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KERNEL THEOREMS IN COORBIT THEORY

PETER BALAZS, KARLHEINZ GRÖCHENIG, AND MICHAEL SPECKBACHER

Abstract. We prove general kernel theorems for operators acting between
coorbit spaces. These are Banach spaces associated to an integrable repre-
sentation of a locally compact group and contain most of the usual function
spaces (Besov spaces, modulation spaces, etc.). A kernel theorem describes
the form of every bounded operator between a coorbit space of test functions
and distributions by means of a kernel in a coorbit space associated to the
tensor product representation. As special cases we recover Feichtinger’s ker-
nel theorem for modulation spaces and the recent generalizations by Cordero
and Nicola. We also obtain a kernel theorem for operators between the Besov
spaces Ḃ0

1,1 and Ḃ0
∞,∞.

1. Introduction

Kernel theorems assert that every “reasonable” operator can be written as a
“generalized” integral operator. For instance, the Schwartz kernel theorem states
that a continuous linear operator A : S(Rd) → S ′(Rd) possesses a unique distribu-
tional kernel K ∈ S ′(R2d) such that

(1) 〈Af, g〉 = 〈K, g ⊗ f〉, f, g ∈ S(Rd) .

If K is a locally integrable function, then

〈Af, g〉 =
∫
Rd

K(x, y)f(y)g(x)dydx, f, g ∈ S(Rd),

and thus A has indeed the form of an integral operator. Similar kernel theorems
hold for continuous operators from D(Rd) → D′(Rd) [24, Theorem 5.2] and for
Gelfand-Shilov spaces and their distribution spaces [21]. The importance of these
kernel theorems stems from the fact that they offer a general formalism for the
description of linear operators.

In the context of time-frequency analysis, Feichtinger’s kernel theorem [12] (see
also [18] and [23, Theorem 14.4.1]) states that every bounded linear operator from
the modulation space M1(Rd) to the modulation space M∞(Rd) can be represented
in the form (1) with a kernel in M∞(R2d). The advantage of this kernel theorem is
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that both the space of test functions M1(Rd) and the distribution space M∞(Rd) =
M1(Rd)∗ are Banach spaces and thus technically easier than the locally convex
spaces S(Rd) and S ′(Rd).

Recently, Cordero and Nicola [8] revisited Feichtinger’s kernel theorem and
proved several new kernel theorems that “do not have a counterpart in distribu-
tion theory”. They argue that “this reveals the superiority, in some respects, of
the modulation space formalism upon distribution theory.” While we agree full-
heartedly with this claim, we would like to add a more abstract point of view and
argue that the deeper reason for this superiority lies in the theory of coorbit spaces
and in the convenience of Schur’s test for integral operators. Indeed, we will prove
kernel theorems similar to Feichtinger’s kernel theorem for many coorbit spaces.

The main idea is to investigate operators in a transform domain after taking a
short-time Fourier transform, a wavelet transform, or an abstract wavelet transform,
i.e., a continuous transform with respect to a unitary group representation. In
this new representation every operator between a suitable space of test functions
and distributions is an integral operator. The standard boundedness conditions of
Schur’s test then yield strong kernel theorems.

The technical framework for this idea is coorbit theory, which was introduced
and studied in [15–17, 22] for the construction and analysis of function spaces by
means of a generalized wavelet transform. The main idea is that functions in the
standard function spaces, such as Besov spaces and modulation spaces, can be
characterized by the decay or integrability properties of an associated transform
(the wavelet transform or the short-time Fourier transform). In the abstract set-
ting, G is a locally compact group and π : G → U(H) is an irreducible, unitary,
integrable representation of G. Leaving technical details aside, the coorbit space
Coπ Lp

w(G) consists of all distributions f in a suitable distribution space such that
the representation coefficient g �→ 〈f, π(g)ψ〉 is in the weighted space Lp

w(G).
Next, let G1 and G2 be two locally compact groups, and let (π1,H1) and (π2,H2)

be irreducible, unitary, integrable representations of G1 and G2, respectively.
Let A be a bounded linear operator between Coπ1

L1
w1

(G1) and Coπ2
L∞
1/w2

(G2) .

Our main insight is that such an operator can be described by a kernel in a coorbit
space that is related to the tensor product representation π = π2⊗π1 of G = G1×G2

on the tensor product spaceH2⊗H1. The following non-technical formulation offers
a flavor of our main result in Theorem 3:

A linear operator A is bounded from Coπ1
L1
w1

(G1) to Coπ2
L∞
1/w2

(G2) if and only

if there exists a kernel K ∈ Coπ L∞
w−1

1 ⊗w−1
2

(G1 ×G2) such that

(2) 〈Aυ, ϕ〉 = 〈K,ϕ⊗ υ〉

for all υ ∈ Coπ1
L1
w1

(G1) , ϕ ∈ Coπ2
L1
w2

(G2) .
This statement is not just a mere abstraction and generalization of the classical

kernel theorem. With the choice of a specific group and representation one ob-
tains explicit kernel theorems. For instance, using the Schrödinger representation
of the Heisenberg group, one recovers Feichtinger’s original kernel theorem. The
added value is our insight that the conditions on the kernel of [8] in terms of mixed
modulation spaces [4] amount to coorbit spaces with respect to the tensor product
representation. Choosing the ax + b-group and the continuous wavelet represen-
tation, one obtains a kernel theorem for all bounded operators between the Besov
spaces Ḃ0

1,1 and Ḃ0
∞,∞ with a kernel in a space of dominating mixed smoothness.
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This class of function spaces has been studied extensively [31,32] and is by no means
artificial.

By using suitable versions of Schur’s test, it is then possible to derive charac-
terizations for the boundedness of operators between other coorbit spaces. For
example, in Theorem 7 we will prove the following, with 1

p + 1
q = 1:

(i) A :Coπ1
L1
w1

(G1) → Coπ2
Lp
w2

(G2) bounded ⇔ K∈ Coπ Lp,∞
1/w1⊗w2

(G1×G2),

(ii) A :Coπ1
Lp
w1

(G1) → Coπ2
L∞
w2

(G2) bounded ⇔ K∈ Coπ Lq,∞
1/w1⊗w2

(G1×G2),

where the mixed-norm Lebesgue spaces Lp,q and Lp,q on G1 × G2 are defined in
(23) and (24), respectively.

The paper is organized as follows. In Section 2 we present the basics of tensor
products and coorbit space theory. The theory of coorbit spaces of kernels with
respect to products of integrable representations is developed in Section 3. Our
main results, the kernel theorems, are proved in Section 4 and applied to particular
examples of group representations in Section 5.

We note that our proofs require a meaningful formulation of coorbit theory.
One can therefore prove kernel theorems also in the context of other coorbit space
theories [6, 9], e.g., for certain reducible representations.

