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ENERGY QUANTIZATION FOR A NONLINEAR SIGMA MODEL

WITH CRITICAL GRAVITINOS

JÜRGEN JOST, RUIJUN WU, AND MIAOMIAO ZHU

Abstract. We study some analytical and geometric properties of a two-

dimensional nonlinear sigma model with gravitino which comes from super-
symmetric string theory. When the action is critical w.r.t. variations of the
various fields including the gravitino, there is a symmetric, traceless, and
divergence-free energy-momentum tensor, which gives rise to a holomorphic
quadratic differential. Using it we obtain a Pohozaev type identity and finally
we can establish the energy identities along a weakly convergent sequence of
fields with uniformly bounded energies.

1. Introduction

The two-dimensional nonlinear sigma models constitute important models in
quantum field theory. They have not only physical applications but also geometric
implications, and therefore their properties have been the focus of important lines
of research. In mathematics, they arise as two-dimensional harmonic maps and
pseudoholomorphic curves. In modern physics the basic matter fields are described
by vector fields as well as spinor fields, which are coupled by supersymmetries.
The base manifolds are two-dimensional, and therefore their conformal and spin
structures come into play. From the physics side, in the 1970s a supersymmetric
two-dimensional nonlinear sigma model was proposed in [6, 14]; the name “super-
symmetric” comes from the fact that the action functional is invariant under certain
transformations of the matter fields; see for instance [13, 18]. From the perspec-
tive of geometric analysis, they seem to be natural candidates for a variational
approach, and one might expect that the powerful variational methods developed
for harmonic maps and pseudoholomorphic curves could be applied here as well.
However, because of the various spinor fields involved, new difficulties arise. The
geometric aspects have been developed in mathematical terms in [25], but this nat-
urally involves anti-commuting variables which are not amenable to inequalities,
and therefore variational methods cannot be applied; rather, one needs algebraic
tools. This would lead to what one may call super harmonic maps. Here, we adopt
a different approach. We transform the anti-commuting variables into commuting
ones, as in ordinary Riemannian geometry. In particular, the domains of the action
functionals are ordinary Riemann surfaces instead of super Riemann surfaces. Then
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one has more fields to control: not only the maps between Riemannian manifolds
and Riemannian metrics but also their super partners. Such a model was developed
and investigated in [22]. Part of the symmetries, including some supersymmetries,
are inherited, although some essential supersymmetries are hidden or lost. As is
known, the symmetries of such functionals are quite important for the analysis in
order to overcome some analytical problems that arise as we are working in a lim-
iting situation of the Palais-Smale condition. Therefore, here we shall develop a
setting with a large symmetry group. This will enable us to carry out the essen-
tial steps of the variational analysis. The analytical key will be a Pohozaev type
identity.

We will follow the notational conventions of [22], which are briefly recalled in
the following. Let (M, g) be an oriented closed Riemannian surface with a fixed
spin structure, and let S → M be a spinor bundle, of real rank four, associated
to the given spin structure. Note that the Levi-Civita connection ∇M on M and
the Riemannian metric g induce a spin connection ∇s on S in a canonical way and
a spin metric gs which is a fiberwise real inner product;1 see [19, 26]. The spinor
bundle S is a left module over the Clifford bundle Cl(M,−g) with the Clifford map
being denoted by γ : TM → End(S); sometimes it will be denoted simply by a dot.
The Clifford relation reads

γ(X)γ(Y ) + γ(Y )γ(X) = −2g(X,Y ) ∀X,Y ∈ X (M).

The Clifford action is compatible with the spinor metric and the spin connection,
making S into a Dirac bundle in the sense of [26]. Therefore, the bundle S⊗TM is
also a Dirac bundle overM , and a section χ ∈ Γ(S⊗TM) is taken as a super partner
of the Riemannian metric and called a gravitino. The Clifford multiplication gives
rise to a map δγ : S ⊗ TM → S, where δγ(s ⊗ v) = γ(v)s = v · s for s ∈ Γ(S)
and v ∈ Γ(TM) and extending linearly. This map is surjective, and moreover the
following short exact sequence splits:

0 → ker → S ⊗ TM
δγ−→ S → 0.

The projection map to the kernel is denoted by Q : S ⊗ TM → S ⊗ TM . More
explicitly, in a local oriented orthonormal frame (eα) ofM , a section χ ∈ Γ(S⊗TM)
can be written as χα ⊗ eα,

2 and the Q-projection is given by

Qχ := −1

2
γ(eβ)γ(eα)χ

β ⊗ eα

=
1

2

(
(χ1 + ω · χ2)⊗ e1 − ω · (χ1 + ω · χ2)⊗ e2

)
,

where ω = e1 · e2 is the real volume element in the Clifford bundle.
Let (N, h) be a compact Riemannian manifold and let φ : M → N be a map. One

can consider the twisted spinor bundle S⊗φ∗TN with bundle metric gs ⊗φ∗h and

connection ∇̃ ≡ ∇S⊗φ∗TN , which is also a Dirac bundle, and the Clifford action on
this bundle is also denoted by γ or simply a dot. A section of this bundle is called
a vector spinor, and it serves as a super partner of the map φ in this model. The
twisted spin Dirac operator /D is defined in the canonical way: let (eα) be a local

1Here we take the real rather than the Hermitian one used in some previous works on Dirac-
harmonic maps (with or without curvature term), as clarified in [22].

2Here and in what follows, the summation convention is always used.
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orthonormal frame of M . Then for any vector spinor ψ ∈ Γ(S ⊗ φ∗TN), define

/Dψ := γ(eα)∇̃eαψ = eα · ∇̃eαψ.

It is elliptic and essentially self-adjoint with respect to the inner product in
L2(S ⊗ φ∗TN). In a local coordinate (yi) of N , write ψ = ψi ⊗ φ∗( ∂

∂yi ). Then

/Dψ = /∂ψi ⊗ φ∗
(

∂

∂yi

)
+ γ(eα)ψ

i ⊗ φ∗
(
∇N

Tφ(eα)

∂

∂yi

)
,

where /∂ is the spin Dirac operator on S. For later convention, we set

SR(ψ) := 〈ψl, ψj〉gsψk⊗φ∗
(
RN (

∂

∂yk
,
∂

∂yl
)
∂

∂yj

)
=Ri

jkl(φ)〈ψl, ψj〉ψk⊗φ∗
(

∂

∂yi

)
,

and R(ψ) := 〈SR(ψ), ψ〉gs⊗φ∗h.
The action functional under consideration is given by

A(φ, ψ; g, χ) :=

∫
M

| dφ|2g⊗φ∗h + 〈ψ, /Dψ〉gs⊗φ∗h − 4〈(1⊗ φ∗)(Qχ), ψ〉gs⊗φ∗h

− |Qχ|2gs⊗g|ψ|2gs⊗φ∗h − 1

6
R(ψ) dvolg.

From [22] we know that the Euler–Lagrange equations are

τ (φ) =
1

2
R(ψ, eα · ψ)φ∗eα − 1

12
S∇R(ψ)

− (〈∇s
eβ
(eα · eβ · χα), ψ〉gs + 〈eα · eβ · χα, ∇̃eβψ〉gs),

/Dψ =|Qχ|2ψ +
1

3
SR(ψ) + 2(1⊗ φ∗)Qχ,

(1)

where S∇R(ψ) = φ∗(∇NR)ijkl〈ψi, ψk〉gs〈ψj , ψl〉gs and

R(ψ, eα · ψ)φ∗eα =〈ψk, eα · ψl〉gseα(φj)φ∗
(
R

(
∂

∂yk
,
∂

∂yl

)
∂

∂yj

)
=Ri

jkl〈ψk,∇φj · ψl〉 ⊗ φ∗
(

∂

∂yi

)
.

One notices that this action functional can actually be defined for (φ, ψ) that
possess only little regularity. We only need integrability properties to make the
action well defined; that is, φ ∈ W 1,2(M,N) and ψ ∈ Γ1,4/3(S ⊗ φ∗TN). The
corresponding solutions of (1) in the sense of distributions are called weak solutions.
When the Riemannian metric g and the gravitino χ are assumed to be smooth
parameters, it is shown in [22] that any weak solution (φ, ψ) is actually smooth.
We will show that these solutions have more interesting geometric and analytical
properties. Embed (N, h) isometrically into some Euclidean space R

K . Then a
solution can be represented by a tuple of functions φ = (φ1, . . . , φK) taking values
in R

K and a tuple of spinors ψ = (ψ1, . . . , ψK) where each ψi is a (pure) spinor,
and together they satisfy the condition that at each point φ(x) in the image, for
any normal vector ν = (ν1, . . . , νK) ∈ T⊥

φ(x)N ⊂ Tφ(x)R
K ,

K∑
i=1

ψi(x)νi(φ(x)) = 0.
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Moreover, writing the second fundamental form of the isometric embedding as
A = (Ai

jk), the Euler–Lagrange equations can be written in the following form (see

[22]):

Δφi =Ai
jk〈∇φj ,∇φk〉+Ai

jmAm
kl〈ψj ,∇φk · ψl〉

+ Zi(A,∇A)jklm〈ψj , ψl〉〈ψk, ψm〉 − div V i −Ai
jk〈V j ,∇φk〉,

(2)

/∂ψi =−Ai
jk∇φj · ψk + |Qχ|2ψi +

1

3
Ai

jmAm
kl

(
〈ψk, ψl〉ψj − 〈ψj , ψk〉ψl

)
− eα · ∇φi · χα.

(3)

Here the V i’s are vector fields on M locally given by

(4) V i = 〈eα · eβ · χα, ψi〉eβ .

One should note that there is some ambiguity here, because the second fundamental
form maps tangent vectors of the submanifold N to normal vectors, so the lower
indices of Ai

jk should be tangential indices, and the upper ones normal. However,
one can extend the second fundamental form to a tubular neighborhood of N in
R

K such that all the Ai
jk’s make sense. Alternatively, one can rewrite the extrinsic

equations without labeling indices, but we want to derive estimates and see how the
second fundamental form A affects the system; hence we adopt this formulation.

This action functional is closely related to Dirac-harmonic maps with curvature
term. Actually, if the gravitinos vanish in the model, the action A then reads

Lc(φ, ψ) =

∫
M

| dφ|2 + 〈ψ, /Dψ〉 − 1

6
R(ψ) dvolg,

whose critical points are known as Dirac-harmonic maps with curvature term.
These were first introduced in [10] and further investigated in [4, 5, 24]. Further-
more, if the curvature term is also omitted, then we get the Dirac-harmonic map
functional which was introduced in [7,8] and further explored from the perspective
of geometric analysis in e.g. [9, 27, 31, 33, 35–37]. From the physical perspective,
they constitute a simplified version of the model considered in this paper and de-
scribe the behavior of the nonlinear sigma models in degenerate cases.

The symmetries of this action functional always play an important role in the
study of the solution spaces and here especially the rescaled conformal invariance.

Lemma 1.1. Let f : (M̃, g̃) → (M, g) be a conformal diffeomorphism, with f∗g =

e2ug̃, and suppose the spin structure of (M̃, g̃) is isomorphic to the pullback of the

given one of (M, g). There is an identification B : S → S̃ which is an isomorphism
and fiberwise isometry such that under the transformation

φ �→ φ̃ := φ ◦ f,
ψ �→ ψ̃ := e

u
2 (B ⊗ 1φ∗TN )ψ,

χ �→ χ̃ := e
3u
2 (B ⊗ (f−1)∗)χ,

g �→ g̃,

each summand of the action functional stays invariant, and also∫
M

|ψ|4 dvolg =

∫
˜M

|ψ̃|4 dvolg̃.
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Remark. Furthermore, the following quantities are also invariant under the trans-
formations in the above lemma:∫

M

|χ|4 dx,
∫
M

|∇̃ψ| 43 dx,
∫
M

|∇̂χ| 43 dx,

where ∇̂ ≡ ∇S⊗TM . Also observe that Q is only a linear projection operator, so
Qχ enjoys the same analytic properties as χ. In our model, most of the time it is
only the Q-part of χ which is involved, so all the assumptions and conclusions can
be made on the Qχ’s. This actually reflects the effects of super Weyl symmetry.
The rescaled conformal invariance with respect to ψ was shown in [17]; see also [8].
As for the gravitino χ, the spinor part has to be rescaled in the same way as ψ,
while the tangent vector part has to be rescaled in the ordinary way, which gives
rise to an additional factor eu such that the corresponding norms are invariant. For
more detailed investigations one can refer to [23], where more symmetry properties
of our nonlinear sigma model with gravitinos are analyzed.

