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RESTRICTIONS OF HIGHER DERIVATIVES

OF THE FOURIER TRANSFORM

MICHAEL GOLDBERG AND DMITRIY STOLYAROV

Abstract. We consider several problems related to the restriction of (∇k)f̂ to
a surface Σ ⊂ Rd with nonvanishing Gauss curvature. While such restrictions
clearly exist if f is a Schwartz function, there are few bounds available that
enable one to take limits with respect to the Lp(Rd) norm of f . We establish
three scenarios where it is possible to do so:

• When the restriction is measured according to a Sobolev space H−s(Σ)
of negative index, we determine the complete range of indices (k, s, p) for
which such a bound exists.

• Among functions where f̂ vanishes on Σ to order k − 1, the restriction

of (∇k)f̂ defines a bounded operator from (this subspace of) Lp(Rd) to

L2(Σ) provided 1 ≤ p ≤ 2d+2
d+3+4k

.

• When there is a priori control of f̂ |Σ in a space H�(Σ), � > 0, this

implies improved regularity for the restrictions of (∇k)f̂ . If � is large

enough, then even ‖∇f̂‖L2(Σ) can be controlled in terms of ‖f̂‖H�(Σ)

and ‖f‖Lp(Rd) alone.

The proofs are based on three main tools: the spectral synthesis work of
Y. Domar, which provides a mechanism for Lp approximation by “convolv-
ing along surfaces in spectrum”, a new bilinear oscillatory integral estimate
valid for ordinary Lp functions, and a convexity-type property of the quan-

tity ‖(∇k)f̂‖H−s(Σ) as a function of k and s that allows one to employ the

control of ‖f̂‖H�(Σ).
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1. Introduction

1.1. Overview of the derivative restriction problem. Questions regarding the
fine properties of the Fourier transform of a function in Lp(R

d) have long played a
central role in the development of classical harmonic analysis. While the Hausdorff–
Young theorem guarantees that for 1 ≤ p ≤ 2, the Fourier transform of f ∈ Lp

belongs to its dual space Lp/(p−1), it does not provide guidance on whether f̂ may

be defined on a given measure-zero subset Σ ⊂ Rd. The canonical question of this
type, originating in the work of Stein circa 1967, is to find the complete range of
pairs (p, q) for which the inequality

(1) ‖f̂ |Sd−1‖Lq(Sd−1) � ‖f‖Lp(Rd)

holds true. The problem was solved in the case d = 2 in [8] and remains an active
subject of research in higher dimensions (e.g., [5, 13, 14]).

In this paper we investigate the possibility of defining the surface trace of higher
order gradients of the Fourier transform of an Lp function, with a focus on uniform
estimates in the style of (1). Let Σ be a closed smooth embedded (d−1)-dimensional
submanifold of Rd. Assume that the principal curvatures of Σ are nonzero at any
point. Let K be a compact subset of Σ and let k be a natural number. We consider
as a model problem the inequality

(2)
∥∥(∇kf̂)

∣∣
Σ

∥∥
L2(K)

�K ‖f‖Lp(Rd).

Here and in what follows the Fourier transform has priority over differentiation:
we first compute the Fourier transform and then differentiate it. We choose the
standard Hausdorff measure dσ on Σ to define the L2-space on the left hand side.
The notation “�K” signifies that the constant in the inequality may depend on
the choice of K, but should not depend on f . We restrict our study to the case
of L2 instead of Lq with arbitrary q on the left hand side, because the Hilbert space
properties of L2 make this case more tractable. In fact, the range of all possible p
in (1) when q = 2 is described by the classical Stein–Tomas theorem (established
in [25] and [21]).

Unfortunately, inequality (2) cannot hold true unless k = 0. To see that, consider
the shifts of a function f , in other words fN (x) = f(x+Ny), where y �= 0 is a fixed
point in Rd. If we plug fN into (2) instead of f , the norm on the left hand side will
be of the order Nk, whereas the quantity on the right will not depend on N .

The next question along these lines is: what modifications can be made so
that (2) becomes a true statement for k ≥ 1? Since the original inequality (1)
is shift-invariant, we seek translation invariant conditions for f . This rules out
natural candidates such as requiring (1 + |x|)kf ∈ Lp.

One possibility is to relax the desired local regularity from L2(K) to a Sobolev
space of negative order. Consider the inequality

(3)
∥∥φ(∇kf̂)

∣∣
Σ

∥∥
H−s(Σ)

�φ ‖f‖Lp(Rd).

Here φ ∈ C∞
0 (Σ) is an arbitrary compactly supported smooth function (the constant

in the inequality may depend on it). The parameter s is a nonnegative real, andH−s

is the L2-based Bessel potential space. Whenever (3) holds, there is a trace value

for ∇kf̂ in H−s
loc (Σ) for all f ∈ Lp(R

d).
One might guess that the inequality (3) gets weaker as we increase s, opening

the way to define the trace of ∇kf̂ on Σ with an increasingly large range of p. This
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is indeed the case. The case k = 0 in (3) was considered by Cho, Guo, and Lee

in [6]. They observed Sobolev space trace values of f̂ for f ∈ Lp with p going up
to the sharp exponent dictated by the Fourier transform of a surface measure.

There are two parameters that appear frequently as bounds in our arguments:

σp =
d

p
− d+ 1

2
;(4)

κp =
d+ 1

p
− d+ 3

2
.(5)

Where it occurs later on, we also use the standard notation p′ = p
p−1 for the dual

exponent to Lp.

Proposition 1.1 (Corollary of Theorem 1.1 in [6]). Let p > 1. The inequality (3)
is true if and only if

k ≤ s;(6)

k < σp;(7)

2k − s ≤ κp.(8)

For fixed k and p with k < σp, that means s ≥ max(k, 2k − κp). In the case p = 1,
the case k = σ1 is also permitted if s > k.

The parameter σp is related to the “surface measure extremizer”. When condi-
tion (7) does not hold, Proposition 1.1 fails by testing its dual statement against a
surface measure on Σ. The parameter κp, and its role in condition (8) are similarly
associated with Knapp examples.

In odd dimensions there is an endpoint case p = 1, k = σ1 = d−1
2 ∈ N where

inequality (3) is true for s > d−1
2 . This is stated more precisely in Corollary 7.8

below. The proof of that bound is more direct than most of our other arguments
(in fact it is nearly equivalent to the dispersive bound for the Schrödinger equation)
and it is completely independent; see Proposition 7.7.

The paper contains two proofs of Proposition 1.1. First, it is a special case of
the more extensive Theorem 1.16, whose proof is presented as Section 4. Then we
also show in Subsection 7.3 how to derive Proposition 1.1 from the results of [6].
To be more specific, one can interpolate between the results of [6] for k = 0 and the
Besov space bound in Proposition 7.7 for p = 1, k = d−1

2 to obtain the full range
of Theorem 1.1.

If one is determined not to weaken the L2(K) norm in (2), it is necessary to
consider f belonging to an a priori narrower space than Lp(R

d). We introduce the
main character.

Definition 1.2. Let Σ be a closed smooth embedded (d− 1)-dimensional subman-
ifold of Rd, p ∈ [1,∞), and k ∈ N. Define the space ΣL

k
p by the formula

Σ
Lk
p = closLp

({
f ∈ S(Rd)

∣∣∣ ∀l = 0, 1, 2, . . . , k − 1 ∇lf̂ = 0 on Σ
})

.

Define
Σ
L0
p to be simply Lp(R

d). The first nontrivial space
Σ
L1
p will often be denoted

by ΣLp.

The symbol S denotes the Schwartz class of test functions. We note that in the
definition above, we do not need any information about Σ. In fact, Σ may be an
arbitrary closed set. The restriction p < ∞ is taken so that the Schwartz class is
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dense in Lp, though one could replace closure with weak closure in the case p = ∞
if needed. These generalities will not arise in the present paper. From now on we
assume that Σ is a closed smooth embedded (d− 1)-dimensional submanifold of Rd

with nonvanishing principal curvatures.
It will turn out (see Theorem 1.6 below) that for a certain range of p and k, the

space
Σ
Lk
p contains precisely the functions f ∈ Lp whose Fourier transform vanishes

on Σ to order k − 1. We take advantage of the additional structure of the domain

to formulate a second adaptation of inequality (2), this time with the trace of ∇kf̂
still belonging to L2

loc(Σ):

(9)
∥∥(∇kf̂)

∣∣
Σ

∥∥
L2(K)

�K ‖f‖Lp
for all f ∈ ΣL

k
p.

One might expect that a similar statement with the L2 norm replaced by a
weaker Sobolev norm will admit a larger range of p, that is,

(10)
∥∥(φ∇kf̂)

∣∣
Σ

∥∥
H−s(Σ)

�φ ‖f‖Lp(Rd) for all f ∈ ΣL
k
p.

However at this point in the discussion it is not clear why (10) should be true
outside the range established in Proposition 1.1, or why (9) should be true at all.

Given a generic function f ∈ Lp(R
d), its Fourier transform f̂ is not differentiable

even to fractional order. We have reduced the obstruction somewhat by seeking

derivatives of f̂ only at the points ξ ∈ Σ, and by specifying a substantial number

of its partial derivatives via the assumption f ∈
Σ
Lk
p. Nevertheless, values of f̂ |Σ

alone do not uniquely determine f ∈ Lp, nor are they known to shed much light on

the behavior of f̂ in a neighborhood of Σ.
Theorem 1.4 below finds the complete range of p for which an L2 gradient re-

striction (9) is true. In particular, the range is nonempty when d ≥ 4k + 1. The
range of p permitted in (10) is also sharp in the same way as Proposition 1.1 and the
results in [6]. The range of s we obtain here is much larger than what is true in the
context of Proposition 1.1, but most likely not optimal due to some complications
with linear programming over the integers.