2. Preliminaries on tensor products and coorbit spaces

2.1. Tensor products and Hilbert-Schmidt operators. The theory of tensor
products is at the heart of kernel theorems for operators. Algebraically, a simple
tensor of two vectors (in two possibly different Hilbert spaces) is a formal product
of two vectors f1 ⊗ f2, and the tensor product H1 ⊗H2 is obtained by taking the
completion of all linear combinations of simple tensors with respect to the inner
product

〈f1 ⊗ f2, g1 ⊗ g2〉 := 〈f1, g1〉 〈g2, f2〉 .
This tensor product is homogeneous in the following sense: α · (f1 ⊗ f2) = (αf1)⊗
f2 = f1⊗ (αf2). Note explicitly that the product f1⊗f2 is anti-linear in the second
factor. In some books this is done by introducing the dual Hilbert space H′

2 [25].
If each Hilbert space is an L2-space H1 = L2(X,μ), H2 = L2(Y, ν), then the

simple tensor f ⊗ g is just the product (x, y) �→ f(x) · g(y), and the tensor product
becomes the product space H1 ⊗H2 = L2(X,μ)⊗ L2(Y, ν) = L2(X × Y, μ× ν).

The connection between functions and operators arises in the analytic approach
to tensor products. We interpret a function of two variables as an integral ker-
nel for an operator. Thus a simple tensor f1 ⊗ f2 of two functions becomes the
rank one operator f �→ 〈f, f2〉f1 with integral kernel f1(x)f2(y), and a general
k ∈ L2(X×Y, μ×ν) becomes a Hilbert-Schmidt operator from L2(Y, ν) to L2(X,μ).
The systematic, analytic treatment of general tensor products of two Hilbert spaces
often defines the tensor product as a space of Hilbert-Schmidt operators between
H2 and H1. We note that his definition is already based on the characterization
of Hilbert-Schmidt operators and thus represents a non-trivial kernel theorem [7].
Whereas the working mathematician habitually identifies an operator with its dis-
tributional kernel, we will make the conceptual distinction between tensor products
and operators for our study of kernel theorems.

In the sequel we will denote the (distributional) kernel of an integral operator
by k and the abstract kernel in a tensor product by K.
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2.2. Coorbit space theory. Let G be a locally compact group with left Haar
measure

∫
G
. . . dg, let H be a separable Hilbert space, and let U(H) be the group of

unitary operators acting on H. A continuous unitary group representation π : G →
U(H) is called square integrable [1,11] if it is irreducible and there exist ψ ∈ H such
that

(3)

∫
G

|〈ψ, π(g)ψ〉|2dg < ∞ .

A non-zero vector ψ satisfying (3) is called admissible. For every square inte-
grable representation there exists a densely defined operator T such that ∀f1, f2 ∈
H, ψ1, ψ2 ∈ Dom (T ), one has

(4)

∫
G

〈f1, π(g)ψ1〉〈π(g)ψ2, f2〉dg = 〈Tψ2, Tψ1〉〈f1, f2〉.

For fixed ψ1 = ψ2 = ψ the representation coefficient f �→ Vψf(g) := 〈f, π(g)ψ〉
is interpreted as a generalized wavelet transform. The orthogonality relation (4)
then implies that Vψ is a multiple of an isometry from H to L2(G). By using a
weak interpretation of vector-valued integrals, (4) can also be recast as the inversion
formula

(5) f =
1

‖Tψ‖2
∫
G

〈f, π(g)ψ〉π(g)ψdg .

For the rest of this paper we assume without loss of generality that the chosen
admissible vectors ψ are normalized, i.e., ‖Tψ‖ = 1.

The adjoint operator V ∗
ψ : L2(G) → H is formally defined by

V ∗
ψF :=

∫
G

F (g)π(g)ψdg.

Other domains and convergence properties will be discussed later.
With this notation (5) says that V ∗

ψVψ = IH for all admissible and normalized

vectors ψ, which in the language of recent frame theory means that {π(g)ψ}g∈G is
a continuous Parseval frame. By [5, Proposition 2.1] one can always assume that
G is σ-finite since we assume H to be separable.

In coorbit theory one needs much stronger hypotheses on π. The representation
π is called integrable with respect to a weight w if there exists an admissible vector
ψ ∈ H such that

(6)

∫
G

|〈ψ, π(g)ψ〉|w(g) dg < ∞.

Let g1, g2, g3 ∈ G. We call a weight w : G → R+ submultiplicative if w(g1g2) �
w(g1)w(g2) and a function m : G → R+ w-moderate if it satisfies m(g1g2g3) �
w(g1)m(g2)w(g3). If m is w-moderate, the weighted Lebesgue space Lp

m(G) is then
invariant under left translation Lxf(y) = f(x−1y) and under the right translation
Rxf(y) = f(yx). Throughout this paper, we will assume that the weight w satisfies

(7) w(x) � Cmax
{
α(x), α(x−1), β(x),Δ(x−1)β(x−1)

}
,

where α(x) := ‖Lx‖Lp
m(G)→Lp

m(G), β(x) := ‖Rx‖Lp
m(G)→Lp

m(G), and Δ denotes the
modular function of G.
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Our standing assumption is that the representation π of G possesses an admis-
sible vector ψ such that Vψψ ∈ L1

w(G). We denote the corresponding set by

Aw(G) :=
{
ψ ∈ H, ψ �= 0 : Vψψ ∈ L1

w(G)
}
.

For fixed ψ ∈ Aw(G) the linear version of Aw(G),

(8) H1
w :=

{
f ∈ H : Vψf ∈ L1

w(G)
}
,

is dense in H. Let (H1
w)

∼ denote the anti-dual of H1
w, i.e., the space of anti-linear

continuous functionals on H1
w. As H1

w is dense in H, it follows that the inner
product on H × H extends to (H1

w)
∼ × H1

w and so does the generalized wavelet
transform.

The coorbit space with respect to Lp
m(G) is then defined by

Coπ Lp
m(G) :=

{
f ∈ (H1

w)
∼ : Vψf ∈ Lp

m(G)
}

and is equipped with the natural norm

‖f‖Coπ Lp
m(G) := ‖Vψf‖Lp

m(G) .

With our assumptions on π, ψ,m, the coorbit space Coπ Lp
m(G) is a Banach space

[16]. Alternatively, Coπ Lp
m(G) for p < ∞ can be defined as the completion of H1

w

with respect to this norm. Moreover,

(9) Coπ L2(G) = H, Coπ L1
w(G) = H1

w, and Coπ L∞
1/w(G) = (H1

w)
∼ = H∞

1/w,

and

(10) H1
w ⊆ Coπ Lp

m(G) ⊆ H∞
1/w

for 1 � p � ∞ and w-moderate weight m. In the context of coorbit space theory
the space H1

w serves as a space of test functions, and H∞
1/w is the corresponding

distribution space.
We quickly recall some of the fundamental properties of coorbit spaces; see for

example [16, Theorems 4.1 and 4.2 and Proposition 4.3].