Example 1. When the map f is a rescaling by a constant λ on the Euclidean
space with the standard Euclidean metric g0, then f∗g0 = λ2g0 and (f−1)∗ is a

rescaling by λ−1. In this case the gravitino χ transforms to
√
λBχα⊗ eα, where eα

is a standard basis for (R2, g0).

For a given pair (φ, ψ) and a domain U ⊂ M , the energy of this pair (φ, ψ) on
U is suggested in [8] to be

E(φ, ψ;U) :=

∫
U

| dφ|2 + |ψ|4 dvolg,

and when U is the entire manifold we write E(φ, ψ), omitting U . Similarly, the
energies of the map φ, respectively, the vector spinor ψ, on U is defined by

E(φ;U) :=

∫
U

| dφ|2 dvolg, respectively, E(ψ;U) :=

∫
U

|ψ|4 dvolg.

From the previous lemma we know that they are rescaling invariant. We will show
that whenever the local energy of a solution is small, some higher derivatives of this
solution can be controlled by its energy and some appropriate norm of the gravitino;
this is known as the small energy regularity. On the other hand, similarly to the
theories for harmonic maps and Dirac-harmonic maps, the energy of a solution on
spheres should not be globally small because too small energy forces the solution
to be trivial. That is, there are energy gaps between the trivial and nontrivial
solutions of (1) on the two-sphere with standard round metric. This is true also for
some other surfaces, as shown in Section 2. The round sphere is more important
to us since it is the model of bubbles.

To proceed further we restrict to some special gravitinos, i.e., those gravitinos
that are critical with respect to variations. As shown in [23], this is equivalent to
the vanishing of the corresponding supercurrent. Then we will see in Section 3 that
the energy-momentum tensor, defined using a local orthonormal frame (eα) by

T =
{
2〈φ∗eα, φ∗eβ〉 − | dφ|2gαβ +

1

2

〈
ψ, eα · ∇̃eβψ + eβ · ∇̃eαψ

〉
− 〈ψ, /Dgψ〉gαβ

+ 〈eη · eα · χη ⊗ φ∗eβ + eη · eβ · χη ⊗ φ∗eα, ψ〉+ 4〈(1⊗ φ∗)Qχ,ψ〉gαβ

+ |Qχ|2|ψ|2gαβ +
1

6
R(ψ)gαβ

}
eα ⊗ eβ,
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is symmetric, traceless, and divergence free; see Proposition 3.3. Hence it gives rise
to a holomorphic quadratic differential; see Proposition 3.4. In a local conformal
coordinate z = x+ iy, this differential reads

T (z) dz2 := (T11 − iT12)(dx+ i dy)2,

with

T11 =

∣∣∣∣∂φ∂x
∣∣∣∣2 − ∣∣∣∣∂φ∂y

∣∣∣∣2 + 1

2

(
〈ψ, γ(∂x)∇̃∂x

ψ〉 − 〈ψ, γ(∂y)∇̃∂y
ψ〉
)
+ F11,

T12 =

〈
∂φ

∂x
,
∂φ

∂y

〉
φ∗h

+ 〈ψ, γ(∂x)∇̃∂y
ψ〉+ F12,

where in a local chart χ = χx ⊗ ∂x + χy ⊗ ∂y and

F11 = 2〈−χx ⊗ φ∗(∂x)− γ(∂x)γ(∂y)χ
y ⊗ φ∗(∂x), ψ〉+ 2〈(1⊗ φ∗)Qχ,ψ〉g(∂x, ∂x),

F12 = 2〈−χx ⊗ φ∗(∂y)− γ(∂x)γ(∂y)χ
y ⊗ φ∗(∂y), ψ〉.

Consequently we can establish a Pohozaev type identity for our model in Section 4.
This will be the key ingredient for the analysis in what follows.

Theorem 1.2 (Pohozaev identity). Let (φ, ψ) be a smooth solution of (1) on B∗
1 :=

B1\{0} with χ being a critical gravitino which is smooth on B1. Assume that (φ, ψ)
has finite energy on B1. Then for any 0 < r < 1,∫ 2π

0

∣∣∣∣∂φ∂r
∣∣∣∣2 − 1

r2

∣∣∣∣∂φ∂θ
∣∣∣∣2 dθ

=

∫ 2π

0

−〈ψ, γ(∂r)∇̃∂r
ψ〉+ 1

6
R(ψ)− (F11 cos 2θ + F12 sin 2θ) dθ

=

∫ 2π

0

〈
ψ,

1

r2
γ(∂θ)∇̃∂θ

ψ

〉
− 1

6
R(ψ)− (F11 cos 2θ + F12 sin 2θ) dθ.

(5)

In Section 4 we also prove that isolated singularities are removable, using a result
from the Appendix and the regularity theorem in [22].

Finally, for a sequence of solutions (φk, ψk) with uniformly bounded energies

defined on (M, g) with respect to critical gravitinos χk which converge in W 1, 43

to some smooth limit χ, a subsequence can be extracted which converges weakly
in W 1,2 × L4 to a solution defined on (M, g). By a rescaling argument, known as
the blow-up procedure, we can get some solutions with vanishing gravitinos, i.e.,
Dirac-harmonic maps with curvature term, defined on the standard sphere S2 with
target manifold (N, h), known as “bubbles”. Moreover, the energies pass to the
limit; i.e., the energy identities hold.

Theorem 1.3 (Energy identities). Let (φk, ψk) be a sequence of solutions of (1)

with respect to smooth critical gravitinos χk which converge in W 1, 43 to a smooth
limit χ, and assume their energies are uniformly bounded:

E(φk, ψk) ≤ Λ < ∞.

Then passing to a subsequence if necessary, the sequence (φk, ψk) converges weakly
in the space W 1,2(M,N)× L4(S ⊗ R

K) to a smooth solution (φ, ψ) with respect to
χ. Moreover, the blow-up set

S :=
⋂
r>0

{
p ∈ M

∣∣∣ lim inf
k→∞

∫
Br(p)

|∇φk|2 + |ψk|4 dvolg ≥ ε0

}
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is a finite (possibly empty) set of points {p1, . . . , pI} and correspondingly a finite
set (possibly empty) of Dirac-harmonic maps with curvature term (σl

i, ξ
l
i) defined

on S
2 with target manifold (N, h), for l = 1, . . . , Li and i = 1, . . . , I, such that the

following energy identities hold:

lim
k→∞

E(φk) = E(φ) +
I∑

i=1

Li∑
l=1

E(σl
i),

lim
k→∞

E(ψk) = E(ψ) +

I∑
i=1

Li∑
l=1

E(ξli).

The proof will be given in Section 5. Although these conclusions are similar to
those for harmonic maps and Dirac-harmonic maps and some of its variants in e.g.
[7, 20, 24, 29, 35], one has to pay special attention to the critical gravitinos.

2. Small energy regularity and energy gap property

In this section we consider the behavior of solutions with small energies.

2.1. First we show the small energy regularity. Recall that for harmonic maps and
Dirac-harmonic maps and its variants [5, 8, 24, 30], it suffices to assume that the
energy on a local domain is small. However, as we will see soon, here we have to
assume that the gravitinos are also small. For the elliptic estimates used here, one
can refer to [3, 11, 16] or more adapted versions in [1].

Theorem 2.1 (ε1-regularity theorem). Consider the local model defined on the
Euclidean unit disk B1 ⊂ R

2, and the target manifold is a submanifold (N, h) ↪→ R
K

with second fundamental form A. For any p1 ∈ (1, 4
3 ) and p2 ∈ (1, 2) there exists

an ε1 = ε1(A, p1, p2) ∈ (0, 1) such that if the gravitino χ and a solution (φ, ψ) of
(1) satisfy

E(φ, ψ;B1) =

∫
B1

|∇φ|2 + |ψ|4 dx ≤ ε1,

∫
B1

|χ|4 + |∇̂χ| 43 dx ≤ ε1,

then for any U � B1, the following estimates hold:

‖φ‖W 2,p1 (U) ≤ C
(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖
W 1, 4

3 (B1)

)
,

‖ψ‖W 1,p2 (U) ≤ C
(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖
W 1, 4

3 (B1)

)
,

where C = C(p1, p2, U,N) > 0.

Remark. Note that if the second fundamental form A vanishes identically, then N
is a totally geodesic submanifold of the Euclidean space R

K . Hence there are no
curvatures on N , and the model is then reduced to the scalar case and is not of
interest in this article. So we will assume that A �= 0, and without loss of generality,
we assume |A| ≡ ‖A‖ ≥ 1. For some C(p) depending on the value of p to be chosen
later, the small barrier constant ε1 will be required to satisfy

(6) C(p)|A|2√ε1 ≤ 1

8
, C(p)|A||∇A|ε3/41 ≤ 1

8
,

where |∇A| ≡ ‖∇A‖. These restrictions will be explained in the proof.

Remark. Note also that since the domain is the Euclidean disk B1, the connection

∇̂ is actually equivalent to ∇s.



222 JÜRGEN JOST, RUIJUN WU, AND MIAOMIAO ZHU

Proof of Theorem 2.1. Since N is taken as a compact submanifold of RK , we may
assume that it is contained in a ball of radius CN in R

K , which implies that ‖φ‖L∞ ≤
CN . Moreover, as we are dealing with a local solution (φ, ψ), we may assume that∫
B1

φ dx = 0, so that the Poincaré inequalities hold: for any p ∈ [1,∞],

‖φ‖Lp(B1) ≤ Cp‖∇φ‖Lp(B1).

Let (Uk)k≥1 be a sequence of nonempty disks such that

B1 � U1 � U2 � U3 � · · · .
Take a smooth cutoff function η : B1 → R such that 0 ≤ η ≤ 1, η|U1

≡ 1, and
supp η ⊂ B1. Then ηψ satisfies

/∂(ηψi) =∇η · ψi + η/∂ψi

=∇η · ψi −Ai
jk∇φj · (ηψk) + |Qχ|2(ηψi)

+
1

3
Ai

jmAm
kl

(
〈ψk, ψl〉(ηψj)− 〈ψj , ψk〉(ηψl)

)
− eα · ∇(ηφi) · χα + eα · φi∇η · χα.

Then one has

|/∂(ηψ)| ≤|∇η||ψ| + |A||∇φ| · |ηψ|+ |Qχ|2|ηψ|+ |A|2|ψ|2 · |ηψ|
+ |Qχ||∇(ηφ)|+ |φ||∇η||Qχ|.

Consider the Lp-norm (where p ∈ (1, 2)) of the left hand side:

‖/∂(ηψ)‖Lp(B1) ≤‖∇η‖
L

4p
4−p (B1)

‖ψ‖L4(B1) + |A|‖∇φ‖L2(B1)‖ηψ‖
L

2p
2−p (B1)

+ ‖Qχ‖2L4(B1)
‖ηψ‖

L
2p

2−p (B1)
+ |A|2‖ψ‖2L4(B1)

‖ηψ‖
L

2p
2−p (B1)

+ ‖Qχ‖L4(B1)‖∇(ηφ)‖
L

4p
4−p (B1)

+ CN‖∇η‖
L

4p
4−p (B1)

‖Qχ‖L4(B1).

Assume that ‖∇η‖
L

4p
4−p (B1)

is bounded by some constant C ′ = C ′(U1, p). Since ηψ

vanishes on the boundary and /∂ is an elliptic operator of order one, we have

‖ηψ‖
L

2p
2−p (B1)

≤ C(p)‖∇s(ηψ)‖Lp(B1) ≤ C(p)‖/∂(ηψ)‖Lp(B1).