The k = 1 case of Theorem 1.4 shows that an a priori assumption f̂ |Σ = 0

leads to nontrivial bounds on ∇f̂ |Σ. In fact there is a larger family of bounds for

trace values of ∇kf̂ , and one can begin the bootstrapping process with a much

milder assumption f̂ |Σ ∈ H�(Σ) instead of requiring it to vanish. We explore these
generalizations in Proposition 1.11, Theorem 1.12, and the related discussion. The
inequality which takes the place of (10) has the form∥∥(φ∇kf̂)

∣∣
Σ

∥∥
H−s(Σ)

�φ

(
‖f‖Lp(Rd) + ‖φf̂‖H�(Σ)

)
for all f ∈ Lp

(the right hand side may be infinite). Remarkably, there are cases where this
statement holds with only an L2(Σ) norm on the left side. In Corollary 1.13 we
find a sizable range of indices (d, p, �) that admit a local L2 bound on the gradient

of f̂ , ∥∥φ∇f̂
∥∥
L2(Σ)

�φ

(
‖f‖Lp(Rd) + ‖φf̂‖H�(Σ)

)
for all f ∈ Lp.

The spaces ΣL
k
p that arise in Definition 1.2 are not a new construction. They

appeared in [12] (see Proposition 12 in that paper) and [11] where the authors in-
vestigated the action of Bochner–Riesz operators of negative order on these spaces.
They arose in [24] in connection with Sobolev-type embedding theorems. We de-
scribe this development in Section 2.
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In fact, the spaces
Σ
Lk
1 played the central role in the study of the spectral syn-

thesis problem in the 1960s and 1970s. We stress the work of Domar here (e.g., [7])
and will rely upon it in Section 3.

It is worth noting that the main inequality used to derive (9) and (10) is valid
for all functions in Lp, not just those whose Fourier restriction vanishes on Σ. The
formulation of this inequality, which may be of independent interest, is given in (29)
below and the sharp range of p for which it holds is found in Theorem 1.16.

1.2. Statement of results. It follows from Definition 1.2 that the spaces ΣL
k
p get

more narrow as we increase k:

Lp ⊇ ΣL
1
p ⊇ ΣL

2
p ⊇ . . . ⊇ ΣL

k
p ⊇ . . . ⊇ ΣL

∞
p .

The final space can be defined as the closure in Lp of the set of Schwartz functions
whose Fourier transform vanishes in a neighborhood of Σ. We claim that ΣL

k
p =

ΣL
∞
p when k is sufficiently large (i.e., the chain of spaces stabilizes). Here is the

precise formulation.

Proposition 1.3. We have
Σ
Lk
p =

Σ
Lk+1
p =

Σ
L∞
p provided k ≥ σp = d

p − d+1
2

and p > 1. If p = 1, this is true provided k > d−1
2 = σ1.

For the case p = 1, this proposition was proved in [7], and the proof works for
arbitrary p (except for, possibly, p = ∞, which we do not consider here). The
theorem is sharp in the sense that

Σ
Lk
p �=

Σ
Lk+1
p provided k < σp (see Theorem 1.6

below).

Theorem 1.4. The inequality (9) is true if and only if p ∈ [1, 2d+2
d+3+4k ], or equiva-

lently 2k ≤ κp.

More generally, inequality (10) is true for p ∈ [1, 2d
d+1+2k ) and

s ≥ max(0, k + 1− �σp − k
, 2k − κp),

where the notation �·
 indicates the smallest integer greater than or equal to the
enclosed value. This covers the entire range k < σp. When p = 1 and σ1 = κ1 =
d−1
2 ∈ N the value s = max(0, 2k − d−1

2 ) is also permitted.

Remark 1.5. The p = 1, k = σ1 = d−1
2 ∈ N endpoint case is handled in Corollary 7.8

below, with inequality (10) holding for all s > k.

The first claim in the theorem above is an “iff” statement. Usually, the “if”
part is much more involved than the “only if” one. In fact, the “only if” part
of Theorem 1.4 is proved with the standard Knapp example. Some of the other
theorems in the paper will have a richer collection of “extremizers”. Moreover,
one and the same “extremizer” may prove sharpness of several related estimates.
We collect the descriptions of such type “extremizers” (and thus, the proofs of the
“only if” parts) in Section 6.

Theorem 1.4 says that the operator

Rk
K : f �→ (∇kf)

∣∣
Σ

acts continuously from the space ΣL
k
p to L2(K) when p ∈ [1, 2d+2

d+3+4k ], or from ΣL
k
p

to H−s(K) for some combinations of (p, s) with p ∈ [1, 2d
d+1+2k ). This allows us to

define a new space

(11) KerRk =
⋂

K⊂Σ

KerRk
K ,
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which consists of all Lp functions for which the (L2 or H−s) traces of all partial
derivatives of order k vanish on Σ. Note that Rk−1 is formally defined on

Σ
Lk−1
p ⊇

ΣL
k
p, and so on, thus we have vanishing of lower order derivatives as well. We also

note that in the case when Σ is compact, one does not need to use the intersec-
tion in (11) and may simply write KerRk = KerRk

Σ. It follows from definitions
that

Σ
Lk+1
p ⊂ KerRk. In fact, the two spaces must coincide. This looks like a

trivial approximation statement, however, we do not know a straightforward proof.

Theorem 1.6. For any p ∈ [1, 2d+2
d+3+4k ], the spaces ΣL

k+1
p and KerRk coincide with

Rk being regarded as a map from ΣL
k
p to L2

loc(Σ). This occurs when 2k ≤ κp.

For any p ∈ [1, 2d
d+1+2k ), the spaces ΣL

k+1
p and KerRk coincide with Rk being

regarded as a map from ΣL
k
p to H−s

loc (Σ) for the same range of s as in Theorem 1.4.
This occurs when k < σp, or k ≤ σ1 when p = 1.

Remark 1.7. Since Rk acts nontrivially on the Schwartz functions contained in

Σ
Lk
p, it follows that

Σ
Lk
p �

Σ
Lk+1
p in this range of k. Thus, Proposition 1.3 and

Theorem 1.6 completely classify the spaces
Σ
Lk
p, modulo some details about the

optimal target space for Rk.

Remark 1.8. In the papers [11] and [12], the condition “f̂ = 0 on the unit sphere”
was understood in the sense of L2 traces.

Theorem 1.4 covers many combinations k > s ≥ 0 that are forbidden in Propo-

sition 1.1 by demanding that f̂ vanishes to order k − 1 on Σ. We now introduce

a family of statements which assume only smoothness of f̂ |Σ instead of vanish-
ing. Bessel spaces already appear on the left hand side of inequality (3), so it is

reasonable to use the same scale to describe the smoothness of f̂ |Σ.

Definition 1.9. Let k be a natural number, let � and s be nonnegative reals, and
let p∈ [1,∞). We say that the higher derivative restriction property HDR(Σ,k,s,�,p)
holds true if for any smooth compactly supported function φ in d variables, the
estimate

(12)
∥∥(φ∇kf̂)

∣∣
Σ

∥∥
H−s(Σ)

�φ

(
‖f‖Lp(Rd) + ‖φf̂‖H�(Σ)

)

holds true for any Schwartz function f .

The HDR property resembles a Dirichlet-to-Neumann bound for Fourier trans-

forms in the sense that regularity of f̂ along the surface Σ implies a certain degree
of improved regularity in the transverse direction. It is notable that the restric-

tion f̂ |Σ does not uniquely determine f ∈ Lp or the values of f̂(ξ) anywhere else
in Rd, so the inequality (12) must hold uniformly for all functions whose Fourier

transforms coincide with f̂ on Σ.

Remark 1.10. A complete generalization of Theorem 1.4 would include a priori

estimates on ‖φ∇j f̂‖H�j (Σ) for j = 0, 1, . . . , J ≤ k− 1. We consider only the J = 0

case above for relative simplicity of notation.
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Proposition 1.11. If HDR(Σ, k, s, �, p) holds true and p > 1, then

k ≤ s+ �;(13)

k ≤ s+ 1;(14)

k < σp;(15)

k�

s+ �− k
≤ κp when k > s;(16)

2k − s ≤ κp,(17)

where the numbers σp and κp are defined by (4) and (5), respectively. In the
case p = 1, equality in (15) may also occur.

The sufficient conditions we are able to provide for the HDR inequalities do
not always match the necessary ones listed above. Roughly speaking, they get
close to necessary conditions when � or k is relatively small and there is a gap
if � and k are both large. By “getting close to necessary conditions” we mean
that the nonsharpness comes only from our limitation of working with integer k.
The sufficient conditions we are able to obtain are rather bulky (this is again due to
“integer arithmetic”). They are formulated in terms of certain convex hulls of finite
collections of points in the plane. Since we need to introduce more notation before
formulating the strongest available statement, we refer the reader to Theorem 5.21
in Section 5 for the details and state a representative subset of the results here.

