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PATHWISE INTEGRATION AND CHANGE OF VARIABLE

FORMULAS FOR CONTINUOUS PATHS

WITH ARBITRARY REGULARITY

RAMA CONT AND NICOLAS PERKOWSKI

Abstract. We construct a pathwise integration theory, associated with a
change of variable formula, for smooth functionals of continuous paths with
arbitrary regularity defined in terms of the notion of pth variation along a se-
quence of time partitions. For paths with finite pth variation along a sequence
of time partitions, we derive a change of variable formula for p times continu-
ously differentiable functions and show pointwise convergence of appropriately
defined compensated Riemann sums.

Results for functions are extended to regular path-dependent functionals
using the concept of vertical derivative of a functional. We show that the
pathwise integral satisfies an “isometry” formula in terms of pth order variation
and obtain a “signal plus noise” decomposition for regular functionals of paths
with strictly increasing pth variation. For less regular (Cp−1) functions we
obtain a Tanaka-type change of variable formula using an appropriately defined
notion of local time.

These results extend to multidimensional paths and yield a natural higher-
order extension of the concept of “reduced rough path”. We show that, while
our integral coincides with a rough path integral for a certain rough path, its
construction is canonical and does not involve the specification of any rough-
path superstructure.

Introduction

In his seminal paper Calcul d’Itô sans probabilités [14], Hans Föllmer provided
a pathwise proof of the Itô formula, using the concept of quadratic variation along
a sequence of partitions, defined as follows. A path S ∈ C([0, T ],R) is said to have
finite quadratic variation along the sequence of partitions πn = (0 = tn0 < tn1 <
· · · < tnN(πn)

= T ) if for any t ∈ [0, T ], the sequence of measures

μn :=
∑

[tnj ,t
n
j+1]∈πn

δ(· − tj)|S(tnj+1)− S(tnj )|2

converges weakly to a measure μ without atoms. The continuous increasing function
[S] : [0, T ] → R+ defined by [S](t) = μ([0, t]) is then called the quadratic variation
of S along π. Extending this definition to vector-valued paths Föllmer [14] showed
that, for integrands of the form ∇f(S(t)) with f ∈ C2(Rd), one may define a
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pathwise integral
∫
∇f(S(t))dS as a pointwise limit of Riemann sums along the

sequence of partitions (πn) and he obtained an Itô (change of variable) formula for
f(S(t)) in terms of this pathwise integral: for f ∈ C2(Rd), t ∈ [0, T ],

f(S(t)) =

∫ t

0

〈∇f(S(s)), dS(s)〉+ 1

2

∫ t

0

〈∇2f(S(s)), d[S](s)〉,

where∫ t

0

〈∇f(S(s)), dS(s)〉 := lim
n→∞

∑
[tnj ,t

n
j+1]∈πn

〈∇f(S(t)), (S(tnj+1 ∧ t)− S(tnj ∧ t))〉.

This result has many interesting ramifications and applications in the pathwise
approach to stochastic analysis, and has been extended in different ways, to less
regular functions using the notion of pathwise local time [2, 10, 24], as well as to
path-dependent functionals and integrands [1, 7, 8, 25].

The central role played by the concept of quadratic variation has led to the
presumption that they do not extend to less regular paths with infinite quadratic
variation. Integration theory and change of variables formulas for processes with
infinite quadratic variation, such as fractional Brownian motion and other fractional
processes, have relied on probabilistic, rather than pathwise constructions [5,9,18].
Furthermore, the change of variable formulae obtained using these methods are
valid for a restricted range of Hurst exponents (see [23] for an overview).

In this work, we show that Föllmer’s pathwise Itô calculus may be extended to
paths with arbitrary regularity, in a strictly pathwise setting, using the concept of
pth variation along a sequence of time partitions. For paths with finite pth vari-
ation along a sequence of time partitions, we derive a change of variable formula
for p times continuously differentiable functions and show pointwise convergence
of appropriately defined compensated Riemann sums. This result may be seen as
the natural extension of the results of Föllmer [14] to paths of lower regularity.
Our results apply in particular to paths of fractional Brownian motions with arbi-
trary Hurst exponent, and yield pathwise proofs for results previously derived using
probabilistic methods, without any restrictions on the Hurst exponent.

Using the concept of the vertical derivative of a functional [8], we extend these
results to regular path-dependent functionals of such paths. We obtain an “isome-
try” formula in terms of pth order variations for the pathwise integral and a “signal
plus noise” decomposition for regular functionals of paths with strictly increasing
pth variation, extending the results of [1] obtained for the case p = 2 to arbitrary
even integers p ≥ 2.

The extension to less regular (i.e., not p times differentiable) functions is more
delicate and requires defining an appropriate higher-order analogue of semimartin-
gale local time, which we introduce through an appropriate spatial localization of
the pth order variation. Using this higher-order concept of local time, we obtain a
Tanaka-type change of variable formula for less regular (i.e., p − 1 times differen-
tiable) functions. We conjecture that these results apply in particular to paths of
fractional Brownian motion and other fractional processes.

Finally, we consider extensions of these results to multidimensional paths and
link them with rough path theory; the corresponding concepts yield a natural
higher-order extension to the concept of “reduced rough path” introduced by Friz
and Hairer [17, Chapter 5].
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Outline. Section 1 introduces the notion of pth variation along a sequence of parti-
tions and derives a change of variable formula for p times continuously differentiable
functions of paths with finite pth variation (Theorem 1.5). An extension of these
results to path-dependent functionals is discussed in Section 1.3: Theorem 1.10
gives a functional change of variable formula for regular functionals of paths with
finite pth variation.

Section 2 studies the corresponding pathwise integral in more detail. We first
show (Theorem 2.1) that the integral exhibits an “isometry” property in terms of
the pth order variation and use this property to obtain a unique “signal plus noise”
decomposition where the components are discriminated in terms of their pth order
variation (Theorem 2.3).

The extension of these concepts to multidimensional paths and the relation to
the concept of “reduced rough paths” are discussed in Section 4.

1. Pathwise calculus for paths with finite pth variation

1.1. pth variation along a sequence of partitions. We introduce, in the spirit
of Föllmer [14], the concept of pth variation along a sequence of partitions πn =
{tn0 , . . . , tnN(πn)

} with tn0 = 0 < . . . < tnk < . . . < tnN(πn)
= T . Define the oscillation

of S ∈ C([0, T ],R) along πn as

osc(S, πn) := max
[tj ,tj+1]∈πn

max
r,s∈[tj ,tj+1]

|S(s)− S(r)|.

Here and in the following we write [tj , tj+1] ∈ πn to indicate that tj and tj+1 are
both in πn and are immediate successors (i.e., tj < tj+1 and πn ∩ (tj , tj+1) = ∅).

Definition 1.1 (pth variation along a sequence of partitions). Let p > 0. A
continuous path S ∈ C([0, T ],R) is said to have a pth variation along a sequence of
partitions π = (πn)n≥1 if osc(S, πn) → 0 and the sequence of measures

μn :=
∑

[tj ,tj+1]∈πn

δ(· − tj)|S(tj+1)− S(tj)|p

converges weakly to a measure μ without atoms. In that case we write S ∈ Vp(π)
and [S]p(t) := μ([0, t]) for t ∈ [0, T ], and we call [S]p the pth variation of S.

Remark 1.2. (1) Functions in Vp(π) do not necessarily have finite p-variation
in the usual sense. Recall that the p-variation of a function f ∈ C([0, T ],R)
is defined as [11]

‖f‖p-var :=
(

sup
π∈Π([0,T ])

∑
[tj ,tj+1]∈π

|f(tj+1)− f(tj)|p
)1/p

,

where the supremum is taken over the set Π([0, T ]) of all partitions π of
[0, T ]. A typical example is the Brownian motion B, which has quadratic
variation [B]2(t) = t along any refining sequence of partitions almost surely
while at the same time having infinite 2-variation almost surely [11, 29]:

P (‖B‖2-var = ∞) = 1.

(2) If S ∈ Vp(π) and q > p, then S ∈ Vq(π) with [S]q ≡ 0.

The following lemma gives a simple characterization of this property.
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Lemma 1.3. Let S ∈ C([0, T ],R). S ∈ Vp(π) if and only if there exists a continu-
ous function [S]p such that

(1) ∀t ∈ [0, T ],
∑

[tj ,tj+1]∈πn:
tj≤t

|S(tj+1)− S(tj)|p n→∞−→ [S]p(t).