Then from

‖/∂(ηψ)‖Lp(B1) ≤
(
|A|‖∇φ‖L2(B1) + ‖Qχ‖2L4(B1)

+ |A|2‖ψ‖2L4(B1)

)
‖ηψ‖

L
2p

2−p (B1)

+ ‖Qχ‖L4(B1)‖∇(ηφ)‖
L

4p
4−p (B1)

+ CNC ′ (‖ψ‖L4(B1) + ‖Qχ‖L4(B1)

)
together with the fact that

|∇̃(ηψ)| ≤ |∇s(ηψ)|+ |A||ηψ||∇φ|,
it follows that

‖∇̃(ηψ)‖Lp(B1)

≤ 2C(p)

(
‖Qχ‖L4(B1)‖∇(ηφ)‖

L
4p

4−p (B1)
+ CNC ′ (‖ψ‖L4(B1) + ‖Qχ‖L4(B1)

))
,

(7)

provided that (6) is satisfied.
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Now consider the map φ. The equations for ηφ are

Δ(ηφi) =ηΔφi + 2〈∇η,∇φi〉+ (Δη)φi

=η
(
Ai

jk〈∇φj ,∇φk〉+Ai
jmAm

kl〈ψj ,∇φk · ψl〉
+ Zi(A,∇A)jklm〈ψj , ψl〉〈ψk, ψm〉
− div V i −Ai

jk〈V j ,∇φk〉
)
+ 2〈∇η,∇φi〉+ (Δη)φi.

Using η∇φi = ∇(ηφi)− φi(∇η), we can rewrite it as

Δ(ηφi) =Ai
jk〈∇φj ,∇(ηφk)〉+Ai

jmAm
kl〈ψj ,∇(ηφk) · ψl〉

+ Zi(A,∇A)jklm〈ψj , ψl〉〈ψk, ηψm〉
− div(ηV i)−Ai

jk〈V j ,∇(ηφk)〉+ 2〈∇η,∇φi〉+ (Δη)φi

−Ai
jk〈∇φj , φk∇η〉−Ai

jmAm
kl〈ψj , φk∇η · ψl〉+〈∇η, V i〉+Ai

jk〈V j , φk∇η〉.

(8)

Notice that ηφi ∈ C∞
0 (B1). Split it as ηφ

i = ui + vi, where ui ∈ C∞
0 (B1) uniquely

solves (see e.g. [12, Chap. 8])

Δui = − div(ηV i).

Since ηV i ∈ L
4p

4−p (B1), it follows from the Lp theory of Laplacian operators that

(9) ‖u‖
W

1,
4p

4−p (B1)
≤ C(p)‖Qχ‖L4(B1)‖ηψ‖

L
2p

2−p (B1)
.

Then vi ∈ C∞
0 (B1) satisfies

Δvi = Δ(ηφi)−Δui

= Ai
jk〈∇φj ,∇(ηφk)〉+Ai

jmAm
kl〈ψj ,∇(ηφk) · ψl〉

+ Zi(A,∇A)jklm〈ψj , ψl〉〈ψk, ηψm〉 −Ai
jk〈V j ,∇(ηφk)〉+ 2〈∇η,∇φi〉+ (Δη)φi

−Ai
jk〈∇φj , φk∇η〉 − Ai

jmAm
kl〈ψj , φk∇η · ψl〉+ 〈∇η, V i〉+Ai

jk〈V j , φk∇η〉.

From [22], ‖Z(A,∇A)‖ ≤ |A||∇A|. Thus the L
4p

4+p norm of Δv can thus be esti-
mated by

‖Δv‖
L

4p
4+p (B1)

≤ |A|‖∇φ‖L2(B1)‖∇(ηφ)‖
L

4p
4−p (B1)

+ |A|2‖ψ‖2L4(B1)
‖∇(ηφ)‖

L
4p

4−p (B1)

+ |A||∇A|‖ψ‖3L4(B1)
‖ηψ‖

L
2p

2−p (B1)
+ |A|‖Qχ‖L4(B1)‖ψ‖L4(B1)‖∇(ηφ)‖

L
4p

4−p (B1)

+ 2‖∇η‖
L

4p
4−p (B1)

‖∇φ‖L2(B1) + ‖Δη‖
L

4p
4−p (B1)

‖φ‖L2(B1)

+ |A|‖∇φ‖L2(B1)‖φ∇η‖
L

4p
4−p (B1)

+ |A|2‖ψ‖2L4(B1)
‖φ∇η‖

L
4p

4−p (B1)

+ ‖∇η‖
L

4p
4−p (B1)

‖Qχ‖L4(B1)‖ψ‖L4(B1) + |A|‖φ∇η‖
L

4p
4−p (B1)

‖Qχ‖L4(B1)‖ψ‖L4(B1).
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As before assume that ‖∇η‖
L

4p
4−p (B1)

and ‖Δη‖
L

4p
4−p (B1)

are bounded by C ′ =

C ′(U1, p). Collecting the terms, we get

‖Δv‖
L

4p
4+p (B1)

≤
(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L2(B1)

+ |A|‖Qχ‖L4(B1)‖ψ‖L4(B1)

)
‖∇(ηφ)‖

L
4p

4−p (B1)

+ |A||∇A|‖ψ‖3L4(B1)
‖ηψ‖

L
2p

2−p (B1)

+ C ′CN

(
2‖∇φ‖L2(B1) + ‖φ‖L2(B1) + |A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖L4(B1)‖ψ‖L4(B1) + |A|‖Qχ‖L4(B1)‖ψ‖L4(B1)

)
.

By Sobolev embedding,

‖v‖
W

1,
4p

4−p (B1)

≤ C(p)
(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖2L4(B1)

)
‖∇(ηφ)‖

L
4p

4−p (B1)

+ C(p)|A||∇A|‖ψ‖3L4(B1)
‖ηψ‖

L
2p

2−p (B1)

+ 4C(p)C ′CN

(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖2L4(B1)

)
.

(10)

Since ηφ = u+ v, combining (9) and (10), we get

‖ηφ‖
W

1,
4p

4−p (B1)

≤ C(p)
(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖2L4(B1)

)
‖∇(ηφ)‖

L
4p

4−p (B1)

+ C(p)|A||∇A|‖ψ‖3L4(B1)
‖ηψ‖

L
2p

2−p (B1)
+ C(p)‖Qχ‖L4(B1)‖ηψ‖

L
2p

2−p (B1)

+ 4C(p)C ′CN

(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖2L4(B1)

)
.

(11)

By the small energy assumption and Sobolev embedding, this implies that

‖ηφ‖
W

1,
4p

4−p (B1)
≤2C(p)

(
|A||∇A|‖ψ‖3L4(B1)

+ ‖Qχ‖L4(B1)

)
‖ηψ‖W 1,p(B1)

+ 8C(p)C ′CN

(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖2L4(B1)

)
.

The estimates (7) and (11), together with the small energy assumption, imply that
for any p ∈ (1, 2),

‖ηφ‖
W

1,
4p

4−p (B1)
+ ‖ηψ‖W 1,p(B1)

≤ C(p, η,N)
(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖2L4(B1)

)
.

(12)

Note that as p ↗ 2, 4p
4−p ↗ 4. Thus, ηφ is almost a W 1,4 map, and ηψ is almost a

W 1,2 vector spinor.

Now χ ∈ W 1, 43 ; thus in the equations for the map φ, the divergence terms can be
reconsidered. Take another cutoff function, still denoted by η, such that 0 ≤ η ≤ 1,
η|U2

≡ 1, and supp η ⊂ U1. Then ηφ satisfies equations of the same form as (8),
and div(ηV i) ∈ Lp(B1) for any p ∈ [1, 4

3 ). For example, we take p = 8
7 . Then

‖ div(ηV i)‖
L

8
7 (B1)

≤ C(η)‖ψ‖
W 1, 8

5 (U1)
‖Qχ‖

W 1, 4
3 (B1)

,
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and note that ‖ψ‖
W 1, 8

5 (U1)
is under control by (12). Recalling (8) we have the

estimate

‖Δ(ηφ)‖
L

8
7 (B1)

≤ |A|‖∇φ‖L2(B1)‖∇(ηφ)‖
L

8
3 (B1)

+ |A|2‖ψ‖2L4(B1)
‖∇(ηφ)‖

L
8
3 (B1)

+ |A||∇A|‖ψ‖3L4(B1)
‖ηψ‖L8(B1) + |A|‖Qχ‖L4(B1)‖ψ‖L4(B1)‖∇(ηφ)‖

L
8
3 (B1)

+ ‖ div(ηV )‖
L

8
7 (B1)

+ 2‖∇η‖
L

8
3 (B1)

‖∇φ‖L2(B1) + ‖Δη‖
L

8
3 (B1)

‖φ‖L2(B1)

+ |A|‖∇φ‖L2(B1)‖φ∇η‖
L

8
3 (B1)

+ |A|2‖ψ‖2L4(B1)
‖φ∇η‖

L
8
3 (B1)

+ ‖∇η‖
L

8
3 (B1)

‖Qχ‖L4(B1)‖ψ‖L4(B1) + |A|‖φ∇η‖
L

8
3 (B1)

‖Qχ‖L4(B1)‖ψ‖L4(B1).

As before we assume that ‖∇η‖
L

8
3 (B1)

and ‖Δη‖
L

8
3 (B1)

are bounded by C ′′ =

C ′′(U2, U1). Then

‖Δ(ηφ)‖
L

8
7 (B1)

≤
(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖2L4(B1)

)
‖∇(ηφ)‖

L
8
3 (B1)

+ |A||∇A|‖ψ‖3L4(B1)
‖ηψ‖L8(B1)+ C(η)‖ψ‖

W 1, 8
5 (U1)

‖Qχ‖
W 1, 4

3 (B1)

+ 4CNC ′′
(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖2L4(B1)

)
.

By the smallness assumptions and the Lp theory for Laplacian operator (here p = 8
7 )

we get

‖ηφ‖
W 2, 8

7 (B1)
≤C(p, U2, N)

(
|A|‖∇φ‖L2(B1) + |A|2‖ψ‖2L4(B1)

+ ‖Qχ‖2
W 1, 4

3 (B1)

)
.

One can check that similar estimates hold for ‖ηφ‖W 1,p(B1) for any p ∈ (1, 4
3 ). This

accomplishes the proof. �

Recall the Sobolev embeddings

W
2, 87
0 (B1) ↪→ W

1, 83
0 (B1) ↪→ C

1/4
0 (B1).

Thus we see that the map φ is Hölder continuous with

‖ηφ‖C1/4(B1) ≤ C‖ηφ‖
W 2, 8

7 (B1)
.

In particular, when the energies of (φ, ψ) and certain norms of the gravitino are
small, say smaller than ε (where ε ≤ ε1), the

1
4 -Hölder norm of the map in the

interior is also small, with the estimate

(13) ‖φ‖C1/4(U) ≤ C(N,U, |A|)
√
ε.

2.2. In this subsection we show the existence of energy gaps. For harmonic maps,
this is a well-known property. On certain closed surfaces the energy gaps are known
to exist for Dirac-harmonic maps (with or without curvature term), and using a
similar method here we get the following version with gravitinos; compare with
[7, Theorem 3.1], [11, Lemma 4.1], [4, Lemmas 4.8 and 4.9] and [24, Proposition
5.2].

Proposition 2.2 (Energy gap property). Suppose that (φ, ψ) is a solution to (1)
defined on an oriented closed surface (M, g) with target manifold (N, h). Suppose
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that the spinor bundle S → (M, g) doesn’t admit any nontrivial harmonic spinors.
Then there exists an ε0 = ε0(M, g,A) ∈ (0, 1) such that if

(14) E(φ, ψ) + ‖Qχ‖
W 1, 4

3 (M)
≤ ε0,

then (φ, ψ) has to be a trivial solution.

The existence of harmonic spinors is related to the topology and Riemannian
structures, at least in low dimensions and low genera. Examples of closed surfaces
which don’t admit harmonic spinors include S

2 with arbitrary Riemannian metric
and the torus T

2 with a nontrivial spin structure, and many others. For more
information on harmonic spinors one can refer to [2, 17].