Theorem 1.12. Let p > 1 and κp ∈ N. If

(18) 2
⌈�− 1

�
κp

⌉
≤ κp or k ≤

[κp

2

]
,

then HDR(Σ, k, s, �, p) holds true provided (13), (14), (15), (16), and (17) are sat-
isfied. If (18) does not hold, then HDR(Σ, k, s, �, p) holds true provided (13)–(17)
are satisfied as well as the inequality

(19) s ≥ k − κp − k

κp −
[κp

2

] .
Here and in what follows, �·
 is the upper integer part of a number, i.e., the

smallest integer that is greater than or equal to the number; the notation [·] denotes
the lower integer part of a number, i.e., the largest integer that does not exceed the
number:

(20) [x] = sup{z ∈ Z | z ≤ x}; �x
 = inf{z ∈ Z | z ≥ x}.

The s = 0, k = 1 cases of Theorem 1.12 illustrate its ability to extract derivatives

of f̂ in all directions when only regularity along Σ is assumed.

Corollary 1.13. Suppose p = 2d+2
d+3+2m for some integer 2 ≤ m < d−1

2 , and let

� ≥ 2d+2−p(d+3)
2d+2−p(d+5) = m

m−1 . Then

(21)
∥∥∇f̂

∥∥
L2(K)

�K,φ

(
‖f‖Lp(Rd) + ‖φf̂‖H�(Σ)

)
for any Schwartz function f , compact subset K ⊂ Σ, and smooth cutoff φ that is
identically 1 on K.
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In Section 6.4 we construct a translated Knapp example to show that the lower
bound for � is sharp.

The property HDR(Σ, k, s, �, p) has a dual formulation in terms of the Fourier
extension operator. We denote the Lebesgue measure on Σ by dσ.

Corollary 1.14. Suppose HDR(Σ, k, s, �, p) holds true and p < 2d
d+1 (e.g., if the

conditions of Theorems 1.12 or 5.21 are satisfied). Then for each g ∈ Hs(Σ), multi-
index α with |α| ≤ k, and smooth compactly supported φ, there exist Fα ∈ Lp′(Rd)
and gα ∈ H−�(Σ) such that

(22) Fα + (φgα dσ)̌ = xα(φg dσ)̌ ,

and furthermore

(23) ‖Fα‖Lp′ (R
d) + ‖gα‖H−�(Σ) �φ ‖g‖Hs(Σ).

Conversly, if for any compactly supported smooth function φ, for any g, and for
any α there exist Fα and gα such that (22) and (23), then HDR(Σ, k, s, �, p) holds
true (we still assume p < 2d

d+1 ).

When Σ is the paraboloid ξd = 1
2 |ξ|2, the Fourier extension operator doubles as

the linear propagator of the Schrödinger equation on Rn with n = d − 1. In this
context Corollary 1.13 implies a time-weighted scattering property for solutions of
the Schrödinger equation.

Corollary 1.15. Let m be an integer 2 ≤ m < n
2 . Given g ∈ L2(R

n) with Fourier
support in the unit ball, there exists a function g̃, also with Fourier support in the
unit ball, such that

(24)
∥∥(1 + |x|)− m

m−1 g̃
∥∥
L2

� ‖g‖L2

and

(25)
∥∥teitΔg − eitΔg̃

∥∥
L 2n+4

n−2m
(Rn+1)

� ‖g‖L2(Rn).

If n is even, the result holds for m = n
2 provided the exponent of (1 + |x|) in (24)

is strictly less than − n
n−2 .

Finally, we present the main analytic tool used in our proofs of HDR inequalities.
We will formulate it in local form: now Σ is a graph of a function on Rd−1 rather
than an arbitrary submanifold.

Let U be a neighborhood of the origin in Rd−1. Let h be a C∞-smooth function
on U such that h(0) = 0 and ∇h(0) = 0. We also assume that the Hessian of h at
zero does not vanish,

det
∂2h

∂ζ2
(0) �= 0.

Moreover, we assume that the gradient of h is sufficiently close to zero and the

second differential is sufficiently close to ∂2h
∂ζ2 (0):

(26) ∀ζ ∈ U

∥∥∥∥∂h∂ζ (ζ)
∥∥∥∥ ≤ 1

10d
,

∥∥∥∥∂2h

∂ζ2
(ζ)− ∂2h

∂ζ2
(0)

∥∥∥∥ ≤ 1

10

∣∣∣ det ∂2h

∂ζ2
(0)

∣∣∣.
The function h naturally defines the family of surfaces

Σr =
{
(ζ, h(ζ) + r)

∣∣ ζ ∈ U
}
, r ∈ (−∞,∞).

We also take some small number ε > 0 and consider the set V = U × (−ε, ε).



54 MICHAEL GOLDBERG AND DMITRIY STOLYAROV

We will be using Bessel potential spaces adjusted to these surfaces. Now we will
need the precise quantity defining the Bessel norm. It is convenient to parametrize
everything with U . For γ ∈ R and a compactly supported function φ on Σr (for
some fixed r), define its H−γ-norm by the formula

(27) ‖φ‖2H−γ(Σr)
=

∫
Rd−1

∣∣∣Fζ→z

[
φ(ζ, hr(ζ))

]
(z)

∣∣∣2 (
1 + |z|

)−2γ
dz.

The symbol F denotes the Fourier transform in (d−1) variables, and we have used
the notation hr(ζ) = h(ζ) + r. We will also use the homogeneous norm

‖φ‖2
Ḣ−γ(Σr)

=

∫
Rd−1

∣∣∣Fζ→z

[
φ(ζ, hr(ζ))

]
(z)

∣∣∣2|z|−2γ dz, γ ∈
(
0,

d− 1

2

)
.

Since all our functions are supported on U , this norm is equivalent to the inhomo-
geneous norm (27) when γ ∈ (0, d−1

2 ). We will often use another formula for the
homogeneous norm:
(28)

‖φ‖2
Ḣ−γ(Σr)

= Cd,γ

∫∫
U×U

φ(ζ, hr(ζ))φ(η, hr(η))|ζ − η|2γ−d+1 dζ dη, γ ∈
(
0,

d− 1

2

)
.

The constant Cd,γ may be computed explicitly, however, we do not need the sharp
expression for it.

Let α and β be integers between 0 and d−1
2 , let γ ∈ [0, d−1

2 ) be real, and let p ∈
[1,∞]. Let also ψ be an arbitrary C∞

0 function supported in U . We are interested
in the differentiated restriction inequality

(29)

∣∣∣∣( ∂

∂r

)β∥∥∥∂αf̂

∂ξαd
ψ

∥∥∥2

Ḣ−γ(Σr)

∣∣∣∣
r=0

∣∣∣∣ � ‖f‖2Lp(Rd).

So we compute the Fourier transform of an Lp function, calculate its derivative with

respect to the dth coordinate, compute the Ḣ−γ norms of traces of this derivative
on the surfaces Σr, and then differentiate β times with respect to r. We use the
variable ξ for points in Rd on the spectral side and ζ for points in Rd−1 decoding
points on Σr (for example, ξ is quite often equal to (ζ, h(ζ))).

The crucial statement which unlocks most results in this paper is a sharp char-
acterization of when (29) is valid.

Theorem 1.16. Let h ∈ C∞(U) satisfy the assumptions above, and let γ ∈
[0, d−1

2 ). Inequality (29) is true for the combination of (α, β, γ, p) if and only if

α ≤ γ,(30)

α+ β ≤ σp,(31)

2α− γ + β ≤ κp,(32)

and the inequality (31) is strict if p > 1.

In the case α = β = γ = 0, the estimate (29) reduces to the classical Stein–Tomas
bound. Though our proof will follow the scheme of the fractional integration method
(see, e.g., [18, 11.2.2]), both the p = 1 case and the interpolation of operators in
the proof of (29) require significant new efforts.

Note that Proposition 1.1, except for the endpoint case p = 1, k = d−1
2 , follows

from choosing β = 0 in Theorem 1.16 and applying the localization argument given
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in Subsection 7.1 below. It is not clear to the authors whether one can derive the
full statement of Theorem 1.16 from the results of [6] or from Proposition 1.1 (which
correspond to the cases α = β = 0 and β = 0, respectively).

Our approach using Theorem 1.16 seems to be a different strategy from the one
in [6]. It makes possible the extensive family of conditional restriction estimates
proved in Theorem 1.12 and its corollary. The method also allows us to work with
Strichartz estimates, i.e., consider the larger scale of mixed-norm Lebesgue spaces
on Rd−1 × R on the right hand side of (29).

The organization of the paper is as follows. Section 2 is a brief statement of
some problems in the literature that provided motivation for the current work.
Section 3 tackles the functional analysis of spaces ΣL

k
p. Proposition 1.3 is proved

here, and Theorems 1.4 and 1.6 are reduced to corollaries of Theorem 1.16. The
proof of Theorem 1.16 takes up the entirety of Section 4. In Section 5 we present the
argument deriving an expanded version of Theorem 1.12 from Theorem 1.16. Sec-
tion 6 contains examples demonstrating the necessity of conditions in Theorems 1.4
and 1.16 as well as Proposition 1.11. The final section contains miscellaneous tech-
nical results: an argument for working locally on Σ, a Stein–Weiss inequality, and
statements related to the p = 1, k = d−1

2 endpoint case of Proposition 1.1 in odd
dimensions.

2. Precursors to the current work

Fredholm conditions. Functions whose Fourier transform vanish on a compact
surface in Rd, and in particular on a sphere, arise in the study of spectral theory
of Schrödinger operators H = −Δ + V . It is well known that the Laplacian has
absolutely continuous spectrum on the positive halfline [0,∞), and no eigenvalues or
singular continuous spectrum. If V (x) can be approximated by bounded, compactly
supported functions in a suitable norm (for example V ∈ Ld/2(R

d) suffices when
d ≥ 3), then H is a relatively compact perturbation of the Laplacian and may have
countably many eigenvalues with a possible accumulation point at zero. If V is
real-valued, then H is a self-adjoint operator whose eigenvalues must all be real
numbers as well.

