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LOCALIZATION FOR LOGARITHMIC STABLE MAPS

S. MOLCHO AND E. ROUTIS

Abstract. We prove a virtual localization formula for Bumsig Kim’s space
of Logarithmic Stable Maps. The formula is closely related and can in fact
recover the relative virtual localization formula of Graber-Vakil.

1. Introduction and background

In his papers [Li01] and [Li02], Jun Li introduced and studied the space of
relative stable maps. We recall the setup: fix a pair (X,D) of a smooth variety
with a smooth divisor and discrete data Γ = (g,�c = (c1, · · · , ch), β), consisting of
the arithmetic genus g of a nodal curve, a vector �c of integers, and a homology class
β in X. We wish to parametrize stable maps f : (C, �y, �x) → X from a genus g nodal
curve C with two sets of marked points �y = (y1, · · · , ym) and �x = (x1, · · · , xh) into
the variety X, whose image lies in the given homology class and with prescribed
incidence conditions along the divisor, namely, f−1(D) =

∑
cixi.

The moduli space parametrizing is not proper: a limit of such maps may fail to
exist, as in the limit that the whole curve may lie entirely in the divisor D. Jun Li
and, at about the same time, Li-Ruan [LR01] and Ionel-Parker [IP03],[IP04] from
the point of view of symplectic Gromov-Witten theory, gave a beautiful solution
to this issue. Jun Li’s idea can be outlined as follows. When a limit of maps
tends to collapse into the divisor, the space X sprouts a new component, which is
isomorphic to the projective completion of the normal bundle P(ND/X ⊕ 1) of D
to contain the image, in a manner similar to a blowup. We then require that the
prescribed behavior along the divisor does not happen along the original divisor
D, but rather the divisor at infinity in P(ND/X ⊕ 1), which we denote D[1]. We
call X with this new component X[1]; we then have a new pair (X[1], D[1]) and
we may consider stable maps as above to this pair. When a family of maps to
X[1] tends to collapse into D[1], the variety X[1] sprouts a new component that
replaces D[1], as above, to create a new space X[2] with a divisor D[2] at infinity,
and so forth. In general, a pair (X[n], D[n]) is constructed from the pair (X[n −
1], D[n − 1]) inductively. It is called the n-th expansion of (X,D). Li’s moduli
space MΓ(X,D) parametrizes stable maps whose target is allowed to be any of the
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expansions (X[n], D[n]) above, with prescribed behavior along the divisor at infinity
D[n] and with a certain compatibility requirement along the divisor D[k], k < n:
only nodes of the source curve can map to D[k], and when a node maps to D[k],
the two components of the curve containing the node have the same contact order
with the divisor D[k]; this is called the predeformability or “kissing” condition.
This space is proper and is shown to carry a virtual fundamental class, so one
can define in a standard manner a type of Gromov-Witten invariant for (X,D),
called relative Gromov-Witten invariants. For details of the construction, the reader
should consult Jun Li’s original paper [Li01].

Jun Li also considers a variant of this situation, where instead of a pair (X,D)
we consider a semistable nodal variety of the form X = Y1 ∪D Y2. This means that
X is the union of two smooth varieties Yi along a common smooth divisor D in
both of them that satisfies the following technical condition on the normal bundles:
ND/Y1

⊗ ND/Y2
∼= 1. Stable maps into X must satisfy a similar predeformability

condition as above, and the space is compactified by allowing the targets to vary
as before. X may deform to a target X[1], where D is replaced by P(ND/Y1

⊕ 1) ∼=
P(ND/Y2

⊕ 1), with Y1 glued along the 0 section and Y2 along the infinity section,
X[1] may deform to X[2] where the divisor connection Y2 with P(ND/X ⊕ 1) is
replaced by another copy of P(ND/X ⊕ 1), and so forth. The spaces X[n] are called
the expanded degenerations of X. The space of expanded degenerations also carries
a virtual fundamental class, and one is thus able to extend the notion of Gromov-
Witten invariants for targets X = Y1 ∪ Y2, which are mildly singular. These are
the correct Gromov-Witten invariants, in the sense that they satisfy deformation
invarance: If W → B is a family with smooth total space, smooth general fiber,
and central fiber X = Y1 ∪D Y2, the Gromov-Witten invariants of X as defined
by Jun Li coincide with the usual Gromov-Witten invariants of the general fiber,
at least when such a comparison makes sense, i.e., for homology classes restricted
from W .

The relative Gromov-Witten invariants are related to the singular Gromov-
Witten invariants by the degeneration formula. This was also proven by Jun Li
and had also been previously considered in the symplectic category in the work
of Li–Ruan [LR01] and Ionel–Parker [IP04]. The degeneration formula allows one
to compute Gromov-Witten invariants of expanded degenerations from the relative
ones and the combinatorics of the expansions. This can be useful because it is of-
ten possible to degenerate a smooth variety into a semistable one with very simple
components Yi. Thus one can calculate Gromov-Witten invariants from relative
Gromov-Witten invariants of simpler targets.

Computations of relative Gromov-Witten invariants can still be difficult, as cal-
culations in Gromov-Witten theory often are, even if the targets are very simple.
These calculations can be greatly facilitated by the use of Atiyah-Bott localization.
Localization formulas for the spaces MΓ(X,D) were established by Graber-Vakil in
[GV05]. The applications of such formulas are far reaching: for example, in [GV05],
as applications of the formulas the authors recover the ELSV formula and certain
striking results about the tautological ring.

Jun Li’s constructions are beautiful and geometrically transparent, but suffer
from one technical drawback. The virtual fundamental classes defined are hard to
work with. The reason for this is that the space of relative stable maps is not an
open subset of all maps, but rather, it is locally closed. The perfect obstruction
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theory used to define the virtual fundamental class is thus constructed by hand and
not by standard machinery. This is the main reason the paper [GV05] is technically
difficult.

One way to avoid this issue is to use a different compactification of the space
of maps to the pair (X,D) or Y1 ∪D Y2, by endowing the sources and targets of
all maps with logaritmic structures and requiring that the maps between them are
log maps. We will explain this more precisely in what follows, but here we would
like to remark that this idea agrees with a general philosophy in the modern the-
ory of moduli that states that instead of compactifying a moduli space of certain
objects, one may try to build the moduli space of such objects with logarithmic
structures. Since logarithmic structures allow mild singularities, this moduli space
is often already proper. The space of logarithmic stable maps was constructed by
B. Kim in his paper [Kim10]. Kim’s space is shown to be an open substack of the
space of all logarithmic maps and thus carries a natural virtual fundamental class
by restriction, which is simpler than the virtual fundamental class of MΓ(X,D):
its formal properties are almost identical to the fundamental class in the classi-
cal Gromov-Witten theory of smooth targets. The situation may be summarized
pictorially as follows:

log stable maps

forgetful

��

open �� log maps

forgetful

��
rel stable maps

loc closed �� all maps

(*)

In this paper, we derive an analogous localization formula for the space

Mlog
Γ (U/B) of logarithmic stable maps. The formula is analogous to the formula

of [GV05], but its derivation is closer in spirit with the proofs of localization in
classical Gromov-Witten theory, as in [Kon95],[GP99]. Specifically, we show the
following.

Theorem 3.1. Mlog
Γ (U/B) is a global quotient stack and admits a C∗ equivariant

immersion to a smooth Deligne-Mumford stack.

This in particular shows that Mlog
Γ (U/B) admits a localization formula. Then,

following the work of Graber-Vakil [GV05], we obtain explicitly that for suitable
splittings of the discrete data Γ into subsets Γ1,Γ2, we have the following.

Theorem 5.1 (Log Virtual Localization).

[Mlog
Γ (U/B)]vir = [Mlog

Γ (U/B)sim]vir

+
∑
Γ1,Γ2

q12∗p
∗
12Δ

!([Mlog
Γ1

(U/B)sim]vir × [Mlog
Γ2

(U/B)∼]vir)
|Aut(Γ1,Γ2)|(w−ψ

d )eT (NΓ1
)

.

The formula is essentially the same as the relative virtual localization formula of
[GV05]. The difference is that the stacks of simple relative maps and unrigidified
relative stable maps of [GV05] are replaced by their logarithmic analogues. These
are defined carefully in section 5. In fact, the log virtual localization formula can
be used to recover the formula of [GV05]; this is our Corollary 5.4.
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2. Logarithmic stable maps

For completeness, we will recall here the necessary definitions and constructions
that we will use. For proofs and more detailed explanations the reader should
consult Kim’s paper [Kim10].

A family of n-marked prestable curves, C → S, carries a canonical structure of
a logarithmic map, as shown in F. Kato’s paper [Kat00] (see also [Ols07]). The log
structures and morphisms are defined as follows. The curve C → S corresponds to
a diagram

C

��

�� Cg,n

��
S �� Mg,n

where Mg,n and Cg,n is the moduli stack of n-marked prestable curves and its
universal family respectively. Both stacks carry natural logarithmic structures: in
Mg,n the log structure is given by the divisor corresponding to singular curves, and
in Cg,n the log structure is given by the divisors corresponding to singular curves
and the markings. The log structures on C and S are the ones pulled back from
Cg,n and Mg,n respectively; we denote the log structure on S by NC/S and on C

by MC/S and refer to them as the canonical log structures. The morphism C → S
is automatically a log morphism. An explicit description of the log structures when
S = Spec k is a geometric point can be given in terms of charts as follows: NC/S

has a chart isomorphic to Nm, m = the number of nodes of C; MC/S = NC/S at
smooth points; MC/S = NC/S ⊕N at a marked point; and at a node MC/S is given
by the following pushout diagram:

N

��

�� N2

��
NC/S �� MC/S

where the horizontal map is the diagonal and the vertical map is the inclusion
corresponding to the appropriate node.

Definition 2.1. A genus g, n-marked log curve is a morphism f : (C,M) → (S,N)
of log schemes such that C → S is a family of genus g, n-marked prestable curves
and the morphism f is obtained from a cartesian diagram of the form

(C,M)

��

�� (C,MC/S)

��
(S,N) �� (S,NC/S)

where the horizontal maps are the identities on underlying schemes. Therefore,
a log curve is the same thing as the choice of a prestable curve C → S and the
choice of a homomorphism of log structures sC/S : NC/S → N . We will reserve the
notation sC/S to always refer to this homomorphism and denote it by s to simplify
notation if no confusion may arise.

We denote the stack parametrizing log curves by Mlog
g,n.
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Definition 2.2. A log curve (M,C) → (S,N) is called minimal if the log structure
N is locally free and there is no locally free submonoid N ′ ⊂ N that contains the
image of NC/S .

Here, we call a log structure locally free if around every point it has a chart
isomorphic to Nr for some r, possibly depending on the point. For example, over
S = Spec k, where NC/S = N

m, all surjections Nm → N
r, r ≤ m, give minimal log

curves but no map Nm → Nr, r > m.
Minimal log curves are essentially the sources of log stable maps; for a more

precise statement, see Definition 2.5. Next, we discuss the possible targets, which
Kim calls “extended log twisted Fulton-Macpherson type spaces”.

Fix a smooth projective variety X.

Definition 2.3. A family of schemes or algebraic spaces W → S is called a log
FM type space of X if, at every point s ∈ S, there is étale locally an étale map

Ws̄ → Spec k(s̄)[x, y, z1, · · · , zr−1]/(xy).

These families of spaces are required to admit canonical log structures NW/S on S
and MW/S on W such that MW/S is given by the cocartesian diagram

N

��

�� N2

��
NW/S �� MW/S

and such that the morphism W → S is in fact a log morphism (W,MW/S) →
(S,NW/S). We will further require that NW/S be locally free. Its rank at s ∈ S
equals the number of irreducible components of the singular locus of the fiber Ws.
We further require that the spaces W come equipped with a map W → X.

