(η)] chLG(η). Finally, the latter decomposition

yields

(7) νcμ(Tλ) =
∑

ξ∈X+(T )
μ�ξ≺λ

bξ chLG(ξ)

for some bξ ∈ Z. The following proposition shows how (7) can be used in order to
determine the possible composition factors of VG(λ), together with an upper bound
for their multiplicity. We refer the reader to [7, Proposition 3.6] for a proof.

Proposition 5.4. Let λ ∈ X+(T ) and consider a T -weight μ ≺ λ. Also let ξ ∈
X+(T ) be a dominant weight such that μ � ξ ≺ λ. Then ξ affords the highest weight
of a composition factor of VG(λ) if and only if bξ �=0 in (7). Also [VG(λ), LG(ξ)]≤bξ.

For ν ∈ X+(T ), we call the coefficient aν in (6) the contribution of ν to νcμ(Tλ),
and we say that ν contributes to νcμ(Tλ) if its contribution is non-zero. Now applying
Proposition 5.4 for specific weights μ, ξ with μ � ξ ≺ λ requires the knowledge of
the contribution of ν to νcμ(Tλ) for each dominant T -weight μ � ν ≺ λ. In certain
cases, knowing whether or not a given T -weight contributes to νcμ(Tλ) can be easily
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determined, as the following result shows. We refer the reader to [7, Lemma 3.7]
for a proof.

Lemma 5.5. Let λ, μ, and ν be as above, with ν maximal, with respect to the partial
order �, such that ν contributes to νcμ(Tλ). Then ν affords the highest weight of a
composition factor of VG(λ).

Fix ν ∈ X+(T ), and recall from [3, Planches I–IV] the description of the simple
roots and fundamental dominant weights for T in terms of a basis {ε1, . . . , εdΦ

}
for a Euclidean space E of dimension dΦ. For α ∈ Φ+ and r ∈ Z≥0 such that
1 < r < 〈λ + ρ, α〉, we write λ + ρ − rα = a1ε1 + · · · + adΦ

εdΦ
, as well as ν + ρ =

b1ε1 + · · · + bdΦ
εdΦ

, following the ideas of [21]. Also following [7, Section 3.2], we

set Aα,r = (aj)
dΦ
j=1 ∈ QdΦ and Bν = (bj)

dΦ
j=1 ∈ QdΦ . The action of the Weyl group

W of G on the basis {ε1, . . . , εdΦ
}, described in [3, Planches I–IV], extends to an

action of W on QdΦ in the obvious way. (We write w · A for w ∈ W , A ∈ QdΦ .)
In addition, define the support of an element z ∈ ZΦ to be the subset supp(z)
of Π consisting of those simple roots α such that cα �= 0 in the decomposition
z =

∑
α∈Π cαα. Finally, for w ∈ W , we write det(w) for the determinant of w as

an invertible linear transformation of X(T )R = X(T ) ⊗Z R. The following result
is our main tool for determining the contribution of ν to νcμ(Tλ) for each weight

ν ∈ X+(T ) with μ � ν ≺ λ. We refer the reader to [7, Theorem 3.8] for a proof.

Theorem 5.6. Let λ ∈ X+(T ), and consider a weight μ ∈ X(T ) with μ ≺ λ. Let
ν ∈ X+(T ) be such that μ � ν ≺ λ. Write Iν = {(α, r) ∈ Φ+ × [2, 〈λ + ρ, α〉] :
supp(α) = supp(λ − ν), Bν ∈ W · Aα,r}, and for each pair (α, r) ∈ Iν , choose
wα,r ∈ W such that wα,r ·Aα,r = Bν . Then the contribution of ν to νcμ(Tλ) is given
by

−
∑

(α,r)∈Iν

νp(r) det(wα,r),

where for � a prime number and m ∈ Z, we write ν�(m) for the �-adic valuation of
m.

5.2. Computing certain weight multiplicities. We now use the results intro-
duced in the previous section to investigate the structure of certain Weyl modules,
as well as to compute various weight multiplicities in certain irreducible modules.
For λ ∈ X+(T ) and c1, . . . , cn ∈ Z≥0, we use the notation λ − c1c2 · · · cn for the
weight λ−

∑n
r=1 crαr.