Proposition 1. Let ψ, φ ∈ Aw(G), f ∈ Coπ Lp
m(G), g ∈ Coπ Lq

1/m(G), and F ∈
Lp
m(G). Then the following properties hold:

(i) Vψ : Coπ Lp
m(G) → Lp

m(G) is an isometry.
(ii) Hp

m is invariant with respect to π and

‖π(g)f‖Coπ Lp
m(G) � w(g)‖f‖Coπ Lp

m(G) for all g ∈ G, f ∈ Coπ Lp
m(G).

(iii) V ∗
ψ : Lp

m(G) → Coπ Lp
m(G) is continuous.

(iv) V ∗
ψVψ = ICoπ Lp

m(G).

(v) Correspondence principle: Let F ∈ Lp
m(G). There exists f ∈ Coπ Lp

m(G)
such that F = Vψf if and only if F = F ∗Vψψ, where ∗ denotes convolution
on G.

(vi) Duality: For 1 � p < ∞, 1
p+

1
q = 1, we have (Coπ Lp

m(G))∗ = Coπ Lq
1/m(G),

where the duality is given by

〈f, g〉Coπ Lp
m(G),Coπ Lq

m(G) = 〈Vψf, Vψg〉Lp
m(G),Lq

1/m
(G) .

(vii) The definition of Coπ Lp
m(G) is independent of the particular choice of the

window function from Aw(G). In particular, ‖Vψf‖Lp
m(G) � ‖Vφf‖Lp

m(G)

for arbitrary non-zero φ, ψ ∈ Aw(G).
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We furthermore need a result on the existence of atomic decompositions for the
space Coπ L1

w(G); see [15, Theorem 4.7].

Theorem 2. Let ψ ∈ Aw(G). There exists a discrete subset {gi}i∈I ⊂ G and a
collection of linear functionals λi : Coπ L1

w(G) → C, i ∈ I, such that

(11) f =
∑
i∈I

λi(f)π(gi)ψ, with
∑
i∈I

|λi(f)|w(gi) � ‖f‖Coπ L1
w(G),

and the sum converges absolutely in Coπ L1
w(G).

3. Frames and coorbit spaces via tensor products

Let G1, G2 be two locally compact groups with unitary square integrable repre-
sentations π1 : G1 → U(H1) and π2 : G2 → U(H2). For g := (g1, g2) ∈ G := G1×G2

the tensor representation π : G → U(H2 ⊗H1),

π(g) := π2(g2)⊗ π1(g1),

acts on a simple tensor Ψ := ψ2 ⊗ ψ1 ∈ H2 ⊗H1 by

(12) π(g)(ψ2 ⊗ ψ1) = π2(g2)ψ2 ⊗ π1(g1)ψ1.

It follows immediately that π is a unitary representation of G onH2⊗H1. Moreover,
π is irreducible (e.g., by [34, Section 4.4, Theorem 6]). Note that the order of indices
is in agreement with the formulation of the kernel theorem in Theorem 3.

If we interpret the simple tensor Ψ = ψ2 ⊗ ψ1 as the rank-one operator f �→
ψ1(f)ψ2 with ψ1 ∈ H′

1, then we can write (12) as

π(g)(Ψ)(f) = (π′
1(g1)ψ1)(f) · π2(g2)ψ2 =

(
π2(g2)ψ2 ⊗ π′

1(g1)ψ1

)
(f),

where the contragredient representation π′
1 : G1 → GL(H′

1) of π1 is defined as
(π′

1(g1)ψ1)(f) = ψ1(π1(g
−1
1 )f); see [34, Section 3.1].

In case we treat the tensor product as a space of Hilbert-Schmidt operators, π
acts on A ∈ HS(H1,H2) as

π(g)A = π2(g2)Aπ1(g1)
∗.

The generalized wavelet transform of a simple tensor f2 ⊗ f1 with respect to a
“wavelet” Ψ = ψ2 ⊗ ψ1 is given by

VΨ(f2 ⊗ f1)(g) = 〈f2 ⊗ f1, (π2(g2)⊗ π1(g1))(ψ2 ⊗ ψ1)〉
= 〈f2, π2(g2)ψ2〉〈f1, π1(g1)ψ2〉(13)

= Vψ2
f2(g2)Vψ1

f1(g1).

Thus, the wavelet transform of the tensor product representation factors into the
product of wavelet transforms on G1 and G2. Strictly speaking, we would have to
write V πi

ψi
fi to indicate the underlying representation, but we omit the reference to

the group to keep notation simple.
Throughout this paper we consider only separable weights w : G → R+ with

w(g) = (w1 ⊗ w2)(g) = w1(g1)w2(g2) and m(g) = (m1 ⊗m2)(g) = m1(g1)m2(g2),
where wi is submultiplicative andmi is wi-moderate. Moreover we write (1/w)(g) =
(w1 ⊗ w2)(g)

−1. It follows from (13) that the tensor representation π2 ⊗ π1 of two
square-integrable representations is again square-integrable and that the tensor
Ψ = ψ2 ⊗ ψ1 of two admissible vectors ψ2 and ψ1 is admissible for π. Likewise, if
w = w1 ⊗ w2 and ψ1 ∈ Aw1

(G1), ψ2 ∈ Aw2
(G2), then ψ2 ⊗ ψ1 ∈ Aw(G1 × G2)
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(where we assume that wi, i = 1, 2, satisfies (7)). Therefore all definitions and
results of Section 2.2 hold for the representation π = π2 ⊗ π1 and Ψ = ψ2 ⊗ψ1 . In
particular, the orthogonality relation (4), the inversion formula (5), Proposition 1,
and Theorem 2 hold for suitable admissible vectors Ψ = ψ2 ⊗ ψ1.

4. Kernel theorems

In this section we derive the general kernel theorems for operators between coor-
bit spaces. The basic idea comes from linear algebra, where a linear operator is
identified with its matrix with respect to a basis. In coorbit theory the basic struc-
ture consists of the vectors π(g)ψ. Thus in analogy to linear algebra we try to
describe an operator A : H1 → H2 by the kernel (= continuous matrix)

(14) kA(g1, g2) = 〈Aπ1(g1)ψ1, π2(g2)ψ2〉.

This can be seen as a continuous Galerkin-like representation of the operator A
[2, 3]. The idea goes back to coherent state theory [30, Ch. 1.6]. One of its goals
is to associate to every operator A a function or symbol kA, and (14) is one of the
many possibilities to do so.

Assume that A : Coπ1
L1
w1

(G1) → Coπ2
L∞
1/w2

(G2) and f ∈ Coπ1
L1
w1

(G1) , i.e., A

maps “test functions” to “distributions”. By using the inversion formula (5) for f
and applying A to it, it follows formally that

Af =

∫
G1

〈f, π1(g1)ψ1〉Aπ1(g1)ψ1dg1,

and furthermore that

Vψ2
(Af)(g2) = 〈Af, π2(g2)ψ2〉 =

∫
G1

〈f, π1(g1)ψ1〉〈Aπ1(g1)ψ1, π2(g2)ψ2〉dg1

=

∫
G

〈f, π1(g1)ψ1〉kA(g1, g2)dg1 .(15)

Let

(16) AF (g2) =

∫
G1

F (g1)kA(g1, g2)dg1

be the integral operator with the kernel kA. Then (15) can be written as

(17) Vψ2
Af = AVψ1

f

or, equivalently,

(18) A = V ∗
ψ2
AVψ1

.