Definition 2.4. An extended log twisted FM type space of X is a log morphism
(W,M) → (S,N), where

• W → S is as in Definition 2.3 above, and all relevant logarithmic data are
obtained from a cartesian diagram

(W,M)

��

�� (W,MW/S)

��
(S,N) �� (S,NW/S)

that is, the logarithmic data simply corresponds to a morphism of log struc-
tures tW/S : NW/S → N . We will reserve the notation tW/S to always
indicate this morphism and denote it by t to simplify notation when no
confusion may arise.

• There is a chart for the morphism tW/S : NW/S → N of the form

Nm

��

�� Nm ⊕ Nm′

��
NW/S �� N
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Here the top map is of the form (d, 0), where d = (d1, · · · , dm) is a diagonal
matrix of natural numbers.

From now on we will refer to log FM type spaces of X simply as log FM spaces
and to extended log twisted FM type spaces of X as extended log twisted FM spaces
for brevity. Having defined both the sources and the targets of log stable maps, we
can now give the definition of the central objects of study of this paper.

Definition 2.5. A log stable map from a log curve (C,M)/(S,N) to an extended
log twisted FM space (W,K)/(S,N) is a log morphism f : (C,M) → (W,K) over
(S,N) such that, over each point s ∈ S:

• The cokernel of the map N
W/S
s → Ns has rank equal to the number of

non-distinguished nodes.
• The map f∗Ks → Ms is simple at the distinguished nodes.
• Stability: The automorphism group Aut(fs) is finite.
• The following minimality condition holds: Either (C,M)/(S,N) is a mini-
mal log curve or, if not, then there exists a subsheaf of monoids N ′ of N ,
which is a locally free log structure on S, such thatN = N⊕N ′, NC/S → N ′

minimal, and NW/S → N surjective.

We explain the terminology: Over each s ∈ S, Cs is a nodal curve and Ws is an
extended log twisted FM space. A node of Cs is called distinguished if it maps into
the singular locus of Ws and is non-distinguished otherwise. A morphism between
locally free log structures is called simple if it is given by a diagonal matrix, as
in the definition of extended log twisted FM spaces above. An automorphism of
f : (C,M) → (W,K) over (S,N) is a cartesian diagram over (S,N)

(C,M)

��

�� (W,K)

��
(C,M) �� (W,K)

that respects the map to X; that is, on the level of underlying schemes we have

C

��

�� W

��

�� X

=

��
C �� W �� X

Remark 2.1. The minimality condition slightly deviates from Kim’s definition. In
[Kim10], the definition of a log stable map requires that the log curve (C,M) →
(S,N) be minimal. This neglects the possibility that there is no node in the curve
C mapping to the original divisor D = D[0]. The typical example of this situation
is in (X,D) = (P2,P1), where a line P1 rotates to collapse into D: the limit map
is the map from P1 to X[1] that sends all of P1 into X[1] − X, with the image
line intersecting D[1] transversely. There is a more satisfying, intrinsic explanation
of the minimality condition. Minimality is a categorical property: Minimal log
schemes (S,N) are precisely the log schemes one must restrict to in order to be
able to consider a stack over log schemes, such as Mlog

g,n or the stack of all log
maps into extended log twisted FM spaces, as a log stack. This is the content of
the paper [Gil11]. Kim’s minimal log curves are precisely the minimal objects for
the stack Mlog

g,n. However, the minimal objects for the stack of all log maps into
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extended log twisted FM spaces that satisfy the first three properties include the
case that no node of the curve maps into D[0], and we must include this case in the
definition. Here we also remark that what we call minimal here is the same thing
as what is called basic in [Che14],[AC11],[GS11]. Both notions correspond to the
same categorical notion of minimality.

Let us describe the logarithmic data concretely in the case when S = Spec k is
a geometric point. This description will be useful in what follows. The locally free
log structures on S are free in this case, described by a chart Nr for certain integers
r; specifically, we have

NC/S = N
m′′ ⊕ N

m′ ⊕ k∗,

NW/S = N
m ⊕ k∗,

N = N
m ⊕ N

m′ ⊕ k∗.

The morphisms sC/S := s, tW/S := t are described on the level of characteristic
monoids as follows: t̄ : N̄W/S → N̄ is given by a diagonal matrix of the form
(d1, · · · , dm, 0, · · · , 0), as above. The morphism s̄ : N̄C/S → N̄ is given by a matrix
of the form (Γ, id), where Γ is a generalized diagonal matrix:⎛

⎜⎜⎜⎝
Γ1,1 · · ·Γ1,k1

0 · · · 0 · · · 0 · · · 0
0 · · · 0 Γ2,1 · · ·Γ2,k2

· · · 0 · · · 0
...

...
. . .

...
0 · · · 0 0 · · · 0 · · · Γm,1 · · ·Γm,km

⎞
⎟⎟⎟⎠ .(1)

The integers k1, · · · , km add up to m′′. It is possible that the first row of the matrix
is 0, in which case d1 = 1. This happens when no node of the curve maps to the
original divisor D = D[0]. Otherwise, the log curve (C,M) → (S,N) is minimal,
which means that there is no common divisor between the integers Γi,k1

, · · · ,Γi,ki
.

For each Γi,j , there is an integer such that di = Γi,j li,j . In other words, there is a
commutative diagram

NW/S

��

�� NC/S

��
N �� N

We will now fix a stack B of certain log FM spaces and denote by Betw the stack
whose objects are extended log twisted FM spaces whose underlying spaces are in
B. We denote by U and Uetw the universal family of B and Betw respectively. In
other words, we consider spaces W ∈ B but endow them with log structures as

above. We will consider the stack Mlog
Γ (U/B) of log stable maps to targets in Betw.

It is proven [Kim10] that if the stack B is algebraic, Mlog
Γ (U/B) is also algebraic.

Remark 2.2. Let us at this point explain the connection with Jun Li’s original
definitions and clarify this concept geometrically. A family of expansions W → S
of a pair (X,D) or, similarly, of a D-semistable degeneration X = Y1 ∪D Y2 has
canonical log structures that determine log FM spaces. The canonical log structure
on a family of expansions is obtained in a manner formally identical to the way that
the canonical log structure on a nodal curve is obtained. A detailed treatment of
the canonical log structures on expansions can be found in Olsson’s paper [Ols03].
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Briefly, there is an algebraic stack B parametrizing expansions. The stack B is in
fact the open substack of the stack M0,3 of 3 marked, genus 0 prestable curves
where the first two markings are on the first component of the curve and the third
marking on the last; see for instance [GV05]. In B there is a normal crossings
divisor corresponding to singular expansions; therefore, B admits a log structure
MB. Similarly, the universal family U over B admits a log structure MU . A family
of expansions corresponds to a cartesian diagram

W

��

u �� U

��
S

t
�� B

The pullback log structures t∗MB and u∗MU on S and W are what we denoted
by NW/S and MW/S above. Therefore, expansions are examples of log FM spaces.
We may thus consider log stable maps to expansions. The underlying morphism
of schemes of such a log stable map is a relative stable map in the sense of Jun
Li; the predeformability condition is enforced by the requirement that the map is
a map of log schemes. The log structures are thus additional algebraic data on a
relative stable map. The log structures encode essential geometric information very
conveniently. Suppose for simplicity that S = Spec k is a geometric point. We have
seen above the form of the log structures NC/S , NW/S , N , and the maps between
them. The rank of NW/S , which we denoted by the number m above, indicates that
the target is the m-th expansion (X[m], D[m]) of (X,D). The number m′ is the
number of non-distinguished nodes. The number m′′ is the number of distinguished
nodes. The matrix Γ above indicates that k1 of the distinguished nodes map to the
first singular locus in (X[m], D[m]) (namely to D[0]), k2 map to D[1], and so forth.
The contact order of the j-th node mapping to the i-th singular locus is li,j . Note
that once the underlying stable map is fixed, the diagram

N̄W/S

t̄W/S

��

�� N̄C/S

s̄C/S

��
N̄ �� N̄

between the characteristic monoids of the log structures is determined. This means
that in order to determine the full diagram

NW/S = N̄W/S ⊕ k∗

tW/S

��

�� NC/S = N̄C/S ⊕ k∗

sC/S

��
N = N̄ ⊕ k∗ �� N

we need to determine the elements of k∗ to which the generators of NC/S and NW/S

are mapping. In fact, all generators of NW/S may be chosen to map into 1 ∈ k∗

after automorphism, so it is enough to treat only NC/S . Matrix 1 in Remark 2.1
indicates that sC/S has the following form:

eij 
→ (Γijei, uij).(1’)
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Note however that the units uij are restricted: they must satisfy the equation
ulij = 1, in order for the diagram

(C,M)

��

f �� (W,MW )

�����
���

���
�

(S,N)

to commute. This shows that there is a finite number of ways to give to a relative
stable map the structure of a log stable map. In other words, if MΓ(X,D) denotes

Jun Li’s space of expansions and Mlog
Γ (U/B) Kim’s space of log stable maps to

expansions of (X,D), which is algebraic stack since the stack of expansions B is
algebraic, there is a forgetful morphism

Mlog
Γ (U/B) → MΓ(X,D).

For the rigorous definition of the morphism π� : Mlog
Γ (U/B) → MΓ(X,D) we re-

fer to the work of Gross and Siebert [GS11] and the paper [AMW12] of Abramovich,
Marcus, and Wise. This is the left vertical arrow of diagram * of the introduction.
The fact that relative stable maps are a locally closed substack of the stack of all
maps expresses the fact that the predeformability condition is locally closed. The
fact that the stack of log stable maps is open in the stack of all log maps expresses
the fact that predeformability is enforced by requiring that the map from a nodal
curve to an expansion be a log map.

3. Equivariant embedding

Since Kim’s moduli space does not carry a fundamental class but rather a virtual
fundamental class, in order to prove a localization formula we need to use the
virtual localization formula of Graber-Pandharipande [GP99]. Traditionally, to use
the results of [GP99], one needs to establish the following technical condition.

Theorem 3.1. There is a locally closed equivariant immersion of Mlog
Γ (U/B) into

a smooth Deligne-Mumford stack.

In fact, after the results of Chang-Kiem-Li in [CKL17], this is no longer necessary.
We nevertheless prove the theorem, as we believe that the result and its proof are

of independent interest. We will do this by proving that Mlog
Γ (U/B) satisfies a

slightly stronger condition, also shared by Jun Li’s space MΓ(X,D). Namely we

will prove that Mlog
Γ (U/B) satisfies the following property, which we will abbreviate

as property SE (for strong embedding property):

• Mlog
Γ (U/B) = [V/G] is a global quotient, where G is a reductive group and

V is a locally closed subset of a smooth projective W with an action of G
extending that of V .

• There is a C∗ ×G action on W which preserves V and descends to the C∗

action on [V/G].

In [GV05], it is shown that MΓ(X,D) satisfies SE by an explicit construction.

We have seen there is a morphism Mlog
Γ (U/B) → MΓ(X,D); this morphism is

in fact finite, as shown in Lemma 3.2 below. Therefore, it suffices to show the
following lemma; the idea of the proof is due to Vistoli.
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Lemma 3.1. Suppose f : X → Y is a C∗ equivariant finite morphism between
Deligne-Mumford stacks, and assume that Y satisfies SE. Then X satisfies SE as
well and thus embeds C

∗ equivariantly into a smooth Deligne-Mumford stack.