Lemma 5.7. Let G be of type B3 over K, and let a, b ∈ Z>0 be such that a+b+1 =
p. Also let λ = aλ1+ bλ2+aλ3 ∈ X+(T ) and μ = λ− 111 ∈ Λ+(λ). Then μ affords
the highest weight of a composition factor of VG(λ) if and only if (a, b) = (p− 2, 1).

Proof. We first deal with the situation where p = 3, a = b = 1, so that we have
p = a + 2 in this case. Here the only dominant T -weights ν ∈ X+(T ) such that
μ � ν ≺ λ are λ − 110, λ − 011, and μ itself. Now an application of Proposition
5.3 shows that λ − 011 cannot afford the highest weight of a composition factor
of VG(λ). On the other hand [VG(λ), LG(λ − 110)] = 1 by Proposition 2.2, but
mLG(λ−110)(μ) = 0 (as λ− 110 = 3λ3) and hence

mLG(λ)(μ) = mVG(λ)(μ)− [VG(λ), LG(μ)].

Now mLG(λ)(μ) = 3 < 4 = mVG(λ)(μ) by [20], from which we deduce the existence
of a second composition factor of VG(λ). Now since no weight ν with μ ≺ ν ≺ λ
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affords the highest weight of a composition factor of VG(λ), the desired result follows
in this case.

We thus assume p > 3 in the remainder of the proof and consider the Jantzen
filtration VG(λ) = V 0 � V 1 ⊇ · · · ⊇ V k ⊇ 0 of VG(λ). We start by computing
all contributions to νcμ(Tλ). Here the dominant T -weights ν ∈ X+(T ) such that
μ � ν ≺ λ are λ− 100 (if a > 1), λ− 010 (if b > 1), λ− 001 (if a > 1), λ− 101 (if
a > 1), λ− 110, λ− 011, and μ itself. Now λ− 100, λ− 010, λ− 001, and λ− 101
all have multiplicity 1 in VG(λ) and hence none of them can afford the highest
weight of a composition factor of VG(λ) by [22]. Recursively applying Lemma 5.5
then shows that those same weights cannot contribute to νcμ(Tλ). In addition, an
application of Proposition 5.3 yields [VG(λ), LG(λ − 011)] = 0, and hence λ − 011
does not contribute to νcμ(Tλ) by Lemma 5.5 again.

We now compute the contribution of ν1 = λ−110 to νcμ(Tλ) by first determining
all pairs (α, r) ∈ Iν1

as in Theorem 5.6. A straightforward computation yields

Bν1
= 1

2 (3a+ 2b+ 3, a+ 2b+ 3, a+ 3),

and since λ − ν1 has support {α1, α2}, we get that α = α1 + α2 = ε1 − ε3 by
definition of Iν1

. For r ∈ Z, we have

Aε1−ε3,r = 1
2 (3a+ 2b+ 5− 2r, a+ 2b+ 3, a+ 1 + 2r).

Recall from Bourbaki [3, Planche II] that W acts by all permutations and sign
changes of the εi, hence the orbit of any 3-tuple C = (c1, c2, c3) ∈ Q3 is given by

W · C = {±cσ(1),±cσ(2),±cσ(3) : σ ∈ Sym3}.

We thus deduce that Aε1−ε3,r and Bν1
are conjugate under the action of W if and

only if {3a + 2b + 5 − 2r, a + 1 + 2r} = {|3a + 2b + 3|, |a + 3|}. By studying each
possibility separately, one easily shows that Aε1−ε3,r is W -conjugate to Bν1

if and
only if r = p, in which case the chosen element

wε1−ε3,r = sε1−ε3

satisfies wε1−ε3,r ·Aα,r = Bν1
as desired. Consequently an application of Theorem

5.6 shows that ν1 contributes to νcμ(Tλ) by νp(p) = 1. We next determine the
contribution of μ to νcμ(Tλ). Here again, a computation yields

Bμ = 1
2 (3a+ 2b+ 3, a+ 2b+ 3, a+ 1),

and since λ − μ has support Π, we get that α ∈ {ε1, ε1 + ε2, ε1 + ε3}. Dealing
with each possibility separately, one then concludes that μ contributes to νcμ(Tλ)
by νp(3a+ 2b+ 4) by Theorem 5.6, so

νcμ(Tλ) = χμ(λ− 110) + νp(3a+ 2b+ 4)χμ(μ).