It is not immediately obvious how the continuous spectrum of H relates to
that of the Laplacian, and whether any eigenvalues are embedded within it. An
argument due to Agmon [1] proceeds as follows. Suppose ψ is a formal solution of
the eigenvalue equation (−Δ− λ)ψ = −V ψ for some λ > 0. Then

(33) ψ = − lim
ε→0+

(−Δ− (λ+ iε))−1V ψ

from which it follows that the imaginary parts of 〈V ψ, ψ〉 and − lim
ε→0

〈V ψ, (−Δ− (λ

+ iε))−1V ψ〉 must agree. The former is clearly zero since V (x) is real-valued.

The latter turns out to be a multiple of ‖(V ψ)̂ |Σ‖2L2(Σ), where Σ is the sphere

{ξ ∈ Rd | |ξ|2 = λ}. Hence (V ψ)̂ vanishes on the sphere of radius
√
λ.

It is not surprising that the Fourier multiplication operator mε(ξ) = (|ξ|2 −
(λ + iε))−1 might have favorable mapping properties when applied specifically to
V ψ, whose Fourier transform vanishes where mε(ξ) is greatest. Bootstrapping
arguments using (33) show that ψ ∈ L2(R

d), even if it was not assumed a priori to
belong to that space.
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Viewed another way, the eigenvalue problem (−Δ − λ)ψ = −V ψ is an inho-
mogeneous partial differential equation where the principal symbol is elliptic. The
Fredholm condition for existence of solutions is that −V ψ should be orthogonal to
the nullspace of the adjoint operator (−Δ− λ)∗. As we will argue later in Subsec-
tion 3.1, this nullspace consists of all distributions whose Fourier transform acts as
a linear functional on C∞(Σ). Thus V ψ satisfies the Fredholm condition precisely

if (V ψ)̂ |Σ = 0.
The analysis in [1] is carried out in polynomially weighted L2(R

d) and applies
to a wide family of elliptic differential operators H = P (i∇) + V . The main
nondegeneracy condition is that the gradient of P does not vanish on the level
set {ξ | P (ξ) = λ}. Similar arguments in [12], [15], and [11] are carried out (for
P (ξ) = |ξ|2) in Lq(R

d) and related Sobolev spaces for various ranges of q. Curvature
of the level sets of P is a crucial feature in these works, as it is in the present paper.

Sobolev-type inequalities. We start with the classical Sobolev embedding the-
orem

‖f‖Lq
� ‖∇f‖Lp

, f ∈ C∞
0 (Rd), q =

dp

d− p
, 1 ≤ p < d, d ≥ 2.

For p > 1, it follows from the Hardy–Littlewood–Sobolev inequality. In the limiting
case p = 1, the Hardy–Littlewood–Sobolev inequality fails, however, as it was
proved by Gagliardo and Nirenberg, the Sobolev embedding holds. This happens
because the space

Ẇ 1
1 (R

d) = closL1

({
∇f

∣∣∣ f ∈ C∞
0 (Rd)

})
is strictly narrower than L1 (they are even nonisomorphic as Banach spaces). Later,
it was observed that there are many similar inequalities where ∇f may be replaced
with a more complicated differential vector-valued expression (see [4], [19], and the
survey [20]).

In [24], the second-named author studied the anisotropic bilinear inequality
(34)∣∣∣〈f, g〉Ẇα,β

2 (R2)

∣∣∣ �
∥∥(∂k

1 − τ∂l
2)f

∥∥
L1(R2)

∥∥(∂k
1 − σ∂l

2)g
∥∥
L1(R2)

, f, g ∈ C∞
0 (R2)

(such a type of inequalities were used in [17] for purposes of Banach space theory).

Here Ẇα,β
2 (R2) is the anisotropic Bessel potential space equipped with the norm

‖f‖Ẇα,β
q

=
∥∥∥F−1

(
f̂(ξ, η)|ξ|α|η|β

)∥∥∥
Lq

,

the symbols σ and τ denote complex scalars, and ∂1 and ∂2 are partial derivatives
with respect to the first and the second coordinates correspondingly. It appeared
that (34) holds even in the cases where the differential polynomials on the right hand
side are not elliptic, however, this may happen only in the anisotropic case k �= l.
This leads to the natural conjecture that the inequality
(35)

‖f‖Ẇα,β
q

� ‖(∂k
1 −σ∂l

2)f‖Lp
,

α

k
+

β

l
= 1−

(1

p
− 1

q

)(1

k
+

1

l

)
, k �= l, p > 1, q < ∞,

might hold true. We are especially interested in the case where the operator on
the right hand side is nonelliptic, that is, il−kσ ∈ R. Assume this is so. Similar to
the classical proof of the Sobolev embedding theorem, one may express f in terms
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of (∂k
1 −σ∂l

2)f using a certain integral operator. This will be a Bochner–Riesz-type
operator of order −1 with the singularity on the curve

Γk,l =
{
(ξ, η) ∈ R2

∣∣∣ (2πiξ)k = σ(2πiη)l
}
.

Note that this curve is convex outside the origin. Application of the Littlewood–
Paley inequality and homogeneity considerations (see [24]) reduce (35) to the case
where the spectrum of f lies in a small neighborhood of a point on Γk,l. So, by the
results of [2], the inequality (35) is true if 1

p − 1
q ≥ 2

3 , p < 4
3 , and q > 4. Moreover,

one may construct examples to show that the conditions 1
p − 1

q ≥ 2
3 and p < 4

3 are
necessary.

Note that the Fourier transform of the function (∂k
1 − σ∂l

2)f vanishes on Γk,l,
which is a smooth convex curve in the plane (with, possibly, a singularity at zero).
Thus, we need to analyze the action of a Bochner–Riesz-type operator on the
space

Σ
Lp with Σ = Γk,l. It appears that passing to a narrower space allows

one to get rid of the condition q > 4. This work was done a half year later in [11].

Theorem 2.1 ([24] and [11]). The inequality (35) holds true if 1
p −

1
q ≥ 2

3 , 1 < p <
4
3 , and q < ∞.

3. Study of the spaces
Σ
Lk
p

3.1. Description of the annihilator and Domar’s theory. Let ∂l
Σ denote the

operator of a normal derivative of order l with respect to Σ, ∂Σ : S(Rd) → C∞(Σ),

∂l
Σ[Φ](ξ) =

∂lΦ

∂nlΣ(ξ)
(ξ), Φ ∈ S(Rd), ξ ∈ Σ.

The symbol nΣ(ξ) denotes the normal vector to Σ at the point ξ. In particu-
lar, ∂0

Σ[Φ] is simply the restriction of Φ to Σ.
There are conjugate operators (∂l

Σ)
∗ : (C∞(Σ))′ → S ′(Rd). We can also form an

operator JlΣ : S(Rd) →
⊕

0≤s≤l C
∞(Σ) composed of pure normal derivatives:

S(Rd) � Φ �→ JlΣ[Φ] =
(
∂0
Σ[Φ], ∂

1
Σ[Φ], . . . , ∂

l
Σ[Φ]

)
∈

⊕
0≤s≤l

C∞(Σ).

This operator also has an adjoint, which maps a vector-valued distribution Λ =
{Λs}0≤s≤l with compact support on Σ to a Schwartz distribution on Rd.

Lemma 3.1. Let p ∈ (1,∞). The annihilator of ΣL
k
p in Lp′ can be described as

(36) AnnLp′ (ΣL
k
p) = closLp′

({
g ∈ Lp′

∣∣∣ ∃Λ ∈
⊕

0≤s≤k−1

(
C∞(Σ)

)′

such that ĝ =
(
Jk−1
Σ

)∗
[Λ]

})
.

If p = 1, the closure is with respect to the weak-* topology of L∞.

Remark 3.2. Since the distribution Λ has compact support, g has bounded spec-
trum. Clearly, if Σ is not compact, one may construct a function g in the annihilator
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of
Σ
Lp whose spectrum is not bounded. That is why we need to add closure on the

right hand side of (36). In the case where Σ is compact, this is not needed:

AnnLp′ (ΣL
k
p) =

{
g ∈ Lp′

∣∣∣ ∃Λ ∈
⊕

0≤s≤k−1

(
C∞(Σ)

)′
such that ĝ =

(
Jk−1
Σ

)∗
[Λ]

}
, Σ is compact.

The proof of Lemma 3.1 presented below also simplifies in the case where Σ is
compact. The functions ψ and Ψ may be omitted in this case.

We will need a technical fact to prove Lemma 3.1. It is standard, so we omit its
proof.

Lemma 3.3. For any bounded domain Ω, consider the subspace C∞(Σ,Ω, l) of
vector-valued functions in

⊕
0≤s≤l C

∞(Σ) supported in Ω∩Σ. There exists a linear

operator ExtΩ,l : C
∞(Σ,Ω, l) → S(Rd), which is inverse to JlΣ in the sense

∀ϕ ∈ C∞(Σ,Ω, l) JlΣ
[
ExtΩ,l[ϕ]

]
= ϕ.

Proof of Lemma 3.1. First, we note that since ΣL
k
p is a translation invariant space,

the set of functions g with compact spectrum is dense in AnnLp′ (ΣL
k
p). Consider

such a function g. It suffices to construct

Λ ∈
⊕

0≤s≤k−1

(
C∞(Σ)

)′
such that ĝ =

(
Jk−1
Σ

)∗
[Λ].