Proof. Since Y satisfies SE, we may write Y = [V/G] ⊂ [W/G] with V ⊂ W a
C∗ × G equivariant locally closed subset and W a smooth projective variety. We
can find a C∗ ×G equivariant open smooth subvariety Wo ⊂ W such that:

(1) G acts on W0 with reduced finite stabilizers,
(2) V is a closed subvariety of W0.

(Note that this is clearly possible since [V/G] is Deligne-Mumford by the hypoth-
esis, or, equivalently, G acts on V with finite reduced stabilizers). The composed
morphism f : X → Y → [Wo/G] is then still C∗ equivariant and finite, so by re-
placing V with Wo we may assume V is smooth. Since the morphism X → Y is C∗

equivariant, we obtain a morphism f̄ : [X/C∗] → [Y/C∗]. Here [X/C∗] denotes the
stack quotient in the sense of Romagny [Rom05], though our notation is slightly
different. Assume for a moment that [Y/C∗] has the resolution property ([Tot04]),
i.e., that any coherent sheaf on [Y/C∗] admits a surjective morphism from a locally
free sheaf on [Y/C∗]. Then, the sheaf f̄∗(O[X/C∗]), which is coherent since f is finite,
is the quotient of a locally free sheaf E on [Y/C∗]. In other words, [X/C∗] embeds
into a vector bundle over [Y/C∗]. That is, there is a C∗ equivariant morphism of
X into a C∗ equivariant vector bundle over Y = [V/G], hence a C∗ equivariant
embedding of X into a smooth DM stack. In particular, X admits a C

∗ equivariant
embedding into a stack of the form [U/G], where U is a smooth vector bundle over
V , so it is, in fact, a quotient. To see that X satisfies SE, then, the only thing that
remains to be shown is that U embeds C∗ × G equivariantly into a smooth and
projective variety as a locally closed subset. We give the proof after proving the
resolution property for [Y/C∗], as it requires essentially the same argument.

We thus show that [Y/C∗]=[[V/G]/C∗] does, indeed, have the resolution prop-
erty. Equivalently, we prove that any C∗ equivariant coherent sheaf F on [V/G]
admits a C

∗ equivariant surjection from a C
∗ equivariant locally free sheaf.

Let p : V → [V/G] be the projection. Since we assumed above that V is smooth
and quasiprojective, by [MFK94, Corollary 1.6], we can find a G× C∗-equivariant
immersion i : V → Pn. Let OV (1) = i∗OPn(1) and consider a C∗ equivariant
coherent sheaf F on [V/G]. Since the G×C

∗ action on V descends to the C∗ action
on the quotient [V/G], the pullback p∗F is G×C∗ equivariant. It is also coherent.
Therefore, since V is quasiprojective, we may pick a large N so that the twisted
sheaf p∗F(N) is generated by global sections, say s1, s2, · · · , sm ∈ H0(V, p∗F(N)).
Let V1 = 〈s1, s2, . . . , sm〉 be their linear span in H0(V, p∗F(N)). Following the
argument in the proof of [MFK94, pp. 25-26, Lemma ∗], we can find

V1 ⊂ V2 ⊂ H0(V, p∗F(N)),

where V2 is a C∗ ×G equivariant finitely generated subspace. We therefore obtain
a natural C∗ ×G equivariant surjection of sheaves on V

V2 ⊗OV → p∗F(N),

hence a natural C∗ ×G equivariant surjection

V2(−N) → p∗F
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which descends to a C∗ equivariant surjection from a C∗ equivariant locally free
sheaf on [V/G] to F . This shows that [Y/C∗] has the resolution property. Note
that this argument also suffices to complete the proof that X satisfies SE: we have
already seen that X embeds C∗ equivariantly into a vector bundle [U/G], where
U is a vector bundle over V; let U = Spec(S(E ′)) for some locally free sheaf E ′

on V . Then the argument just given shows that E ′ admits a C∗ × G equivariant
surjection (OV (−M))k → E ′ for some integers M ,k. Therefore, [U/G] admits a
C∗ equivariant locally closed immersion to the quotient of the projectivized bundle
P(OPn(−M)k ⊕OPn) over Pn (i.e., a smooth projective variety) by G. �

Lemma 3.2. The morphism Mlog
Γ (U/B) → MΓ(X,D) is finite.

Proof. We need to show that every geometric point of MΓ(X,D), that is, every
relative stable map f , has a finite number of preimages and that the morphism is
representable: for each preimage f , the map Aut(f) → Aut(f) is injective. The
discussion in section 2, or Remark 6.3.1 in [Kim10], establishes the finiteness of the
preimages. Then let f be a log stable map lying over f . Denote the base by (S,N),
where S = Spec k, the source curve by C, and the target by W = X[m′′]. Let m,m′

be the number of distinguished and non-distinguished nodes of f respectively, and
let m′′ be the number of nodes of W . We have NC/S = Nm ⊕ Nm′ ⊕ k∗, NW/S =
Nm′′ ⊕k∗, and N = Nm′′ ⊕Nm′ ⊕k∗. An automorphism of f lying over the identity
automorphism of f is simply an automorphism of the logarithmic structures, that

is, an automorphism A of N that respects the maps s := sC/S : NC/S → N ,
t := tW/S : NW/S → N . In other words, we are looking for commutative diagrams

Nm ⊕ Nm′ ⊕ k∗
s ��

=

��

Nm′′ ⊕ Nm′ ⊕ k∗

A
��

Nm ⊕ Nm′ ⊕ k∗ s
�� Nm′′ ⊕ Nm′ ⊕ k∗

Nm′′ ⊕ k∗
t ��

=

��

Nm′′ ⊕ Nm′ ⊕ k∗

A
��

Nm′′ ⊕ k∗
t

�� Nm′′ ⊕ Nm′ ⊕ k∗

The induced matrix s̄ on the level of characteristic monoids is a generalized diagonal
matrix which is the identity on the last m′ components, and similarly t̄ is a diagonal
matrix with finite cokernel on the first m components. Therefore Ā must be a
diagonal matrix as well, in fact, the identity on characteristic monoids. It follows
that each factor of Nm′′

contributes to automorphisms separately, and we may thus
assume m′′ = 1 without loss of generality. In other words, the automorphism group
of N splits as a product of the automorphism groups contributed by each node of
the target. We are thus reduced to studying three cases: (a) either there are m
distinguished nodes mapping to the node of W ; (b) there is a node in W but no
node in C, i.e., m = m′ = 0 (cf. the minimality condition of Definition 2.5); or (c)
there is one non-distinguished node and no distinguished node, i.e., m = 0,m′ = 1,
since every non-distinguished node contributes precisely one factor of N in N . The
first case is most interesting. In this case, the two diagrams take the form

Nm ⊕ k∗
s ��

=

��

N⊕ k∗

A

��
N

m ⊕ k∗ s
�� N⊕ k∗

N⊕ k∗
t ��

=

��

N⊕ k∗

A

��
N⊕ k∗

t
�� N⊕ k∗
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These are homomorphisms of log structures, thus lie over the map to the field k,
and the factor of k∗ maps identically to itself. The automorphism A is determined
by its action on the generator e of N and thus takes the form e 
→ (e, v) for a unit
v ∈ k∗. On the other hand, we have seen in formula (1’) that

ei 
→ (Γie, ui),

and thus commutativity of the diagram implies (Γie, uiv
Γi) = (Γie, ui); that is,

vΓi = 1 for all i. By minimality, the greatest common divisor of the Γi is 1, and
thus v = 1.

In the case (b), the diagrams become

k∗
id ��

=

��

N⊕ k∗

A

��
k∗

id
�� N⊕ k∗

, N⊕ k∗
t ��

=

��

N⊕ k∗

A

��
N⊕ k∗

t
�� N⊕ k∗

,

and the map t is of the form e 
→ (de, 1). However, minimality requires that d = 1.
Hence, A, which has the form e 
→ (e, v), must have v = 1 and is thus trivial.
Finally, in case (c) the diagrams become

N⊕ k∗
s ��

=

��

N⊕ k∗

A

��
N⊕ k∗ s

�� N⊕ k∗

, k∗
id ��

=

��

N⊕ k∗

A

��
k∗

id
�� N⊕ k∗

,

and s is the identity on the level of characteristics, so A is trivial as well, by the
same argument as in (b). �

From the two lemmas it follows that the localization formula of [GP99] can be

applied to Mlog
Γ (U/B).

4. The obstruction theory

In this section we analyze the obstruction theory of Mlog
Γ (U/B). We will writeM

for Mlog
Γ (U/B) to ease the notation. There is a forgetful morphism, τ : M → MB,

where

MB = M
log
g,n ×LOG Betw

Here, the category LOG is the category whose objects are log schemes and
morphisms are strict log morphisms. The stack MB parametrizes, over a scheme S,
pairs (C,M)/(S,N) and (W,K)/(S,N) of an n-marked log curve over (S,N) and
an FM space in Betw over the same log scheme (S,N). The morphism τ sends a log
stable map to the pair consisting of the source of the map and the target; it is the
forgetful morphism forgetting the data of the map. The stack MB is the analogue
of the Artin stack M of prestable curves in ordinary Gromov-Witten theory. It is
also smooth and, in fact, log smooth, as it further has the structure of a log stack.

By standard properties of the cotangent complex, the morphism τ induces a
distinguished triangle

τ−1LMB → LM → LM/MB → τ−1LMB[1].
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Consider the diagram

Cuniv

π

��

f �� Uetw

��
M �� Betw

Here Cuniv is the universal family of M and Uetw the universal family over Betw.
The morphism f is the evaluation map and π the projection. It is proven in section
7 of [Kim10] that there is a canonical morphism

E• = (Rπ∗f
∗T log

Uetw/Betw)
∨ → Llog

M/MB

which is a (relative) perfect obstruction theory. The morphism τ is strict; therefore

the log cotangent complex Llog
M/MB coincides with the ordinary cotangent complex

LM/MB. Furthermore, the stack MB is smooth; therefore LMB is a two-term com-
plex concentrated in degrees 0 and 1 (it is an Artin stack, so it has automorphisms).
We therefore have a diagram

LM/MB[−1] �� τ−1LMB �� LM
�� LM/MB

E•[−1]

��

�� τ−1LMB

��

E•

��

We may fill in the lower row by the cone of E•[−1] → τ−1LMB to obtain an
(absolute) perfect obstruction theory forM . We denote the tangent and obstruction
sheaves on M by T 1, T 2 respectively. Applying the functor RHom(•,OM ), we
obtain the following lemma.

Lemma 4.1. Over a geometric point f : (C,MC)/(k,N) → (W,MW )/(k,N), the
tangent space T 1

f and obstruction space T 2
f of M fit into an exact sequence

0 → aut(τ (f)) → H0(f∗T log
W ) → T 1

f → Def(τ (f)) → H1(f∗T log
W ) → T 2

f → 0.

The term T log
W denotes the logarithmic tangent sheaf, that is, the dual of the

sheaf of relative logarithmic differentials of the logarithmic map (W,MW ) → (k,N)
[Kat, section 1.7]. The term aut(τ (f)) refers to the group of first order infinitesimal
automorphisms of τ (f). To carry out localization calculations, we need to know the
equivariant Euler classes of T 1, T 2. Since the Euler class is a K-theory invariant,
it is enough to understand the other four terms in the exact sequence. The terms

Hk(f∗T log
W ), k = 0, 1, are the cohomology groups of explicit locally free sheaves on

the curve C, which may be calculated by hand. In fact, more can be said:

Lemma 4.2. Suppose π : W → X denotes the canonical contraction map. Then

T log
W = π∗T log

X = π∗TX(− logD).