Proof of Proposition 2.2. When the spinor bundle S doesn’t admit nontrivial har-
monic spinors, the Dirac operator is “invertible”, in the sense that for any 1 < p <
∞, there holds

‖σ‖Lp(M) ≤ C(p)‖/∂σ‖Lp(M) ∀σ ∈ Γ(S).

See e.g. [11] for a proof.3 As /∂ is an elliptic operator of first order, one has

‖∇sψa‖
L

8
5 (M)

≤ C
(
‖/∂ψa‖

L
8
5 (M)

+ ‖ψa‖
L

8
5 (M)

)
, 1 ≤ a ≤ K.

It follows that

(15) ‖ψ‖
W 1, 8

5 (M)
≤ C‖/∂ψ‖

L
8
5 (M)

+ |A|‖ψ‖L4(M)‖∇φ‖
L

8
3 (M)

.

From (3) one gets

‖/∂ψ‖
L

8
5 (M)

≤|A|‖∇φ‖L2(M)‖ψ‖L8(M) + ‖Qχ‖2L4(M)‖ψ‖L8(M)

+ |A|2‖ψ‖2L4(M)‖ψ‖L8(M) + ‖Qχ‖L4(M)‖∇φ‖
L

8
3 (M)

.

Since (14) holds, using (15) one obtains

(16) ‖ψ‖
W 1, 8

5 (M)
≤ C

(
‖Qχ‖L4(M) + ‖ψ‖L4(M)

)
‖∇φ‖

L
8
3 (M)

.

Next we deal with the map φ. From (2) it follows that

‖Δφ‖
L

8
7 (M)

≤ |A|‖∇φ‖L2(M)‖∇φ‖
L

8
3 (M)

+ |A|2‖ψ‖2L4(M)‖∇φ‖
L

8
3 (M)

+ |A||∇A|‖ψ‖3L4(M)‖ψ‖L8(M) +
(
‖∇̂Qχ‖

L
4
3 (M)

+ C‖Qχ‖
L

4
3 (M)

)
‖ψ‖L8(M)

+ ‖Qχ‖L4(M)‖∇̃ψ‖
L

8
5 (M)

+ |A|‖Qχ‖L4(M)‖ψ‖L4(M)‖∇φ‖
L

8
3 (M)

.

Combining with (14) this gives

‖∇φ‖
L

8
3 (M)

≤ Cε
3
4
0 ‖ψ‖W 1, 8

5 (M)
≤ Cε

3
4
0

(
‖Qχ‖L4(M) + ‖ψ‖L4(M)

)
‖∇φ‖

L
8
3 (M)

.

Therefore, when ε0 is sufficiently small, this implies that∇φ ≡ 0; that is, φ = const.
Then (16) says that ψ is also trivial. �
Remark. Observe that although the estimates here are similar to those in the proof
of small energy regularities, they come from a different point of view. There we have
to take cutoff functions to make the boundary terms vanish in order that the local
elliptic estimates are applicable without boundary terms. Here, on the contrary, we
rely on the hypothesis that S doesn’t admit nontrivial harmonic spinors to obtain
the estimate (16), which is a global property.

3There they show a proof for p = 4
3
, but it is easily generalized to a general p ∈ (1,∞).
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3. Critical gravitino and energy-momentum tensor

In this section we consider the energy-momentum tensor along a solution to
(1). We will see that it gives rise to a holomorphic quadratic differential when the
gravitino is critical, which is needed for the later analysis.

From now on we assume that the gravitino χ is also critical for the action func-
tional with respect to variations; that is, for any smooth family (χt)t of gravitinos
with χ0 = χ, it holds that

d

dt

∣∣∣
t=0

A(φ, ψ; g, χt) = 0.

One can conclude from this by direct calculation that the supercurrent J = Jα⊗eα
vanishes (or see [23]), where

Jα = 2〈φ∗eβ , eβ · eα · ψ〉φ∗h + |ψ|2eβ · eα · χβ.

Equivalently it can be formulated as

|ψ|2eβ · eα · χβ = −2〈φ∗eβ , eβ · eα · ψ〉φ∗h ∀α.
Recall that Qχ = − 1

2eβ · eα · χβ ⊗ eα. Thus

(17) |ψ|2Qχ = −1

2
|ψ|2eβ · eα · χβ ⊗ eα = 〈φ∗eβ , eβ · eα · ψ〉φ∗h ⊗ eα.

It follows that

|Qχ|2|ψ|2 = 〈χ, |Qχ|2χ〉φ∗h = 〈χη ⊗ eη, 〈φ∗eβ , eβ · eα · ψ〉φ∗h ⊗ eα〉gs⊗g

= 〈χα ⊗ φ∗eβ , eβ · eα · ψ〉gs⊗φ∗h

= 〈eα · eβ · χα ⊗ φ∗eβ , ψ〉gs⊗φ∗h

= −2 〈(1⊗ φ∗)Qχ,ψ〉 .
Since the Euler–Lagrange equations for ψ are

(18) /Dψ =
1

3
SR(ψ) + |Qχ|2ψ + 2(1⊗ φ∗)Qχ,

if ψ is critical, i.e., the above equation (18) holds, then

〈ψ, /Dψ〉 = 1

3
〈SR(ψ), ψ〉 = 1

3
R(ψ).

Therefore the following relation holds:

〈ψ, e2 · ∇̃e2ψ〉 = −〈ψ, e1 · ∇̃e1ψ〉+
1

3
R(ψ).

Lemma 3.1. For any φ and ψ and for any β,

eβ(|Qχ|2|ψ|2) = 2〈∇s
eβ
(eα · eη · χα)⊗ φ∗eη, ψ〉+ 2|Qχ|2〈ψ, ∇̃eβψ〉.

Proof. Since

eβ(|Qχ|2|ψ|2) = eβ(|Qχ|2)|ψ|2 + 2|Qχ|2〈ψ, ∇̃eβψ〉,
it suffices to compute eβ(|Qχ|2)|ψ|2. Note that

eβ(|Qχ|2) = eβ〈χ,Qχ〉 = −1

2
eβ〈χα, eη · eα · χη〉

= −1

2

(
〈∇s

eβ
χα, eη · eα · χη〉+ 〈χα, eη · eα · ∇s

eβ
χη〉
)

= −〈∇s
eβ
χα, eη · eα · χη〉.
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Therefore, by virtue of (17),

eβ(|Qχ|2)|ψ|2 = −〈∇s
eβ
χα, |ψ|2eη · eα · χη〉 = 2

〈
∇s

eβ
χα, 〈φ∗eη, eη · eα · ψ〉φ∗h

〉
gs

= 2〈∇s
eβ
χα ⊗ φ∗eη, eη · eα · ψ〉 = 2〈∇s

eβ
(eα · eη · χα)⊗ φ∗eη, ψ〉.

The desired equality follows. �

Lemma 3.2. For any φ and ψ,

(19) 〈(1⊗ φ∗)Qχ, ω · ψ〉 = 0,

where ω = e1 · e2 is the volume element.

Proof. Since

|ψ|2(1⊗ φ∗)Qχ = −1

2
|ψ|2eη · eα · χη ⊗ φ∗eα = 〈φ∗eη, eη · eα · ψ〉φ∗h ⊗ φ∗eα,

we have

|ψ|2〈(1⊗ φ∗)Qχ, e1 · e2 · ψ〉 = 〈〈φ∗eη, eη · eα · ψ〉φ∗h ⊗ φ∗eα, e1 · e2 · ψ〉
=
〈
〈φ∗eη, eη · eα · ψ〉φ∗h, 〈φ∗eα, e1 · e2 · ψ〉φ∗h

〉
gs
.

According to the Clifford relation it holds that〈
〈φ∗eη, eη · eα · ψ〉φ∗h,〈φ∗eα, e1 · e2 · ψ〉φ∗h

〉
gs

=
〈
〈φ∗eη, e2 · e1 · eη · eα · ψ〉φ∗h, 〈φ∗eα, ψ〉φ∗h

〉
gs

=
〈
〈φ∗eη, eη · eα · e2 · e1 · ψ〉φ∗h, 〈φ∗eα, ψ〉φ∗h

〉
gs

=
〈
〈φ∗eη, e2 · e1 · ψ〉φ∗h, 〈φ∗eα, eα · eη · ψ〉φ∗h

〉
gs

=−
〈
〈φ∗eα, e1 · e2 · ψ〉φ∗h, 〈φ∗eη, eη · eα · ψ〉φ∗h

〉
gs
.

It follows that

|ψ|2〈(1⊗ φ∗)Qχ, e1 · e2 · ψ〉 = 0.

At any point x ∈ M , if ψ(x) = 0, then (19) holds; and if |ψ(x)| �= 0, then by the
calculations above (19) also holds. This finishes the proof. �

Remark. More explicitly (19) is equivalent to

(20) 〈e1 · e2 · χ1 ⊗ φ∗e1 + χ1 ⊗ φ∗e2 − χ2 ⊗ φ∗e1 + e1 · e2 · χ2 ⊗ φ∗e2, ψ〉 = 0.

From [23] we know the energy-momentum tensor is given by T = Tαβe
α ⊗ eβ

where

Tαβ =2〈φ∗eα, φ∗eβ〉φ∗h − | dφ|2gαβ +
1

2

〈
ψ, eα · ∇̃eβψ + eβ · ∇̃eαψ

〉
gs⊗φ∗h

− 〈ψ, /Dgψ〉gαβ + 〈eη · eα · χη ⊗ φ∗eβ + eη · eβ · χη ⊗ φ∗eα, ψ〉gs⊗φ∗h

+ 4〈(1⊗ φ∗)Qχ,ψ〉gαβ + |Qχ|2|ψ|2gαβ +
1

6
R(ψ)gαβ .

(21)

Suppose that (φ, ψ) satisfies the Euler–Lagrange equations (1) and that the super-
current J vanishes. Then

Tαβ =2〈φ∗eα, φ∗eβ〉 − | dφ|2gαβ +
1

2
〈ψ, eα · ∇̃eβψ + eβ · ∇̃eαψ〉 −

1

2
〈ψ, /Dψ〉gαβ

+ 〈eη · eα · χη ⊗ φ∗eβ + eη · eβ · χη ⊗ φ∗eα, ψ〉 − 〈eθ · eη · χθ ⊗ φ∗eη, ψ〉gαβ.



ENERGY QUANTIZATION 229

Clearly T is symmetric and traceless. We will show it is also divergence free. Before
this we rewrite it into a suitable form. Multiplying ω = e1 · e2 on both sides of
equations (18), we get

e2 · ∇̃e1ψ − e1 · ∇̃e2ψ =
1

3
ω · SR(ψ) + |Qχ|2ω · ψ + 2ω · (1⊗ φ∗)Qχ.

Note that the right hand side is perpendicular to ψ:

〈ψ, ω · SR(ψ)〉 = Rijkl〈ψj , ψl〉〈ψi, ω · ψk〉 = 0,

|Qχ|2〈ψ, ω · ψ〉 = 0,

〈2ω · (1⊗ φ∗)Qχ,ψ〉 = −2〈(1⊗ φ∗)Qχ, ω · ψ〉 = 0.

Hence 〈ψ, e2 · ∇̃e1ψ〉 − 〈ψ, e1 · ∇̃e2ψ〉 = 0. Consequently,

1

2
〈ψ, eα · ∇̃eβψ + eβ · ∇̃eαψ〉 = 〈ψ, eα · ∇̃eβψ〉.

Moreover, by (20),

〈eη · e1 · χη ⊗ φ∗e2, ψ〉 − 〈eη · e2 · χη ⊗ φ∗e1, ψ〉
= 〈−χ1 ⊗ φ∗e2 − e1 · e2 · χ2 ⊗ φ∗e2 − e1 · e2 · χ1 ⊗ φ∗e1 + χ2 ⊗ φ∗e1, ψ〉 = 0.