Let Ω be a bounded domain containing the spectrum of g. Consider the
operator ExtΩ,k−1 constructed in Lemma 3.3 and define Λ (as a functional on⊕

0≤s≤k−1C
∞(Σ)) by the formula

Λ[ϕ] = ĝ
[
ExtΩ,k−1[ψϕ]

]
, ϕ ∈

⊕
0≤s≤k−1

C∞(Σ),

where ψ is a smooth function on Σ supported in Ω that is equal to one in a neigh-
borhood of supp ĝ∩Σ. We are required to show that ĝ =

(
Jk−1
Σ

)∗
[Λ], which becomes

〈ĝ,Φ〉 = 〈ĝ,ExtΩ,k−1[ψJ
k−1
Σ [Φ]]〉

for every Φ ∈ S(Rd). Since ψ = 1 in a neighborhood of the support of ĝ, we may
write

〈ĝ,ExtΩ,k−1[ψJ
k−1
Σ [Φ]]〉 = 〈ĝ,ExtΩ,k−1[J

k−1
Σ [ΨΦ]]〉 and 〈ĝ,Φ〉 = 〈ĝ,ΨΦ〉,

where Ψ is smooth function supported in Ω that equals one in a neighborhood
of supp ĝ. It remains to prove〈

ĝ,
(
id−ExtΩ,k−1 ◦Jk−1

Σ

)
[ΨΦ]

〉
= 0.

Since Ker Jk−1
Σ ⊂ Ker ĝ (recall that g annihilates ΣL

k
p), it suffices to show that

Jk−1
Σ ◦

(
id−ExtΩ,k−1 ◦Jk−1

Σ

)
= 0,

which holds true since Jk−1
Σ ◦ ExtΩ,k−1 = id by construction of ExtΩ,k−1. �
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Lemma 3.4. The set{
g ∈ Lp′

∣∣∣ ∃Λ ∈
⊕

0≤s≤k−1

C∞
0 (Σ) such that ĝ =

(
Jk−1
Σ

)∗
[Λ]

}

is dense in AnnLp′ (ΣL
k
p) if p > 1. In the case p = 1, this set is weakly dense.

Proof. The case p = 1 had been considered in [7]. We repeat the argument for the
general case here. Let g be a function in the said annihilator. After applying a par-
tition of unity, we may assume that the corresponding vector-valued distribution Λ
provided by Lemma 3.1 is supported in a chart neighborhood V of a point ξ ∈ Σ,
as it will only be necessary to sum a finite number of such pieces. We may also
suppose that ξ = 0 and

(37) Σ ∩ V = {(ζ, h(ζ)) | ζ ∈ U};

here U is a neighborhood of the origin in Rd−1 and h : Rd−1 → R is a smooth
function such that h(0) = 0, ∇h(0) = 0 (see Subsection 7.1 for details). By our

assumptions on the principal curvatures of Σ, the second differential ∂2h
∂ζ2 is non-

degenerate on U . Consider the operator S that makes Σ ∩ V flat:

(38) S[Φ](ξ) = Φ
(
ξd̄, ξd + h(ξd̄)

)
, Φ ∈ C∞

0 (V ), ξ ∈ Rd.

We use the notation ξ = (ξd̄, ξd), so ξd is the last coordinate of ξ and ξd̄ ∈ Rd−1 is
the vector consisting of first d− 1 coordinates.

Let ψ be a compactly supported smooth function on Rd−1 with unit integral, and
let ψn(ζ) = nd−1ψ(nζ) be its dilations. The function ξ �→ ψn(ξd̄) is also denoted
by ψn. Consider the family of operators Dn, n ≥ n0, n0 is sufficiently large, given
by the rule

(39) Dn[Φ] = F−1
[
S−1

[
S[ΨΦ̂] ∗ ψn

]]
, Φ ∈ S(Rd).

Here Ψ ∈ C∞
0 (V ) is a function that equals one on the support of Λ. It is clear

that the Dn are uniformly bounded as operators on L2(R
d). Lemma 4.2 in [7]

says that the Dn are also (uniformly in n) bounded as operators on L1, and since
the dual operators have an identical structure they are also bounded on L∞. By
interpolation, the Dn are uniformly bounded on Lp′ . Also, since {ψn}n∈N is an
approximate identity,

‖Dn[Φ]− Φ‖Lp′ → 0 when Φ ∈ S(Rd).

Thus, for every g ∈ Lp′ , p′ < ∞, we have ‖Dn[g]− g‖Lp′ → 0. It remains to notice
that Dn maps compactly supported distributions of the form

F−1
[(
Jk−1
Σ

)∗
[Λ]

]
, Λ ∈

⊕
0≤s≤k−1

(
C∞(Σ)

)′
,

to the ones for which Λ ∈
⊕

0≤s≤k−1C
∞
0 (Σ). Thus, if g ∈ AnnLp′ (ΣL

k
p) is a

function with bounded spectrum, then Dn[g] ∈ AnnLp′ (ΣL
k
p), Dn[g] is generated by

smooth Λ, and Dn[g] → g in Lp′ . �

Proof of Proposition 1.3. By Lemma 3.1, it suffices to show that any function g ∈
AnnLp′ (ΣL

k+1
p ) can be approximated by functions in AnnLp′ (ΣL

k
p) when k ≥ d

p−
d+1
2 ,
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and k > d−1
2 when p = 1. By Lemma 3.4, we may assume that

(40) ĝ =
(
JkΣ

)∗
[Λ], Λ ∈

⊕
0≤s≤k

C∞
0 (Σ).

It suffices to prove that Λk = 0, where Λ = (Λ0,Λ1, . . . ,Λk). We may suppose
that Λ is supported in a neighborhood V of a point on Σ. We may also assume (37)
and replace normal derivatives by derivatives with respect to ξd:

ĝ =

k∑
s=0

∂sΛ̃s

∂ξsd
,

where Λ̃s are distributions generated by complex measures on Σ∩V whose densities
with respect to the Lebesgue measure on Σ are smooth functions. Note that Λk = 0
whenever Λ̃k = 0. Since each function Λ̃s has smooth density with respect to the
Lebesgue measure on Σ, one may use the stationary phase method to compute the
asymptotics of F−1[Λ̃s] at infinity (see, e.g., [22]):

F−1[Λ̃s] = e(x)|x|−
d−1
2 +O(|x|−

d+1
2 )

for all x such that x‖nΣ(ξ) for some ξ ∈ Σ with Λ̃s(ξ) �= 0. Here e(x) is a nonzero

oscillating factor with constant amplitude that depends on h and the density of Λ̃s.
This shows that

|ĝ(x)| � |x|k−
d−1
2 , x → ∞, x ‖ nΣ(ξ), Λ̃k(ξ) �= 0.

On the other hand, ĝ ∈ Lp′ , which for p > 1 requires p′(k − d−1
2 ) < −d, equiv-

alently k < d
p − d+1

2 , contradicting our assumptions. Therefore, Λk = 0 and,

thus, AnnLp′ (ΣL
k+1
p ) = AnnLp′ (ΣL

k
p). If p = 1 the contradiction is reached pro-

vided k − d−1
2 > 0.

To show that ΣL
k
p = ΣL

∞
p , we note that the annihilator of the latter space

consists of all Lp′ functions whose Fourier transform is supported on Σ, recall the
Schwartz theorem that any distribution supported on Σ may be represented in the
form

(
JlΣ

)∗
[ζ] for some l, and use the reasoning above. �

3.2. Coincidence of
Σ
Lk
p and the spaces defined as kernels of restriction

operators. We relate the ΣL
k
p spaces with restriction operators. Consider a neigh-

borhood V such that (37) holds true. We may redefine V in such a way that

V = {ξ ∈ Rd | |ξd − h(ξd̄)| < δ, ξd̄ ∈ U}.
This gives a natural parametrization of V by U×(−δ, δ). We will need the translated
copies of Σ:

Σr = Σ+ (0, 0, . . . , 0, r), r ∈ (−δ, δ).

Note that this definition depends on the choice of U .
Consider the restriction operators

(41) RΣ,r[f ] = f̂ |V ∩Σr
, f ∈ S(Rd).

Definition 3.5. We say that the statement R(Σ, p, s) holds true if the RΣ,r admit
continuous extensions as Lp(R

d) → H−s(V ∩ Σr) operators for any choice of U ,
and the norms of these extensions are uniform in r (however, we do not require any
uniformity with respect to U).
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We say that Rk(Σ, p, s) is true if Rk−1(Σ, p, s) is true and for any choice of U
the operators RΣ,r extend continuously from the domain

{f ∈ S(Rd) | ∀l < k ∇lf̂ = 0 on Σ}
to a family of mappings ΣL

k
p → H−s(V ∩ Σr) whose norms are bounded uniformly

by C|r|k.

Remark 3.6. In the definitions above it is important to be consistent with regard
to the construction of local Sobolev norms on Σr. When we discuss R(Σ, p, s), we
will define the Sobolev norm by the rule (28) for each particular choice of U , h, and
r.

Definition 3.7. For a fixed s ≥ 0, define the set ΣL̃
k
p by the formula

Σ
L̃k
p =

{
f ∈ Lp(R

d)
∣∣∣ ∀U ∥∥RΣ,r[f ]

∥∥
H−s(V ∩Σr)

= o(|r|k−1)
}
.

Note that it is unclear whether ΣL̃
k
p is closed in Lp or not.