Using this factorization, the computation in (15) can be given a precise meaning
on coorbit spaces. Identity (18) is the heart of the kernel theorems. The combi-
nation of the properties of the generalized wavelet transform (Proposition 1) and
boundedness properties of integral operators yields powerful and very general kernel
theorems.
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We will first show the existence of a generalized kernel for operators mapping
the space of test functions Coπ1

L1
w1

(G1) into the distribution space Coπ2
L∞
1/w2

(G2) .

Subsequently, we will characterize continuous operators in certain subclasses.

Theorem 3. Let G1 and G2 be two locally compact groups, and let (πj ,Hj) be
integrable, unitary, irreducible representations of Gj, such that Awj

(Gj) �= ∅ for
j = 1, 2.

(i) Every kernel K ∈ Coπ L∞
1/w(G1 × G2) defines a unique linear operator A :

Coπ1
L1
w1

(G1) → Coπ2
L∞
1/w2

(G2) by means of

(19) 〈Aυ, ϕ〉 = 〈K,ϕ⊗ υ〉

for all υ ∈ Coπ1
L1
w1

(G1) and ϕ ∈ Coπ2
L1
w2

(G2) . The operator norm satis-
fies

(20) ‖A‖Op � ‖K‖Coπ L∞
1/w

(G)

and

(21) kA = VΨK.

(ii) Kernel theorem: Conversely, if A : Coπ1
L1
w1

(G1) → Coπ2
L∞
1/w2

(G2) is

bounded, then there exists a unique kernel K ∈ Coπ L∞
1/w(G1 × G2) such

that (19) holds.

Proof. (i) Fix K ∈ Coπ L∞
1/w(G) with G = G1 ×G2, and let υ ∈ Coπ1

L1
w1

(G1) , ϕ ∈
Coπ2

L1
w2

(G2) be arbitrary. By (13) it follows that ϕ⊗ υ ∈ Coπ L1
w(G). Therefore,

the duality in (19) is well-defined and

|〈K,ϕ⊗ υ〉| � ‖K‖Coπ L∞
1/w

(G)‖ϕ⊗ υ‖Coπ L1
w(G)

= ‖K‖Coπ L∞
1/w

(G)‖ϕ‖Coπ2
L1

w2
(G2) ‖υ‖Coπ1

L1
w1

(G1) .(22)

Therefore, if we fix υ, the mapping ϕ �→ 〈K,ϕ⊗ υ〉 is a bounded, anti-linear func-
tional on Coπ2

L1
w2

(G2) , which we call Aυ ∈ Coπ2
L∞
1/w2

(G2) . The map υ �→ Aυ is

clearly linear, and (19) defines a linear operatorA : Coπ1
L1
w1

(G1) → Coπ2
L∞
1/w2

(G2) .

The estimate (22) implies that

‖Av‖Coπ2
L∞

1/w2
(G2) � ‖K‖Coπ L∞

1/w
(G)‖v‖Coπ1

L1
w1

(G1) ,

and thus

‖A‖Op � ‖K‖Coπ L∞
1/w

(G) .

(ii) To prove the converse, we need to show that the mapping K �→ A is one-to-
one and onto.

Uniqueness : Let us assume that the kernel K ∈ Coπ L∞
1/w(G) also satisfies

〈Aυ, ϕ〉 = 〈K,ϕ⊗ υ〉 = 〈K, ϕ⊗ υ〉
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for every υ ∈ Coπ1
L1
w1

(G1) , ϕ ∈ Coπ2
L1
w2

(G2) . By Theorem 2, there exists a

discrete set {γi}i∈I ⊂ G such that every F ∈ Coπ L1
w(G) can be written as

F =
∑
i∈I

λi(F )π(γi)
(
ψ2 ⊗ ψ1

)
,

with unconditional convergence in Coπ L1
w(G) and∑

i

|λi(F )|w(γi) � C‖F‖Coπ L1
w(G1×G2).

Since π(γi)
(
ψ2 ⊗ ψ1

)
= π(γi,2)ψ2 ⊗ π(γi,1)ψ1, we conclude that

〈K,F 〉 =
∑
i∈I

λi(F )〈K,π(γi,2)ψ2 ⊗ π(γi,1)ψ1〉

=
∑
i∈I

λi(F )〈K, π(γi,2)ψ2 ⊗ π(γi,1)ψ1〉

= 〈K, F 〉.

As this equality holds for every F ∈ Coπ L1
w(G), it follows that K = K.

Surjectivity : Let us assume that A : Coπ1
L1
w1

(G1) → Coπ2
L∞
1/w2

(G2) is bounded.

Then the kernel kA defined in (14) is an element of L∞
1/w(G1 ×G2), because

|kA(g)| = |〈Aπ1(g1)φ, π2(g2)ψ〉|
� ‖A‖Op ‖π1(g1)φ‖Coπ1

L1
w1

(G1) ‖π2(g2)ψ‖Coπ2
L1

w2
(G2)

� ‖A‖Op w1(g1) ‖φ‖Coπ1
L1

w1
(G1) w2(g2) ‖ψ‖Coπ2

L1
w2

(G2) .

We claim that kA is a generalized wavelet transform. Precisely, there exists K ∈
Coπ L∞

1/w(G1 × G2) such that kA = VΨK. To prove this claim, we use Proposi-

tion 1(v), which asserts that kA = VψK for some K ∈ Coπ L∞
1/w(G) if and only if

kA = kA ∗ VΨΨ.
As kA · VΨ(π(g)Ψ) ∈ L1(G1 ×G2), we may choose the most convenient order of

integration and apply the reproducing formula of Proposition 1(v) consecutively to
the representations π1 and π2. Using (13) we obtain

(kA ∗ VΨΨ)(g) =

∫
G

kA(h)VΨΨ(h−1g) dh

=

∫
G1

∫
G2

Vψ2

(
Aπ1(h1)ψ1

)
(h2)Vψ2

ψ2(h
−1
2 g2)dh2 Vψ1

ψ1(h
−1
1 g1)dh1

=

∫
G1

(
Vψ2

(
Aπ1(h1)ψ1

)
∗ Vψ2

ψ2

)
(g2) Vψ1

ψ1(h
−1
1 g1)dh1

=

∫
G1

〈Aπ1(h1)ψ1, π2(g2)ψ2〉 Vψ1
ψ1(h

−1
1 g1)dh1 = (∗) .