If this property holds, then the convergence in (1) is uniform.

Indeed, the weak convergence of measures on [0, T ] is equivalent to the pointwise
convergence of their cumulative distribution functions at all continuity points of the
limiting cumulative distribution function, and if the limiting cumulative distribution
function is continuous, the convergence is uniform.

Example 1.4. If B is a fractional Brownian motion with Hurst index H ∈ (0, 1)
and πn = {kT/n : k ∈ N0} ∩ [0, T ], then B ∈ V1/H(π) and [B]1/H(t) = tE[|B1|1/H ];
see [26, 27].

1.2. Pathwise integral and change of variable formula. A key observation
of Föllmer [14] was that, for p = 2, Definition 1.1 is sufficient to obtain a pathwise
Itô formula for (C2) functions of S ∈ V2(π). We will show that in fact Föllmer’s
argument may be applied for any even integer p.

Theorem 1.5 (Change of variable formula for paths with finite pth variation). Let
p ∈ N be even, let (πn) be a given sequence of partitions, and let S ∈ Vp(π). Then
for every f ∈ Cp(R,R) the pathwise change of variable formula

f(S(t))− f(S(0)) =

∫ t

0

f ′(S(s))dS(s) +
1

p!

∫ t

0

f (p)(S(s))d[S]p(s)

holds, where the integral∫ t

0

f ′(S(s))dS(s) := lim
n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(S(tj))

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

is defined as a (pointwise) limit of compensated Riemann sums.

Proof. Applying a Taylor expansion at order p to the increments of f(S) along the
partition, we obtain

f(S(t))− f(S(0))

(2)

=
∑

[tj ,tj+1]∈πn

(f(S(tj+1 ∧ t))− f(S(tj ∧ t)))

=
∑

[tj ,tj+1]∈πn

p∑
k=1

f (k)(S(tj))

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

+
∑

[tj ,tj+1]∈πn

∫ 1

0

dλ
(1− λ)p−1

(p− 1)!
(S(tj+1 ∧ t)− S(tj ∧ t))p

×
(
f (p)(S(tj) + λ(S(tj+1 ∧ t)− S(tj ∧ t)))− f (p)(S(tj))

)
.

Since the image of (S(t))t∈[0,T ] is compact, we may assume without loss of generality
that f is compactly supported; then the remainder on the right hand side is bounded
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by∣∣∣ ∑
[tj ,tj+1]∈πn

∫ 1

0

dλ
(1− λ)p−1

(p− 1)!
(S(tj+1 ∧ t)− S(tj ∧ t))p

×
(
f (p)(S(tj) + λ(S(tj+1 ∧ t)− S(tj ∧ t)))− f (p)(S(tj))

)∣∣∣
≤ C(f, S, πn, p)μn([0, t])

with a constant C(f, S, πn, p) > 0 that converges to zero for n → ∞, and therefore
the remainder vanishes for n → ∞. Since S ∈ Vp(π) we know that

lim
n→∞

∑
[tj ,tj+1]∈πn

f (p)(S(tj))

p!
(S(tj+1 ∧ t)− S(tj ∧ t))p =

1

p!

∫ t

0

f (p)(S(s))d[S]p(s),

and therefore we obtain from (2)

lim
n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(S(tj))

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

= f(S(t))− f(S(0))− 1

p!

∫ t

0

f (p)(S(s))d[S]p(s),

and we simply define
∫ t

0
f ′(S(s))dS(s) as the limit on the left hand side. �

Remark 1.6 (Relation with Young integration and rough path integration). The
expression ∑

[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(S(tj))

k!
(S(tj ∧ t)− S(tj ∧ t))k

is a “compensated Riemann sum”. Note however that, given the assumptions on
S, the pathwise integral appearing in the formula cannot be defined as a Young
integral, even after substracting the compensating terms. This relates to the ob-
servation in Remark 1.2 that p-variation can be infinite for S ∈ Vp(π).

When p = 2 it reduces to an ordinary (left) Riemann sum. For p > 2 such com-
pensated Riemann sums appear in the construction of “rough path integrals” [17,
19]. Let X ∈ Cα([0, T ],R) be α-Hölder continuous for some α ∈ (0, 1), and
write q = �α−1�. We can enhance X uniquely into a (weakly) geometric rough
path (X1

s,t,X
2
s,t, . . . ,X

q
s,t)0≤s≤t≤T , where Xk

s,t := (X(t)−X(s))k/k!. Moreover, for

g ∈ Cq+1(R,R) the function g′(X) is controlled by X with Gubinelli derivatives

g′(X(t))− g′(X(s)) =

q−1∑
k=1

g(k+1)(X(s))

k!
(X(t)−X(s))k +O(|t− s|qα)

=

q−1∑
k=1

g(k+1)(X(s))Xk
s,t +O(|t− s|qα),

and therefore the controlled rough-path integral
∫ t

0
g′(X(s))dX(s) is given by

lim
|π|→0

∑
[tj ,tj+1]∈π

q∑
k=1

g(k)(X(s))Xk
s,t = lim

|π|→0

∑
[tj ,tj+1]∈π

q∑
k=1

g(k)(X(s))
(X(t)−X(s))k

k!
,
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where |π| denotes the mesh size of the partition π, and which is exactly the type of
compensated Riemann sum that we used to define our integral. The link between
our approach and rough-path integration is explained in more detail in Section 4.2
below.

Remark 1.7. In principle we could apply similar arguments for odd integers p if
instead of S ∈ Vp(π) we assumed that

∑
[tj ,tj+1]∈πn

δ(· − tj)(S(tj+1) − S(tj))
p

converges to a signed measure. However, for odd p we typically expect the limit
to be zero; see the appendix for a prototypical example. So to slightly simplify the
presentation, we restrict our attention to even p.

Remark 1.8. A notion similar to our definition of pth variation was introduced by
Errami and Russo [13], in the (probabilistic and not pathwise) context of stochastic
calculus via regularization [28]. For p = 3, Errami and Russo prove an Itô-type for-
mula that is similar to the one in Theorem 1.5. However, since they use a definition

of the integral
∫ t

0
f ′(S(s))dS(s) that does not take the higher-order compensation

terms into account, their approach is limited to p = 3. Gradinaru, Russo, and
Vallois [18] extended this approach to p = 4 for functions of a fractional Brownian
motion with Hurst index H ≥ 1/4, a result which relies heavily on the Gaussian
properties of fractional Brownian motion.

The key ingredient of our approach is to define the integral using compen-
sated Riemann sums which, compared with previous work, drastically simplifies
the derivation of the change of variable formula for arbitrary (even) p in a strictly
pathwise setting without any use of probabilistic notions of convergence.

1.3. Extension to path-dependent functionals. An important generalization
of Föllmer’s pathwise Itô formula is to the case of path-dependent functionals [8] of
paths S ∈ V2(π) using Dupire’s functional derivative [12]; see [7] for an overview.
We extend here the functional change of variable formula of Cont and Fournié [8]
to functionals of paths S ∈ Vp(π), where p is any even integer.

Let D([0, T ],R) be the space of càdlàg paths from [0, T ] to R and write

ωt(s) = ω(s ∧ t)

for the path ω stopped at time t. Let

ΛT := {(t, ωt) : (t, ω) ∈ [0, T ]×D([0, T ],R)}

be the space of stopped paths. This is a complete metric space equipped with

d∞((t, ω), (t′, ω′)) := sup
s∈[0,T ]

|ω(s ∧ t)− ω′(s ∧ t′)|+ |t− t′| = ‖ωt − ωt′‖∞ + |t− t′|.

We will also need to stop paths “right before” a given time, and set for t > 0

ωt−(s) :=

{
ω(s), s < t,

limr↑t ω(r), s ≥ t,

while ω0− := ω0. We first recall some concepts from the non-anticipative functional
calculus [7, 8].