Proof. We recall the explicit construction of the log schemes X[n]. For details of
the construction, the reader is referred to [Li01]. Set Y [0] = X[0] = X; let Y [1] be
the blowup of Y [0]×A1 = X×A1 along the divisor D×0, with a divisor D[1] ⊂ Y [1]
defined as the proper transform of D×A1. We view Y [1] as a family of log schemes
over A

1, with logarithmic structure on A
1 coming from the divisor 0 ∈ A

1, the
product log structure on X×A1, and the natural log structure on the blowup Y [1].
The log scheme X[1] over Spec k is the fiber of this family over 0, with the induced
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logarithmic structures on X[1] and the base Spec k. Next, Y [2] is the blowup of
Y [1]×A1 along D[1]×0, with a divisor D[2] the proper tranform of D[1]×A1. This
is viewed as a family over A2 , with the standard toric log structure on A

2 coming
from the axes, and the log structure on Y [2] again arising from the product log
structure on Y [1]× A1 and blowing up. The scheme X[2] is the fiber over 0 ∈ A2.
In general, Y [n] is constructed from Y [n− 1]×A1 by blowing up D[n− 1]× 0; this
is viewed as a family over A

n with the toric logarithmic structure on A
n and the

logarithmic structure on Y [n] coming from Y [n− 1]× A1 and blowing up; D[n] is
the proper transform of D[n− 1]×A1; and X[n] is the fiber over 0 ∈ An. Then, for
each i = 0, 1, . . . , n, the ideal sheaf of D[i]× 0 in Y [i]×A1 is actually a logarithmic
ideal sheaf, so the resulting morphism π : Y [n] → X × A

n in the diagram

Y [n]
π ��

��

X × An

��
An

=
�� An

is a sequence of logarithmic blowups in the sense of [Kat, 1.3] (see also, for example,
[Niz06, section 4] for the definition of the logarithmic blowup). Since logarithmic
blowups are log étale morphisms, π is log étale. It follows that the log tangent
bundle of Y [n] over An is the pullback of the log tangent bundle of X × An over
An, which is simply the log tangent bundle of X. Since log étale morphisms are
stable under base change, it follows that the tangent bundle of X[n] over the base
Spec k is pulled back from X as well, as claimed. �

Thus the two terms Hk(f∗T log
W ) only depend on the logarithmic map from C to

X. What we have to understand are the two terms aut(τ (f)), Def(τ (f)), that is,
the infinitesimal automorphism group and tangent space of a point of MB. In the
discussion that follows, we restrict attention to the stack MB when B is the stack
of expansions of X, discussed in Remark 2.2.

We will understand the deformation group in terms of the stack of twisted stable
curves Mtw

g,n of Abramovich-Vistoli [AV02], which is well understood. To do so, we
must digress a bit. First, it will be easier for technical reasons to compare the
deformation theory of MB with the deformation theory of the stack of log twisted
curves of Olsson [Ols07], which we denote by Mlogtw

g,n . It is shown in [Ols07] that

Mlogtw
g,n

∼= Mtw
g,n. Recall the definition of Mlogtw

g,n .

Definition 4.1. A log twisted curve over a scheme S is a log curve C → S,NC/S α→
N , where N is locally free and α is an injection that is locally given by a diagonal
matrix.

Let us fix some notation. Denote the set of non-distinguished nodes of the curve
by R, the set of distinguished nodes by S, and the nodes of the target by T . In the
notation above, we would have |T | = m, |R| = m′, |S| = m′′. Furthermore, let

A = [A1/Gm]

denote the “universal target”: this is the moduli space that over a scheme S
parametrizes line bundles L over S, together with a section s ∈ Γ(S, L), up to
isomorphism.
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Consider now a family F of log stable maps over a scheme S, which specializes
over a geometric point Spec k to a map f : ((C,MC)/(k,N), �x) → (W,MW )/(k,N).
We must now define several morphisms.

First, consider the image of F in Mlog
g,n under the natural forgetful morphism,

which forgets the data of the target and the map. Étale locally around
(C,MC)/(k,N), we have a map Mlog

g,n → Mlogtw
g,n . The morphism is defined as

follows: for an étale neighborhood (C ′,MC′)/(S′, N) of (C,MC)/(k,N) in which

all log structures NC′/S′
and N are actually free, the map sC

′/S′
: NC′/S′ → N

factors as NC′/S′ rC
′/S′

→ NC′/S′ → N . This factorization has the following descrip-
tion on the level of characteristic monoids: we have seen in formula (1) of section

2 that the morphism N̄C′/S′
= N

m′′ ⊕N
m′ → N̄ = N

m ⊕N
m′

has the form (Γ, id),
with Γ a generalized diagonal matrix. This factors as

N
m′′ ⊕ N

m′ (γ,id)→ N
m′′ ⊕ N

m′ p→ N
m ⊕ N

m′
,

where γ is the matrix Γ ‘made diagonal’, i.e.,

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ1,1 0 0 · · · 0 0 · · · 0
0 Γ1,2 0 · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

...
0 0 · · · Γ1,k1

0 · · · · · · 0
0 0 · · · 0 Γ2,1 0 · · · 0
...

...
...

...
...

. . .
...

...
0 · · · · · · · · · · · · · · · · · · Γm,km

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the map p is the projection that sends the first k1 coordinates of N
m′′

to the first
coordinate of Nm, the next k2 coordinates to the second coordinate of Nm, and so
forth. It remains to explain how the morphism lifts from the level of characteristic
monoids to the actual log structures; this is the evident extension of formula (1’)

of Remark 2.2. If sC
′/S′

maps

eij 
→ (Γijei, uij),

then we now have that rC
′/S′

maps

eij 
→ (Γijeij , uij).

Therefore, from the data (C ′ → S′, NC′/S′ → N) we obtain a log twisted curve

(C ′ → S′, rC
′/S′

: NC′/S′ → NC′/S′
). This defines the required morphism. When

we compose with the isomorphism Mlogtw
g,n

∼= Mtw
g,n, the twisted curve C we obtain

is the curve C with the j-th node of C mapping to the i-th node of W twisted by
Γij .

Next, in an étale neighborhood Mf of the image of f in Mlogtw
g,n , we have a

morphism Mf → Am′′
, which can be described as follows. The m′′ nodes signify

that in an étale neighborhood of the image of f in Mlogtw
g,n , the image of f is in

the intersection of m′′ boundary divisors of Mlogtw
g,n intersecting transversally. In

an étale neighborhood Mf of the image of f the m′′ divisors thus determine m′′

line bundles with sections and thus yield the desired map to Am′′
. We may further

obtain a morphism Bf → Am from an étale neighborhood of f in Betw in a similar
fashion.
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Putting everything together, we obtain an étale neighborhood MBf of τ (f) in
MB and a morphism φ:

φ : MBf
�� Mf ×Am′′ Am

��

�� Am

��
Mf

�� Am′′

Let us choose a point τ (f)′ in MBf lying over τ (f).

Lemma 4.3. The morphism φ is étale at τ (f)′.

Proof. Since all stacks in question are smooth, it is sufficient to show that their
tangent spaces at τ (f)′ and φ(τ (f)′) respectively are isomorphic. It will be clear
from the proof that we may reduce to the case where two distinguished nodes map
into a single node of the target, that is, where m′′ = 2,m = 1,m′ = 0. The
argument for this is the same as the argument in the proof of Lemma 3.2. We will
restrict attention to this case to simplify the notation. We are therefore given étale
locally around τ (f) a diagram

φ : MBf
�� Mf ×A2 A1

��

�� A1

��
Mf

�� A2

and we want to show that φ induces an isomorphism of tangent spaces. Since étale
maps between smooth stacks induce isomorphisms on tangent spaces, we will work
directly with the original moduli stacks and study their tangent spaces around the
respective images of the point f rather than their étale neighborhoods, again in
order to keep the notation simple. Recall that the element τ (f) ∈ MB(Spec k)
consists of data of a pair (C/Spec k,W = X[1]/Spec k) and two diagrams of log
structures

N2 ⊕ k∗
s ��

����
���

���
���

N⊕ k∗

κ

��
k

, N⊕ k∗
t ��

����
���

���
���

N⊕ k∗

κ

��
k

(2)

Here the maps s and t are the maps sC/Spec k, tW/Spec k respectively. We have
by formula (1’) that ei 
→ (Γie, ui) (the Γi here are what we would have called Γ1i

above, but since there is only one target node, we drop the first index to simplify
notation). The map t is given by mapping the generator e → (de, 1), and the rest
of the arrows send the generators of N,N2 to 0 in k.

On the other hand, an element of Mlogtw
g,n ×A2 A1(Spec k) corresponds to a triple

(x, y, α) of an element x of Mlogtw
g,n (Spec k), an element y ∈ A1(Spec k), and an

isomorphism between their images in A2(Spec k). The element x corresponds to a
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pair of a nodal curve C/Spec k as above and a diagram of log structures

NC/k = N
2 ⊕ k∗

r ��

����
���

���
���

���
N

2 ⊕ k∗

λ

��
k

(3)

where the top map r = rC/Spec k is an injection ei 
→ (Γiei, ui); the map λ sends

ei 
→ ai ∈ k; and the diagonal map is determined by commutativity, ei 
→ uia
Γi
i .

An element of A1(Spec k) is a line bundle over Spec k together with a section, in
other words, an element a ∈ A

1. An element of A2(Spec k) is similarly a pair
(a1, a2) ∈ A2. The map A1(Spec k) → A2(Spec k) sends a 
→ (a, a), and the map
Mlogtw

g,n (Spec k) → A2(Spec k) sends the data just described to the pair (a1, a2).

Therefore the triple (x, y, α) has x as above, y = a ∈ A
1, and α = (c1, c2) ∈ (k∗)2,

an isomorphism of (a, a) with (a1, a2) in A2; that is,

• ci =
ai

a if all a and ai are non-zero,
• ci is arbitrary if a = a1 = a2 = 0.

The morphism φ : MBf → Mf ×A2 A1 then sends the data corresponding to
τ (f) to the triple (x, 0, (1, 1)), where x is the curve (C/Spec k) and the diagram
(3) has r, β determined by r(ei) = (Γiei, ui) and β(ei) = 0, with Γi, ui as in the
definition of s.

To show that φ induces an isomorphism of tangent spaces we consider isomor-
phism classes of morphisms from Spec k[ε] to all stacks in question extending the
given data over Spec k. A morphism Spec k[ε] → Mlogtw

g,n corresponds to a pair of
an infinitesimal deformation C ′/Spec k[ε] of C and a diagram

N
2 ⊕ k[ε]∗

r[ε] ��

����
���

���
���

N
2 ⊕ k[ε]∗

λ[ε]

��
k[ε]

(4)

lying over (3). Therefore, we must have ei → (Γiei, ui + viε) under r[ε]; λ[ε] maps
ei → αiε. The diagonal arrow is determined by commutativity ei 
→ (αi)

Γi(ui+viε).
Morphisms Spec k[ε] → A1 and Spec k[ε] → A2 lying over the given elements 0 ∈

A1(Spec k), (0, 0) ∈ A2(Spec k) are again line bundles over Spec k[ε], which are thus
trivial, together with a section restricting to 0 over Spec k; hence they correspond
to αε, (α1ε, α2ε) respectively. Under the morphism Mlogtw

g,n (k[ε]) → A2(Spec k[ε])
maps the extension of x to the pair (α1ε, α2ε), where the αi are the ones appearing
in diagram (4). Isomorphisms between (αε, αε) and (α1ε, α2ε) restricting to (1, 1)
over Spec k are of the form (1 + β1ε, 1 + β2ε). Note that β1, β2 can be arbitrary;
however, in order for an isomorphism to exist, the condition α1 = α2 = α is
forced. Therefore, the choices involved in extending (x, y, α) are the choices of the
deformation C ′ of C and the numbers α, vi, βi. Notice however that the choice of
either the vi or the βi can be eliminated via an isomorphism, for consider two pairs
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(1 + β1ε, 1 + β2ε) and (1 + β′
1ε, 1 + β′

2ε)). There is an isomorphism

N2 ⊕ k[ε]∗

=

��

r[ε]:ei �→(Γiei,ui+viε)

−−−−−−−−−−−−−−−→ N2 ⊕ k[ε]∗

A

��

λ[ε] �� k[ε]

=

��
N

2 ⊕ k[ε]∗
r′[ε]:ei �→(Γiei,ui+v′

iε)

−−−−−−−−−−−−−−−→ N
2 ⊕ k[ε]∗

λ[ε]
�� k[ε]

with the vertical arrow being the isomorphism A : ei 
→ (ei, 1 + ciε) where ci =
βi − β′

i and v′i = vi + uiΓici. In other words, if we denote by x[ε] the extension
of x determined by choosing r[ε] as the extension of r (that is, with the choice of
the unit vi) and by x[ε]′ the one with r′[ε] as the extension of r (with the unit
v′i) we have an isomorphism between the triple (x[ε], αε, (1 + β1ε, 1 + β2ε)) and
(x[ε]′, αε, (1 + β′

1ε, 1 + β′
2ε)).