Lemma 3.8. Suppose that Σ has nonvanishing curvature, p ∈ [1,∞), and

Rk−1(Σ, p, s) holds. Then, ΣL̃
k
p = ΣL

k
p.

Proof. It is clear that ΣL
k
p ⊂ clos(ΣL̃

k
p), as ΣL̃

k
p contains all Schwartz functions whose

Fourier transform vanishes to order k − 1 on Σ. In fact, thanks to the uniform
convergence implied by condition Rk−1(Σ, p, s) it is even true that ΣL

k
p ⊂ ΣL̃

k
p. So

it suffices to show that ΣL̃
k
p ⊂ ΣL

k
p. Assume the contrary. By the Hahn–Banach

theorem,

∃f ∈ ΣL̃
k
p, g ∈ AnnLp′

(
ΣL

k
p

)
, 〈f, g〉 �= 0.

By Lemma 3.4, we may assume that g is of the form

(42) ĝ = (Jk−1
Σ )∗[ζ], ζ ∈

⊕
0≤s≤k−1

C∞
0 (Σ).

Applying the same reasoning as in the proof of Lemma 3.4, we may also assume
that ζ has compact support within a chart neighborhood V where Σ ∩ V is the
graph of a smooth function h : U ⊂ Rd−1 → R, h(0) = 0, and ∇h(0) = 0.

Recall the “flattening” operator S defined in (38). There exists another set of

functions ζ̃ ∈
⊕

0≤s≤k−1C
∞
0 (U) such that (S−1)∗(Jk−1

Σ )∗[ζ] = (Jk−1
Rd−1)

∗[ζ̃]. If one

considers each component of ζ as an element of C∞
0 (U) via the parametrization of

Σ∩V , then the components of ζ̃ are constructed from ζ, its gradients (in Rd−1) up
to order k − 1, and the partial derivatives of h.

Let ψ be a compactly supported function on the unit interval whose integral
equals one. Consider its dilations ψn(ξd) = nψ(nξd) and the formal convolution in
the dth variable

(Jk−1
Rd−1)

∗[ζ̃](ξd̄, · ) ∗ ψn(ξd) =
k−1∑
s=0

ζ̃s(ξd̄)
∂sψn

∂ξsd
(ξd),

which is a function in C∞
0 (U × [− 1

n ,
1
n ]). This function is bounded pointwise by

the maximum size of |ψ(k−1)
n (ξd)|, which is approximately nk. All of its partial

derivatives in the ξd̄ directions are bounded by nk as well, because those derivatives

act on ζ̃, not on ψn.
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Now define gn ∈ S(Rd) by the formula

gn(ξd̄, ξd) = S∗[(Jk−1
Rd−1)

∗[ζ̃](ξd̄, · ) ∗ ψn] = S∗[(S−1)∗(Jk−1
Σ )∗[ζ](ξd̄, · ) ∗ ψn]

= S∗[(S−1)∗[ĝ](ξd̄, · ) ∗ ψn].

It should be clear that convolution in the ξd direction commutes with operators S∗

and its inverse, thus the construction simplifies to

ĝn(ξd̄, ξd) = ĝ(ξd̄, · ) ∗ ψn(ξd) or gn(x) = g(x)ψ̌(nxd).

It follows that gn → g in Lp′ (in the case p′ = ∞ we have weak-* convergence
relative to L1 instead), which means that, 〈f, gn〉 → 〈f, g〉. On the other hand,

‖RΣ,r[gn]‖Hs(U) �
{
nk, |r| � n−1;

0, |r| � n−1.

That gives a bound

|〈f, gn〉| = |〈f̂ , ĝn〉| �
∫ 1

n

− 1
n

∫
Σr

|〈f̂ , ĝn〉| dσdr � 1

n
· nk · o(n1−k) = o(1),

forcing 〈f, g〉 = limn→∞〈f, gn〉 = 0. This contradicts the original assertion that
〈f, g〉 �= 0. �
Definition 3.9. We say that the statement Rk

w(Σ, p, s) holds true if the mapping

S(Rd) � f �→ ∇kf |Σ ∈ C∞(Σ)

extends to a bounded linear operator between the spaces ΣL
k
p and H−s(K ∩Σ) for

any compact set K.

It is explained in Remark 7.3 below that Rk(Σ, p, s) leads to Rk
w(Σ, p, s).

We end this subsection with an analog of Lemma 3.8 for HDR inequalities. The
proof is direct, i.e., does not use duality.

Lemma 3.10. For any function f ∈ Lp such that φf̂ |Σ ∈ H�(Σ), where φ ∈
C∞

0 (Rd), there exists a sequence {fn}n of Schwartz functions such that

‖f − fn‖Lp
+

∥∥φ(f̂ − f̂n)
∣∣
Σ

∥∥
H�(Σ)

→ 0.

Proof. As usual, we may assume that φ and f̂ are supported in a chart neighbor-
hood V of a point ξ ∈ Σ. We may also suppose that ξ = 0 and (37), where U
is a neighborhood of the origin in Rd−1 and h : Rd−1 → R is a smooth function
such that h = 0, ∇h = 0 (see Subsection 7.1 for details). By Proposition 1.3, in
the regime σp ≤ 0, the set of Schwartz functions whose Fourier transform vanishes
on Σ, is dense in Lp, and there is nothing to prove. Let us assume σp > 0.

We construct the functions Fn by the rule

Fn(x) = f(x)Ψ
( x

an

)
,

where Ψ is a fixed Schwartz function with Ψ(0) = 1 and bounded spectrum, and an
is a large number such that ‖f − Fn‖Lp

≤ 2−n. The functions Fn approximate f

in Lp norm, however, their Fourier transforms may have infinite H�(Σ) norms.
There is a control on a weaker quantity, namely, Theorem 1.4 (in the case k = 0)
says that

(43) ‖φ(f̂ − F̂n)‖H−s(Σ) � 2−n



HIGHER DERIVATIVES OF THE FOURIER TRANSFORM 63

for sufficiently large s.
Let now fn = Dn[Fn], where Dn is the Domar operator (39). We need to prove

two limit identities

‖f − fn‖Lp
→ 0 and ‖f̂ − f̂n‖H�(Σ) → 0.

The first identity is simple since

‖f − fn‖Lp
≤ ‖f −Dnf‖Lp

+ ‖Dn[f − Fn]‖Lp
� o(1) + 2−n

by the properties of the operators Dn (see the proof of Lemma 3.4). For the second
identity, we write

‖φ(f̂ − f̂n)‖H�(Σ) ≤ ‖φF [f −Dnf ]‖H�(Σ) +
∥∥φF[

Dn[f − Fn]
]∥∥

H�(Σ)
.

Note that Dn convolves the restriction to Σ of the Fourier transform of the function
with ψn (see (39)). Thus, the first summand tends to zero by the approximation

of identity properties (and since f̂ |Σ ∈ H�), and the second summand is bounded
by O(n�+s2−n) by formula (43). �
3.3. Proofs of “if” part in Theorems 1.4 and 1.6. Since Rk(Σ, p, s) leads
to Rk

w(Σ, p, s), Theorem 1.4 follows from the lemma below.

Lemma 3.11. The statement Rk(Σ, p, 0) holds true if p ∈ [1, 2d+2
d+3+4k ]. For every

p ∈ [1, 2d
d+1+2k ) there exists s ≤ max(0, [2k− σp] + 1, 2k− κp) such that Rk(Σ, p, s)

is true. When p = 1 and σ1 = d−1
2 ∈ N, the value s = max(0, 2k − d−1

2 ) suffices.

Finally, in odd dimensions R d−1
2 (Σ, 1, s) holds for s > d−1

2 .

Proof. Consider the case s = 0. It suffices to prove the bound∥∥ψ(·)f̂(·, h(·) + r)
∥∥2

L2(U)
�ψ |r|2k‖f‖2

Σ
Lk

p
, ψ ∈ C∞

0 (U).

By definition of
Σ
Lk
p, we may assume that f is a Schwartz function. Then, the

function Θ given by the rule

(44) Θ(r) =
∥∥ψ(·)f̂(·, h(·) + r)

∥∥2

L2(U)

is smooth. We need to prove |Θ(r)| � |r|2k‖f‖2
Σ
Lk

p
, and for that, it suffices to show

an inequality and several equalities.
The inequality is

(45) ∀r ∈ (−δ, δ)
∣∣∣∂2kΘ

∂r2k
(r)

∣∣∣ � ‖f‖2Lp
,

which follows from Theorem 1.16 (take α = 0, β = 2k, γ = 0, Σr in the role of Σ,
and notice that (30) is satisfied automatically, (32) is equivalent to p ∈ [1, 2d+2

d+3+4k ],

and (31) follows from (32) in this case).
The equalities are

(46) ∀j ∈ [0..2k − 1]
∂jΘ

∂rj
(0) = 0.

Indeed, we use the product rule:

∂j

∂rj

[∥∥ψ(·)f̂(·, h(·) + r)
∥∥2

L2(U)

]∣∣∣∣
r=0

=
∑
i≤j

Ci
j

〈
ψ(·)∂

if̂

∂ξid
(·, h(·)), ψ(·)∂

j−if̂

∂ξj−i
d

(·, h(·))
〉
L2(U)

(47)
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and notice that in each scalar product on the right hand side, one of the functions
is identically zero since either i < k or j − i < k.

It remains to combine (45), (46), and the Taylor integral remainder formula to
complete the proof in the case s = 0.