Definition 1.9. A non-anticipative functional is a map F : ΛT → R. Let F be a
non-anticipative functional.
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i. We write F ∈ C
0,0
l (ΛT ) if for all t ∈ [0, T ] the map F (t, ·) : D([0, T ],R) → R

is continuous and if for all (t, ω) ∈ ΛT and all ε > 0 there exists δ > 0 such
that for all (t′, ω′) ∈ ΛT with t′ < t and d∞((t, ω), (t′, ω′)) < δ we have
|F (t, ω)− F (t′, ω′)| < ε.

ii. We write F ∈ B(ΛT ) if for every t0 ∈ [0, T ) and every K > 0 there ex-
ists CK,t0 > 0 such that for all t ∈ [0, t0] and all ω ∈ D([0, T ],R) with
sups∈[0,t] |ω(s)| ≤ K we have |F (t, ω)| ≤ CK,t0 .

iii. F is horizontally differentiable at (t, ω) ∈ ΛT if its horizontal derivative

DF (t, ω) := lim
h↓0

F (t+ h, ωt)− F (t, ωt)

h

exists. If it exists for all (t, ω) ∈ ΛT , then DF is a non-anticipative func-
tional.

iv. F is vertically differentiable at (t, ω) ∈ ΛT if its vertical derivative

∇ωF (t, ω) := lim
h↓0

F (t, ωt + h1[t,T ])− F (t, ωt)

h

exists. If it exists for all (t, ω) ∈ ΛT , then ∇ωF is a non-anticipative func-
tional. In particular, we define recursively ∇k+1

ω F := ∇ω∇k
ωF whenever

this is well defined.
v. For p ∈ N0 we say that F ∈ C

1,p
b (ΛT ) if F is horizontally differentiable and

p times vertically differentiable in every (t, ω) ∈ ΛT , and if F,DF,∇k
ωF ∈

C
0,0
l (ΛT ) ∩ B(ΛT ) for k = 1, . . . , p.

Define the piecewise-constant approximation Sn to S along the partition πn:

(3) Sn(t) =
∑

[tj ,tj+1]∈πn

S(tj+1)1[tj ,tj+1)(t) + S(T )1{T}(t).

Then limn→∞ ‖Sn − S‖∞ = 0 whenever osc(S, πn) → 0.

Theorem 1.10 (Functional change of variable formula for paths with finite pth

variation). Let p be an even integer, let F ∈ C
1,p
b (ΛT ), and let S ∈ Vp(π) for a

sequence of partitions (πn) with vanishing mesh size |πn| → 0. Then the functional
change of variable formula

F (t, St) = F (0, S0) +

∫ t

0

DF (s, Ss)ds+

∫ t

0

< ∇F (s, Ss), dS(s) > +
1

p!

∫ t

0

∇p
ωF (s, Ss)d[S]

p(s)

holds, where∫ t

0

< ∇F (s, Ss), dS(s) >

:= lim
n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

1

k!
∇k

ωF (tj , S
n
tj−)(S(tj+1 ∧ t)− S(tj ∧ t))k,

with the piecewise constant approximation Sn as defined in (3).
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Proof. Since the right hand side is a telescoping sum, we have

F (t, Sn
t )− F (0, Sn

0 ) =
∑

[tj ,tj+1]∈πn

(F (tj+1 ∧ t, Sn
(tj+1∧t)−)− F (tj ∧ t, Sn

(tj∧t)−))

+ F (t, Sn
t )− F (t, Sn

t−)

=
∑

[tj ,tj+1]∈πn

(F (tj+1 ∧ t, Sn
(tj+1∧t)−)−F (tj ∧ t, Sn

(tj∧t)−))+o(1).

Consider j with tj+1 � t and split up the difference as follows:

F (tj+1, S
n
tj+1−)−F (tj , S

n
tj−)=(F (tj+1, S

n
tj+1−)−F (tj , S

n
tj ))+(F (tj, S

n
tj )−F (tj , S

n
tj−)).

Now Sn
tj+1−(s) = Sn

tj (s) for all s ∈ [0, tj+1], and therefore the first term on the right
hand side is simply

F (tj+1, S
n
tj+1−)− F (tj , S

n
tj ) =

∫ tj+1

tj

DF (r, Sn
tj )dr,

from where we easily get (using that the mesh size of (πn) converges to zero)

lim
n→∞

∑
[tj ,tj+1]∈πn

(F (tj+1 ∧ t, Sn
(tj+1∧t)−)− F (tj ∧ t, Sn

(tj∧t))) =

∫ t

0

DF (r, Sr)dr.

It remains to consider the term

F (tj , S
n
tj )− F (tj , S

n
tj−) = F (tj , S

n,Stj,tj+1

tj− )− F (tj , S
n
tj−),

where Stj ,tj+1
:= S(tj+1) − S(tj) and Sn,x

tj−(s) := Sn
tj (s) + 1[tj ,T ](s)x. By Taylor’s

formula and the definition of the vertical derivative, we have

F (tj , S
n,Stj,tj+1

tj− )− F (tj , S
n
tj−)

=

p∑
k=1

∇k
ωF (tj , S

n
tj−)

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

+
1

(p− 1)!

∫ 1

0

dλ(1− λ)p−1(S(tj+1 ∧ t)− S(tj ∧ t))p

×
(
∇p

ωF (tj , S
n,λStj,tj+1

tj− )−∇p
ωF (tj , S

n
tj−)

)
.

Now we sum over [tj , tj+1] ∈ πn and see as in Theorem 1.5 that the correction term
vanishes for n → ∞. Moreover, since S ∈ Vp(π) we have

lim
n→∞

∑
[tj ,tj+1]∈πn

∇p
ωF (tj , S

n
tj−)

p!
(S(tj+1∧t)−S(tj∧t))p =

1

p!

∫ t

0

∇p
ωF (s, Ss)d[S]

p(s);

see [7, Lemma 5.3.7]. Since F ∈ C
0,0
l (ΛT ), we have

lim
n→∞

(F (t, Sn
t )− F (0, Sn

0 )) = F (t, St)− F (0, S0),

which completes the proof. �
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2. Isometry relation and rough-smooth decomposition

Given a path (or process) S ∈ Vp(π) with finite pth variation along the sequence
of partitions (πn), the results above may be used to derive a decomposition of
regular functionals of S into a rough component with non-zero pth variation along
(πn) and a smooth component with zero pth variation along (πn). For p = 2 such
a decomposition was obtained in [1] and is a pathwise analog of the decomposition
of a Dirichlet process into a local martingale and a “zero energy” part [15].

For α ∈ (0, 1) we write Cα([0, T ],R) for the α-Hölder continuous paths from
[0, T ] to R, and ‖ · ‖α denotes the α-Hölder semi-norm.

2.1. An “isometry” property of the pathwise integral.

Theorem 2.1 (“Isometry” formula). Let p ∈ N be an even integer, let α > ((1 +
4
p )

1/2−1)/2, let (πn) be a sequence of partitions with mesh size going to zero, and let

S ∈ Vp(π) ∩ Cα([0, T ],R). Let F ∈ C
1,2
b (ΛT ) such that ∇ωF ∈ C

1,1
b (ΛT ). Assume

furthermore that F is Lipschitz-continuous with respect to d∞. Then F (·, S) ∈
Vp(π) and

[F (·, S)]p(t) =
∫ t

0

|∇ωF (s, Ss)|pd[S]p(s).

Proof. The proof is similar to the case p = 2 considered in [1]. Indeed, our assump-
tions allow us to apply [1, Lemma 2.2], which shows that there exists C > 0, only
depending on T , F , and ‖S‖α, such that for all 0 ≤ s ≤ t ≤ T

(4) |RF (s, t)| := |F (t, St)− F (s, Ss)−∇ωF (s, Ss)(S(t)− S(s))| ≤ C|t− s|α+α2

.

Writing also γF (s, t) := ∇ωF (s, Ss)(S(t)− S(s)), we obtain
(5) ∑
[tj ,tj+1]∈πn:

tj+1≤t

|F (tj+1, Stj+1
)− F (tj , Stj )|p =

∑
[tj ,tj+1]∈πn:

tj+1≤t

|RF (tj , tj+1) + γF (tj , tj+1)|p

=
∑

[tj ,tj+1]∈πn:
tj+1≤t

|γF (tj , tj+1)|p +
p∑

k=1

(
p

k

) ∑
[tj ,tj+1]∈πn:

tj+1≤t

RF (tj , tj+1)
kγF (tj , tj+1)

p−k.

Since S ∈ Vp(π) we have

(6) lim
n→∞

∑
[tj ,tj+1]∈πn:

tj+1≤t

|γF (tj , tj+1)|p =

∫ t

0

|∇ωF (s, S(s))|pd[S]p(s).