To summarize, the choice of the extension of the image of τ (f) in Mlogtw
g,n cor-

responds to the data of a choice of a deformation C ′ of C and the choices of the
numbers α, vi.

On the other hand, a choice of an extension of τ (f) in MB corresponds to the
data of a deformation C ′ of C, a deformation W ′ of W in B, which is necessarily
trivial, and diagrams

N2 ⊕ k[ε]∗
s[ε] ��

����
���

���
���

N⊕ k[ε]∗

κ[ε]

��
k[ε]

, N⊕ k[ε]∗
t[ε] ��

����
���

���
���

N⊕ k[ε]∗

κ[ε]

��
k[ε]

(5)

lying over (2). The extension s[ε] maps ei 
→ (Γie, ui+viε), t[ε] maps e 
→ (de, 1+vε),
κ[ε] maps e 
→ αε, and the diagonal arrows are determined by commutativity.
Notice that up to isomorphism, there is only one choice for the right diagram, the
choice of the number α. Again, this is because from the diagram

N⊕ k[ε]∗

=

��

t[ε]:e �→(dei,1+vε)

−−−−−−−−−−−−−−−→ N⊕ k[ε]∗

B

��

κ[ε] �� k[ε]

=

��
N⊕ k[ε]∗

t′[ε]:e �→(de,1+v′ε)

−−−−−−−−−−−−−−−→ N⊕ k[ε]∗
κ[ε]

�� k[ε]

with B the isomorphism e 
→ (e, 1+cε), and v′ = v+cdε we get an isomorphism be-
tween the extension determined by the extensions s[ε], κ[ε] of s, κ with the extension
determined by s′[ε], κ[ε]. Since by varying c the expression v+cdε varies through all
elements of k, the choice of s[ε] is eliminated up to isomorphism, as claimed. Once
the isomorphism B is fixed, though, the diagrams on the left with different choices
of vi remain distinct. In other words, the choices involved in extending τ (f) are up
to isomorphism the extension C ′ of C and the numbers α, vi. These are precisely
the same choices as involved in extending (x, 0, (1, 1)). This concludes the proof of
the lemma. �

Remark 4.1. The geometric meaning of the number αi in the map N2 ⊕ k[ε]∗ →
k[ε], ei 
→ αiε is that the i-th node is smoothed with speed αi in the moduli space
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of twisted curves. The geometric significance of Lemma 4.3 then is that in MB, all
nodes mapping to the same node of the target must be smoothed simultaneously,
with the same speed: the speed with which the node of the target is being smoothed.

The lemma in particular implies that we may calculate Def(τ (f)) as follows: Let
us write

∑
xi for the divisor of marked points and C the twisted curve obtained

from f as explained. The tangent space to the stack of twisted curves is given by
the ext group

Ext1(ΩC(
∑

xi),OC),

where OC and ΩC are the structure sheaf and sheaf of Kahler differentials of the
twisted curve respectively. The “local-to-global” spectral sequence for Ext says
that the tangent space fits into the short exact sequence

0 → H1(Hom(ΩC(
∑

xi),OC)) → Ext1(ΩC(
∑

xi),OC)

→ H0(Ext1(ΩC(
∑

xi),OC)) → 0.
(6)

Here Hom and Ext are underlined to indicate that we are taking the sheaf Hom
and Ext respectively. The rightmost group in the exact sequence has a canonical
description as follows. Let R,S, T denote the set of non-distinguished nodes of the
curve, the set of distinguished nodes of the curve, and the set of nodes of the target,
as above. Furthermore, given a node x in the curve C, let Ci

x, i = 1, 2, denote the
two components of C at x. Then we have

H0(Ext1(ΩC(
∑

xi),OC)) ∼=
⊕

nodes of C

TxC1
x ⊗ TxC2

x
∼= C

m′+m′′
.

There is a diagonal map Cm → Cm′′
which simply sends the coordinate ey cor-

responding to a node y ∈ T to the sum of the coordinates corresponding to the
nodes in C mapping to y, that is,

∑
x;f(x)=y ex. This is in fact the map of tan-

gent spaces of the map Am → Am′′
described above. Just as the tensor product⊕

nodes of C TxC1
x ⊗ TxC2

x describes intrinsically the part of the deformations of the
curve that smooth the nodes, the group

⊕n
i=1 H

0(W , ND[i]/X [i−1] ⊗ND[i]/X [i]) de-
scribes the part of the deformations of W = X [n] that smooth the nodes of W .
Here, W is obtained from W by twisting along the divisor D[i] by the integer di
via the map tW/S : NW/S → N , just as C is obtained from C via the map rC/S .
Then, the fiber diagram of Lemma 4.3 implies the following.

Corollary 4.1. The tangent space Def(τ (f)) to MB is the fiber product

Def(τ (f))

��

�� Cm ∼=
⊕n

i=1 H
0(ND[i]/X [i−1] ⊗ND[i]/X [i])

��
Ext1(ΩC(

∑
xi),OC) �� Cm′′ ∼=

⊕
distinguished nodes of C TxC1

x ⊗ TxC2
x

The proof of Lemma 4.3 also allows us to understand the automorphism group
aut(τ (f)).

Corollary 4.2. An infinitesimal automorphism of f in MB consists of an in-
finitesimal automorphism of the source curve C fixing the marked points and an
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infinitesimal automorphism of W in B:
aut(τ (f)) = aut(C, �x)⊕ autB(W ) = aut(C, �x)⊕ C

m.

Proof. We give the details for the case when two nodes of C map into a node of
W , as in Lemma 4.3. The general case reduces to this as in the proof of Lemma
3.2. The group of infinitesimal automorphisms of τ (f) consists of the group of
automorphisms of the trivial extension of τ (f) over k[ε] lying over the identity au-
tomorphism of τ (f). This is an infinitesimal automorphism of C, an infinitesimal
automorphism of W in B, which consists of a copy of C for each expanded com-
ponent of W , and an automorphism A of the log structure N = N ⊕ k[ε]∗ which
lies over the identity automorphism over Spec k and which is compatible with both
diagrams

NC/S = N2 ⊕ k[ε]∗
s ��

		���
���

���
���

���
�

N = N⊕ k[ε]∗

��
k[ε]

, NW/S = N⊕ k[ε]∗
t ��

		���
���

���
���

���
�

N = N⊕ k[ε]∗

��
k[ε]

Here s(ei) = (Γie, ui), t(e) = (de, 1) as always. An automorphism A of N must
map the generator of N e 
→ (e, (1 + cε)) for some c ∈ k if it is to reduce to the
identity over Spec k. In order for the automorphism to be compatible with the
second diagram, that is, in order for

N⊕ k[ε]∗
t ��

=

��

N⊕ k[ε]∗

A

��
N⊕ k[ε]∗

t �� N⊕ k[ε]∗

to commute, we must have At(e) = (de, (1 + cε)d) = (de, 1 + cdε) = (de, 1) = t(e),
which implies that c = 0. So the logarithmic structures contribute no infinitesimal
automorphisms. �

5. The virtual localization formula

We are now in a position to derive the virtual localization formula forMlog
Γ (U/B)

in the case when the pair (X,D) carries a T = C∗-action leaving D pointwise fixed.
The ideas of this section can essentialy be found in the paper of Graber-Vakil
[GV05]. For the convenience of the reader, we recall the form of relative virtual
localization formulas and refer the reader to the paper of Graber-Pandharipande
[GP99] for details.

5.1. Graber-Pandharipande virtual localization. Suppose M is a DM stack
with a C∗-action equipped with a C∗-equivariant perfect obstruction theory C• →
LM . Let Fa denote the connected components of the fixed locus of M , which we
refer to as the fixed loci for brevity, and denote the natural inclusion by ia : Fa →
M . The virtual localization formula reads∫

[M ]vir
ω =

∑
a

∫
[Fa]vir

i∗aω

eT (Nvir
F )

.

Here ω is a class in A∗
T (M), the equivariant Chow ring of M (or in equivariant

cohomology). The integral
∫
[M ]vir

is the proper pushforward map from A∗
T (M) →
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A∗
T (pt) = A∗(BT ) ∼= C[u]. The term eT denotes the equivariant Euler class of a

vector bundle, in this case, of the virtual normal bundle Nvir
Fa

of Fa in M . The
qualification that the normal bundle is virtual means that we are not only taking
the ordinary normal bundle in the tangent space but also keeping track of the
obstruction bundle. More precisely, Nvir

F is defined as T m
1 − T m

2 , the moving part
of the tangent space minus the moving part of the obstruction space (the moving
part of a representation is the subrepresentation where T acts non-trivially). The
Euler class of a sum of vector bundles is by definition the product of the Euler
classes; the Euler class of the difference is thus the quotient. Finally, the virtual
fundamental class of a fixed locus [F ]vir is by definition the virtual fundamental
class arising from the fixed part of the tangent/obstruction theory. Therefore, in
order to give a localization formula we must identify the fixed loci and calculate
the classes eT (Nvir

F ) for each of them.

5.2. Types of fixed loci. Consider a pair (X,D) as above. This defines a stack
of expanded targets B, as explained in Remark 2.2. We fix discrete data Γ =
(g,m, h,�c = (c1, · · · , ch)), consisting of the genus of a curve, m+ h marked points,
and the contact orders of the last h marked points at the divisor at infinity D[n] of

the target W = X[n]. In this section we study the fixed loci of Mlog
Γ (U/B) = M .

In the localization formula we will distinguish between two different types of fixed
loci; the first type consists of morphisms to X itself rather than an expansion of
X. Such a locus is much simpler to understand than a general locus. The other
type of fixed loci consist of those with targets W = X[n] with n > 0. The idea of
the localization formula is to express the virtual fundamental classes of these loci
recursively in terms of the simple loci and moduli spaces of log stable maps to the
expanded part of W only. We formalize this below.

Definition 5.1. A fixed locus F ⊂ M is called simple if the general, hence every,
element f ∈ F has target W = X[0] = X. We denote a simple fixed locus with

discrete data Γ by Mlog
Γ (U/B)sim = M sim.

Similarly we define composite loci.

Definition 5.2. A fixed locus F ⊂ M is called composite if the elements f ∈ F
map to targets W = X[n] with n > 0.

The simple loci Mlog
Γ (U/B)sim are open substacks of Mlog

Γ (U/B); therefore, all
results of section 4 apply to the simple loci without change.