Now χμ(λ − 110) = chLG(λ − 110) + δp,a+2 chLG(μ) and χμ(μ) = chLG(μ). An
application of Proposition 5.4 then completes the proof. �

Lemma 5.8. Let G be of type Bn (n ≥ 2) over K, and let a, b ∈ Z>0 be such
that b > 1, and p | (a + b + n − 1). Also let λ = aλ1 + bλn ∈ X+(TG) and
μ = λ− 1 · · · 12 ∈ Λ+(λ). Then μ affords the highest weight of a composition factor
of VG(λ). Furthermore if n = 2, then

[VG(λ), LG(μ)] = 1.
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Proof. Consider the Jantzen filtration VG(λ) = V 0 � V 1 ⊇ · · · ⊇ V k ⊇ 0 of VG(λ).
We proceed as in the proof of Lemma 5.7, starting by computing all contributions
to νcμ(Tλ) in the case where n = 2. Here the only dominant T -weights ν ∈ X+(T )
satisfying μ � ν ≺ λ are λ− 10 (if a > 1), λ− 01, λ− 02 (if b > 3), λ− 11, and μ
itself. Now each of λ− 10, λ− 01, and λ− 02 has multiplicity at most 1 in VG(λ)
and hence

[VG(λ), LG(λ− 10)] = [VG(λ), LG(λ− 01)] = [VG(λ), LG(λ− 02)] = 0

by [22]. Applying Lemma 5.5 then shows that none of these can contribute to
νcμ(Tλ). Also [VG(λ), LG(λ− 11)] = 0 by Proposition 5.3, hence again showing that
λ − 11 does not contribute to νcμ(Tλ) by Lemma 5.5. Finally, we compute the
contribution of μ, by first determining all pairs (α, r) ∈ Iμ as in Theorem 5.6. A
straightforward computation yields

Bμ = 1
2 (2a+ b+ 1, b− 1),

and since λ − μ has support Π, we get that α ∈ {ε1, ε1 + ε2} by definition of Iμ.
We claim that for every r ∈ Z≥0, the 2-tuple Aε1,r is not conjugate to Bμ under
the action of the Weyl group W of G. Indeed, as in the proof of Lemma 5.7, recall
from [3, Planche II] that W acts by all permutations and sign changes of the εi.
Now Aε1,r = 1

2 (2a+ b+ 3− 2r, b+ 1), and since none of the two coordinates of Bμ

is equal to ± 1
2 (b + 1), we immediately deduce that Aε1,r ∩ (W · Bμ) = ∅ for every

r ∈ Z. Now considering the positive root ε1 + ε2, we have

Aε1+ε2,r = 1
2 (2a+ b+ 3− 2r, b+ 1− 2r),

from which we deduce that Aε1+ε2,r and Bμ are conjugate under the action of W
if and only if {2a+ b+3− 2r, b+1− 2r} = {|2a+ b+1|, |b− 1|}. By studying each
possibility separately, one shows that Aε1+ε2,r is W -conjugate to Bμ if and only if
r = p, in which case the element

wε1+ε2,r = sε1−ε2sε1sε2

satisfies wε1+ε2,r · (Aε1+ε2,r) = Bμ as desired. Therefore

νcμ(Tλ) = χμ(μ)

by Theorem 5.6, and since χμ(μ) = chLG(μ), we get that

νcμ(Tλ) = chLG(μ).