Our result follows once we show that the double sum on the right hand side of (5)
vanishes. For that purpose let k ∈ {1, . . . , p} and write qk := p/(p − k) ∈ [1,∞]
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and let q′k = p/k be its conjugate exponent. Hölder’s inequality yields∣∣∣ ∑
[tj ,tj+1]∈πn:

tj+1≤t

RF (tj , tj+1)
kγF (tj , tj+1)

p−k
∣∣∣

≤
( ∑

[tj ,tj+1]∈πn:
tj+1≤t

|RF (tj , tj+1)|kq
′
k

)1/q′k
( ∑

[tj ,tj+1]∈πn:
tj+1≤t

|γF (tj , tj+1)|(p−k)qk
)1/qk

=
( ∑

[tj ,tj+1]∈πn:
tj+1≤t

|RF (tj , tj+1)|p
)k/p( ∑

[tj ,tj+1]∈πn:
tj+1≤t

|γF (tj , tj+1)|p
)(p−k)/p

.

By (4) the first sum on the right hand side is bounded by( ∑
[tj ,tj+1]∈πn:

tj+1≤t

|RF (tj , tj+1)|p
)k/p

�
( ∑

[tj ,tj+1]∈πn:
tj+1≤t

|tj+1 − tj |p(α+α2)
)k/p

≤ (t×max{|tj+1 − tj |p(α+α2)−1 : [tj , tj+1] ∈ πn, tj+1 ≤ t})k/p,

which converges to zero for n → ∞ because p(α+ α2) > 1 (which is equivalent to

our assumption α > (
√
1 + 4

p −1)/2) and because k > 0. Moreover, by (6) the sum

over |γF (tj , tj+1)|p is bounded and this concludes the proof. �

Remark 2.2.

(1) Keeping the example of the (fractional) Brownian motion in mind, we would
typically expect paths in Vp(π) to be (1/p − κ)-Hölder continuous for any

κ > 0. Since for f(x) = (1 + x)1/2 we have

f ′′(x) = −1

4
(1 + x)−3/2 < 0,

we have f(x) < f(0) + f ′(0)x for all x > 0, and therefore

(1 + 4
p )

1/2 − 1

2
<

1
2
4
p

2
=

1

p
,

which means that in Theorem 2.1 we can take α < 1/p and our constraint
on the Hölder regularity is not unreasonable.

(2) In fact the constraint on α comes from inequality (4), which only gives

us a control of order |t − s|α+α2

for RF (s, t), while |t − s|2α might seem
more natural (after all RF (s, t) is something like the remainder in a first-
order Taylor expansion). The difficulty is that horizontal differentiability
is a very weak notion and gives us no control on RF (s, t). To obtain any
bounds at all we first need to approximate our path by piecewise linear
or piecewise constant paths, and through this approximation procedure we
lose a little bit of regularity; see [1, Lemma 2.2] for details. One can improve
the estimate on RF (s, t) by taking a higher-order Taylor expansion (which
would require more regularity from F ), but we do not need this here.
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2.2. Pathwise rough-smooth decomposition. Using the above result we may
derive, as in [1], a pathwise “signal plus noise” decomposition for regular functionals
of paths with strictly increasing pth variation. Let

C
1,p
b (S) = {F (·, S), F ∈ C

1,p
b (ΛT )} ⊂ Vp(π).

The following result extends the pathwise rough-smooth decomposition of paths in
C

1,p
b (S), obtained in [1] for p = 2, to higher values of p.

Theorem 2.3 (Rough-smooth decomposition). Let p ∈ N be an even integer, let
α > ((1 + 4

p )
1/2 − 1)/2, let (πn) be a sequence of partitions with vanishing mesh

size |πn| → 0 and let S ∈ Vp(π)∩Cα([0, T ],R) be a path with strictly increasing pth

variation [S]p along (πn). Then any X ∈ C
1,p
b (S) admits a unique decomposition

X = X(0) +A+M where [A]p = 0 and M(t) =

∫ t

0

φ(s)dS(s)

is a pathwise integral defined as in Theorem 1.10.

Proof. Existence of the decomposition is a consequence of Theorem 1.10. Consider
two such decompositions X −X0 = A+M = Ã+ M̃ . Since [A]p = [Ã]p = 0 and

|(A− Ã)(t)− (A− Ã)(s)|p � |A(t)−A(s)|p + |Ã(t)− Ã(s)|p,
we get A− Ã ∈ Vp(π) and [A− Ã]p ≡ 0. But then also [M − M̃ ]p = [A− Ã]p ≡ 0.
Now

M(t) =

∫ t

0

∇ωF (s, Ss)dS(s), M̃(t) =

∫ t

0

∇ωF̃ (s, Ss)dS(s)

for some F, F̃ ∈ C1,p
b (ΛT ), and by Theorem 2.1 we have

0 = [M − M̃ ]p(T ) =

∫ T

0

|∇ω(F − F̃ )(s, Ss)|pd[S]p(s).

Since (F − F̃ )(s, Ss) is continuous in s and [S]p is strictly increasing we have

∇ω(F − F̃ )(·, S) ≡ 0. This means that M − M̃ ≡ 0, and then also A− Ã ≡ 0. �

Remark 2.4. If t �→ [S]p(t) is not strictly increasing, uniqueness of the decomposi-
tion still holds d[S]p−almost everywhere.

3. Local times and higher-order Wuermli formula

An extension of Föllmer’s pathwise Itô formula to less regular functions was given
by Wuermli [30] in her (unpublished) thesis. Wuermli considered paths with finite
quadratic variation which further admit a local time along a sequence of partitions,
and derive a pathwise change of variable formula for more general functions that
need not be C2. Depending on the notion of convergence used to define the local
time, one then obtains a Tanaka-type change of variable formulas for various classes
of functions; convergence in stronger topologies leads to a formula valid for a larger
class of functions. Wuermli [30] assumed weak convergence in L2 in the space
variable (see also [2]) and some recent works have extended the approach to other
topologies, for example uniform convergence or weak convergence in Lq [10,24]. To
a certain extent Wuermli’s approach can be generalized to our higher-order setting,
but as we will discuss below in the higher-order case we do not expect to have
convergence of the pathwise local times in strong topologies.
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To derive the generalization of Wuermli’s formula, we consider f ∈ Cp−2 with
absolutely continuous f (p−2) and apply the Taylor expansion of order p − 2 with
integral remainder to obtain

f(b)− f(a) =

p−2∑
k=1

f (k)(a)

k!
(b− a)k +

∫ b

a

f (p−1)(x)

(p− 2)!
(b− x)p−2dx.

Assume now that f (p−1) is of bounded variation. Since every bounded variation
function f (p−1) is regulated (làdlàg) and therefore has only countably many jumps,
its càdlàg version is also a weak derivative of f (p−2), and from now on we only work
with this version. Since (b − ·)p−2 is continuous, the integration by parts rule for
the Lebesgue-Stieltjes integral applies in the case b ≥ a and we obtain

∫ b

a

f (p−1)(x)

(p− 2)!
(b− x)p−2dx = f (p−1)(b)

−(b− b)p−1

(p− 1)!
− f (p−1)(a)

−(b− a)p−1

(p− 1)!

−
∫
(a,b]

−(b− x)p−1

(p− 1)!
df (p−1)(x)

= f (p−1)(a)
(b− a)p−1

(p− 1)!
+

∫
(a,b]

(b− x)p−1

(p− 1)!
df (p−1)(x).

Similarly we get for b < a

∫ b

a

f (p−1)(x)

(p− 2)!
(b− x)p−2dx = −

∫ a

b

f (p−1)(x)

(p− 2)!
(b− x)p−2dx

= f (p−1)(a)
(b− a)p−1

(p− 1)!
−

∫
(b,a]

(b− x)p−1

(p− 1)!
df (p−1)(x),

and therefore

f(b)− f(a) =

p−1∑
k=1

f (k)(a)

k!
(b− a)k + sign(b− a)

∫
�a,b�

(b− x)p−1

(p− 1)!
df (p−1)(x)

=

p−1∑
k=1

f (k)(a)

k!
(b− a)k + sign(b− a)p

∫
�a,b�

|b− x|p−1

(p− 1)!
df (p−1)(x)

=

p−1∑
k=1

f (k)(a)

k!
(b− a)k +

∫
R

1�a,b�(x)
sign(b− a)p|b− x|p−1

(p− 1)!
df (p−1)(x),

with the notation

�a, b� =

{
(a, b], b ≥ a,

(b, a], a ≤ b.