Therefore, we can put the energy-momentum tensor into the following form:

Tαβ =2〈φ∗eα, φ∗eβ〉 − | dφ|2gαβ + 〈ψ, eα · ∇̃eβψ〉 −
1

2
〈ψ, /Dψ〉gαβ

+ 2〈eη · eα · χη ⊗ φ∗eβ , ψ〉 − 〈eθ · eη · χθ ⊗ φ∗eη, ψ〉gαβ .
(22)

This form relates closely to the energy-momentum tensors of Dirac-harmonic maps
in [8, Section 3] and of Dirac-harmonic maps with curvature term in [24, Section
4], which also have the following nice properties. Such computations have been
provided in [4, Section 3], but since certain algebraic aspects are different here, we
need to spell out the computations in detail.

Proposition 3.3. Let (φ, ψ, χ) be critical. Then the tensor T given by (21) or
equivalently (22) is symmetric, traceless, and covariantly conserved.

Proof. It remains to show that T is covariantly conserved. Let x ∈ M and take the
normal coordinate at x such that ∇eα(x) = 0. We will show that ∇eαTαβ(x) = 0.
At the point x, making use of the Euler–Lagrange equations, one can calculate as
follows.

•

∇eα(2〈φ∗eα,φ∗eβ〉 − 2| dφ|2gαβ)
=2〈∇eα(φ∗eα), φ∗eβ〉+ 2〈φ∗eα,∇eα(φ∗eβ)〉 − 2〈φ∗eα,∇eβ (φ∗eα)〉
=2〈τ (φ), φ∗eβ〉

= 〈R(ψ, eα · ψ)φ∗eα, φ∗eβ〉 −
1

6
〈S∇R(ψ), φ∗eβ〉

− 2〈∇s
eα
(eη · eα · χη)⊗ φ∗eβ , ψ〉 − 2〈eη · eα · χη ⊗ φ∗eβ , ∇̃eαψ〉.
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•
∇eα(〈ψ, eα · ∇̃eβψ〉 − 〈ψ, /Dψ〉gαβ)

=〈∇̃eαψ, eα · ∇̃eβψ〉+ 〈ψ, eα · ∇̃eα∇̃eβψ〉 − 〈∇̃eβψ, /Dψ〉 − 〈ψ, ∇̃eβ /Dψ〉
=− 〈 /Dψ, ∇̃eβψ〉+ 〈ψ, /D∇̃eβψ〉 − 〈∇̃eβψ, /Dψ〉 − 〈ψ, ∇̃eβ /Dψ〉
=− 2〈 /Dψ, ∇̃eβψ〉+ 〈ψ, /D∇̃eβψ − ∇̃eβ /Dψ〉.

Note that

/D∇̃eβψ − ∇̃eβ /Dψ =eα · RicS(eα, eβ)ψ +R(φ∗eα, φ∗eβ)

=
1

2
Ric(eβ)ψ +R(φ∗eα, φ∗eβ)eα · ψ

and that 〈ψ,Ric(eβ)ψ〉 = 0. Hence one has

∇eα(〈ψ, eα · ∇̃eβψ〉 − 〈ψ, /Dψ〉gαβ)

=− 2〈|Qχ|2ψ +
1

3
SR(ψ) + 2(1⊗ φ∗)Qχ, ∇̃eβψ〉

+ 〈ψ,R(φ∗eα, φ∗eβ)eα · ψ〉

=− 2|Qχ|2〈ψ, ∇̃eβψ〉 −
2

3
〈SR(ψ), ∇̃eβψ〉 − 4〈(1⊗ φ∗)Qχ, ∇̃eβψ〉

− 〈R(ψ, eα · ψ)φ∗eα, φ∗eβ〉.
•

∇eα

(
1

6
R(ψ)gαβ

)
=

1

6
〈S∇R(ψ), φ∗eβ〉+

2

3
〈SR(ψ), ∇̃eβψ〉.

•
∇eα

(
2〈eη · eα · χη ⊗ φ∗eβ , ψ〉 − δαβ〈eη · eη · χη ⊗ φ∗eη, ψ〉

)
= 2〈∇s

eα(eη · eα · χη)⊗ φ∗eβ , ψ〉+ 2〈eη · eα · χη ⊗∇eα(φ∗eβ), ψ〉
+ 2〈eη · eα · χη ⊗ φ∗eβ , ∇̃eαψ〉 − ∇eβ

(
〈eη · eα · χη ⊗ φ∗eα, ψ〉

)
.

Summarize these terms and use the previous lemmata to get

∇eαTαβ = −2|Qχ|2〈ψ, ∇̃eβψ〉 − 4〈(1⊗ φ∗)Qχ, ∇̃eβψ〉
+ 2〈eη · eα · χη ⊗∇eα(φ∗eβ), ψ〉 − ∇eβ

(
〈eη · eα · χη ⊗ φ∗eα, ψ〉

)
= 2〈∇s

eβ
(eα · eη · χη)⊗ φ∗eη, ψ〉 − ∇eβ

(
〈eη · eα · χη ⊗ φ∗eα, ψ〉

)
+ 2〈eη · eα · χη ⊗ φ∗eα, ∇̃eβψ〉+ 2〈eη · eα · χη ⊗∇eβ (φ∗eα), ψ〉
− ∇eβ

(
〈eη · eα · χη ⊗ φ∗eα, ψ〉

)
= 0.

This accomplishes the proof. �

As in the harmonic map case, such a 2-tensor then corresponds to a holomorphic
quadratic differential on M . For the case of Dirac-harmonic maps (with or without
curvature terms), see [8,24] and [4]. More precisely, in a local isothermal coordinate
z = x+ iy, set

T (z) dz2 := (T11 − iT12)(dx+ i dy)2,
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with T11 and T12 now being the coefficients of the energy-momentum tensor T in
the local coordinate, that is,

T11 =

∣∣∣∣∂φ∂x
∣∣∣∣2 − ∣∣∣∣∂φ∂y

∣∣∣∣2 + 1

2

(
〈ψ, γ(∂x)∇̃∂x

ψ〉 − 〈ψ, γ(∂y)∇̃∂y
ψ〉
)
+ F11,

T12 =

〈
∂φ

∂x
,
∂φ

∂y

〉
φ∗h

+ 〈ψ, γ(∂x)∇̃∂y
ψ〉+ F12.

Here we have abbreviated the gravitino terms as Fαβ ’s:

F11 = 2〈−χx ⊗ φ∗(∂x)− γ(∂x)γ(∂y)χ
y ⊗ φ∗(∂x), ψ〉+ 2〈(1⊗ φ∗)Qχ,ψ〉g(∂x, ∂x),

F12 = 2〈−χx ⊗ φ∗(∂y)− γ(∂x)γ(∂y)χ
y ⊗ φ∗(∂y), ψ〉,

(23)

where χ = χx ⊗ ∂x + χy ⊗ ∂y in a local chart.

Proposition 3.4. The quadratic differential T (z) dz2 is well defined and holomor-
phic.

Proof. The well-definedness is straightforward, and the holomorphicity follows from
Proposition 3.3. �

4. Pohozaev identity and removable singularities

In this section we show that a solution of (1) with finite energy admits no
isolated poles, provided that the gravitino is critical. As the singularities under
consideration are isolated, we can locate the solution on the punctured Euclidean
unit disk B∗

1 ≡ B1\{0}. Using the quadratic holomorphic differential derived in the
previous section, we obtain the Pohozaev type formulae containing gravitino terms
in Theorem 1.2. When the gravitino vanishes, they will reduce to the Pohozaev
identities for Dirac-harmonic maps with curvature term; see e.g. [24, Lemma 5.3]
and also [5, Lemma 3.11], where a somewhat different identity is derived.

Recall that the Fαβ ’s are given in (23) and they can be controlled via Young
inequality by

|Fαβ| ≤ C|∇φ||ψ||χ| ≤ C(|∇φ|2 + |ψ|4 + |χ|4).

Proof of Theorem 1.2. By definition we have

|T (z)| ≤ C
(
|∇φ|2 + |∇̃ψ||ψ|+ |Fαβ |

)
.

Note that |∇ψ| ≤ C(|∇sψ| + |ψ||∇φ|). Apply the Young inequality once again to
obtain

|T (z)| ≤ C
(
|∇φ|2 + |ψ|4 + |∇sψ| 43 + |χ|4

)
.

From the initial assumptions we know that φ ∈ W 1,2(B∗
1 , N), ψ ∈ L4(B∗

1), and χ
is smooth in B1. Thus by Theorem 6.1, (φ, ψ) is actually a weak solution on the

whole disk B1. Using the ellipticity of the Dirac operator, ψ belongs to W
1, 43
loc (B1).

Therefore |T (z)| is integrable on the disk Br for any r < 1. Recall from Proposition
3.4 that T (z) is a holomorphic function defined on the punctured disk. Hence, it
has a pole at the origin of order at most one. In particular, zT (z) is holomorphic
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in the whole disk. Then by the Cauchy theorem, for any 0 < r < 1, it holds that∫
|z|=r

zT (z) dz = 0. One can compute that in polar coordinate z = reiθ,

1

r2
Re(z2T (z)) =

∣∣∣∣∂φ∂r
∣∣∣∣2 − 1

r2

∣∣∣∣∂φ∂θ
∣∣∣∣2 + 1

2

(
〈ψ, γ(∂r)∇∂r

ψ〉 −
〈
ψ,

1

r2
γ(∂θ)∇∂θ

ψ

〉)
+ F11 cos 2θ + F12 sin 2θ.

The identity 〈ψ, /Dψ〉 = R(ψ)/3 along a critical ψ implies that

1

2

(
〈ψ, γ(∂r)∇∂r

ψ〉 −
〈
ψ,

1

r2
γ(∂θ)∇∂θ

ψ

〉)
= 〈ψ, γ(∂r)∇∂r

ψ〉 − 1

6
R(ψ)

= −
〈
ψ,

1

r2
γ(∂θ)∇∂θ

ψ

〉
+

1

6
R(ψ).

Finally, it suffices to note that

Im

(∫
|z|=r

zT (z) dz

)
= r

∫ 2π

0

Re(z2T (z)) dθ.

�

Integrating (5) with respect to the radius, we get∫
B1

∣∣∣∣∂φ∂r
∣∣∣∣2 − 1

r2

∣∣∣∣∂φ∂θ
∣∣∣∣2 dx

=

∫
B1

−〈ψ, γ(∂r)∇∂r
ψ〉+ 1

6
R(ψ)− (F11 cos 2θ + F12 sin 2θ) dx

=

∫
B1

〈
ψ,

1

r2
γ(∂θ)∇∂θ

ψ

〉
− 1

6
R(ψ)− (F11 cos 2θ + F12 sin 2θ) dx.

Meanwhile note that in polar coordinate (r, θ),

|∇φ|2 =

∣∣∣∣∂φ∂r
∣∣∣∣2 + 1

r2

∣∣∣∣∂φ∂θ
∣∣∣∣2 .

This can be combined with Theorem 1.2 to give estimates on each component of
the gradient of the map φ; in particular,
(24)∫
B1

1

r2

∣∣∣∣∂φ∂θ
∣∣∣∣2 dx =

1

2

∫
B1

|∇φ|2+〈ψ, γ(∂r)∇∂r
ψ〉−1

6
R(ψ)+F11 cos 2θ+F12 sin 2θ dx.

Next we consider the isolated singularities of a solution. We show they are
removable provided the gravitino is critical and does not have a singularity there
and the energy of the solution is finite. Differently from Dirac-harmonic maps
in [8, Theorem 4.6] and those with curvature term in [24, Theorem 6.1] (ses also
[5, Theorem 3.12]), we obtain this result using the regularity theorems of weak
solutions. Thus we have to show first that weak solutions can be extended over an
isolated point in a punctured neighborhood. This is achieved in the Appendix.
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Theorem 4.1 (Removable singularity). Let (φ, ψ) be a smooth solution defined on
the punctured disk B∗

1 ≡ B1\{0}. If χ is a smooth critical gravitino on B1 and if
(φ, ψ) has finite energy on B∗

1 , then (φ, ψ) extends to a smooth solution on B1.