An application of Proposition 5.4 then completes the proof.
Next we assume n > 2, in which case the dominant T -weights ν ∈ X+(T )

satisfying μ � ν ≺ λ are λ−α1 (if a > 1), λ−αn, λ−2αn (if b > 3), λ−αn−1−2αn

(if b > 2), λ− (α1 + · · ·+ αn), and μ itself. Now arguing as in the n = 2 case, one
shows that neither of λ− α1, λ − αn, λ− 2αn, λ− α1 − αn, λ − αn−1 − 2αn, nor
λ−(α1+· · ·+αn) can contribute to νcμ(Tλ). Finally, we compute the contribution of
μ, by first determining all pairs (α, r) ∈ Iμ as in Theorem 5.6. Again, a computation
yields

Bμ = 1
2 (2a+ b+ 2n− 3, b+ 2n− 3, b+ 2n− 5, . . . , b+ 3, b− 1),

and since λ−μ has support Π, we get that α ∈ {ε1, ε1+εl : 2 ≤ l ≤ n}. Now for r ∈
Z≥0 and α ∈ Φ+, we have Aα,r = 1

2 (2a+b+2n−1, b+2n−3, b+2n−5, . . . , b+1)−rα.
Now by Bourbaki [3, Planche II] again , W acts by all permutations and sign changes
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of the εi, from which one immediately deduces that Aα,r cannot be conjugate to
Bμ if α �= ε1 + εn. Also, a straightforward computation yields

Aε1+εn,r = 1
2 (2a+ b+ 2n− 1− 2r, b+ 2n− 3, b+ 2n− 5, . . . , b+ 3, b+ 1− 2r),

from which we deduce that Aε1+εn,r and Bμ are conjugate under the action of W
if and only if {2a + b + 3 + 2n − 1 − 2r, b + 1 − 2r} = {|2a + b + 2n − 3|, |b − 1|}.
By studying each possibility separately, one shows that Aε1+εn,r is W -conjugate to
Bμ if and only if r = a+ b+ n− 1, in which case the element

wε1+εn,r = sε1−εnsε1sεn

satisfies wε1+εn,r · (Aε1+εn,r) = Bμ as desired. Therefore νcμ(Tλ) = νp(a + b +
n − 1)χμ(μ) by Theorem 5.6, and since χμ(μ) = chLG(μ), we get that νcμ(Tλ) =
νp(a + b + n − 1) chLG(μ). An application of Proposition 5.4 then completes the
proof. �

We will also require some knowledge about the structure of certain Weyl modules
for a simple group of type An over K. However, due to the complexity of the
description of fundamental dominant weights in terms of an orthonormal basis of a
Euclidean space for such G, it is more convenient to work in a group of type Bn+1,
and then deduce the desired result for An.

Lemma 5.9. Let G be of type Bn+1 (n ≥ 3) over K, and let 0 < a, b, c < p be
positive integers. Also let λ = aλ1 + bλ2 + cλn ∈ X+(T ), ν1 = λ − α1 − α2,
ν2 = λ− (α2 + · · ·+ αn), and μ = λ− (α1 + · · ·+ αn). Then μ affords the highest
weight of a composition factor of VG(λ) if and only if p | (a+ b + c+ n− 1). Also
if n = 3, then we have

χμ(λ) = chLG(λ) + δp,a+b+1 chLG(ν1) + δp,b+c+1 chLG(ν2) + δp,a+b+c+2 chLG(μ).

Proof. As in the proofs of Lemmas 5.7 and 5.8, fix VG(λ)=V 0 � V 1 ⊇· · ·⊇ V k ⊇ 0,
the Jantzen filtration for VG(λ). Arguing as in the aforementioned proofs, one first
checks that

νcμ(Tλ) = νp(a+ b+ 1)χμ(ν1) + νp(b+ c+ 1)χμ(ν2) + νp(a+ b+ c+ n− 1)χμ(μ).

Now observe that χμ(ν1) = chLG(ν1)+νp(c+n−2) chLG(μ), χμ(ν2) = chLG(ν2),
and χμ(μ) = chLG(μ). Therefore an application of Proposition 5.4 shows that μ
affords the highest weight of a composition factor if and only if p | (a+b+c+n−1)
as desired. Finally, if n = 3, then we get that νp(a+b+1) = δp,a+b+1, νp(b+c+1) =
δp,b+c+1, and νp(a+ b+ c+ 2) = δp,a+b+c+2. Also χμ(ν1) = chLG(ν1) in this case,
so that an application of Proposition 5.4 completes the proof. �

Proposition 5.10. Let G, λ, and μ be as in Table 1, with a, b, c ∈ Z>0 such that
a + b + 1 = p. Then the multiplicity of μ in VG(λ), respectively LG(λ), is given in
the fourth, respectively fifth, column of the table.