For any partition σ of [0, T ], we define

Lσ,p−1
t (x) :=

∑
tj∈σ

sign(Stj+1∧t − S(tj ∧ t))p1�S(tj∧t),Stj+1∧t�(x)|S(tj+1 ∧ t)− x|p−1.
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To extend Theorem 1.5 to S ∈ Vp(π), we first note that the following identity holds
for any partition πn:

f(St)− f(S0) =
∑

[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(Stj )

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

+
1

(p− 1)!

∫
R

Lπn,p−1
t (x)df (p−1)(x).(7)

To obtain a change of variable formula for less regular functions, we need the last
term to converge as the partition is refined. This motivates the following definition.

Definition 3.1 (Local time of order p). Let p ∈ N be an even integer and let
q ∈ [1,∞]. A continuous path S ∈ C([0, T ],R) has an Lq-local time of order p− 1
along a sequence of partitions π = (πn)n≥1 if osc(S, πn) → 0 and

Lπn,p−1
t (·) =

∑
tj∈π

1�S(tj∧t),Stj+1∧t�(·)|S(tj+1 ∧ t)− ·|p−1

converges weakly in Lq(R) to a weakly continuous map L : [0, T ] → Lq(R) which
we call the order p local time of S. We denote Lq

p(π) the set of continuous paths S
with this property.

Intuitively, the limit Lt(x) then measures the rate at which the path S accumu-
lates pth order variation near x. This definition is further justified by the following
result, which is a ‘pathwise Tanaka formula’ [30] for paths of arbitrary regularity.

Theorem 3.2 (Pathwise “Tanaka” formula for paths with finite pth order vari-
ation). Let p ∈ 2N be an even integer, q ∈ [1,∞] with conjugate exponent q′ =
q/(q − 1). Let f ∈ Cp−1(R,R) and assume that f (p−1) is weakly differentiable with

derivative in Lq′(R). Then for any S ∈ Lq
p(π) the pointwise limit of compensated

Riemann sums∫ t

0

f ′(S(s))dS(s) := lim
n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(S(tj))

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

exists and the following change of variable formula holds:

f(S(t))− f(S(0)) =

∫ t

0

f ′(S(s))dS(s) +
1

(p− 1)!

∫
R

f (p)(x)Lt(x)dx.

Proof. The formula (7) is exact and does not involve any error terms. Noting that

Lq′(R) ⊂ (Lq)∗(R) also for q = ∞, our assumptions imply that the second term on
the right hand side of (7) converges, so the result follows. �

To justify the name “local time” for L, we illustrate how L is related to classical
definitions of local times by restricting our attention to a particular sequence of
partitions [6, 20].

Definition 3.3. Let S ∈ C([0, T ],R). The dyadic Lebesgue partition generated by
S is defined via τn0 := 0 and

τnj+1 := inf{t ≥ τnj : St ∈ 2−n
Z \ {Sτn

j
}},

and then πn = ({τnj : j ∈ N0} ∩ [0, T ]) ∪ {T}.
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Lemma 3.4. Let p ∈ N be even, let S ∈ C([0, T ],R), and let (πn) be the dyadic
Lebesgue partition generated by S. Given an interval [a, b] we write Ut([a, b]) for
the number of upcrossings of [a, b] that S performs until time t. Let x ∈ R and let
Ink = (k2−n, (k + 1)2−n] be the unique dyadic interval of generation n with x ∈ Ink .
Then

Lπn
t (x) = (|(k + 1)2−n − x|p−1 + |x− k2−n|p−1)Ut(I

n
k ) +O(2−n(p−1)).

Proof. We have 1�Sτn
j
,Sτn

j+1
�(x) �= 0 if either Sτn

j
= k2−n and Sτn

j+1
= (k + 1)2−n

(i.e., S performs an upcrossing of Ink ), or Sτn
j
= (k+1)2−n and Sτn

j+1
= k2−n (i.e., S

performs a downcrossing of Ink ). In the first case we have to add |(k+1)2−n−x|p−1

to Lπn
t (x), and in the second case we add (−1)p|x − k2−n|p−1 = |x − k2−n|p−1.

Therefore, we obtain

Lπn
t (x) = |(k + 1)2−n − x|p−1Ut(I

n
k ) + |x− k2−n|p−1Dt(I

n
k ) +O(2−n(p−1)),

and since up- and downcrossings of Ink differ by at most one, our claim follows. �

Note that the expression for Lπn
t strongly fluctuates on Ink . For x � k2−n and x �

(k+ 1)2−n the factor in front of Ut(I
n
k ) is � 2−n(p−1), while for x = (2k+1)2−n−1

we get the factor 2−n(p−1)2p−2. Therefore, we do not expect Lπn
t (x) to converge

uniformly or even pointwise in x as n → ∞ (unless if p = 2).

Lemma 3.5. In the setting of Lemma 3.4 set

L̃πn
t (x) :=

∑
k∈Z

2−n(p−1)Ut(I
n
k )1In

k
(x).

Let q ∈ (1,∞). If L̃πn
t converges weakly in Lq(R) to a limit L̃t, then Lπn

t converges

weakly in Lq(R) to (2/p)L̃t.

Proof. Let us introduce an averaging operator,

(Anf)(x) :=
∑
k∈Z

2n
∫
In
k

f(y)dy 1In
k
(x).

Since∫
In
k

(|(k + 1)2−n − x|p−1 + |x− k2−n|p−1)dx = 2

∫ 2−n

0

xp−1dx =
2

p
2−np,

we have L̃πn
t = p

2AnL
πn
t + O(2−n(p−1)), with a compactly supported remainder

O(2−n(p−1)). We claim that if (fn) is a sequence of functions for which Anfn
converges weakly in Lq(R) and for which |fn| ≤ C|Anfn|, then also (fn) converges
weakly in Lq(R) to the same limit, which will imply our claim. To show this, let f

be the limit of An and let g ∈ Lq′(R). We have 〈Anϕ, ψ〉 = 〈Anϕ,Anψ〉 = 〈ϕ,Anψ〉
for all ϕ, ψ, and therefore

|〈fn − f, g〉| ≤ |〈fn −Anfn, g〉|+ |〈Anfn − f, g〉|
= |〈fn, g −Ang〉|+ |〈Anfn − f, g〉|
≤ ‖fn‖Lq‖g −Ang‖Lq′ + |〈Anfn − f, g〉|.

The second term on the right hand side converges to zero by assumption. For the
first term we note that by assumption ‖fn‖Lq ≤ ‖Anfn‖Lq , which is uniformly
bounded in n because (Anfn) converges weakly in Lq. The proof is therefore
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complete once we show that limn→∞ ‖g − Ang‖Lq′ = 0 for all g ∈ Lq′ . But this
easily follows from the fact that the continuous and compactly supported functions
are dense in Lq′ . �

In fact, we conjecture that, for fractional Brownian motion, this notion of local
time defined along the dyadic Lebesge partition coincides, up to a constant, with
the usual concept of local time defined as the density of the occupation measure.

Conjecture. Let B be the fractional Brownian motion with Hurst parameter H ∈
(0, 1), and let (πn) be the dyadic Lebesgue partition generated by B. Let Ink and Ut

be as in Lemma 3.4 (where now we count the upcrossings of B instead of S). We
conjecture that

L̃πn
t (x) :=

∑
k∈Z

2−n(1/H−1)Ut(I
n
k )1In

k
(x)

almost-surely converges uniformly in (t, x) ∈ [0, T ]×R to �t(x)E[|B1|1/H ]/2, where
� is the local time of B, i.e., the Radon-Nikodym derivative of the occupation mea-

sure A �→
∫ t

0
1A(B(s))ds with respect to the Lebesgue measure; see, e.g., [3]. In

particular, for any even integer p ∈ 2N, B ∈ Lp−1
q (πn) for any q ∈ (1,∞).

This result is well known for H = 1/2; see, e.g., [6, 24]. In the general case
H ∈ (0, 1), it is natural to expect that

μn([0, t]) :=
∞∑
j=0

2−n/H1τn
j+1≤t

n→∞−−−−→ [B]
1/H
t = E[|B1|1/H ]t,

which would be an extension of the convergence result of [27] from deterministic
partitions to the Lebesgue partition generated by B. Moreover, we know that the
local time � of the fractional Brownian motion satisfies

�t(x) = lim
n→∞

∑
k∈Z

2n
∫ t

0

1In
k
(Bs)ds1In

k
(x).