Proof. From Theorem 6.1 in the Appendix we know that (φ, ψ) is also a weak
solution on the whole disk B1. By taking a smaller disc centered at the origin
and rescaling as above, one may assume that E(φ, ψ;B1) and ‖χ‖

W 1, 4
3 (B1)

are

sufficiently small. From the result in [22] we then see that (φ, ψ) is actually smooth
in B1/2(0). In addition to the assumption, we see that it is a smooth solution on
the whole disk. �

5. Energy identity

In this section we consider the compactness of the critical points space, i.e.,
the space of solutions of (1). In the end we will prove the main result, the energy
identities in Theorem 1.3. As in [35, Lemma 3.2] we establish the following estimate
for ψ on annulus domains, which is useful for the proof of energy identities. Let
0 < 2r2 < r1 < 1.

Lemma 5.1. Let ψ be a solution of (3) defined on Ar2,r1 ≡ Br1\Br2 . Then

‖∇̃ψ‖
L

4
3 (Br1

\B2r2
)
+ ‖ψ‖L4(Br1

\B2r2
)

≤ C0

(
|A|‖∇φ‖L2(Ar2,r1

) + ‖Qχ‖2L4(Ar2,r1
) + |A|2‖ψ‖2L4(Ar2,r1

)

)
‖ψ‖L4(Ar2,r1

)

+ C‖Qχ‖L4(Ar2,r1
)‖∇φ‖L2(Ar2,r1

) + C‖ψ‖L4(B2r2
\Br2

)

+ Cr
3
4
1 ‖∇̃ψ‖

L
4
3 (∂Br1

)
+ Cr

1
4
1 ‖ψ‖L4(∂Br1

),

where C0 ≥ 1 is a universal constant which doesn’t depend on r1 and r2.

Proof. Under a rescaling by 1/r1, the domain Ar2,r1 changes to B1\Br0 where
r0 = r2/r1. By rescaling invariance it suffices to prove it on B1\Br0 . Choose a
cutoff function ηr0 such that ηr0 = 1 in B1\B2r0 , ηr0 = 0 in Br0 , and |∇ηr0 | ≤ C/r0.
Similarly as in the previous sections, the equations for ηr0ψ read

/∂
(
ηr0ψ

i
)
=ηr0

(
−Ai

jk∇φj · ψk + |Qχ|2ψi +
1

3
Ai

jmAm
kl

(
〈ψk, ψl〉ψj − 〈ψj , ψk〉ψl

))
− ηr0eα · ∇φi · χα +∇ηr0 · ψi.

Using [8, Lemma 4.7], we can estimate

‖ηr0ψ‖W 1, 4
3 (B1)

≤ C ′
0|A|
∥∥ηr0 |∇φ||ψ|

∥∥
L

4
3 (B1)

+ C ′
0

∥∥ηr0 |Qχ|2|ψ|
∥∥
L

4
3 (B1)

+ C ′
0|A|2

∥∥ηr0 |ψ|3∥∥L 4
3 (B1)

+ C ′
0

∥∥ηr0 |∇φ||Qχ|
∥∥
L

4
3 (B1)

+ C ′
0

∥∥|∇ηr0 ||ψ|
∥∥
L

4
3 (B1)

+ C ′
0‖ηr0ψ‖W 1, 4

3 (∂B1)
,
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where the constant C ′
0 is also from [8, Lemma 4.7]. This implies that

‖ψ‖
W 1, 4

3 (B1\B2r0
)

≤ 2C ′
0|A|‖∇φ‖L2(B1\Br0

)‖ψ‖L4(B1\Br0
) + C ′

0‖Qχ‖2L4(B1\Br0
)‖ψ‖L4(B1\Br0

)

+ C ′
0|A|2‖ψ‖3L4(B1\Br0

) + C ′
0‖Qχ‖L4(B1\Br0

)‖∇φ‖L2(B1\Br0
)

+ C ′
0‖∇ηr0‖L2(B2r0

\Br0
)‖ψ‖L4(B2r0

\Br0
) + C ′

0‖ηr0ψ‖W 1, 4
3 (∂B1)

≤ 2C ′
0

(
|A|‖∇φ‖L2(B1\Br0

) + ‖Qχ‖2L4(B1\Br0
) + |A|2‖ψ‖2L4(B1\Br0

)

)
‖ψ‖L4(B1\Br0

)

+ C ′
0‖Qχ‖L4(B1\Br0

)‖∇φ‖L2(B1\Br0
) + C ′

0‖ψ‖L4(B2r0
\Br0

) + C ′
0‖ηr0ψ‖W 1, 4

3 (∂B1)
.

Using the Sobolev embedding theorem, we obtain the estimate on B1\Br0 , and
scaling back, we get the desired result with C0 = 2C ′

0. �

Thanks to the invariance under rescaled conformal transformations, the estimate
in Lemma 5.1 can be applied to any conformally equivalent domain; in particular
we will apply it on cylinders later.

Similarly we can estimate the energies of the map φ satisfying (1) on the annulus
domains, in the same flavor as for Dirac-harmonic maps; see e.g. [35, Lemma 3.3].

Lemma 5.2. Let (φ, ψ) be a solution of (1) defined on Ar2,r1 with critical gravitino.
Then∫
Br1

\Br2

|∇φ|2 dx ≤C

∫
Br1

\Br2

|A|2|ψ|4 + |∇̃ψ| 43 + |Qχ|2|ψ|2 dx

+ C

∫
∂(Br1

\Br2
)

(q − φ)

(
〈V, ∂

∂r
〉 − ∂φ

∂r

)
ds

+C1 sup
Br1

\Br2

|q − φ|
∫
Br1

\Br2

|A|2|∇φ|2 + |A|(|A|+ |∇A|)|ψ|4 + |ψ|2|Qχ|2 dx.

Here C1 ≥ 1 is some universal constant.

Proof. Make a rescaling as in Lemma 5.1. Choose a function q(r) on B1 which is
piecewise linear in log r with

q(
1

2m
) =

1

2π

∫ 2π

0

φ(
1

2m
, θ) dθ,

for r0 ≤ 2−m ≤ 1, and q(r0) is defined to be the average of φ on the circle of radius
r0. Then q is harmonic in Am := { 1

2m < r < 1
2m−1 } ⊂ B1\Br0 and in the annulus

near the boundary {x ∈ R
2
∣∣|x| = r0}. Note that

Δ(q − φ) = −Δφ = −A(φ)(∇φ,∇φ) + div V − f,

where V is given by (4) and f is an abbreviation for

f i ≡ Ai
jmAm

kl〈ψj ,∇φk · ψl〉+ Zi(A,∇A)jklm〈ψj , ψl〉〈ψk, ψm〉 −Ai
jk〈V j ,∇φk〉.

Using Green’s formula we get∫
B1\Br0

| dq − dφ|2 dx = −
∫
B1\Br0

(q − φ)Δ(q − φ) dx

+

∫
∂(B1\Br0

)

(q − φ)
∂

∂r
(q − φ) ds.
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Since q(r0) is the average of φ over ∂Br0 we see that∫
∂(B1\Br0

)

(q − φ)
∂

∂r
(q − φ) ds = −

∫
∂(B1\Br0

)

(q − φ)
∂φ

∂r
ds.

By the equation of (q − φ),

−
∫
B1\Br0

(q − φ)Δ(q − φ) dx

=

∫
B1\Br0

(q − φ) (A(φ)(∇φ,∇φ) + f)− (q − φ) div V dx

=

∫
B1\Br0

(q − φ) (A(φ)(∇φ,∇φ) + f) + 〈∇(q − φ), V 〉 dx

+

∫
∂(B1\Br0

)

(q − φ)〈V, ∂

∂r
〉 ds.

These together imply that∫
B1\Br0

| dq − dφ|2 dx ≤
∫
B1\Br0

2(q − φ) (A(φ)(∇φ,∇φ) + f) + |V |2 dx

+

∫
∂(B1\Br0

)

2(q − φ)

(
〈V, ∂

∂r
〉 − ∂φ

∂r

)
ds.

Recall the Pohozaev formulae (5) or its consequence (24), and note that they hold
also on the annulus domains. Note also that∫

B1\Br0

| dq − dφ|2 dx ≥
∫
B1\Br0

1

r2

∣∣∣∣∂φ∂θ
∣∣∣∣2 dx.

Therefore we get

1

2

∫
B1\Br0

|∇φ|2 + 〈ψ, γ(∂r)∇̃∂r
ψ〉 − 1

6
R(ψ) + F11 cos 2θ + F12 sin 2θ dx

≤
∫
B1\Br0

2(q − φ) (A(φ)(∇φ,∇φ) + f) + |V |2 dx

+

∫
∂(B1\Br0

)

2(q − φ)

(
〈V, ∂

∂r
〉 − ∂φ

∂r

)
ds.

From this it follows that∫
B1\Br0

|∇φ|2 dx ≤
∫
B1\Br0

|A|2|ψ|4 + |∇̃ψ| 43 + 32|Qχ|2|ψ|2 dx

+

∫
∂(B1\Br0

)

8(q − φ)

(
〈V, ∂

∂r
〉 − ∂φ

∂r

)
ds

+16 sup
B1\Br0

|q − φ|
∫
B1\Br0

|A|2|∇φ|2 + |A|(|A|+ |∇A|)|ψ|4 + |ψ|2|Qχ|2 dx.

Then we rescale back to Ar2,r1 . The universal constant C1 can be taken to be 16,
for instance. �

Finally we can show the energy identities, Theorem 1.3. The corresponding ones
for Dirac-harmonic maps with curvature term were obtained in [24], following the
scheme of [7,15] and using a method which is based on a type of three circle lemma.
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Here we apply a method in the same spirit as those in [34, 35]. Since we have no
control of higher derivatives of gravitinos, the strong convergence assumption on
gravitinos is needed here. We remark that the Pohozaev type identity established
in Theorem 1.2 is crucial in the proof of this theorem.

Proof of Theorem 1.3. The uniform boundedness of energies implies that there is
a subsequence converging weakly in W 1,2 × L4 to a limit (φ, ψ) which is a weak
solution with respect to χ. Also the boundedness of energies implies that the blow-
up set S consists of only at most finitely many points (possibly empty). If S = ∅,
then the sequence converges strongly and the conclusion follows directly. Now we
assume it is not empty, say S = {p1, . . . , pI}. Moreover, using the small energy
regularities and compact Sobolev embeddings, by a covering argument similar to
that in [30] we see that there is a subsequence converging strongly in the W 1,2×L4-

topology on the subset (M\
⋃I

i=1 Bδ(pi)) for any δ > 0.
When the limit gravitino χ is smooth, by the regularity theorems in [22] together

with the removable singularity Theorem 4.1 we see that (φ, ψ) is indeed a smooth
solution with respect to χ.

Since M is compact and blow-up points are only finitely many, we can find small
disks Bδi being small neighborhoods of each blow-up point pi such that Bδi∩Bδj = ∅
whenever i �= j, and on M\

⋃I
i=1 Bδi , the sequence (φk, ψk) converges strongly to

(φ, ψ) in W 1,2 × L4.
Thus, to show the energy identities, it suffices to prove that there exist solutions

(σl
i, ξ

l
i) of (1) with vanishing gravitinos (i.e., Dirac-harmonic maps with curvature

term) defined on the standard 2-sphere S
2, 1 ≤ l ≤ Li, such that

I∑
i=1

lim
δi→0

lim
k→∞

E(φk;Bδi) =

I∑
i=1

Li∑
l=1

E(σl
i),

I∑
i=1

lim
δi→0

lim
k→∞

E(ψk;Bδi) =
I∑

i=1

Li∑
l=1

E(ξli).

This will hold if we prove for each i = 1, . . . , I,

lim
δi→0

lim
k→∞

E(φk;Bδi) =

Li∑
l=1

E(σl
i),

lim
δi→0

lim
k→∞

E(ψk;Bδi) =

Li∑
l=1

E(ξli).