At this point we note that by the assumption on A there exists a unique operator
A′ : Coπ2

L1
w2

(G2) → Coπ1
L∞
1/w1

(G1) that satisfies

〈Aυ, ϕ〉 = 〈υ,A′ ϕ〉
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for every υ ∈ Coπ1
L1
w1

(G1) and ϕ ∈ Coπ2
L1
w2

(G2) . By its definition, A′ is weak∗-
continuous. We continue with the integration over G1 and obtain

(∗) =
∫
G1

〈A′π2(g2)ψ2, π1(h1)ψ1〉 Vψ1
ψ1(h

−1
1 g1)dh1

=
(
Vψ1

(
A′π2(g2)ψ2

)
∗ Vψ1

ψ1

)
(g1) = 〈A′π2(g2)ψ2, π1(g1)ψ1〉

= 〈Aπ1(g1)ψ1, π2(g2)ψ2〉 = kA(g).

By Proposition 1(v) there exists a kernel K ∈ Coπ L∞
1/w(G1 × G2) such that

kA(g1, g2) = VΨK(g1, g2). By the first part of the proof K defines an operator
B : Coπ1

L1
w1

(G1) → Coπ2
L∞
1/w2

(G2) by means of 〈Bv, φ〉 = 〈K,φ⊗ v〉. In particu-

lar,

〈Bπ1(g1)ψ1, π2(g2)ψ2〉 = 〈K,π2(g2)ψ2 ⊗ π1(g1)ψ1〉 = VΨK(g1, g2)

= kA(g1, g2) = 〈Aπ1(g1)ψ1, π2(g2)ψ2〉 .

Consequently, Bπ1(g1)ψ1 = Aπ1(g1)ψ1 for all g1 ∈ G1. This identity extends to
all finite linear combinations of vectors π1(g1)ψ1 and by Theorem 2 to Coπ1

L1
w1

(G1).
Thus B = A, and we have shown that the map from kernels to operators is onto.

The map K �→ A is bounded and invertible. By the inverse mapping theorem
we obtain that ‖K‖Coπ L∞

1/w
(G) � C‖A‖Op, which proves (20). �

Remark 4. It is crucial to interpret the brackets in (19) correctly. For utmost
precision, we would have to write

〈Aυ, ϕ〉Coπ2
L∞

1/w2
(G2), Coπ2

L1
w2

(G2) = 〈K,ϕ⊗ υ〉Coπ L∞
1/w

(G), Coπ L1
w(G) ,

but we feel that this notation would distract from the analogy to distribution theory.

The injectivity of the mapping K �→ A from kernels to operators is closely
related to an important property of the coorbit spaces Coπ1

L1
w1

(G1) . This so-
called tensor product property has gained considerable importance in certain special
cases [13, Theorem 7D] and [26]. We therefore state and prove a general version.
Recall that the projective tensor product of two Banach spaces B1 and B2 is defined
to be

B1⊗̂B2 = {f =
∑
i∈I

φi ⊗ ψi : φi ∈ B1, ψi ∈ B2 and
∑
i∈I

‖φi‖B1
‖ψi‖B2

< ∞} .

The norm is given as ‖f‖
̂⊗ = inf

∑
i∈I ‖φi‖B1

‖ψi‖B2
over all representations of

f =
∑

i∈I φi ⊗ ψi.

The following identification of the projective tensor product of Coπ1
L1
w1

(G1)

and Coπ2
L1
w2

(G2) with the coorbit space Coπ L1
w(G1 × G2) is a generalization of

Feichtinger’s original result for modulation spaces [13, Theorem 7D].

Theorem 5. Under the general assumptions on the groups Gi and the representa-
tions (πi,Hi) we have

Coπ L1
w(G1 ×G2) = Coπ2

L1
w2

(G2) ⊗̂ Coπ1
L1
w1

(G1) .
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Proof. Let F ∈ Coπ L1
w(G). Then by Theorem 2 applied to π = π2⊗π1, F possesses

the representation F =
∑

i∈I λi(F )π(γi)Ψ ∈ Coπ L1
w(G) with γi = (γi,1, γi,2) ∈

G1 × G2 and
∑

i∈I |λi(F )|w(γi) � C‖F‖Coπ L1
w(G). Using Proposition 1(ii) we

obtain that∑
i∈I

‖λi(F )π1(γi,1)ψ1‖Coπ1
L1

w1
(G1) ‖π2(γi,2)ψ2‖Coπ2

L1
w2

(G2)

�
∑
i∈I

|λi(F )|w1(γi,1)w2(γi,2)‖ψ1‖Coπ1
L1

w1
(G1) ‖ψ2‖Coπ2

L1
w2

(G2)

� C‖F‖Coπ L1
w(G).

Thus F ∈ Coπ2
L1
w2

(G2) ⊗̂ Coπ1
L1
w1

(G1) , and Coπ L1
w(G) is continuously embedded

into Coπ2
L1
w2

(G2) ⊗̂ Coπ1
L1
w1

(G1) .

Conversely, let F ∈ Coπ2
L1
w2

(G2) ⊗̂ Coπ1
L1
w1

(G1) . Choose a representation
F =

∑
i∈I

fi,2 ⊗ fi,1 with
∑
i∈I

‖fi,1‖Coπ1
L1

w1
(G1) ‖fi,2‖Coπ2

L1
w2

(G2) < ∞. Using Fubini’s

theorem and Proposition 1(ii) yields

‖F‖Coπ L1
w(G) =

∫
G

|VΨF (g)|w(g)dg

�
∑
i∈I

(∫
G1

|Vψ1
fi,1(g1)|w1(g1)dg1

)
·
(∫

G2

|Vψ2
fi,2(g2)|w2(g2)dg2

)
=

∑
i∈I

‖fi,1‖Coπ1
L1

w1
(G1) ‖fi,2‖Coπ2

L1
w2

(G2) < ∞.

Thus, Coπ2
L1
w2

(G2) ⊗̂ Coπ1
L1
w1

(G1) ⊆ Coπ L1
w(G). The equivalence of the norms

follows from the inverse mapping theorem. �

Once the kernel theorem provides a general description of operators between test
functions and distributions, we may try to characterize certain classes of operators
by properties of their kernel. Since on the level of the generalized wavelet trans-
form such operators correspond to integral operators (see diagram in Figure 1),
we may translate the various versions of Schur’s test to kernel theorems for op-
erators between coorbit spaces. Following the procedure in [8, Theorem 3.3], we
first formulate a general version of Schur’s test and then derive the abstract kernel
theorem.

We introduce two classes of mixed norm spaces. For two σ-finite measure spaces
(X,μ) and (Y, ν), 1 � p � ∞, and m : X × Y → R+, we define the spaces
Lp,∞
m (X × Y ) and Lp,∞

m (X × Y ) by the norms

(23) ‖F‖Lp,∞
m (X×Y ) := ess sup

y∈Y

(∫
X

|F (x, y)|pm(x, y)pdμ(x)

)1/p

and

(24) ‖F‖Lp,∞
m (X×Y ) := ess sup

x∈X

(∫
Y

|F (x, y)|pm(x, y)pdν(y)

)1/p

.

The following version of Schur’s test is folklore and can be found in [33, Propo-
sitions 5.2 and 5.4] or [27].
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Proposition 6. Let (X,μ) and (Y, ν) be σ-finite measure spaces, let 1 � p � ∞,
let 1

p +
1
q = 1, and let T be the integral operator Tf(y) =

∫
X
f(x)kT (x, y)dμ(x) with

kernel kT : X × Y → C.