When 2k > κp, the choice of α = 0, β = 2k, and γ = 0 is no longer available in
Theorem 1.16. Suppose p > 1. In order to use the product rule argument above, one
must set 2α+β = 2k, and it is desirable to keep α as small as possible since γ ≥ α is
a prominent lower bound for s. We can apply Theorem 1.16 with α = [2k−σp]+1,
β = 2k − 2α (note that β ≥ 0 and α ≥ 0 here), and s = γ = max(α, 2k − κp), then
follow the above steps for

Θ1(r) =
∥∥∥ψ(·)( ∂

∂r

)α

f̂(·, h(·) + r)
∥∥∥2

H−s(U)

to conclude that ∂βΘ1

∂rβ
(r) � ‖f‖2Lp

for all r ∈ (−δ, δ), and every lower order deriv-

ative vanishes at r = 0 because f ∈ ΣL
k
p. Thus ‖ψ(·)( ∂

∂r )
αf̂(·, h(·) + r)‖H−s(U) �

|r|β/2‖f‖
Σ
Lk

p
. Furthermore, ( ∂

∂r )
j f̂(·, h(·)+r) is assumed to vanish at r = 0 for each

0 ≤ j < α ≤ k. The Taylor remainder formula and the Minkowski inequality show

that ‖f̂(·, h(·) + r)‖H−s(U) � |r|α+β/2‖f‖
Σ
Lk

p
, and we previously set α+ β

2 = k.

When p = 1 and k < σ1 = d−1
2 ∈ N, it is also permissible to apply Theorem 1.16

with α = 2k − d−1
2 , β = 2k − 2α, and s = γ = 2k − d−1

2 . In the endpoint case

p = 1, k = d−1
2 ∈ N, Corollary 7.8 below directly states that |Θ1(r)| � ‖f‖2L1

for

s > d−1
2 and α = k = d−1

2 . �

Proof of Theorem 1.6. Clearly,
Σ
Lk+1
p ⊂ KerRk whenever Rk is suitably defined

as a map from ΣL
k+1
p into H−s

loc (Σ). To prove the reverse embedding, it suffices to

show that KerRk ⊂ ΣL̃
k+1
p , since by Lemmas 3.11 (with the value of s specified

there) and 3.8, we have ΣL
k+1
p = ΣL̃

k+1
p for these choices of p and s.

We first consider the case s = 0, p ∈ [1, 2d+2
d+3+4k ]. By Definition 3.7, we need to

prove

Θ(r) = o(|r|2k), r → 0, f ∈ KerRk,

where the function Θ is defined by (44). By the Taylor integral remainder formula
and (46), we simply need to show a slight refinement of (45):

(48) lim
r→0

∣∣∣∂2kΘ

∂r2k
(r)

∣∣∣ = 0, f ∈ KerRk.

Note that (45) holds for all f ∈ Lp. By approximating any such f by Schwartz

functions, we see that ∂2kΘ
∂r2k

(r) is also continuous in r. If f ∈
Σ
Lk
p, the computation

in (47) with j = 2k shows that ∂2kΘ
∂r2k

(0) = Ck
2k

∥∥ψ ∂kf̂
∂ξkd

∥∥2

L2(U)
, and for f ∈ KerRk ⊂

ΣL
k
p, the norm on the right hand side is zero.

The remaining case is essentially the same. This time ∂βΘ1

∂rβ
(r) is continuous for

all f ∈ Lp, the lower order derivatives vanish at r = 0 for f ∈ ΣL
k
p, and finally

∂βΘ1

∂rβ
(0) = 0 if f ∈ KerRk. Thus ∂βΘ1

∂rβ
(r) = o(|r|β) and the rest of the integrations

are the same as in Lemma 3.11. �
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3.4. Proof of Corollary 1.14. Let X be the vector space of functions {f ∈
Lp(R

d) | φf̂ ∈ H�(Σ)} equipped with the norm ‖f‖X = ‖f‖Lp
+ ‖φf̂‖H�(Σ). This

space contains all functions in the Schwartz class, and convergence with respect
to the Schwartz class topology implies convergence in the norm of X. Thus every
bounded linear functional on X belongs to the class of distributions S ′(Rd).

Lemma 3.10 asserts that the Schwartz class is dense in X. To show completeness
of X, observe that by the k = 0 case of Proposition 1.1 (i.e., by [6]), if fn → f

in Lp, then there exists s ≥ max(0, 2k − κp) so that φf̂n → φf̂ in H−s(Σ). Every

Cauchy sequence in X has φf̂n convergent to a limit in the stronger topology of

H�(Σ), and the limit must be φf̂ as well.

We may identify f ∈ X with the ordered pair (f, φf̂). This gives an isometric
embedding of X into Lp(R

d) × H�(Σ). Its image is closed, so the Hahn–Banach
theorem implies that every linear functional ρ ∈ X ′ extends to a functional on
Lp(R

d) × H�(Σ). Using Parseval’s identity there exists Fρ ∈ Lp′(Rd) and gρ ∈
H−�(Σ) with norms bounded by that of ρ and which satisfy

ρ(f) =

∫
Rd

Fρf dx+

∫
Rd

(φgρ dσ)̌ f dx.

The defining property of HDR(Σ, k, s, �, p) expressed in (12) is that the linear

map f �→ φDαf̂ |Σ is continuous from X to H−s(Σ). The dual map, taking g �→
(ix)α(φg dσ)̌ therefore is bounded fromHs(Σ) toX ′, with elements ofX ′ described
as above.

Remark 3.12. Due to the use of the Hahn–Banach theorem in this argument, we
do not have a construction for Fα and gα in Corollary 1.14. In fact, it is not proved
here that these two functions can be chosen to depend linearly on g ∈ Hs(Σ).

4. Proof of Theorem 1.16

4.1. Pointwise estimates of the kernel. The quadratic inequality (29) is equiv-
alent to its bilinear version

(49)

∣∣∣∣( ∂

∂r

)β〈∂αf̂

∂ξαd
ψ,

∂αĝ

∂ξαd
ψ

〉
Ḣ−γ(Σr)

∣∣∣∣
r=0

∣∣∣∣ � ‖f‖Lp
‖g‖Lp

.

We denote the bilinear form we estimate by B and its kernel by K:

(50) B(f, g) =
( ∂

∂r

)β〈∂αf̂

∂ξαd
ψ,

∂αĝ

∂ξαd
ψ

〉
Ḣ−γ(Σr)

∣∣∣∣
r=0

=

∫∫
R2d

f(x)g(y)K(x, y) dx dy.

We also recall the notation

x = (xd̄, xd), where xd̄ = (x1, x2, . . . , xd−1),

for x ∈ Rd.

Proposition 4.1. The kernel K defined in (50) satisfies the bound

(51) |K(x, y)| � (1+|xd|)α−γ(1+|yd|)α−γ(1+|xd−yd|)β+γ− d−1
2 , γ ∈

[
0,

d− 1

2

)
.
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Remark 4.2. One can track the “numerology” of conditions (30), (31), and (32) from
this proposition. The boundedness of B on L1 × L1 is equivalent to the uniform
boundedness of K. The right hand side of (51) is uniformly bounded exactly when
these three conditions hold for p = 1 (they reflect the behavior of the kernel along
the directions xd = yd, xd = 1, and xd = −yd, respectively).

In the case γ = 0, the inequality (51) follows from the standard Van der Corput
lemma, because in this case

K(x, y) = (−1)α(2πi)2α+βxα
d y

α
d (xd − yd)

β

∫
U

e2πi(〈xd̄−yd̄,ζ〉+(xd−yd)h(ζ))
∣∣ψ(ζ)∣∣2 dζ,

the angular brackets denote the standard scalar product in Rd−1.
So, we assume γ > 0 in what follows. We start with explicit formulas for the

kernel K:

K(x, y)(52)

= (2πixd)
α(−2πiyd)

α
( ∂

∂r

)β〈
δ̂xψ, δ̂yψ

〉
Ḣ−γ(Σr)

∣∣∣∣
r=0

(28)
= Cd,γ(2πixd)

α(−2πiyd)
α
( ∂

∂r

)β
[ ∫∫
U×U

e2πi(〈ζ,xd̄〉−〈η,yd̄+xd(h(ζ)+r)−yd(h(η)+r))〉

· ψ(ζ)ψ(η)|ζ − η|2γ−d−1 dζ dη

]∣∣∣∣
r=0

= Cd,γ(−1)α(2πi)2α+βxα
d y

α
d (xd − yd)

β

·
∫∫

U×U

e2πi(〈ζ,xd̄〉−〈η,yd̄〉+xdh(ζ)−ydh(η))ψ(ζ)ψ(η)|ζ − η|2γ−d−1 dζ dη.

We want to pass to the dyadic version of the Bessel seminorm, namely,

‖f‖2
Ḣ−γ(Σr)

= Cd,γ

∑
k≥0

2k(d−1−2γ)

∫∫
U×U

f(ζ, hr(ζ))f(η, hr(η))ϕ(2
k|ζ − η|) dζ dη,

γ ∈
(
0,

d− 1

2

)
,

based on the formula

(53) |ζ − η|2γ−d+1 =
∑
k≥0

2k(d−1−2γ)ϕ(2k|ζ − η|), |ζ − η| � 1.

The function ϕ ∈ C∞
0 (R) is supported outside zero and nonnegative.