To understand composite loci, we need to understand log stable maps to the
expanded part of W = X[n], that is, to the scheme theoretic closure Y = W \X[0]
of the complement of the first component X = X[0] in X[n]. The formal definition
of such a log stable map is identical to the one given in Definition 2.5. The only
differences in the theory of such maps arise from the fact that the rigidifying map to
X is much simpler, contracting all components to D. In the case of X = P

1, which
was the first case to be studied in the literature, the rigidifying map to X becomes
trivial. We thus call these maps unrigidified log stable maps. We denote the stack
parametrizing the expanded part of expansions of X by B∼ and its universal family
by U∼. Similarly to B, the stack B∼ is isomorphic to the open substack of M0,2

where the first marking is on the first component and the second marking is on the
last component; see Remark 2.2. We will abusively denote the space of log stable
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maps to targets in B∼ by Mlog
Γ (U/B)∼. The analogous stack of unrigidified relative

stable maps MΓ(X,D)∼ is introduced and studied in [GV05].

Remark 5.1. The stack Mlog
Γ (U/B)∼ is very similar and often simpler than

Mlog
Γ (U/B). For instance, observe that

• The minimality condition in Definition 2.5 is actually simpler: it simply
requires that the log curve (C,M) → (S,N) be minimal, since it is not
possible to have a node of the target with no distinguished node mapping
to it anymore.

• The analogous map Mlog
Γ (U/B)∼ → MΓ(X,D)∼ of Lemma 3.2 is also

finite, as the map to X is never required in the proof of Lemma 3.2.
• Theorem 3.1 applies without change. This is because it is shown in [GV05]
that MΓ(X,D)∼ satisfies the property SE, so Lemma 3.1 applies.

For the purposes of localization, we need to understand the deformation the-

ory of Mlog
Γ (U/B)∼ carefully. This is essentially the same as that of Mlog

Γ (U/B).
Specifically, we introduce the analogue of the stack MB,

MB∼ = M
log
g,n ×LOG (B∼)etw,

and its canonical morphism,

τ∼ : Mlog
Γ (U/B)∼ → MB∼.

The analogues of Lemma 4.1 and of Corollaries 4.1 and 4.2 are then as follows.

Lemma 5.1. Over a geometric point f : (C,MC)/(k,N) → (Y,MY )/(k,N), the
tangent space T 1∼

f and obstruction space T 2∼
f of M∼ fit into an exact sequence

0 → aut(τ∼(f)) → H0(f∗T log
Y ) → T 1∼

f → Def(τ∼(f)) → H1(f∗T log
Y ) → T 2∼

f → 0.

Proof. The deformation theory of Mlog
Γ (U/B)∼ is the same as in section 4, induced

by the relative perfect obstruction theory

(E∼)• = (Rπ∗f
∗T log

U∼etw/B∼etw)
∨ → Llog

M∼/MB∼

where M has been replaced by M∼ and B by B∼. This is true since Kim’s proof
works for any stack of log FM spaces, thus expansions and unrigidified expansions
alike. Therefore, the discussion of section 4 applies as well, which results in the
six-term exact sequence. �

Furthermore, with the notation of Corollary 4.1, we have the following.

Corollary 5.1. The tangent space Def(τ∼(f)) to MB is the fiber product

Def(τ∼(f))

��

�� Cm ∼=
⊕n

i=2 H
0(ND[i]/X [i−1] ⊗ND[i]/X [i])

��
Ext1(ΩC(

∑
xi),OC) �� Cm′′ ∼=

⊕
distinguished nodes of C TxC1

x ⊗ TxC2
x

Proof. The corollary follows from Lemma 4.3; the lemma applies verbatim, as the
map to X is required nowhere in the proof. �
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Finally,

Corollary 5.2. An infinitesimal automorphism of f in MB∼ consists of an in-
finitesimal automorphism of the source curve C fixing the marked points and an
automorphism of W in B∼:

aut(τ (f)) = aut(C, �x)⊕ autB∼(W ) = aut(C, �x)⊕ C
m.

The two main differences between Mlog
Γ (U/B) and Mlog

Γ (U/B)∼ are the follow-

ing: First, the action of T = C∗ on Mlog
Γ (U/B)∼ is trivial. This is because dilation

of each component of Y = W \X[0] by c ∈ T is an automorphism of Y , and so the

map cf is isomorphic to f . Second, the log tangent bundle T log
Y is trivial.

5.3. Description of the fixed loci in terms of known stacks. Consider now an

element f ∈ Mlog
Γ (U/B) in a composite fixed locus, mapping to a target W = X[n].

Define C1 = f−1(X), C2 = f−1(Y ) with Y = W \X[0] as above, and let f1 : C1 →
X, f2 : C2 → Y denote the restriction maps. The discrete data Γ = (g, h,m,�c) then
splits into two sets of discrete data: Γ1 = (g1, �α = (α1, · · · , αk), S1, β1), consisting
of the genus of C1, a partition describing the behavior of f1 over D = D[0], the
subset S1 of the marked points on C1 not mapping to D, and the homology class
(f1)∗[C1]; and Γ2 = (g2, �α,�c, S2, β2), consisting of the genus of C2, the subset S2

of the marked points on C2 not mapping to D, the same partition �α, the original
partition �c describing the behavior along the divisor at infinity, and the homology
class determined by f2. The data Γ1,Γ2 are locally constant on the fixed locus.
Furthermore, f1 and f2 are naturally logarithmic stable maps, with logarithmic data

determined only by f . Then, the map f1 belongs to Mlog
Γ1

(U/B)sim and f2 belongs

to Mlog
Γ2

(U/B)∼. In what follows we will describe the substacks FΓ1,Γ2
of the fixed

locus of Mlog
Γ (U/B), obtained by all possible splittings of the discrete data Γ into

(Γ1,Γ2), in terms of known stacks involving Mlog
Γ1

(U/B)sim and Mlog
Γ2

(U/B)∼. To

this end, we need to be able to glue any pair of log stable maps in Mlog
Γ1

(U/B)sim×
Mlog

Γ2
(U/B)∼ into a log stable map in Mlog

Γ (U/B). In order to do so, we need
first of all to be able to glue the underlying maps, so we work right away with

Mlog
Γ1

(U/B)sim ×Dk Mlog
Γ2

(U/B)∼ and only need to glue the logarithmic data.
It is convenient to think about log structures in the Borne-Vistoli setting [BV12];

thus, a log structure on a scheme S is a sheaf of sharp monoids MS and a functor
FMS

: MS → DivS = Hom(S,A1) = Hom(S, [A1/Gm]). Concretely, to every
element of MS(U) we assign a line bundle with a section on U in a functorial
manner. In our case everything is particularly simple, as the characteristic monoids
MS will be just of the form Nk for some integer k, as in fact the characteristic
monoids of the relevant sublog structures will be constant, so all this data will
amount to choosing k line bundles with sections on S. A morphism between two
log structures MS , NS on S is a map φ : MS → NS such that FNS

◦ φ is naturally
isomorphic to FMS

.

A. The canonical log structures on the glued source and target. Consider
a family of nodal curves p : C → S, for which k nodes persist. We label the nodes
(connected components of the relative singular locus) by x1, · · · , xk, and by C1

and C2 the two components of the partial normalization of C at the nodes. For
notational convenience, we denote the images of the sections of p1 : C1 → S and
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p2 : C2 → S which map to the node xi by the same symbol. The canonical log
structure NC/S on S (see section 2) has a locally free sublog structure correspond-
ing to the nodes. In the language of Borne-Vistoli the latter is the log structure
(Nk, ei 
→ ((p1|xi

)∗(Nxi/C1
) ⊗ (p2|xi

)∗(Nxi/C2
), 0)); that is, the line bundle that

parametrizes deformations of the node in C and with the 0 section, as p : C → S
corresponds to a map to Mg,n that maps into the boundary divisor determined by
the node, and the log structure on S is pulled back by the divisorial log structure on
Mg,n under this map. Similarly, for a family of singular expansions q : W → S in B
for which the singularity persists, we will write W = X1∪DS

X2. Here X1 = X×S
is the simple part of W , X2 ∈ B∼(S) its expanded part, and DS denotes the Cartier
divisor in X1 and X2, canonically identified with D × S (see [Li01, section 4.1]),
along which we glue them to obtain W . Since the fibers of NDS/X1

⊗NDS/X2
are

trivial, a standard cohomology and base change argument shows that the pushfor-
ward of NDS/X1

⊗NDS/X2
via DS → W → S is locally free and that the adjunction

q∗|DS
q|DS

∗(NDS/X1
⊗NDS/X2

) → NDS/X1
⊗NDS/X2

is an isomorphism (this can be

checked on the local models of W → S described in [Li01]). Then the canonical
log structure NW/S of W on S (see section 2) has a locally free sublog structure
corresponding to DS given by (N, e 
→ (q|DS

∗(NDS/X1
⊗NDS/X2

), t)), where t = 0,
since again the divisor persists.

B. Gluing the logarithmic maps. Suppose now that we have two families f1 :

C1 → X1 and f2 : C2 → X2 over S in Mlog
Γ1

(U/B)sim and Mlog
Γ2

(U/B)∼ respectively.
On the level of schemes, the problem has a unique gluing to a family

C = C1 ∪xi
C2

f ��

p

��

W = X1 ∪DS
X2

q

��
S =

�� S

The map however is not a log map at the moment. To promote it to one, we
must correct the log structure on S. Any log structure MS on S that makes
simultaneously W and C log smooth over S must receive maps from both canonical
log structures NC/S and NW/S . Furthermore, if αi is the contact order of f at xi,
the map C → W at xi must, at the level of log structures, have the form

MS ⊕N N2 �� MS ⊕N N2

e1 
→ αie1

e2 
→ αie2.

Here, in the two pushouts, the map N → MS is the map determined from the maps
NW/S → MS and NC/S → MS as the image of the generator corresponding to
DS ⊂ W and xi ⊂ C respectively. The map N → N

2 is the diagonal in both cases.
Consequently, the image mD of the part of the log structure NW/S corresponding
to DS in MS must be identified with αi times the image mi of the part of the
log structure NC/S corresponding to xi in MS . We claim there is a log structure
NS on S with a unique map NS → MS , i.e., an initial log structure that makes
f into a logarithmic stable map or, in other words, a minimal one (Definition
2.2). To see this, note that the maps f1, f2 restricted to xi give isomorphisms
f∗
1NDS/X1

∼= N⊗αi

xi/C1
and f∗

2NDS/X2
∼= N⊗αi

xi/C2
. Hence, pushing forward to S, we
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get isomorphisms

(p1|xi
)∗(f

∗
1 (NDS/X1

))⊗ (p2|xi
)∗(f

∗
2 (NDS/X2

)) ∼= (p1|xi
)∗N

⊗αi

xi/C1
⊗ (p2|xi

)∗N
⊗αi

xi/C2
.

Since p1 and p2 restricted to xi are isomorphisms, the notation can be simplified to

f∗
1 (NDS/X1

)⊗ f∗
2 (NDS/X2

) ∼= (Nxi/C1
⊗Nxi/C2

)⊗αi .(7)

On the other hand, recall that q∗|DS
q|DS

∗(NDS/X1
⊗NDS/X2

) ∼= NDS/X1
⊗NDS/X2

(section 5.3.A). Since q ◦ f1 and q ◦ f2 restricted to xi are equal to p1|xi
and p2|xi

respectively we get simply that

q|DS
∗(NDS/X1

⊗NDS/X2
) ∼= (Nxi/C1

⊗Nxi/C2
)⊗αi .(8)

Therefore, if NS is defined by

NS = N
k ⊕ N/N(αiei − e)

ei 
→ ((Nxi/C1
⊗Nxi/C2

), 0)

e 
→ (q|DS
∗(NDS/X1

⊗NDS/X2
), 0)

we see that there is a unique map NS → MS which sends ei to mi and e to mD.