If we formally replace the Lebesgue measure in the integral by E[|B1|1/H ]−1μn,
then we get

�t(x) = E[|B1|1/H ]−1 lim
n→∞

∑
k∈Z

2n
∫ t

0

1In
k
(Bs)μ

n(ds)1In
k
(x)

= E[|B1|1/H ]−1 lim
n→∞

∑
k∈Z

2n−n/H
∑

j:τn
j+1≤t

1In
k
(Bτn

j
)1In

k
(x)

= E[|B1|1/H ]−1 lim
n→∞

∑
k∈Z

2n−n/H(Dt(I
n
k ) + Ut(I

n
k+1))1In

k
(x),

and if we further assume that 2n−n/H |Ut(I
n
k+1)−Ut(I

n
k )| → 0, then our conjecture

formally follows.
If the conjecture holds, then for any p ∈ 2N and B a typical sample path of the

fractional Brownian motion with Hurst index 1/p and f ∈ Cp−1 with weak pth
derivative f (p) ∈ Lq for any q ∈ (1,∞):

(8) f(B(t))− f(B(0)) =

∫ t

0

f ′(B(s))dB(s) +
E[|B1|p]

p!

∫
R

f (p)(x)�t(x)dx,
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where � is the local time of B and∫ t

0

f ′(B(s))dB(s) := lim
n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(B(tj))

k!
(B(tj+1 ∧ t)− B(tj ∧ t))k.

By Theorem 1.5 the formula holds for f ∈ Cp, because then

E[|B1|p]
p!

∫
R

f (p)(x)�t(x)dx =
E[|B1|p]

p!

∫ t

0

f (p)(S(s))ds =
1

p!

∫ t

0

f (p)(S(s))d[S]ps,

which adds further credibility to our conjecture.

4. Extension to multidimensional paths

As in the case p = 2, the set Vp(π) is not stable under linear combinations: for
S1, S2 ∈ Vp(π), expanding ((S1(tj+1) − S1(tj) + S2(tj+1) − S2(tj))

p yields many
cross terms whose sum cannot be controlled in general as the partition is refined.
The extension of Definition 1.1 to vector-valued functions S = (S1, . . . , Sd) therefore
requires some care. The original approach of Föllmer [14] was to require that Si, Si+
Sj ∈ Vp(π). We propose here a slightly different formulation, which is equivalent
to Föllmer’s construction for p = 2 but easier to relate to other approaches, such
as rough path integration.

4.1. Tensor formulation. Define Tp(R
d) = Rd⊗ . . .⊗Rd as the space of p-tensors

on Rd. A symmetric p-tensor is a tensor T ∈ Tp(R
d) that is invariant under any

permutation σ of its arguments:

∀(v1, v2, . . . , vp) ∈ (Rd)p, T (v1, v2, . . . , vp) = T (vσ1, vσ2, . . . , vσp).

The coordinates (Ti1i2···ip) of a symmetric tensor of order p satisfy

Ti1i2···ip = Tiσ1iσ2···iσp
.

The space Symp(R
d) of symmetric tensors of order p on R

d is naturally isomorphic
to the dual of the space Hp[X1, . . . , Xd] of symmetric homogeneous polynomials of
degree p on Rd. We set Sym0(R

d) := R.
An important example of a symmetric p-tensor on Rd is given by the pth order

derivative of a smooth function:

∀f ∈ Cp(Rd,R), ∀x ∈ R
d : ∇pf(x) ∈ Symp(R

d).

The symmetry property is obtained by repeated application of Schwarz’s lemma.
We define Sp(R

d) as the direct sum of Symk(R
d) for k = 0, 1, 2, . . . , p:

Sp(R
d) =

p⊕
k=0

Symk(R
d).

The space Sp(R
d) is naturally isomorphic to the dual of the space Rp[X1, . . . , Xd]

of polynomials of degree ≤ p in d variables, which defines a bilinear product

〈·, ·〉 : Sp(Rd)× Rp[X1, . . . , Xd] → R.

Slightly abusing notation, we also write 〈·, ·〉 for the canonical inner product on
Tp(R

d). Consider now a continuous Rd-valued path S ∈ C([0, T ],Rd) and a se-
quence of partitions πn={tn0 , . . . , tnN(πn)

} with tn0 =0 < . . . < tnk < . . . < tnN(πn)
=T .
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Then

μn :=
∑

[tj ,tj+1]∈πn

δ(· − tj) (S(tj+1)− S(tj))⊗ · · · ⊗ (S(tj+1)− S(tj))︸ ︷︷ ︸
p times

defines a tensor-valued measure on [0, T ] with values in Symp(R
d). This space

of measures is in duality with the space C([0, T ],Hp[X1, . . . , Xd]) of continuous
functions taking values in homogeneous polynomials of degree p, i.e., homogeneous
polynomials of degree p with continuous time-dependent coefficients.

Definition 4.1 (pth variation of a multidimensional function). Let p ∈ N be even,
let S ∈ C([0, T ],Rd) be a continuous path, and let π = (πn)n≥1 be a sequence of
partitions of [0, T ]. Consider the sequence of tensor-valued measures

μn :=
∑

[tj ,tj+1]∈πn

δ(· − tj)(S(tj+1)− S(tj))
⊗p.

We say that S has a pth variation along π = (πn)n≥1 if osc(S, πn) → 0 and
there exists a Symp(R

d)–valued measure μS without atoms such that for all f ∈
C([0, T ],Hp[X1, . . . , Xd])

lim
n→∞

∫ T

0

〈f, dμn〉 = lim
n→∞

∑
[tj ,tj+1]∈πn

〈f(tj), (S(tj+1)− S(tj))
⊗p〉 =

∫ T

0

〈f, dμS〉.

In that case we write S ∈ Vp(π) and we call [S]p : [0, T ] → Symp(R
d) defined by

[S]p(t) := μ([0, t])

the pth variation of S.

By analogy with the positivity property of symmetric matrices, we say that a
symmetric p-tensor T ∈ Symp(R

d) is positive if

〈T, v ⊗ . . .⊗ v〉 ≥ 0 ∀v ∈ R
d.

We denote the set of positive symmetric p-tensors by Sym+
p (R

d). For T, T̃ ∈
Symp(R

d) we write T ≥ T̃ if T − T̃ ∈ Sym+
p (R

d). This defines a partial order

on Symp(R
d).

Property 4.2. Let S ∈ Vp(π) ∩ C([0, T ],Rd). Then

(i) [S]p has finite variation and is increasing in the sense of the partial order
on Symp(R

d):

[S]p(t+ h)− [S]p(t) ∈ Sym+
p (R

d) ∀ 0 ≤ t ≤ t+ h ≤ T.

(ii) ∀t ∈ [0, T ],
∑
πn

(S(tj+1 ∧ t)− S(tj ∧ t))⊗p n→∞→ [S]p(t).

Proof. Let v ∈ Rd. Before passing to the limit, the function∑
[tj ,tj+1]∈πn:

tj≤t

〈v⊗p, (S(tj+1)− S(tj))
⊗p〉 =

∑
[tj ,tj+1]∈πn:

tj≤t

|v · (S(tj+1)− S(tj))|p
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is increasing in t, and therefore it defines a finite (positive) measure. By assumption,

this measure converges weakly to the measure defined by (a, b] �→
∫ T

0
〈1(a,b]v

⊗p, dμS〉.
In particular, we have

〈v⊗p, [S]p(t+ h)− [S]p(t)〉 =
∫ T

0

〈1(t,t+h]v
⊗p, dμS〉 ≥ 0.

Thus, 〈v⊗p, [S]p〉 is increasing for all v ∈ R
d, and from here it is easy to see that [S]p

has finite variation (apply, e.g., polarization to go from v⊗p to v1 ⊗ · · · ⊗ vp). �

Theorem 4.3 (Change of variable formula for paths with finite pth variation).
Let p ∈ N be even, let (πn) be a sequence of partitions of [0, T ], and let S ∈
Vp(π)∩C([0, T ],Rd). Then for all f ∈ Cp(Rd,R) the limit of compensated Riemann
sums∫ t

0

〈∇f(S(s)), dS(s)〉 := lim
n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

1

k!
〈∇kf(S(tj)), (S(tj+1∧t)−S(tj∧t))⊗k〉

exists for every t ∈ [0, T ] and satisfies the pathwise change of variable formula:

f(S(t))− f(S(0)) =

∫ t

0

〈∇f(S(s)), dS(s)〉+ 1

p!

∫ t

0

〈∇pf(S(s)), d[S]p(s)〉.