(i) The operator T is bounded from L1
m1

(X) to Lp
m2

(Y ) if and only if kT ∈
Lp,∞
m−1

1 ⊗m2
(X × Y ). In that case

(25) ‖T‖L1
m1

(X)→Lp
m2

(Y ) = ‖kT ‖Lp,∞
m

−1
1 ⊗m2

(X×Y ) .

(ii) The operator T is bounded from Lp
m1

(X) to L∞
m2

(Y ) if and only if kT ∈
Lq,∞
m−1

1 ⊗m2
(X × Y ). In this case

(26) ‖T‖Lp
m1

(X)→L∞
m2

(Y ) = ‖kT ‖Lq,∞
m

−1
1 ⊗m2

(X×Y ).

We now characterize the boundedness of operators between certain coorbit
spaces.

Theorem 7. Let 1 � p, q � ∞ with 1
p + 1

q = 1, and let mj be wj-moderate weights

on Gj. If A is a bounded operator from Coπ1
L1
w1

(G1) to Coπ2
L∞
1/w2

(G2) with kernel

K, then the following hold:

(i) A is bounded from Coπ1
L1
m1

(G1) to Coπ2
Lp
m2

(G2) if and only if its kernel
K is in Coπ Lp,∞

m−1
1 ⊗m2

(G1 ×G2). Its operator norm satisfies

‖A‖Op � ‖K‖Coπ Lp,∞
m

−1
1 ⊗m2

(G) .

(ii) A is bounded from Coπ1
Lp
m1

(G1) to Coπ2
L∞
m2

(G2) if and only if its kernel
K is in Coπ Lq,∞

m−1
1 ×m2

(G1 ×G2). Its operator norm satisfies

‖A‖Op � ‖K‖Coπ Lq,∞
m

−1
1 ⊗m2

(G) .

Proof. Since Coπ1
L1
w1

(G1) ⊆ Coπ1
L1
m1

(G1) and Coπ2
Lp
m2

(G2) ⊆ Coπ2
L∞
1/w2

(G2)

by (10), the kernel theorem is applicable to the operator A, and there exists a
kernel K ∈ Coπ L∞

1/w(G1 ⊗G2) such that

VΨK(g1, g2) = kA(g1, g2) = 〈Aπ1(g1)ψ1, π2(g2)ψ2〉.

Assume first that K∈Coπ Lp,∞
m−1

1 ⊗m2
(G), which means that VΨK∈Lp,∞

1/m1⊗m2
(G).

By Proposition 6, the integral operator A defined by the integral kernel kA is
bounded from L1

m1
(G1) to Lp

m2
(G2). According to (18), A factors as A = V ∗

ψ2
AVψ1

,

where Vψ1
is an isometry from Coπ1

L1
m1

(G1) to L1
m1

(G1), and V ∗
ψ2

is bounded

from Lp
m2

(G2) to Coπ2
Lp
m2

(G2) by Proposition 1. Consequently A is bounded from

Coπ1
L1
m1

(G1) to Coπ2
Lp
m2

(G2) . The boundedness estimate follows from

‖A‖Op � ‖V ∗
ψ2
‖Op ‖A‖L1

m1
(G1)→Lp

m2
(G2) ‖Vψ1

‖Op

� C‖kA‖Lp,∞
m

−1
1 ⊗m2

(G) = C‖K‖Coπ Lp,∞
m

−1
1 ⊗m2

(G).
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Conversely, let A be bounded from Coπ1
L1
m1

(G1) to Coπ2
Lp
m2

(G2) . Then
Aπ1(g1)ψ1 ∈ Coπ2

Lp
m2

(G2) and the following estimates make sense:

‖K‖Coπ Lp,∞
m

−1
1 ⊗m2

(G) = ‖VΨK‖Lp,∞
m

−1
1 ⊗m2

(G) = ‖kA‖Lp,∞
m

−1
1 ⊗m2

(G)

= sup
g1∈G1

(∫
G2

|〈Aπ1(g1)ψ1, π2(g2)ψ2〉m2(g2)|pdg2
)1/p

m1(g1)
−1

= sup
g1∈G1

‖Aπ1(g1)ψ1‖Coπ2
Lp

m2
(G2)m1(g1)

−1

� ‖A‖Op sup
g1∈G1

‖π1(g1)ψ1‖Coπ1
L1

m1
(G1)m1(g1)

−1.

Since Vψ1
ψ1 ∈ L1

w1
(G1) and m1 is w1-moderate and thus satisfies m1(g1h)m1(g1)

−1

� w1(h), the last expression is bounded by

sup
g1∈G1

‖π1(g1)ψ1‖Coπ1
L1

m1
(G1) ·m1(g1)

−1 = sup
g1∈G1

∫
G1

|〈ψ1, π1(g
−1
1 h)ψ1〉|

m1(h)

m1(g1)
dh

= sup
g1∈G1

∫
G1

|〈ψ1, π1(h)ψ1〉
m1(g1h)

m1(g1)
dh � ‖Vψ1

ψ1‖L1
w1

(G1).

Thus K ∈ Coπ Lp,∞
m−1

1 ⊗m2
(G).

Part (ii) follows by using Proposition 6(ii) instead of (i) and is proved similarly.
�

The following diagram (Figure 1) shows the connection between the different
operators and spaces.

Vψ1

kA ∈ Lp,∞
m−1

1 ⊗m2
(G)

A bounded

A bounded

Vψ2

VΨ

L1
m1

(G1)

Coπ1
L1
m1

(G1) Coπ2
Lp
m2

(G2)

Lp
m2

(G2)

K ∈ Coπ Lp,∞
m−1

1 ⊗m2
(G)

Figure 1

Using interpolation between Lp-spaces, Schur’s test can also be formulated as
saying that an integral operator is bounded on all Lp simultaneously if and only if
its kernel belongs to L1,∞ ∩ L1,∞. The corresponding version for coorbit spaces is
a consequence of Theorem 7 and an interpolation argument.
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Corollary 8. The following conditions are equivalent:

(i) A : Coπ1
Lp
m1

(G1) → Coπ2
Lp
m2

(G2) is bounded for every 1 � p � ∞.

(ii) Both A : Coπ1
L1
m1

(G1) → Coπ2
L1
m2

(G2) and A : Coπ1
L∞
m1

(G1) →
Coπ2

L∞
m2

(G2) are bounded.

(iii) K ∈ Coπ L1,∞
m−1

1 ⊗m2
(G)

⋂
Coπ L1,∞

m−1
1 ⊗m2

(G).

Clearly one can now translate every boundedness result for an integral operator
into a kernel theorem for coorbit spaces. As a simple but important example
we offer a sufficient condition for regularizing operators, i.e., operators that map
distributions to test functions.