Proof. Let G, λ, and μ be as in the first row of Table 1, and start by observing that
an application of [6, Proposition 3] yields mVG(λ)(μ) = 4. Also, the weights λ−100,
λ− 010, λ− 001, and λ− 101 all have multiplicity one in VG(λ) and hence none of
them can afford the highest weight of a composition factor of VG(λ) by [22]. Setting
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Table 1. Some weight multiplicities in various irreducibles. Here
a, b, c ∈ Z>0 are such that a+ b+ 1 = p.

G λ μ mVG(λ)(μ) mLG(λ)(μ)

A3 aλ1 + bλ2 + cλ3 λ− 111 4 3− δa,c

A4 aλ1 + bλ2 + aλ3 λ− 1121 6− 2δa,1 3− δa,1

B2 aλ1 + bλ2 λ− 12 3− δb,1 2

μ1 = λ − 110 and μ2 = λ − 011, we have [VG(λ), LG(μ1)] = 1 by Proposition 2.2,
so that

mLG(λ)(μ)

= mVG(λ)(μ)−mLG(μ1)(μ)− [VG(λ), LG(μ2)]mLG(μ2)(μ)− [VG(λ), LG(μ)].
(8)

Now if a = c, then μ2 also affords the highest weight of exactly one composi-
tion factor of VG(λ) by Proposition 2.2, and one easily sees that mLG(μ1)(μ) =
mLG(μ2)(μ) = 1. Also, applying Proposition 5.3 yields [VG(λ), LG(μ)] = 0, from
which the desired result follows. If on the other hand a �= c, then [VG(λ), LG(μ2)] =
0, and we must consider separately the cases c = p − 1 or c �= p − 1. In the for-
mer case, we get that [VG(λ), LG(μ)] = 1 by Lemma 5.9, while mLG(μ1)(μ) = 0,
as μ1 = (a − 1)λ1 + (b − 1)λ2 + pλ3 in this case. The assertion then immediately
follows from (8). Finally, if c �= p − 1, then μ does not afford the highest weight
of a composition factor of VG(λ) by Lemma 5.9, while mLG(μ1)(μ) = 1, as μ1 is
p-restricted in this case. Again (8) then yields the desired result.

Next consider G, λ, μ as in the second row of Table 1 and observe that if a = 1,
then the result is an immediate consequence of the previous case, as μ is conjugate
to λ − 1110 in this situation. So assume a > 1 in the remainder of the argument.
A recursive application of [6, Proposition 1, Theorem 2] yields mVG(λ)(μ) = 6. Also
neither λ−1110, λ−0120, λ−0121, λ−1120, nor μ can afford the highest weight of
a composition factor of VG(λ) by Proposition 5.3. The remaining potential highest
weights of composition factors, except for μ1 = λ − 1100 and μ2 = λ − 0110, all
have multiplicity 1 in VG(λ), so that

mLG(λ)(μ) = mVG(λ)(μ)−[VG(λ), LG(μ1)]mLG(μ1)(μ)−[VG(λ), LG(μ2)]mLG(μ2)(μ),

by [22]. Finally, notice that mLG(μ1)(μ) = 1, while mLG(μ2)(μ) = 2 by Proposition
2.2, hence the result in this situation as well.