Proof. The proof follows similar ideas to the case p = 2. By applying a Taylor
expansion at order p to the increments of f(S) along the partition, we obtain

f(S(t))− f(S(0))

(9)

=
∑

[tj ,tj+1]∈πn

(f(S(tj+1 ∧ t))− f(S(tj ∧ t)))

=
∑

[tj ,tj+1]∈πn

p∑
k=1

1

k!
〈∇kf(S(tj)), (S(tj+1 ∧ t)− S(tj ∧ t))⊗k〉

+
∑

[tj ,tj+1]∈πn

∫ 1

0

dλ
(1− λ)p−1

(p− 1)!

×
〈(
∇pf(S(tj) + λ(S(tj+1 ∧ t)− S(tj ∧ t)))−∇pf(S(tj))

)
,

(S(tj+1 ∧ t)− S(tj ∧ t))⊗p
〉
.

As in the proof of Theorem 1.5 we assume that f is compactly supported and use
this to show that the remainder on the right hand side vanishes as n → ∞. Since
S ∈ Vp(π) we know that

lim
n→∞

∑
[tj ,tj+1]∈πn

1

p!
〈∇kf(S(tj)), (S(tj+1 ∧ t)− S(tj ∧ t))⊗p〉

=
1

p!

∫ t

0

〈∇pf(S(s)), d[S]p(s)〉,
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and therefore we obtain from (9)

lim
n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

1

k!
〈∇kf(S(tj)), (S(tj+1 ∧ t)− S(tj ∧ t))⊗k〉

= f(S(t))− f(S(0))− 1

p!

∫ t

0

f (p)(S(s))d[S]p(s),

and we simply define
∫ t

0
〈∇f(S(s)), dS(s)〉 as the limit on the left hand side. �

4.2. Relation with rough path integration. To explain the link between
Föllmer’s pathwise Itô integral and rough path integration [21], Friz and Hairer
[17, Chapter 5.3] introduced the notion of (second order) reduced rough path.

Definition 4.4. Let α ∈ (1/3, 1/2). We set ΔT := {(s, t) : 0 ≤ s ≤ t ≤ T}. A
reduced rough path of regularity α is a pair (X,X) : ΔT → R

d ⊕ Sym2(R
d), such

that

(i) there exists C > 0 with

|Xs,t|+
√
|Xs,t| ≤ C|t− s|α, (s, t) ∈ ΔT ;

(ii) the reduced Chen relation holds

Xs,t − Xs,u − Xu,t = Sym(Xs,u ⊗Xu,t), (s, u), (u, t) ∈ ΔT ,

where Sym(·) denotes the symmetric part.

Friz and Hairer [17] also show that, for any S ∈ V2(π), there is a canonical
candidate for a reduced rough path. Indeed, the pair

Xs,t := S(t)− S(s), Xs,t :=
1

2
Xs,t ⊗Xs,t −

1

2
([S]2(t)− [S]2(s)),

satisfies the reduced Chen relation. But in general we do not know anything about
the Hölder regularity of S ∈ V2(π), because for any continuous path S there exists
a sequence of partitions (πn) with S ∈ V2(π) and [S]2 ≡ 0; see [16]. If, however,
we take the dyadic Lebesgue partition (πn) generated by S as in Definition 3.3
and if S ∈ V2(π), then it follows from [4, Lemme 1]1 that S has finite q-variation
for any q > 2. So in that case every S ∈ V2(π) corresponds to a reduced rough
path with p-variation regularity. Rather than adapting Definition 4.4 from Hölder
to p-variation regularity, we directly introduce a concept of higher-order reduced
rough paths. For that purpose we first define the concept of control function.

Definition 4.5. A control function is a continuous map c : ΔT → R+ such that
c(t, t) = 0 for all t ∈ [0, T ] and such that c(s, u) + c(u, t) ≤ c(s, t) for all 0 ≤ s ≤
u ≤ t ≤ T .

A function f : [0, T ] → Rd has finite p-variation if and only if there exists a control
function c with |f(t)− f(s)|p ≤ c(s, t), and in that case ‖f‖p-var ≤ c(0, T )1/p.

1Note that for λ > 0 the path S has finite q-variation if and only if λ−1S has finite q-variation,
and therefore we can assume that λ = 1 in [4, Lemme 1].
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Definition 4.6. Let p ≥ 1. A reduced rough path of finite p-variation is a tuple

X = (1,X1, . . . ,X
p�) : ΔT −→ S
p�(R
d),

such that

(i) there exists a control function c with


p�∑
k=1

|Xk
s,t|p/k ≤ c(s, t), (s, t) ∈ ΔT ;

(ii) the reduced Chen relation holds

Xs,t = Sym(Xs,u ⊗ Xu,t), (s, u), (u, t) ∈ ΔT ,

where the symmetric part of T ∈ Tk(R
d) is defined as

Sym(T ) :=
1

k!

∑
σ∈Sk

σT, σT (v1, . . . , vk) := T (vσ1, . . . , vσk),

where the sum is across the group of permutations Sk of {1, . . . , k}.

Lemma 4.7. Let S ∈ C([0, T ],Rd) and let (πn) be the dyadic Lebesgue partition
generated by S. Let p ≥ 1 and assume that S ∈ Vp(π). Then for any q > p with
�q� = �p� we obtain a reduced rough path of finite q-variation by setting X0

s,t := 1,

X
k
s,t :=

1

k!
(S(t)− S(s))⊗k, k = 1, . . . , �p� − 1,

X

p�
s,t :=

1

�p�! (S(t)− S(s))⊗
p� − 1

�p�! ([S]
p(t)− [S]p(s)).

Proof. Let q > p. As discussed above we know that S has finite q-variation, so let
us start by setting

c̃(s, t) := ‖S‖qq-var,[s,t] := sup
π∈Π([s,t])

∑
[tj ,tj+1]∈π

|S(tj+1)− S(tj)|q, (s, t) ∈ ΔT ,

which is a control function such that


p�∑
k=1

|Xk
s,t|q/k ≤ Cd,p

(
c̃(s, t) + |[S]p(t)− [S]p(s)|q/
p�

)
,

with a constant Cd,p > 0 that only depends on the dimension d and on p. By
Property 4.2 the path [S]p has finite variation and therefore it also has finite
q/�p�-variation, so

˜̃c(s, t) := ‖[S]p‖q/
p�q/
p�-var,[s,t]

defines another control function. Therefore, c(s, t) := Cd,p(c̃(s, t) + ˜̃c(s, t)) is a
control function for which the analytic property (i) in Definition 4.6 holds.

To show the reduced Chen relation let us write S�,k for 0 ≤ �, k for the shuffles
of words of length �, k, i.e., for those permutations σ ∈ S�+k which satisfy σi < σj

for all 1 ≤ i < j ≤ �, respectively, � + 1 ≤ i < j ≤ k. Note that there are
(
�+k
�

)
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shuffles in S�,k. We have for k < �p�

X
k
s,t =

1

k!
(S(t)− S(s))⊗k =

1

k!
(S(t)− S(u) + S(u)− S(s))⊗k

=
1

k!

k∑
�=0

∑
σ∈S�,k−�

σ
(
(S(u)− S(s))⊗� ⊗ (S(t)− S(u))⊗(k−�)

)
,

where we set v⊗0 := 1 for all v ∈ Rd. On the other hand, if Pk denotes the
projection onto Tk(R

d), then for k < �p�

Pk(Sym(Xs,u ⊗ Xu,t))

=

k∑
�=0

Sym(X�
s,u ⊗ X

k−�
u,t )

=
k∑

�=0

1

�!(k − �)!
Sym

(
(S(u)− S(s))⊗� ⊗ (S(t)− S(u))⊗(k−�)

)

=

k∑
�=0

1

�!(k − �)!

(
k

�

)−1 ∑
σ∈S�,k−�

σ((S(u)− S(s))⊗� ⊗ (S(t)− S(u))⊗(k−�)
)

= X
k
s,t,

which proves the reduced Chen relation for k < �p�. For k = �p� we get the same
relation by noting that [S]p is already symmetric and therefore

Sym([S]p(t)− [S]p(s)) = [S]p(t)− [S]p(s).

�

The following space of (higher-order) controlled paths in the sense of Gubinelli [19]
is defined for example in [17, Chapter 4.5]. We adapt the definition to paths that
are controlled in the p-variation sense by a reduced rough path. If � < k and T ∈ T�,
T̃ ∈ Tk, then we interpret

〈T, T̃ 〉 ∈ Tk−�, 〈T, T̃ 〉(v1, . . . , vk−�) := 〈T ⊗ (v1 ⊗ · · · ⊗ vk−�), T̃ 〉,

and similarly for 〈T̃ , T 〉.