Theorem 9. Under the assumptions of Theorem 3, if the unique kernel of the
operator A satisfies K ∈ CoπL1

w(G), then A is bounded from Coπ1
L∞
1/w1

(G1) to

Coπ2
L1
w2

(G2).

Proof. Consider the integral operator A as in the proof of Theorem 7 and observe
that VΨK = kA ∈ L1

w(G) is a sufficient condition for A : L∞
1/w1

(G1) → L1
w2

(G2) to

be bounded by Schur’s test. �
4.1. Discretization. Coorbit theory guarantees the discretization of the coorbit
spaces via atomic decompositions and Banach frames. For our purposes, it is suf-
ficient to state a shortened and simplified version of [22, Theorem 5.3]. Let Y be
one of the function spaces Lp

m(G), Lp,∞
m (G), or Lp,∞

m (G), and let Yd be the natural
sequence space associated to Y .

Proposition 10. If ψ satisfies

(27)

∫
G

sup
h∈gQ

|Vψψ(h)|w(g)dg < ∞,

for a compact neighborhood Q of e, then there exist a discrete subset Λ ⊂ G and
constants C1, C2 > 0 such that

(28) C1‖f‖Coπ Y � ‖Vψf‖Yd
� C2‖f‖Coπ Y for every f ∈ Coπ Y .

Corollary 11. Let Λ = Λ1 × Λ2 ⊂ G be a discrete set such that {π(λ)Ψ}λ∈Λ

satisfies (28) for Coπ Lp,∞
m−1

1 ⊗m2
(G) and Coπ Lp,∞

m−1
1 ⊗m2

(G). If A is a bounded operator

from Coπ1
L1
w1

(G1) to Coπ2
L∞
1/w2

(G2) with kernel K, then the following hold:

(i) A : Coπ1
L1
m1

(G1) → Coπ2
Lp
m2

(G2) is bounded if and only if

(29) sup
λ1∈Λ1

( ∑
λ2∈Λ2

|VΨK(λ)(m−1
1 ⊗m2)(λ)|p

)1/p

< ∞.

(ii) Likewise A : Coπ1
Lp
m1

(G1) → Coπ2
L∞
m2

(G2) is bounded if and only if

(30) sup
λ2∈Λ2

( ∑
λ1∈Λ1

|VΨK(λ)(m−1
1 ⊗m2)(λ)|q

)1/q

< ∞.

Proof. (i) By Theorem 7 A has a kernel in Coπ Lp,∞(G), and

‖A‖Op � ‖K‖Coπ Lp,∞(G).

By (28), the expression in (29) is an equivalent norm for ‖K‖Coπ Lp,∞(G). The proof
of (ii) works in exactly the same way. �
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5. Examples

5.1. Modulation spaces. The Weyl-Heisenberg group GWH = Rd × Rd × T is
defined by the group law

(x, ω, e2πiτ ) · (x′, ω′, e2πiτ
′
) = (x+ x′, ω + ω′, e2πi(τ+τ ′−x·ω′)).

Let Txf(t) := f(t− x) denote the translation, and let Mωf(t) := e2πiωtf(t) be the
modulation operator. The operator πWH(x, ω, τ ) = e2πiτMωTx for (x, ω, τ ) ∈ GWH

defines a unitary square-integrable representation of GWH acting on L2(Rd), for
which every non-zero vector in L2(Rd) is admissible. Since the phase factor e2πiτ is
irrelevant for the definition of coorbit spaces, it is convenient to drop the trivial third
component and consider the time-frequency shift π(x, ω) = πWH(x, ω, 1) = MωTx.
Formally, we treat the projective representation π of R2d instead of the unitary
representation πWH of GWH . The transform corresponding to π is nothing else
but the short-time Fourier transform

Vψf(x, ω) = 〈f,MωTxψ〉 =
∫
Rd

f(t)ψ(t− x)e−2πiω·tdt, f, ψ ∈ L2(Rd).

The coorbit spaces associated to πWH coincide therefore with the coorbit spaces
associated to π. These are the modulation spaces Mp

m(Rd) which were first in-
troduced by Feichtinger in [14] as certain decomposition spaces and subsequently
were identified with the coorbit spaces of the Heisenberg group CoπWH

Lp
m(GWH) =

CoπLp
m(R2d) = Mp

m(Rd) [18]. We refer to the standard textbooks [20, 23] for more
information on time-frequency analysis.

Theorem 3 asserts that every bounded operator fromM1
w(R

d)=CoπWH
L1
w(GWH)

= Coπ L1
w(R

2d) to M∞
1/w(R

d) = CoπWH
L∞
1/w(GWH) = Coπ L∞

1/w(R
2d) possesses a

kernel K ∈ CoπWH⊗πWH
L∞
w−1⊗w−1(GWH × GWH) such that 〈Af, g〉 = 〈K, g ⊗ f〉

for f, g ∈ M1
w(R

d). Let us elaborate in detail what the kernel theorem asserts in this
case: for gi = (xi, ωi, τi) ∈ GWH , i = 1, 2, the tensor representation πWH ⊗ πWH

acts on the simple tensor (ψ2 ⊗ ψ1)(t2, t1) = ψ2(t2)ψ1(t1) ∈ L2(Rd) ⊗ L2(Rd) ∼=
L2(R2d) as

πWH ⊗ πWH(g2, g1)(ψ2 ⊗ ψ1)(t2, t1) = e2πi(τ1−τ2)Mω2
Tx2

ψ2(t2)Mω1
Tx1

ψ1(t1)

= e2πi(τ1−τ2)M(ω2,−ω1)T(x2,x1)(ψ2 ⊗ ψ1)(t2, t1) .

Thus except for the phase factor e2πi(τ1−τ2) the tensor representation πWH ⊗ πWH

is just the time-frequency shift M(ω2,−ω1)T(x2,x1) acting on L2(R2d). Consequently,
the coorbit spaces with respect to the product group GWH ⊗GWH are again mod-
ulation spaces, this time on R2d. For the coorbit of L∞ we compare the norms

‖K‖M∞(R2d) = sup
(x1,x2,ω1,ω2)∈R4d

∣∣〈K,M(ω1,ω2)T(x1,x2)(ψ2 ⊗ ψ1)
〉∣∣

and

‖K‖Coπ⊗πL∞(R4d) = sup(
(x1,ω1),(x2,ω2)

)
∈R4d

∣∣〈K,
(
π(x1, ω1)⊗ π(x2, ω2)

)
(ψ2 ⊗ ψ1)

〉∣∣ ,
which are obviously equal. In this case Theorem 3 is therefore just Feichtinger’s
kernel theorem: For A : M1(Rd) → M∞(Rd) there exists a unique kernel K ∈
M∞(R2d) such that 〈Af, g〉 = 〈K, g ⊗ f〉.
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The recent extension of Feichtinger’s kernel theorem by Cordero and Nicola [8]
can be seen in the same light. Let us explain the difference in the formulations.
Our approach considers the generalized wavelet transform

VΨK(x1, ω1, x2, ω2) = 〈K,πWH(x2, ω2, 1)⊗ πWH(x1, ω1, 1)(ψ2 ⊗ ψ1)〉
of the kernel. The conditions of Theorem 7 are formulated by mixed norms acting
simultaneously on the variables (x2, ω2) and (x1, ω1). The treatment in [8] uses the
short-time Fourier transform on R2d

VΨK(x1, x2, ω1, ω2) = 〈K,M(ω1,ω2)T(x1,x2)Ψ〉 ,
which is the same transform, except for the order of the variables. In [8] it was
therefore necessary to reshuffle the order of integration of time-frequency shifts and
to use the notion of mixed modulation spaces, which were studied in [4, 29]. The
new insight of our formulation is that the mixed modulation spaces are simply the
coorbit spaces with respect to the tensor product representation.