Finally, let G, λ, μ be as in the third row of the table. If b = 1, then μ is conjugate
to λ − 11, whose multiplicity in VG(λ) equals 2. An application of Proposition
5.3 then yields the desired result in this case. If on the other hand b > 1, then
μ is dominant and mVG(λ)(μ) = 3 by [6, Proposition 1, Theorem 2]. By [22],
[VG(λ), LG(λ − 10)] = [VG(λ), LG(λ − 01)] = 0, while applying Proposition 5.3
shows that λ − 11 does not afford the highest weight of a composition factor of
VG(λ). Therefore mLG(λ)(μ) = mVG(λ)(μ)− [VG(λ), LG(μ)] and hence the assertion
follows from Lemma 5.8. �
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5.3. Proof of Theorem 5.2 and conclusion. Let Y be a simple algebraic group
of type E6 over K, and throughout this section, assume Hypothesis 1.4 for all
embeddings H ⊂ G with rankG < rankY. Fix TY a maximal torus of Y and let
BY be a Borel subgroup of Y containing TY . Let Π(Y ) = {α1, . . . , α6} denote the
corresponding base for the root system Φ(Y ) = Φ+(Y )�Φ−(Y ) of Y, where Φ+(Y )
and Φ−(Y ) denote the set of positive and negative roots, respectively. Also write
λ1, . . . , λ6 for the associated fundamental dominant weights. Consider the subgroup
X of type F4 defined by

X = 〈x±βj
(c) : 1 ≤ j ≤ 4, c ∈ K〉,

where x±β1
(c) = x±α2

(c), x±β2
(c) = x±α4

(c), x±β3
(c) = x±α3

(c)x±α5
(c), and

x±β4
(c) = x±α1

(c)x±α6
(c) for c ∈ K. Let TX be the maximal torus of X defined by

the x±βi
(c) (see [5, Section 4.3]), and let BX be the Borel subgroup of X generated

by the x±βi
(c) and TX , so that Π(X) = {β1, β2, β3, β4} is a corresponding base for

the root system Φ(X) of X. (Here again Φ(X) = Φ+(X) � Φ−(X) in the obvious
way.) We first recall an argument from [26].

Lemma 5.11. Let X and Y be as above and λ ∈ X+(TY ) a non-trivial p-restricted
weight such that LY (λ)|X is irreducible. Then up to graph automorphism, one of
the following holds:

(i) λ = aλ2 + aλ3 + bλ4 for some a, b ∈ Z>0, with a+ b = p− 1.
(ii) λ = (p− 3)λ1 for p > 3.
(iii) λ = λ1 + (p− 2)λ3 for p > 2.

Proof. First we note that Theorem 1.2 applied to the Levi embedding B3 ⊂ D4

implies that there exists i ∈ {1, 3, 4, 5, 6} such that 〈λ, αi〉 �= 0. Let L′
X be the

C3 Levi factor of X, which lies in L′
Y , an A5-type Levi factor of Y . Then by

Hypothesis 1.4(iv), Theorem 1.2, and up to taking graph automorphisms, λ ∈
{aλ1, (p−1)λ3+xλ2 (p �= 2), cλ1+bλ3+xλ2 (cb �= 0, b+c = p−1), bλ3+aλ4+xλ2

(ab �= 0, a+ b = p− 1)}. We now refer the reader to the proof of [26, (5.4)], which
establishes that if λ = aλ1, then p > 3, a = p−3, and λ �= (p−1)λ3+xλ2. The same
proof shows that if λ = cλ1 + bλ3 + xλ2, with cb �= 0 and b+ c = p− 1, then p > 2,
x = 0, and b = p − 2. Finally, in the last case, where λ = bλ3 + aλ4 + xλ2, with
ab �= 0 and a+ b = p− 1, the same proof shows that x �= 0, and then Theorem 1.2
shows that (i) holds. �

We are now ready to give a proof of Theorem 5.2, and to conclude by giving a
proof of Theorem 1.8.

Proof of Theorem 5.2. Let λ ∈ X+(TY ) be a non-zero, p-restricted, dominant
weight for TY , and write V = LY (λ) for the corresponding irreducible KY -module.
First observe that if λ and p are as in (i) or (ii) of Theorem 1.8, then X acts ir-
reducibly on V = LY (λ) by [26, 5.6, 5.7]. By Lemma 5.11, in order to complete
the proof, it only remains to show that V |X is reducible in the situation where
λ = aλ2 + aλ3 + bλ4 for some a, b ∈ Z>0 such that a + b + 1 = p, which we shall
assume holds in the remainder of the proof. Here the restriction of λ to TX is given
by ω = aω1 + bω2 + aω3 ∈ X+(TX). Consider the dominant TX -weight

ω′ = ω − β1 − β2 − 2β3 − β4 ∈ X+(TX).