First we consider the case that there is only one bubble at the blow-up point
p = p1. Then what we need to prove is that there exists a solution (σ1, ξ1) with
vanishing gravitino such that

lim
δ→0

lim
k→∞

E(φk;Bδ) = E(σ1),

lim
δ→0

lim
k→∞

E(ψk;Bδ) = E(ξ1).

For each (φk, ψk), we choose λk such that

max
x∈Dδ(p)

E (φk, ψk;Bλk
(x)) =

ε1
2
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and then choose xk ∈ Bδ(p) such that

E(φk, ψk;Bλk
(xk)) =

ε1
2
.

Passing to a subsequence if necessary, we may assume that λk → 0 and xk → p as
k → ∞. Denote

φ̃k(x) = φk(xk + λkx), ψ̃k(x) = λ
1
2

k ψk(xk + λkx), χ̃k = λ
1
2

k χk(xk + λkx).

Then (φ̃k, ψ̃k) is a solution with respect to χ̃k on the unit disk B1(0), and by the
rescaled conformal invariance of the energies,

E(φ̃k, ψ̃k;B1(0)) = E(φk, ψk;Bλk
(xk)) =

ε1
2

< ε1,

E(φ̃k, ψ̃k;BR(0)) = E(φk, ψk;BλkR(xk)) ≤ Λ.

Recall that the χk’s are assumed to converge in W 1,4/3 norm. Due to the rescaled
conformal invariance in Lemma 1.1, we have, for any fixed R > 0,∫

BR(0)

|χ̃k|4 + |∇̂χ̃k|
4
3 dx =

∫
BλkR(xk)

|χk|4 + |∇̂χk|
4
3 dvolg → 0

as k → ∞. It follows that χ̃k converges to 0.
Since we assumed that there is only one bubble, the sequence (φ̃k, ψ̃k) strongly

converges to some (φ̃, ψ̃) in W 1,2(BR, N)×L4(BR, S×R
K) for any R ≥ 1. Indeed,

this is clearly true for R ≤ 1 because of the small energy regularities; and if for some
R0 ≥ 1 the convergence on BR0

is not strong, then the energies would concentrate at
some point outside the unit disk and by rescaling a second nontrivial bubble would
be obtained, contradicting the assumption that there is only one bubble. Thus, since
R can be arbitrarily large, we get a nonconstant (because energy ≥ ε1

2 ) solution on

R
2. By stereographic projection we obtain a nonconstant solution on S

2\{N} with
energy bounded by Λ and with zero gravitino. Thanks to the removable singularity
theorem for Dirac-harmonic maps with curvature term (apply Theorem 4.1 with
χ ≡ 0 or see [24, Theorem 6.1]), we actually have a nontrivial solution on S

2. This
is the first bubble at the blow-up point p.

Now consider the neck domain

A(δ, R; k) := {x ∈ R
2|λkR ≤ |x− xk| ≤ δ}.

It suffices to show that

lim
R→∞

lim
δ→0

lim
k→∞

E(φk, ψk;A(δ, R; k)) = 0.(25)

Note that the strong convergence assumption on χk’s implies that

(26) lim
δ→0

lim
k→∞

∫
A(δ,R;k)

|χk|4 + |∇̂χk|
4
3 dx ≤ lim

δ→0

∫
B2δ(p)

|χ|4 + |∇̂χ| 43 dx = 0,

by, say, Lebesgue’s dominated convergence theorem.
To show (25), it may be more intuitive to transform them to a cylinder. Let

(rk, θk) be the polar coordinate around xk. Consider the maps

fk : (R× S
1, (t, θ), g = dt2 + dθ2) → (R2, (rk, θk), ds

2 = dr2k + r2k dθ
2
k)

given by fk(t, θ) = (e−t, θ). Then f−1
k (A(δ, R; k)) = (− log δ,− logλkR) × S

1 ≡
Pk(δ, R) ≡ Pk. After a translation in the R direction, the domains Pk converge to
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the cylinder R× S
1. It is known that fk is conformal:

f∗
k (dr

2
k + r2k dθ

2
k) = e−2t(dt2 + dθ2).

Thus a solution defined in a neighborhood of xk is transformed to a solution defined
on part of the cylinder via

Φk(x) := φk ◦ fk(x), Ψk(x) := e−
t
2Bψk ◦ fk(x), Xk(x) := e−

t
2Bχk ◦ fk(x),

where B is the isomorphism given in Lemma 1.1. Note that

E(Φk,Ψk;Pk) = E(φk, ψk;A(δ, R; k)) ≤ Λ

and that by the remark after Lemma 1.1, for any R ∈ (0,∞),

(27) lim
δ→0

lim
k→∞

∫
Pk(δ,R)

|Xk|4 + |∇̂Xk|
4
3 dx = lim

δ→0

∫
A(δ,R;k)

|χk|4 + |∇̂χk|
4
3 dx = 0,

which follows from (26).
For any fixed T > 0, observe that (φk, ψk, χk) converges strongly to (φ, ψ, χ)

on the annulus domain Bδ(p)\Bδe−T (p), which implies that (Φk,Ψk, Xk) converges
strongly to (Φ,Ψ, X) on PT ≡ [T0, T0 + T ]× S

1, where T0 = − log δ and

Φ(x) := φ ◦ f(x), Ψ(x) := e−
t
2Bψ ◦ f(x), X(x) := e−

t
2Bχ ◦ f(x),

where f(t, θ) = (e−t, θ).
Let 0 < ε < ε1 be given. Because of E(φ, ψ) ≤ Λ and (27), there exists a δ > 0

small enough such that E(φ, ψ;Bδ(p)) <
ε
2 and such that

(28)

∫
Bδ(xk)

|χk|4 + |∇̂χk|
4
3 dx <

ε

2

for large k. Thus for the T given above, there is a k(T ) > 0 such that for k > k(T ),

(29) E(Φk,Ψk;PT ) < ε.

In a similar way, we denote Tk ≡ | log λkR| and QT,k ≡ [Tk − T, Tk]× S
1. Then for

k large enough,

(30) E(Φk,Ψk;QT,k) < ε.

For the part in between [T0 +T, Tk −T ], we claim that there is a k(T ) such that
for k ≥ k(T ),

(31)

∫
[t,t+1]×S1

|∇Φk|2 + |Ψk|4 dx < ε ∀t ∈ [T0, Tk − 1].

To prove this claim we will follow the arguments as in the case of harmonic maps
in [15] and Dirac-harmonic maps in [8]. Suppose this is false. Then there exists a
sequence {tk} such that tk → ∞ as k → ∞ and∫

[tk,tk+1]×S1

|∇Φk|2 + |Ψk|4 dx ≥ ε.

Because the energies near the ends are small by (29) and (30), we know that tk −
T0, Tk−tk → ∞. Thus by a translation from t to t−tk, we get solutions (Φ̃k, Ψ̃k; X̃k),
and for all k it holds that∫

[0,1]×S1

|∇Φ̃k|2 + |Ψ̃k|4 dx ≥ ε.
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From (27) we see that X̃k go to 0 in W
1, 43
loc . Due to the bounded energy assumption

we may assume that (Φ̃k, Ψ̃k) converges weakly to some (Φ̃∞, Ψ̃∞) in W 1,2
loc ×

L4
loc(R×S

1), passing to a subsequence if necessary. Moreover, by a similar argument
as before, the convergence is strong except near at most finitely many points. If this
convergence is strong on R× S

1, we obtain a nonconstant solution with respect to
zero gravitino on the whole of R×S

1, hence, by a conformal transformation, a Dirac-
harmonic map with curvature term on S

2\{N,S} with finite energy. The removable
singularity theorem then ensures a nontrivial solution on S

2, contradicting the
assumption that L = 1. On the other hand, if the sequence (Φ̃k, Ψ̃k; X̃k) does

not converge strongly to (Φ̃∞, Ψ̃∞; 0), then we may find some point (t0, θ0) at
which the sequence blows up, giving rise to another nontrivial solution with zero
gravitino on S

2, again contradicting L = 1. Therefore (31) has to hold.
Applying a finite decomposition argument similar to [34, 35], we can divide Pk

into finitely many parts:

Pk =

N⋃
n=1

Pn
k , Pn

k := [Tn−1
k , Tn

k ]× S
1, T 0

k = T0, TN
k = Tk,

where N is a uniform integer, and on each part the energy of (Φk,Ψk) is bounded
by δ = ( 1

8C0C1C(A) )
2, where we put C(A) := |A|(|A| + |∇A|). Actually, since

E(Φk,Ψk;Pk) ≤ Λ, we know that it can always be divided into at most N =
[Λ/δ] + 1 parts such that on each part the energy is not more than δ.

We will use the notation

Pn
k = [Tn−1

k , Tn
k ]× S

1, P̄n
k = [Tn−1

k − 1, Tn
k ]× S

1,

and ΔPn
k = P̄n

k − Pn
k . With Lemma 5.1 on the annuli, we get

‖Ψk‖L4(Pn
k ) + ‖∇̃Ψk‖

L
4
3 (Pn

k )

≤C0

(
|A|‖∇Φk‖L2(P̄n

k ) + ‖QXk‖2L4(P̄n
k ) + |A|2‖Ψk‖2L4(P̄n

k )

)
‖Ψk‖L4(P̄n

k )

+ C‖QXk‖L4(P̄n
k )‖∇Φk‖L2(P̄n

k ) + C‖Ψk‖L4(ΔPn
k )

+ C‖∇̃Ψk‖
L

4
3 (Tn

k ×S1)
+ C‖Ψk‖L4(Tn

k ×S1)

≤1

4
‖Ψk‖L4(Pn

k ) +
1

4
‖Ψk‖L4(ΔPn

k ) + C‖QXk‖L4(P̄n
k )‖∇Φk‖L2(Pn

k )

+ C‖QXk‖L4(P̄n
k )‖∇Φk‖L2(ΔPn

k ) + C‖Ψk‖L4(ΔPn
k )

+ C‖∇̃Ψk‖
L

4
3 (Tn

k ×S1)
+ C‖Ψk‖L4(Tn

k ×S1),

where we have used the fact that ‖QXk‖L4(Pk) can be very small when we take
k large and δ small, because of (27). Note that on ΔPn

k the energies of (Φk,Ψk)
are bounded by ε. Moreover, since on [Tn

k − 1/2, Tn
k + 1/2] × S

1 the small energy
assumption holds, the boundary terms above are also controlled by Cε due to the
small regularity theorems. Therefore, combining with (28), we get

(32) ‖Ψk‖L4(Pn
k ) + ‖∇̃Ψk‖

L
4
3 (Pn

k )
≤ C(Λ)ε

1
4 .

It remains to control the energy of Φk on Pn
k . We divide Pn

k into smaller parts such
that on each of them the energy of Φk is smaller than ε. Then the small regularity
theorems imply that |φk − qk| ≤ C∗

√
ε (which may be assumed to be less than 1);
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see (13). Then applying Lemma 5.2 (transformed onto the annuli) on each small
part and summing up the inequalities, one sees that∫

Pn
k

|∇Φk|2 dx ≤C1C(A)C∗
√
ε

∫
Pn

k

|∇Φk|2 + |Ψk|4 + |QXk|2|Ψk|2 dx

+ CC∗
√
ε

∫
∂Pn

k

|QXk||Ψk|+ |∇Φk| ds

+ C

∫
Pn

k

|Ψk|4 + |∇̃Ψk|
4
3 + |QXk|2|Ψk|2 dx.

Using an argument similar to the one above and combining with (32), we see that∫
Pn

k

|∇Φk|2 dx ≤ C(Λ)ε
1
3 ,

with C(Λ) being a uniform constant independent of k, n, N , and the choice of ε.
Therefore, on the neck domains,∫

Pk

|∇Φk|2 + |Ψk|4 dx =

N∑
n=1

∫
Pn

k

|∇Φk|2 + |Ψk|4 dx ≤ CN ε
1
3 .

AsN is uniform (independent of ε and k) and ε can be arbitrarily small, (25) follows,
and this accomplishes the proof for the case where there is only one bubble.