Definition 4.8. Let p ≥ 1 and let X be a reduced rough path of finite p-variation.
A path

Y = (Y 1, . . . , Y 
p�) ∈ C([0, T ], S
p�(R
d))

is controlled by X if there exists a control function c such that


p�∑
�=1

∣∣∣Y �(t)−

p�∑
k=�

〈Y k(s),Xk−�
s,t 〉

∣∣∣ p
�p�−�+1 ≤ c(s, t), (s, t) ∈ ΔT .

In that case we write Y ∈ D
p�/p
X

([0, T ]).

Example 4.9. Let p ≥ 1, let S, X and q be as in Lemma 4.7, and let f ∈
C
q�(Rd,R). Then Y 0 := 1,

Y k(s) := ∇kf(S(s)), k = 1, . . . , �q�,



182 RAMA CONT AND NICOLAS PERKOWSKI

defines a controlled path in D
q�/q
X

([0, T ]). Indeed, as we discussed above ∇kf(S(s))
∈ Symk(R

d) for all k = 1, . . . , �q�, and by Taylor’s formula we have for � ∈
{1, . . . , �q�}

Y �(t) = ∇�f(S(t))

=


q�∑
k=�

1

(k − �)!
〈∇kf(S(s)), (S(t)− S(s))⊗(k−�)〉+O(c(s, t)(
q�−�+1)/q)

=


q�∑
k=�

〈Y k(s),Xk−�
s,t 〉+O(c(s, t)(
q�−�+1)/q).

Proposition 4.10. Let p ≥ 1, let X be a reduced rough path of finite p-variation,

and let Y ∈ D
p�/p
X

([0, T ]). Then the rough path integral

IX(Y )(t) =

∫ t

0

〈Y (s), dX(s)〉 = lim
π∈Π([0,t])

|π|→0

∑
[tj ,tj+1]∈π


p�∑
k=1

〈Y k(tj),X
k
tj ,tj+1

〉, t∈ [0, T ],

defines a function in C([0, T ],R), and it is the unique function with IX(Y )(0) = 0
for which there exists a control function c with

∣∣∣ ∫ t

s

〈Y (r), dX(r)〉 −

p�∑
k=1

〈Y k(s),Xk
s,t〉

∣∣∣ � c(s, t)
�p�+1

p , (s, t) ∈ ΔT .

Proof. This follows from classical arguments (Theorem 4.3 in [22]; see also [19])
once we show that for 0 ≤ s ≤ u ≤ t ≤ T


p�∑
k=1

〈Y k(s),Xk
s,t〉 −


p�∑
k=1

〈Y k(s),Xk
s,u〉 −


p�∑
k=1

〈Y k(u),Xk
u,t〉 = O(c(s, t)

�p�+1
p ),

where c is a control function such that the estimates in Definitions 4.6 and 4.8 hold.
But


p�∑
k=1

〈Y k(u),Xk
u,t〉 =


p�∑
k=1

( 
p�∑
�=k

〈Y �(s),X�−k
s,u ⊗ X

k
u,t〉+O

(
c(s, u)

�p�−k+1
p c(u, t)

k
p
))

=


p�∑
k=1

k∑
�=1

〈Y k(s),Xk−�
s,u ⊗ X

�
u,t〉+ O

(
c(s, t)

�p�+1
p

)

=


p�∑
k=1

〈Y k(s),Pk(Sym(Xs,u ⊗ Xu,t))− X
k
s,u〉+O

(
c(s, t)

�p�+1
p

)
,
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where in the last step we used that Y k(s) is symmetric. Therefore, the reduced
Chen relation gives


p�∑
k=1

〈Y k(s),Xk
s,t〉 −


p�∑
k=1

〈Y k(s),Xk
s,u〉 −


p�∑
k=1

〈Y k(u),Xk
u,t〉

=


p�∑
k=1

〈Y k(s),Xk
s,t − X

k
s,u − Pk(Sym(Xs,u ⊗ Xu,t)) + X

k
s,u〉+O

(
c(s, t)

�p�+1
p

)

=


p�∑
k=1

〈Y k(s),Xk
s,t − X

k
s,t〉+O

(
c(s, t)

�p�+1
p

)
= O

(
c(s, t)

�p�+1
p

)
,

which concludes the proof. �
Corollary 4.11. Let p ∈ N be an even integer and let q, S,X, f be as in Exam-
ple 4.9. Then∫ t

0

〈∇f(S(s)), dX(s)〉 =
∫ t

0

〈∇f(S(s)), dS(s)〉, t ∈ [0, T ],

where the left hand side denotes the rough path integral of Proposition 4.10 and the
right hand side is the integral of Theorem 4.3.

Proof. It suffices to show that∫ t

0

〈∇f(S(s)), dX(s)〉 = f(S(t))− f(S(0))− 1

p!

∫ t

0

〈∇pf(S(s)), d[S]p(s)〉,

and since

lim
π∈Π([0,t])

|π|→0

∑
[tj ,tj+1]∈π

〈∇pf(S(tj)), [S]
p(tj+1)− [S]p(tj)〉 =

∫ t

0

〈∇pf(S(s)), d[S]p(s)〉,

this is equivalent to

lim
π∈Π([0,t])

|π|→0

∑
[tj ,tj+1]∈π

p∑
k=1

〈∇kf(S(tj)),
1

k!
(S(tj+1)− S(tj))

⊗k〉 = f(S(t))− f(S(0)).

The last identity can be shown by writing f(S(t))− f(S(0)) as a telescoping sum
and by performing a Taylor expansion up to order p and controlling the remainder
term as in the proof of Theorem 4.3. �

Appendix: pth variation for odd integer values of p

Lemma .12. Let p > 1 be an odd integer and let πn be the dyadic Lebesgue partition
generated by S ∈ C([0, T ],R). Assume that νn :=

∑
[tj ,tj+1]∈πn

δ(· − tj)|S(tj+1) −
S(tj)|p converges weakly to a signed measure ν without atoms. Then we have for
all f ∈ C(R,R)

lim
n→∞

∑
[tj ,tj+1]∈πn

f(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t))p = 0, t ∈ [0, T ].

Proof. We can assume without loss of generality that f has compact support, since
the image of S on [0, T ] is compact. Let k ∈ Z and note that whenever S completes
an upcrossing of Ink = [k2−n, (k + 1)2−n] we have to add f(k2−n)2−np to the sum.
On the other hand, if S completes a downcrossing of Ink before t, then we have to
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add −f((k+1)2−n)2−np to the sum. Let Ut(I
n
k ) (resp., Dt(I

n
k )) denote the number

of up- (resp., down-) crossings of Ink by S on [0, t]. Since Ut(I
n
k ) and Dt(I

n
k ) differ

by at most 1, we get∣∣∣∣∣∣
∑

[tj ,tj+1]∈πn:tj+1�t

f(S(tj))(S(tj+1)− S(tj))
p

∣∣∣∣∣∣
=

∣∣∣∣∣∑
k∈Z

2−np(f(k2−n)Ut(I
n
k )− f((k + 1)2−n)Dt(I

n
k ))

∣∣∣∣∣
�

∣∣∣∣∣∑
k∈Z

2−npf(k2−n)(Ut(I
n
k )−Dt(I

n
k ))

∣∣∣∣∣
+

∣∣∣∣∣∑
k∈Z

2−np(f(k2−n)− f((k + 1)2−n))Dt(I
n
k )

∣∣∣∣∣
�

∑
k∈Z

2−np|f(k2−n)|+
∑
k∈Z

2−np|(f(k2−n)− f((k + 1)2−n))|Nt(I
n
k )

�
∑
k∈Z

2−np|f(k2−n)|+ ωf (2
−n)

∑
k∈Z

2−npNt(I
n
k ),

where we wrote Nt(I
n
k ) = Ut(I

n
k )+Dt(I

n
k ) for the total number of interval crossings

and where ωf is the modulus of continuity of f , i.e., limn→∞ ωf (2
−n) = 0. By

assumption,

lim
n→∞

∑
k∈Z

2−npNt(I
n
k ) = ν([0, t]) ∈ R,

and since f(k2−n) �= 0 for at most O(2n) values of k and p > 1 the claim follows. �
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