Then λ−α1−α2−2α3−α4, λ−α1−α2−α3−α4−α5, and λ−α2−α3−α4−α5−α6

are all TY -weights of V restricting to ω′. Also the latter two are WY -conjugate to
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λ− α2 − α3 − α4, yielding

mV |X (ω′) ≥ mV (λ− α1 − α2 − 2α3 − α4) + 2mV (λ− α2 − α3 − α4).

By applying Proposition 5.10 to the Levi subgroups of Y corresponding to the
simple roots α1, . . . , α4, respectively α2, α3, α4, we get

(9) mV |X (ω′) ≥ 7− δa,1.

Next observe that recursively applying [6, Theorem 2] yields mVX (ω)(ω
′) = 8 −

2δa,1. Also, the TX -weight μ = ω−β1−β2 affords the highest weight of a composition
factor of VX(ω) by Proposition 2.2, namely

LX(μ) = (a− 1)ω1 + (b− 1)ω2 + (a+ 2)ω3.

We now compute an upper bound for mLX (ω)(ω
′) by dealing with each of the

following four possibilities separately:

(i) If a = 1 and p �= 3, then μ is p-restricted and so mLX (μ)(ω
′) = 1. Therefore

we have mLX(ω)(ω
′) ≤ mVX(ω)(ω

′)− 1 = 5 < 6 = mV |X (ω).
(ii) If a > 1 and a �= p− 2, then again μ is p-restricted and so mLX(μ)(ω

′) = 1.
Also by Lemma 5.8, the weight ν = ω−β2− 2β3 affords the highest weight
of a composition factor of VX(ω), namely

LX(ν) = (a+ 1)ω1 + bω2 + (a− 2)ω3 + 2ω4.

As mLX(ν)(ω
′) = 1, we have mLX(ω)(ω

′) ≤ 6 < 7 = mV |X (ω′).
(iii) If a = 1 and p = 3, then μ is not p-restricted and mLX(ω)(ω

′) = 0. How-
ever, applying Lemma 5.7 shows that ω − β1 − β2 − β3 = ω2 + ω3 + ω4

affords the highest weight of a composition factor of VX(ω). Consequently,
as mLX(ω2+ω3+ω4)(ω

′) = 1, we get that mLX(ω)(ω
′) ≤ 5 < 6 = mV |X (ω′).

(iv) If a > 1 and a = p − 2, then again ω′ is not a weight of LX(μ). However,
an application of Lemma 5.7 (resp. Lemma 5.8) to the Levi subgroup of
X corresponding to the simple roots β1, β2, β3 (resp. β2, β3) yields the
existence of a composition factor of VX(ω) having highest weight ω − β1 −
β2 − β3 (resp. ω − β2 − 2β3). Therefore, as μ is a weight of each of these
irreducible, we get that mLX (ω)(ω

′) ≤ 6 < 7 = mV |X (ω′).

Consequently, in each case, we get that mV |X (ω′) > mLX(ω)(ω
′), showing the ex-

istence of a second composition factor of V for X. In particular V |X is reducible.
This completes the proof of Theorem 5.2. �

Proof of Theorem 1.8. LetX ⊂ Y = En be as in the statement of Theorem 1.8. We
embed X in a maximal proper closed connected subgroup of Y and deduce by the
remarks at the beginning of Section 5, Proposition 5.1, and Theorem 5.2, thatX lies
in the F4 subgroup of Y = E6. So we must determine the irreducible configurations
X ⊂ F4 acting irreducibly on the irreducible F4-module with highest weight λ ∈
{(p− 3)λ1 (p > 3), λ1 + (p− 2)λ3 (p > 2)}; this is covered by [26, Main Theorem].
Then [26, Main Theorem (iii), (iv)] completes the proof of Theorem 1.8. �
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[7] Mikaël Cavallin, Structure of certain Weyl modules for the Spin groups, J. Algebra 505
(2018), 420–455, DOI 10.1016/j.jalgebra.2018.03.007. MR3789919
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