When there are more bubbles, we apply an induction argument on the number
of bubbles in a standard way; see [15] for the details. The proof is thus finished. �

We remark that the conclusion clearly holds when the gravitino χ is fixed. Then
as Theorem 1.3 shows, a sequence of solutions with bounded energies will contain a
weakly convergent subsequence, and at certain points this subsequence blows up to
give some bubbles. In the language of Teichmüller theory [32], the solution space can
be compactified by adding some boundaries, which consists of the Dirac-harmonic
maps with curvature term on two-dimensional spheres. This is in particular true
when the sequence of gravitinos is assumed to be uniformly small in the C1 norm,
which is of interest when one wants to consider perturbations of the zero gravitinos.

6. Appendix

In this appendix we show that a weak solution to a system with coupled first and
second order elliptic equations on the punctured unit disk can be extended as a weak
solution on the whole unit disk when the system satisfies some natural conditions.
This is observed for elliptic systems of second order in the two-dimensional calculus
of variations (see [20, Appendix]), and we generalize it in the following form.

As before, we denote the unit disk in R
2 by B1 and the punctured unit disk by

B∗
1 = B1\{0}. Let S denote the trivial spinor bundle over B1.

Theorem 6.1. Suppose that φ ∈ W 1,2(B∗
1 ,R

K), ψ ∈ L4(B∗
1 , S ⊗ R

K), χ ∈
L4(B1, S ⊗ R

2) and that they satisfy the system on B∗
1 :

Δφ = F (x, φ,∇φ, ψ, χ) + divx(V ),

/∂ψ = G(x, φ,∇φ, ψ, χ),
(33)
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in the sense of distributions; i.e., for any u ∈ W 1,2
0 ∩ L∞(B∗

1 ,R
K) and any v ∈

W
1, 43
0 (B∗

1 , S ⊗ R
K), it holds that∫

B∗
1

〈∇φ,∇u〉 dx = −
∫
B∗

1

〈F (x, φ,∇φ, ψ, χ), u〉 dx+

∫
B∗

1

〈V (x, φ,∇φ, ψ, χ),∇u〉 dx,∫
B∗

1

〈ψ, /∂v〉 dx =

∫
B∗

1

〈G(x, φ,∇φ, ψ, χ), v〉 dx.

Moreover, assume that the following growth condition is satisfied:

|F (x, t, p, q, s)|+ |V (x, t, p, q, s)|2 + |G(x, t, p, q, s)| 43 ≤ C
(
1 + |p|2 + |q|4 + |s|4

)
.

(34)

Then for any η ∈ W 1,2
0 ∩L∞(B1,R

K) and any ξ ∈ W
1, 43
0 (B1, S⊗R

K), it also holds
that

∫
B1

〈∇φ,∇η〉 dx = −
∫
B1

〈F (x, φ,∇φ, ψ, χ), η〉 dx+

∫
B1

〈V (x, φ,∇φ, ψ, χ),∇η〉 dx,∫
B1

〈ψ, /∂ξ〉 dx =

∫
B1

〈G(x, φ,∇φ, ψ, χ), ξ〉 dx.

(35)

That is, when the growth condition (34) is satisfied, any weak solution to (33) on
the punctured disk B∗

1 is also a weak solution on the whole disk.

Proof. For m ≥ 2, define

ρm(r) =

⎧⎪⎨⎪⎩
1, for r ≤ 1

m2 ,

log(1/mr)/ logm, for (1/m)2 ≤ r ≤ 1/m,

0, for r ≥ 1/m.

Then for any η ∈ W 1,2
0 ∩ L∞(B1,R

K) and any ξ ∈ W
1, 43
0 (B1, S ⊗ R

K), set

um(x) = (1− ρm(|x|)) η(x) ∈ W 1,2
0 ∩ L∞(B∗

1 ,R
K),

vm(x) = (1− ρm(|x|)) ξ(x) ∈ W
1, 43
0 (B∗

1 , S ⊗ R
K).

In fact, |1− ρm| ≤ 1 and

|∇ρm(|x|)| = 1

logm

1

r
;

hence ∫
B1

|∇ρm(|x|)|2 dx =
2π

(logm)2

∫ m−1

m−2

1

r2
r dr =

2π

logm
,

which goes to 0 as m → ∞. It follows that um ∈ W 1,2
0 . Recalling the Sobolev

embedding in dimension two, W
1, 43
0 (B∗

1) ↪→ L4(B∗
1), vm lies in W

1, 43
0 (B∗

1).
By assumption,∫

B∗
1

〈∇φ,∇um〉 dx = −
∫
B∗

1

〈F (x, φ,∇φ, ψ, χ), um〉 dx

+

∫
B∗

1

〈V (x, φ,∇φ, ψ, χ),∇um〉 dx.
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Note that F (x, φ,∇φ, ψ, χ) ∈ L1(B∗
1) by the growth condition (34) and |um| ≤

|η| ∈ L∞. Since um converges to η pointwisely almost everywhere, by Lebesgue’s
dominated convergence theorem

lim
m→∞

∫
B∗

1

〈F (x, φ,∇φ, ψ, χ), um〉 dx =

∫
B1

〈F (x, φ,∇φ, ψ, χ), η〉 dx.

For the other two terms, note that ∇um = −∇ρm(|x|)η(x) + (1 − ρm(|x|))∇η(x).
Then ∣∣∣∣∣

∫
B∗

1

〈∇φ,−∇ρm(|x|)η(x)〉
∣∣∣∣∣ ≤ ‖∇φ‖L2(B∗

1 )
‖η‖L∞(B1)‖∇ρm‖L2(B∗

1 )
→ 0,

as m → ∞, while∫
B∗

1

〈∇φ, (1− ρm(|x|))∇η〉 dx →
∫
B1

〈∇φ,∇η〉 dx,

again by Lebesgue’s dominated convergence theorem. Thus

lim
m→∞

∫
B∗

1

〈∇φ,∇um〉 dx =

∫
B1

〈∇φ,∇η〉 dx.

Similarly

lim
m→∞

∫
B∗

1

〈V (x, φ,∇φ, ψ, χ),∇um〉 dx =

∫
B1

〈V (x, φ,∇φ, ψ, χ),∇η〉 dx.

Therefore, the first equation of (35) holds.
Next we show that the second equation of (35) also holds. Indeed, by assumption∫

B∗
1

〈ψ, /∂vm〉 dx =

∫
B∗

1

〈G(x, φ,∇φ, ψ, χ), vm〉 dx.

Now by the growth condition (34), G(x, φ,∇φ, ψ, χ) ∈ L
4
3 (B1), and by Sobolev

embedding ξ ∈ L4(B1). Thus Lebesgue’s dominated convergence theorem implies
that

lim
m→∞

∫
B∗

1

〈G(x, φ,∇φ, ψ, χ), vm〉 dx =

∫
B1

〈G(x, φ,∇φ, ψ, χ), ξ〉 dx.

On the other hand, /∂vm = −γ(∇ρm(|x|))ξ + (1− ρm(|x|))/∂ξ and∣∣∣∣∣
∫
B∗

1

〈ψ,−γ(∇ρm(|x|))ξ〉 dx
∣∣∣∣∣ ≤ ‖ψ‖L4(B1)‖ξ‖L4(B1)‖∇ρm‖L2(B1) → 0,

as m → ∞, while Lebesgue’s dominated convergence theorem implies that∫
B∗

1

〈ψ, (1− ρm)/∂ξ〉 dx →
∫
B1

〈ψ, /∂ξ〉 dx

since /∂ξ ∈ L
4
3 (B1) and ψ ∈ L4(B∗

1). This accomplishes the proof. �
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244 JÜRGEN JOST, RUIJUN WU, AND MIAOMIAO ZHU

[24] Jürgen Jost, Lei Liu, Miaomiao Zhu, Geometric analysis of the action functional of the
nonlinear supersymmetric sigma model, MPI MIS preprint 77/2015, 2015.

[25] Enno Keßler and Jürgen Tolksdorf, The functional of super Riemann surfaces—a “semi-
classical” survey, Vietnam J. Math. 44 (2016), no. 1, 215–229, DOI 10.1007/s10013-016-
0183-1. MR3470759

[26] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical
Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR1031992

[27] Lei Liu, No neck for Dirac-harmonic maps, Calc. Var. Partial Differential Equations 52
(2015), no. 1-2, 1–15, DOI 10.1007/s00526-013-0702-9. MR3299172

[28] Dusa McDuff and Dietmar Salamon, J-holomorphic curves and quantum cohomology, Univer-
sity Lecture Series, vol. 6, American Mathematical Society, Providence, RI, 1994. MR1286255

[29] Thomas H. Parker, Bubble tree convergence for harmonic maps, J. Differential Geom. 44
(1996), no. 3, 595–633. MR1431008

[30] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math.
(2) 113 (1981), no. 1, 1–24, DOI 10.2307/1971131. MR604040

[31] Ben Sharp and Miaomiao Zhu, Regularity at the free boundary for Dirac-harmonic maps
from surfaces, Calc. Var. Partial Differential Equations 55 (2016), no. 2, Art. 27, 30, DOI
10.1007/s00526-016-0960-4. MR3465443

[32] Anthony J. Tromba, Teichmüller theory in Riemannian geometry, lecture notes prepared
by Jochen Denzler, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992.
MR1164870

[33] Changyou Wang and Deliang Xu, Regularity of Dirac-harmonic maps, Int. Math. Res. Not.
IMRN 20 (2009), 3759–3792, DOI 10.1093/imrn/rnp064. MR2544729

[34] Rugang Ye, Gromov’s compactness theorem for pseudo holomorphic curves, Trans. Amer.
Math. Soc. 342 (1994), no. 2, 671–694, DOI 10.2307/2154647. MR1176088

[35] Liang Zhao, Energy identities for Dirac-harmonic maps, Calc. Var. Partial Differential Equa-
tions 28 (2007), no. 1, 121–138, DOI 10.1007/s00526-006-0035-z. MR2267756

[36] Miaomiao Zhu, Dirac-harmonic maps from degenerating spin surfaces. I. The Neveu-Schwarz
case, Calc. Var. Partial Differential Equations 35 (2009), no. 2, 169–189, DOI 10.1007/s00526-
008-0201-6. MR2481821

[37] Miaomiao Zhu, Regularity for weakly Dirac-harmonic maps to hypersurfaces, Ann. Global
Anal. Geom. 35 (2009), no. 4, 405–412, DOI 10.1007/s10455-008-9142-8. MR2506243

Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22–26, D-04103

Leipzig, Germany

Email address: jjost@mis.mpg.de

Ennio De Giorgi Mathematical Research Center, Collegio Puteano, Scuola Normale

Superiore, Piazza dei Cavalieri, 3, I-56100 PISA, SNS, Pisa, Italy

Email address: ruijun.wu@sns.it

School of Mathematical Sciences, Shanghai Jiao Tong University, Dongchuan Road

800, 200240 Shanghai, People’s Republic of China

Email address: mizhu@sjtu.edu.cn

https://www.ams.org/mathscinet-getitem?mr=3470759
https://www.ams.org/mathscinet-getitem?mr=1031992
https://www.ams.org/mathscinet-getitem?mr=3299172
https://www.ams.org/mathscinet-getitem?mr=1286255
https://www.ams.org/mathscinet-getitem?mr=1431008
https://www.ams.org/mathscinet-getitem?mr=604040
https://www.ams.org/mathscinet-getitem?mr=3465443
https://www.ams.org/mathscinet-getitem?mr=1164870
https://www.ams.org/mathscinet-getitem?mr=2544729
https://www.ams.org/mathscinet-getitem?mr=1176088
https://www.ams.org/mathscinet-getitem?mr=2267756
https://www.ams.org/mathscinet-getitem?mr=2481821
https://www.ams.org/mathscinet-getitem?mr=2506243

	1. Introduction
	2. Small energy regularity and energy gap property
	2.1.
	2.2.

	3. Critical gravitino and energy-momentum tensor
	4. Pohozaev identity and removable singularities
	5. Energy identity
	6. Appendix
	References