This does not solve the problem still, as to produce a family in Mlog
Γ (U/B), the

log structure on the base must have characteristic N. In fact, the issue is simply

that NS is not a sheaf of saturated monoids. Saturating indeed gives N
sat

S = N and
corresponds to adding a generator e′ such that e = de′, ei = lie

′, with d = l.c.m(αi),
li = d

αi
. On the level of log structures (not just characteristics), consider the

diagram

BG
k
m

δ(αi)

��
BGm

Δ
�� BGk

m

(9)

Here BGm is viewed as the substack of A1 parametrizing pairs of line bundles
with the zero section and δ(αi) is the morphism which, over a scheme S, sends a
k-tuple of pairs of line bundles with their zero sections (Li, 0) to (L⊗αi

i , 0) and Δ
the diagonal morphism. We then have a morphism to the fiber product

Mlog
Γ1

(U/B)sim ×Dk Mlog
Γ2

(U/B)∼ → BG
k
m ×BGk

m
BGm,

which sends the data of the two maps to the collection

((Nxi/C1
⊗Nxi/C2

, 0)ki=1, q|DS
∗(NDS/X1

⊗NDS/X2
), 0)

and isomorphism (8). Then, saturating NS is equivalent to taking the fiber product

MΓ1,Γ2

p12 ��

��

Mlog
Γ1

(U/B)sim ×Dk Mlog
Γ2

(U/B)∼

��
BGm

(l1,··· ,lk,d)
�� BGk

m ×BGk
m
BGm

Lemma 5.2. The morphism p12 : MΓ1,Γ2
→ Mlog

Γ1
(U/B)sim ×Dk Mlog

Γ2
(U/B)∼ is

finite étale and surjective of pure degree

∏k
i=1 αi

d
.
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Proof. The lower arrow of the above cartesian square factors as

BGm
(l1,··· ,lk,1)−−−−−−−→ BG

k
m ×

δ(αi),BGk
m,dΔ

BGm
(1,··· ,1,d)−−−−−−→ BG

k
m ×

δ(αi),BGk
m,Δ

BGm

where dΔ sends a pair of a line bundle with its zero section (L, 0) to k copies
of (L⊗d, 0). The second morphism is base change from the d-th power morphism

BGm
d−→ BGm, hence a gerbe banded by μd. The first one is a

∏k
i=1 μαi

-torsor;
indeed an S-point of the fiber product in the middle corresponds to line bundles
Ni, L, i = 1, . . . , k on S with isomorphisms φi : N

αi

i → L⊗d. Then the pullback of
(l1, · · · , lk, 1) via S is equivalent to the fibered category associated to the functor

on S-schemes that sends T → S to k-tuples of isomorphisms Ni|T ∼= L|⊗li
T whose

αi-th power is φi|T . �

C. Gluing the forgetful morphisms. Recall that there exist forgetful mor-

phisms τ sim : Mlog
Γ1

(U/B)sim → MBsim = M
log
g1,n1+k ×X and τ∼ : Mlog

Γ2
(U/B)∼ →

MB∼ = M
log
g2,n2+k ×LOG (B∼)etw. There exists an analogous forgetful morphism

from MΓ1,Γ2
to a stack MBgl, to be defined below, whose objects are obtained

by appropriately gluing the objects of MBsim and MB∼. To be more precise, we
define a stack MB′ via the fiber product

MB′ ��

��

MBsim ×MB∼

��
BGk

m ×BGk
m
BGm

i �� BGk
m ×BGm

where BG
k
m ×BGk

m
BGm is given by diagram (9) above. To define the right ver-

tical arrow we glue the underlying scheme data of curves and targets of a pair
of elements in MBsim and MB∼ over S canonically along their k sections and
common distinguished divisor respectively. With notation as above, let the re-
sulting glued pair have underlying scheme data (C1, {xi}ki=0, DS ⊂ X1 → S) and
(C2, {xi}ki=0, DS ⊂ X2 → S); write q|DS

: DS → S for the glued family of divisors.
Then we map the glued pair to

{((Nxi/C1
⊗Nxi/C2

)αi , 0)ki=1, (q|DS
∗(NDS/X1

⊗NDS/X2
), 0)}.

Then MB′, over a scheme S, parametrizes pairs of elements of MBsim and MB∼,
together with isomorphisms

ψi : ((Nxi/C1
⊗Nxi/C2

)αi , 0) → (q|DS
∗(NDS/X1

⊗NDS/X2
), 0).

Now the morphism Mlog
Γ1

(U/B)sim ×Dk Mlog
Γ2

(U/B)∼ → MBsim × MB∼ factors
through MB′. Indeed, this follows from isomorphism (8), which was obtained as
soon as the underlying maps were glued.

All in all, there is a stack MBgl, which, over a scheme S, parametrizes

• a pair of elements of MBsim and MB∼, with isomorphisms

ψi : ((Nxi/C1
⊗Nxi/C2

)αi , 0) → (q|DS
∗(NDS/X1

⊗NDS/X2
), 0), i = 1, . . . , k;

• a line bundle L on S such that Ld ∼= q|DS
∗(NDS/X1

⊗NDS/X2
), and isomor-

phisms φi : (Nxi/C1
⊗Nxi/C2

, 0) ∼= (Lli , 0) such that φαi
i = ψi, i = 1, . . . , k.
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Concretely, we have a diagram

MΓ1,Γ2
��

��

Mlog
Γ1

(U/B)sim ×Dk Mlog
Γ2

(U/B)∼

��
MBgl

��

�� MB′

��
BGm

(l1,··· ,lk,d)
�� BGk

m ×BGk
m
BGm

Here, the map (l1, · · · , lk, d) is precisely as in the previous section. The map

MB′ → BGk
m ×BGk

m
BGm sends a pair of elements of MBsim and MB∼ over S,

together with the isomorphisms ψi defined above, to

{(Nxi/C1
⊗Nxi/C2

, 0), (q|DS
∗(NDS/X1

⊗NDS/X2
), 0), ψi)}, i = 1, . . . , k.

Consequently, the composed map Mlog
Γ1

(U/B)sim ×Dk Mlog
Γ2

(U/B)∼ → BGk
m ×BGk

m

BGm is the one considered in the previous section as well. From the fact that the
bottom square in the diagram is cartesian, we conclude that MBgl is algebraic and

the map MBgl → MB′ is étale of pure degree

∏k
i=1 αi

d
. Furthermore, since the big

square is cartesian, the top square is also cartesian.
Now let Aut(Γ1,Γ2) be the group of automorphisms of the partition �α, that is,

the number of bijections φ : [k] → [k] with αφ(i) = αi, and consider its natural
action on MΓ1,Γ2

. We then have a canonical identification

FΓ1,Γ2
=

[
MΓ1,Γ2

Aut(Γ1,Γ2)

]

of the fixed locus FΓ1,Γ2
with the quotient stack of MΓ1,Γ2

by the (finite) group
Aut(Γ1,Γ2) in the sense of [Rom05]. Finally, Aut(Γ1,Γ2) also acts naturally on

MBgl, and, what is more, the image MBΓ1,Γ2
of the fixed locus FΓ1,Γ2

in MB can

be canonically identified with

[
MBgl

Aut(Γ1,Γ2)

]
. Let q12 : MΓ1,Γ2

→ FΓ1,Γ2
be the

quotient map. We then have a cartesian diagram

MΓ1,Γ2

q12 ��

��

FΓ1,Γ2

��
MBgl �� MBΓ1,Γ2

(10)

We thus have a description of the fixed loci in terms of known stacks. What is
not a priori clear is the relation between the natural obstruction theory induced

on FΓ1,Γ2
by the obstruction theory of Mlog

Γ (U/B) and those of the two factors

Mlog
Γ1

(U/B)sim,Mlog
Γ2

(U/B)∼.

D. Comparison of obstruction theories. Let us denote by T 1
f and T 2

f the

tangent and obstruction space of Mlog
Γ (U/B) at a point f , as in Lemma 4.1, and

by T 1
i,fi

, T 2
i,fi

the tangent and obstruction spaces of the two component maps fi.
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Lemma 5.3. At the point f ∈ FΓ1,Γ2
we have the equality

T 1
f − T 2

f = T 1
1,f1 + T 1

2,f2 − T 2
1,f1 − T 2

2,f2 − (TD)k +H0(ND/X ⊗ND/Y)

in K-theory.

Proof. Denote by y1, · · · , yk the nodes connecting C1 with C2, that is, the nodes
over D = D[0]. Then y1, · · · , yk become marked points in C1, C2. We denote each
of the two markings on C1 and C2 respectively over the node yi by the same symbol
for ease of notation. Let g = π ◦ f : C → W → X be the composition of f with
the contraction W → X, and let gi = π ◦ fi. By Lemmas 4.1 and 4.2 combined we
have that the fibers of T 1, T 2 fit into the six-term exact sequence

0 → aut(τ (f)) → H0(g∗T log
X ) → T 1

f → Def(τ (f)) → H1(g∗T log
X ) → T 2

f → 0.

We have two similar six-term exact sequences for fi with C replaced by Ci and
g by gi and τ replaced by τ∼ for f2. Write �x for the vector of all marked points on
C, as in Corollary 4.2 above, and (Si, y1, · · · , yk) for the vector of marked points in
Ci. Observe that

aut(C, �x) = aut(C1, S1, y1, · · · , yk)⊕ aut(C2, y1, · · · , yk, S2)

-vector fields that vanish on the nodes and marked points of C are simply vector
fields that vanish on the nodes and marked points of C1 and C2 and the nodes
connecting the two. Furthermore,

autB(W ) = autB∼(Y ),

and thus

aut(τ (f)) = aut(τ (f1))⊕ aut(τ∼(f2)).

Similarly, from the local-to-global sequence (6) we have an equality in K-theory

Ext1(ΩC(
∑

xi),OC) =Ext1(ΩC1
(
∑

S1 + y1 + · · · yk),OC1
)⊕

Ext1(ΩC2
(
∑

yi +
∑

S2),OC2
)

k⊕
i=1

Tyi
C1 ⊗ Tyi

C2.

On the other hand, we have by Corollary 4.1 that Def(τ (f)) differs in K-
theory from Ext1(ΩC(

∑
xi),OC) by replacing

⊕
nodes over D[i] TxC1

x ⊗ TxC2
x with

H0(ND[i]/X [i−1] ⊗ ND[i]/X [i]). All nodes of C persist as nodes over some target
node in C1 and C2, except precisely the nodes over D, as D is not a target node
for either f1 or f2. Therefore,

Def(τ (f)) = Def(τ (f1))⊕Def(τ∼(f2))⊕H0(ND/X ⊗ND/Y).

It remains to analyze the relative deformations and obstructions of f given by

the cohomology groups Hi(g∗T log
X ). We have the normalization sequence

0 → OC → OC1
⊕OC2

→
k⊕

i=1

Oyi
→ 0.

By [Kat96, Example 10.2] and [Gro11, Example 3.31], the log tangent bundle
TX(− logD) fits into the short exact sequence

0 → TX(− logD) → TX → ND/X → 0
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and thus coincides at a point of D with the tangent space at that point in D.

Therefore, twisting the normalization sequence by g∗T log
X and taking cohomology

we get

0 → H0(g∗T log
X ) → H0(g∗1T

log
X )⊕H0(g∗2T

log
X ) → (TD)k

→ H1(g∗T log
X ) → H1(g∗1T

log
X )⊕H1(g∗2T

log
X ) → 0.