The special case of Theorem 7 for the Weyl-Heisenberg group and the weights
ms(x, ω, τ ) = (1+ |x|+ |ω|)s for s ∈ R states the following: Fix σ > 0 and let A be
an operator from M1

mσ
(Rd) to M∞

m−σ
(Rd). Then for |r|, |s| � σ, 1 � p, q � ∞, and

1/p+ 1/q = 1 we have

(i) A : M1
ms

(Rd) → Mp
mr

(Rd) bounded ⇔ K ∈ Coπ Lp,∞
m−s⊗wr

(R4d),

(ii) A : Mp
ms

(Rd) → M∞
mr

(Rd) bounded ⇔ K ∈ Coπ Lq,∞
m−s⊗mr

(R4d).

Regularizing operators from M∞ to M1 were recently studied by Feichtinger
and Jakobsen [19]: they characterized a subclass of this space of operators by an
integral kernel in M1(R2d). The sufficiency of this result in a coorbit version is
contained in Theorem 9.

5.2. Wavelet coorbit spaces and Besov spaces. The affine group Gaff = R×R∗

is given by the group law (x, a)·(y, b) = (x+ay, ab), where x, y ∈ R and a, b ∈ R\{0}.
Its left Haar measure is given by dxda

a2 . Let Daf(t) = |a|−1/2f(t/a) denote the
dilation operator. Then (x, a) → πaff(x, a) = TxDa defines a unitary, square-
integrable representation of Gaff on L2(R).

Now let f, ψ ∈ L2(R). The continuous wavelet transform is defined as

Wψf(x, a) := 〈f, πaff(x, a)ψ〉 = |a|−1/2

∫
R

f(t)ψ(a−1(t− x))dt,

and the admissibility condition (3) reads as∫
R∗

|ψ̂(ω)|2 dω|ω| < ∞.

It is well-known that the coorbit spaces associated to the representation πaff

are the homogeneous Besov spaces. See the textbooks [10, 28] for details and
further expositions of wavelet theory. For brevity, we consider only the coor-
bit spaces with respect to the weighted Lp(Gaff)-spaces with the weight function
νs(x, a) = νs(a) = |a|−s for s ∈ R. Note that ν−s = 1/νs. Then Coπaff

Lp
νs
(Gaff) =

Ḃ
s−1/2+1/p
p,p (R) by [15, Section 7.2]. In particular Coπaff

L1
νs
(Ga) = Ḃ

s+1/2
1,1 (R) and

Coπaff
L∞
νs
(Gaff) = Ḃ

s−1/2
∞,∞ (R). In this example Theorem 3 states that an opera-

tor A : Ḃs
1,1(R) → Ḃ−r

∞,∞(R) is bounded if and only if its associated kernel K is

in Coπaff⊗πaff
L∞
ν−s−1/2⊗ν−r−1/2

(G2
aff). At first glance not much seems to have been
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gained by this formulation, but it turns out that the coorbit spaces of the tensor
product πaff ⊗ πaff of G2

aff are well understood in the theory of function spaces
under the name of Besov spaces of dominating mixed smoothness. In particular,
Coπaff⊗πaff

L∞
ν−s−1/2⊗ν−r−1/2

(G2
aff) can be identified with the Besov space of dominat-

ing mixed smoothness S−s,−r
∞,∞ B(R2). See [32, Definition A.4] and [31]. Moreover,

Theorem 7 yields a characterization of continuous operators between certain Besov
spaces:

(i) A :Ḃs
1,1(R)→Ḃr

p,p(R) bounded ⇔ K∈Coπaff⊗πaff
Lp,∞
ν−s+1/2⊗νr+1/2−1/p

(G2
aff),

(ii) A :Ḃs
p,p(R)→Ḃr

∞,∞(R) bounded ⇔ K∈Coπaff⊗πaff
Lq,∞
ν−s−1/2+1/p⊗νr+1/2

(G2
aff).

The case (i) for p = 1 was already formulated in a discrete version by Meyer
[28, Section 6.9, Proposition 6].

Theorem 12. Let {ψk,j}(k,j)∈Z2 be a wavelet basis with ψk,j(t) = 2j/2ψ(2jt − k),
and assume that ψ has compact support and satisfies sufficiently many moment
conditions so that the assumption of Proposition 10 is satisfied. An operator A :
Ḃ0

1,1(R) → Ḃ0
1,1(R) is bounded if and only if

sup
(k′,j′)∈Z2

∑
(k,j)∈Z2

∣∣〈Aψk′,j′, ψk,j〉
∣∣2−j/2+j′/2 � C.

Proof. Set p = 1, s = −1/2, recall that kA = VΨK, and apply Corollary 11. �

5.3. The case of two distinct representations. For most applications it suffices
to consider a single group G and its product group G × G. Our formulation with
two different groups allows us to study operators acting between coorbit spaces
associated with different group representations. Using the representations of the
Weyl-Heisenberg group and the affine group of Sections 5.1 and 5.2, one can charac-
terize the boundedness of operators between certain modulation spaces and Besov
spaces by properties of their associated kernels. Theorem 7 now reads as follows:

(i) A : M1
ms

(Rd) → Ḃr
p,p(R) bdd.

⇔ K ∈ Coπaff⊗πWH
Lp,∞
m̃−s⊗νr+1/2−1/p

(GWH ×Gaff),

(ii) A : Mp
ms

(Rd) → Ḃr
∞,∞(R) bdd.

⇔ K ∈ Coπaff⊗πWH
Lq,∞
m−s⊗νr+1/2

(GWH ×Gaff),

(iii) A : Ḃr
1,1(R) → Mp

ms
(Rd) bdd.

⇔ K ∈ CoπWH⊗πaff
Lp,∞
m−r+1/2⊗νs

(Ga ×GWH),

(iv) A : Ḃr
p,p(R) → M∞

ms
(Rd) bdd.

⇔ K ∈ CoπWH⊗πaff
Lq,∞
ν−r−1/2+1/p⊗ms

(Ga ×GWH).

As a special case one obtains a characterization of the bounded operators A from
Ḃr

1,1(R) to L2(Rd). Since M2(Rd) = L2(Rd), they are completely characterized by

the membership of their kernel in Coπaff⊗πWH
L2,∞
1⊗m−r+1/2

(Gaff ×GWH).
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