Therefore, the difference between H0(g∗T log
X )−H1(g∗T log

X ) and
∑

H0(g∗i T
log
X )−

H1(g∗i T
log
X ) is precisely (TD)k. Putting everything together yields the lemma. �

From the above lemma it follows that in K-theory the pullbacks of the (virtual)
sheaves T 1 − T 2 and

∑
T 1
i − T 2

i to MΓ1,Γ2
differ by two bundles: the first is

the bundle with fiber (TD)k, which may be identified with the pullback of the

tangent bundle (TD)k under the evaluation map MΓ1,Γ2
→ Mlog

Γ1
(U/B)sim ×Dk

Mlog
Γ2

(U/B)∼ → Dk; the second one is the bundle with fiber H0(ND/X ⊗ ND/Y).
This is the line bundle L that parametrizes deformations of the node D; it may
be identified with the pullback of p∗1(L1) ⊗ p∗2(L2) to MΓ1,Γ2

, where p1 and p2
are the projections of Mlog

Γ1
(U/B)sim ×Dk Mlog

Γ2
(U/B)∼ to the two factors, and Li

are the respective similar bundles. Note that L1 is a trivial bundle with non-
trivial action, while L2 is a non-trivial bundle with trivial action. All the above
sheaves on MΓ1,Γ2

descend to FΓ1,Γ2
; we will denote the sheaves descended from

them by the same symbol. To keep consistent with existing literature, we write
eT (L1) =

w
d , e

T (L2) = −ψ
d . We then obtain:

Corollary 5.3. If F = FΓ1,Γ2
and NΓ1

= (T 1
1 − T 2

1 )
m, we have

eT (Nvir
F ) = eT (NΓ1

)(
w − ψ

d
).

Proof. Lemma 5.3 implies that Nvir
F = (T 1 − T 2)m differs from the sum of the

(T 1
i − T 2

i )
m only by the bundle L, since TD has trivial action. Furthermore, since

the torus action on Mlog
Γ2

(U/B)∼ is trivial, the bundles T j
2 have no moving part. �

The perfect obstruction theory of the fixed locus FΓ1,Γ2
is by definition ob-

tained by restriction from the torus fixed part of the perfect obstruction theory of

Mlog
Γ (U/B) relative to MB discussed in section 4. Recall that the image MBΓ1,Γ2

of FΓ1,Γ2
in MB was identified with the étale quotient of the stack MBgl by the

group Aut(Γ1,Γ2) (section 5.3.C). Now note that the relative cotangent complex of
MBΓ1,Γ2

in MB has trivial torus-fixed part: the torus action on the deformation

space of the k nodes and the divisor obtained from gluing the objects in MBsim

and MB∼ only has trivial fixed locus. Therefore FΓ1,Γ2
has a perfect obstruc-

tion theory relative to its image, which yields the same virtual fundamental class
[FΓ1,Γ2

]vir. Consequently, in view of the cartesian diagram (10), we may pull back
the above obstruction theory via the étale quotient map q12 : MΓ1,Γ2

→ FΓ1,Γ2
to

obtain a perfect obstruction theory for MΓ1,Γ2
relative to MBgl and thus a virtual

fundamental class [MΓ1,Γ2
]vir. Now, by [Cos06, Theorem 5.0.1], we have

q12∗[MΓ1,Γ2
]vir = |Aut(Γ1,Γ2)|[FΓ1,Γ2

]vir.(11)
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We have the following cartesian diagram

Mlog
Γ1

(U/B)sim ×Dk Mlog
Γ2

(U/B)∼

ev

��

v �� Mlog
Γ1

(U/B)sim ×Mlog
Γ2

(U/B)∼

��
Dk

Δ
�� D2k

(12)

Now let p12 : MΓ1,Γ2
→ Mlog

Γ1
(U/B)sim ×Dk Mlog

Γ2
(U/B)∼ be the morphism

defined right before Lemma 5.2. Putting everything together, we obtain

Theorem 5.1 (Log Virtual Localization).

[Mlog
Γ (U/B)]vir = [Mlog

Γ (U/B)sim]vir

+
∑
Γ1,Γ2

q12∗p
∗
12Δ

!([Mlog
Γ1

(U/B)sim]vir × [Mlog
Γ2

(U/B)∼]vir)
|Aut(Γ1,Γ2)|(w−ψ

d )eT (NΓ1
)

.

In the statement of the theorem the symbols q12∗, p
∗
12, and Δ! denote the proper

pushforward, flat, and Gysin pullback operations, respectively, on the Chow groups
of the corresponding Deligne-Mumford stacks (see [Vis89]).

Proof. It is enough to show that

[MΓ1,Γ2
]vir = p∗12Δ

!([Mlog
Γ1

(U/B)sim]vir × [Mlog
Γ2

(U/B)∼]vir).
Then the theorem will follow immediately from equality (11) and Lemma 5.3.

First, we claim that MΓ1,Γ2
has a perfect obstruction theory relative to MBsim×

MB∼, which yields the same virtual fundamental class [MΓ1,Γ2
]vir as its per-

fect obstruction theory relative to MBgl discussed above. The reason is that
the relative cotangent complex of MBgl over MBsim × MB∼ has trivial torus-
fixed part. Indeed, since MBgl is étale over MB′, it suffices to consider the
action of C

∗ on the cotangent bundle of the fibers of MB′ → MBsim × MB∼.
In the notation of section 5.3.C, consider an element of MB′(C) with underly-
ing scheme data (C1, {xi}, D ⊂ X) and (C1, {xi}, D ⊂ Y ) and isomorphisms
ψi : (Nxi/C1

⊗ Nxi/C2
)αi → qD∗(ND/X ⊗ ND/Y ) = C, i = 1, . . . , k. Then an

element c ∈ C
∗ acts on ψi by multiplying them by c, so its C∗-action on the cotan-

gent bundle of Isom((Nxi/C1
⊗Nxi/C2

)αi , qD∗(ND/X ⊗ND/Y )) is non-trivial.
We have a commutative diagram

MΓ1,Γ2
Mlog

Γ1
(U/B)sim ×Mlog

Γ2
(U/B)∼

MBsim ×MB∼

v◦p12

τ12
(τsim,τ∼)

where τ12 is the composite morphism MΓ1,Γ2
→ MBgl → MB∼×MBsim, τ sim, τ∼

the forgetful morphisms, and v the morphism defined in diagram (12). By the
previous paragraph and the proof of Lemma 5.3, the deformation and obstruction

spaces of the map f ∈ MΓ1,Γ2
and its component maps (f1, f2) ∈ Mlog

Γ1
(U/B)sim ×

Mlog
Γ2

(U/B)∼, over the same point in MBsim×MB∼, differ by the term T k
D. In the

formalism of Manolache [Man12, Definition 4.5], this is equivalent to the statement
that the perfect obstruction theories of τ12 and (τ sim, τ∼) together with the trivial
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obstruction theory of v ◦ p12, given by its relative cotangent complex Lv◦p12
=

p∗12ev
∗T k

D, form a compatible triple. Clearly v ◦ p12 is of Deligne-Mumford type,
and the same argument as in [AMW12, Lemma 4.2.1] shows that (τ sim, τ∼) is
also of Deligne-Mumford type. Then, using [Man12, Lemma 4.9], we deduce that

[MΓ1,Γ2
]vir is the virtual pullback of [Mlog

Γ1
(U/B)sim]vir× [Mlog

Γ2
(U/B)∼]vir ([Man12,

Definition 3.7]]) with respect to Lv◦p12
, which, in our case, is simply its Gysin

pullback via Δ followed by the flat pullback p∗12 (see Remarks 3.9 and 3.10 in
[Man12]). �

In section 2, we discussed the finite morphism π : Mlog
Γ (U/B) → MΓ(X,D)

from the moduli space of log stable maps to the moduli space of relative stable
maps. In the paper [AMW12] it is shown that the pushforward of the virtual

fundamental class of Mlog
Γ (U/B) under π coincides with the virtual fundamental

class of Jun Li’s space. We may modify these results to include the maps πsim :

Mlog
Γ1

(U/B)sim → Msim
Γ1

(X,D) = Msim
Γ1

and π∼ : Mlog
Γ2

(U/B)∼ → M∼
Γ2
, with the

appropriate modifications of the spaces in the setting of relative stable maps as
targets. Then, applying π∗ to both sides of the equation in Theorem 5.1 yields the
relative virtual localization theorem of Graber-Vakil.

Corollary 5.4. The log virtual localization formula becomes the relative virtual
localization formula under the functor π∗.

Proof. First, note that the fixed locus FLi
Γ1,Γ2

of Li’s space corresponding to the

splitting data (Γ1,Γ2) is identified as the quotient stack of Msim
Γ1

×Dk M∼
Γ1

by

Aut(Γ1,Γ2) [GV05, page 13]; let qLi12 be the quotient map. Then we have a commu-
tative diagram

MΓ1,Γ2

p12

��

q12 �� FΓ1,Γ2

π

��

Mlog
Γ1

(U/B)sim ×Dk Mlog
Γ2

(U/B)∼

π12

��
Msim

Γ1
×Dk M∼

Γ2

qLi
12 �� FLi

Γ1,Γ2

where π12 is the finite map induced by πsim and π∼. Therefore, the effect of π∗
on the numerators appearing on the right-hand side of the formula is the same as

the effect of qLi12∗π12∗p12∗ on p∗12Δ
!([Mlog

Γ1
(U/B)sim]vir × [Mlog

Γ2
(U/B)∼]vir). By the

projection formula and Lemma 5.2, we have

p12∗p
∗
12Δ

!([Mlog
Γ1

(U/B)sim]vir × [Mlog
Γ2

(U/B)∼]vir)

=

∏
αi

d
Δ!([Mlog

Γ1
(U/B)sim]vir × [Mlog

Γ2
(U/B)∼]vir).
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Now, we have the cartesian diagram

Mlog
Γ1

(U/B)sim ×Dk Mlog
Γ2

(U/B)∼

π12

��

�� Mlog
Γ1

(U/B)sim ×Mlog
Γ2

(U/B)∼

(πsim,π∼)

��
Msim

Γ1
×Dk M∼

Γ2

�� Msim
Γ1

×M∼
Γ2

over Δ : Dk → D2k. Therefore, by [Vis89, Theorem 3.12] and the results of
[AMW12], we get

π12∗Δ
!([Mlog

Γ1
(U/B)sim]vir × [Mlog

Γ2
(U/B)∼]vir) = Δ![Msim

Γ1
×M∼

Γ2
]vir,

which, in turn, after applying q12
Li
∗ gives |Aut(Γ1,Γ2)|[FLi

Γ1,Γ2
]vir by [GV05, Lemma

3.2].
So what remains is to analyze the Euler classes appearing in the denominators

of the formula. The term eT (NΓ) does not change under π, as it is the Euler
class of the virtual normal bundle of a fixed locus inside the simple locus, and π
is an isomorphism over the simple locus. On the other hand, let L be the line
bundle in MΓ(X,D) parametrizing deformations of the node; its fiber at a point is
H0(C,ND/X⊗ND/Y ). We denote the Euler class of L by w−ψ, as in [GV05]. Note

that over a fixed locus FΓ1,Γ2
, the pullback π∗(L) ∼= Ld, where L is the line bundle

ofMlog
Γ (U/B) with fiberH0(ND/X⊗ND/Y) parametrizing deformations of the node

D, which is the d-th root of D. We thus have eT (π∗L) = deT (L) = d(w−ψ
d ), which

justifies the choice of notation for eT (L).
Summing over all Γ1,Γ2 gives precisely the relative virtual localization formula

of [GV05]. �
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