We substitute formula (53) into (52) and split K into a dyadic sum:

K(x, y) = Cd,γ(−1)α(2πi)2α+β
∑
k≥0

Ik(x, y),

where

Ik(x, y) = 2k(d−1−2γ)xα
d y

α
d (xd − yd)

β

·
∫∫
U×U

e2πi(〈ζ,xd̄〉−〈η,yd̄〉+xdh(ζ)−ydh(η))ψ(ζ)ψ(η)ϕ(2k|ζ − η|) dζ dη.
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Lemma 4.3. For any x, y and any k ≥ 0,

|Ik(x, y)| � 2k(d−1−2γ)(1 + |xd|)α−
d−1
2 (1 + |yd|)α−

d−1
2 |xd − yd|β.

Proof. The integral in the formula for Ik may be thought of as the (2d − 2)-
dimensional Fourier integral:

Ik(x, y) = 2k(d−1−2γ)xα
d y

α
d (xd − yd)

β

· F(ζ,η) 
→(xd̄,yd̄)

[
e2πi(xdh(ζ)−ydh(η))ψ(ζ)ψ(η)ϕ(2k|ζ − η|)

]
(xd̄,−yd̄).

It suffices to prove the inequality∥∥∥∥F(ζ,η) 
→(xd̄,yd̄)

[
e2πi(xdh(ζ)−ydh(η))ψ(ζ)ψ(η)ϕ(2k|ζ − η|)

]∥∥∥∥
L∞

(54)

� (1 + |xd|)−
d−1
2 (1 + |yd|)−

d−1
2 .

We represent the function we apply to the Fourier transform as a product of two
functions

(ζ, η) �→ e2πi(xdh(ζ)−ydh(η))ψ(ζ)ψ(η) and (ζ, η) �→ ϕ(2k|ζ − η|).
By the Van der Corput lemma, the Fourier transform of the first function is uni-
formly (in (xd̄, yd̄)) bounded by the right hand side of (54). It remains to notice
that the Fourier transform of the second function is a complex measure whose total
variation is bounded uniformly in k. This is easiest to see by making a linear change
of variables from (ζ, η) to (ζ, ζ − η). �

Define the number k0 ≥ 0 by the rule

(55) 22k0 =
(1 + |xd|)(1 + |yd|)

1 + |xd − yd|
.

Lemma 4.4. For any x, y and any k ≥ k0,

|Ik(x, y)| � 2−2kγ(1 + |xd|)α(1 + |yd|)α(1 + |xd − yd|)β−
d−1
2 .

Proof. Let |yd| ≥ |xd|. It suffices to prove the estimate∣∣∣∣
∫∫
U×U

e2πi(〈ζ,xd̄〉−〈η,yd̄〉+xdh(ζ)−ydh(η))ψ(ζ)ψ(η)ϕ(2k|ζ − η|) dζ dη
∣∣∣∣

� 2−k(d−1)(1 + |xd − yd|)−
d−1
2 .

We introduce new variables (θ, η) = (2k(ζ−η), η) and disregard oscillations in the θ
variable:∣∣∣∣

∫∫
U×U

e2πi(〈ζ,xd̄〉−〈η,yd̄〉+xdh(ζ)−ydh(η))ψ(ζ)ψ(η)ϕ(2k|ζ − η|) dζ dη
∣∣∣∣

=2−k(d−1)

∣∣∣∣
∫∫

R2d−2

e2πi(〈η+2−kθ,xd̄〉−〈η,yd̄〉+xdh(η+2−kθ)−ydh(η))ψ(η+2−kθ)ψ(η)ϕ(|θ|)dθdη
∣∣∣∣

� 2−k(d−1) sup
|θ|�1

∣∣∣∣
∫

Rd−1

e2πi(〈η,xd̄−yd̄〉+xdh(η+2−kθ)−ydh(η))ψ(η + 2−kθ)ψ(η) dη

∣∣∣∣.
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It remains to prove∣∣∣∣
∫

Rd−1

e2πi(〈η,xd̄−yd̄〉+xdh(η+2−kθ)−ydh(η))ψ(η + 2−kθ)ψ(η) dη

∣∣∣∣
� (1 + |xd − yd|)−

d−1
2 , |θ| � 1.

The function ψ(· + 2−kθ) is uniformly (with respect to k and θ) bounded in any
Schwartz norm, so its Fourier transform is an L1-function whose norm is bounded
independently of k and θ. Thus, it suffices to prove

(56)

∣∣∣∣
∫

Rd−1

e2πi(〈η,xd̄−yd̄〉+xdh(η+2−kθ)−ydh(η))ψ(η) dη

∣∣∣∣ � (1 + |xd − yd|)−
d−1
2

uniformly in xd̄, yd̄. This inequality is trivial if |xd − yd| � 1, so we assume the
quantity |xd−yd| is sufficiently large. We represent the nonlinear part of the phase
function as

xdh(η + 2−kθ)− ydh(η) = (xd − yd)Φθ,xd,yd
(η),

where

Φθ,xd,yd
(η) = h(η) +

xd

xd − yd

(
h(η + 2−kθ)− h(η)

)
= h(η) + O

( 2−k|xd|
|xd − yd|

)
since |θ| � 1. Note that

2−k|xd|
|xd − yd|

≤ 2−k0 |xd|
|xd − yd|

(55)
=

|xd|
√
1 + |xd − yd|

|xd − yd|
√
1 + |xd|

√
1 + |yd|

� 1√
1 + |xd − yd|

� 1,

when |yd| ≥ |xd|, |xd − yd| is sufficiently large, and k ≥ k0. In particular, the

Hessians of the functions in the family {Φθ,xd,yd
}θ,xd,yd

take the form ∂2h
∂η2 (η) +

O( 2
−k|xd|

|xd−yd| ) and are uniformly invertible. By similar reasons, the functions in the

family {Φθ,xd,yd
}θ,xd,yd

are uniformly bounded in any Schwartz norm. The version
of Littman’s lemma from [7] leads to (56). �

Proof of Proposition 4.1. We use Lemmas 4.3 and 4.4 (the case γ = 0 has already
been considered, so we assume γ > 0 here):

|K(x, y)| � Cd,γ

∑
k≥0

|Ik(x, y)|

�
∑
k≤k0

2(d−1−2γ)k(1 + |xd|)α−
d−1
2 (1 + |yd|)α−

d−1
2 |xd − yd|β

+
∑
k≥k0

2−2kγ(1 + |xd|)α(1 + |yd|)α(1 + |xd − yd|)β−
d−1
2

� 2(d−1−2γ)k0(1 + |xd|)α−
d−1
2 (1 + |yd|)α−

d−1
2 |xd − yd|β

+ 2−2k0γ(1 + |xd|)α(1 + |yd|)α(1 + |xd − yd|)β−
d−1
2

� (1 + |xd|)α−γ(1 + |yd|)α−γ(1 + |xd − yd|)β+γ− d−1
2 .

�
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4.2. Interpolation. To prove the “if” part of Theorem 1.16 for the case p > 1,
we will have to work with “slices” of the kernel K. For any xd and yd, define the
kernel Kxd,yd

: R2d−2 → C by the formula

Kxd,yd
(xd̄, yd̄) = K(x, y), x = (xd̄, xd), y = (yd̄, yd).

Defining the bilinear forms Bxd,yd
accordingly

Bxd,yd
[f, g] =

∫∫
R2d−2

f(xd̄)g(yd̄)Kxd,yd
(xd̄, yd̄) dxd̄ dyd̄;

here f and g are functions on Rd−1. Proposition 4.1 now may be restated as
(57)∥∥Bxd,yd

∥∥
L1×L1

� (1+|xd|)α−γ(1+|yd|)α−γ(1+|xd−yd|)β+γ− d−1
2 , γ ∈

[
0,

d− 1

2

)
.

Lemma 4.5. For any γ ∈ [0, d−1
2 ),∥∥Bxd,yd

∥∥
L 2d−2

d−1+2γ
×L 2d−2

d−1+2γ

� (1 + |xd|)α−γ(1 + |yd|)α−γ(1 + |xd − yd|)β .

Proof. Let λxd
and λyd

be the Lebesgue measures on the hyperplanes

{w ∈ Rd | wd = xd} and {w ∈ Rd | wd = yd}.

Then,

Bxd,yd
[f, g] = B[f dλxd

, g dλyd
]

if we interpret f and g as functions of d variables that do not depend on the last
coordinate. With this formula in hand, we may re-express Bxd,yd

:

(58)

Bxd,yd
[f, g] =

( ∂

∂r

)β〈∂α[f̂(ξ)e2πixdξd ]

∂ξαd
ψ(ξ),

∂α[ĝ(ξ)e2πiydξd ]

∂ξαd
ψ(ξ)

〉
Ḣ−γ(Σr)

∣∣∣∣
r=0

= (2πixd)
α(−2πiyd)

α(2πi(xd − yd))
β〈f̂ e2πixdh(·)ψ, ĝe2πiydh(·)ψ〉Ḣ−γ(Σ0)

= (−1)α(2πi)2α+βxα
d y

α
d (xd − yd)

β

∫
Rd−1

[
f ∗ Fζ 
→z

[
e2πixdh(ζ)ψ(ζ)

]]
(z)

·
[
g ∗ Fζ 
→z

[
e2πiydh(ζ)ψ(ζ)

]]
(z) · |z|−2γ dz.

Therefore, it suffices to prove the bound

(59)∣∣∣∣
∫

Rd−1

[
f ∗ Fζ 
→z

[
e2πixdh(ζ)ψ(ζ)

]]
(z) ·

[
g ∗ Fζ 
→z

[
e2πiydh(ζ)ψ(ζ)

]]
(z) · |z|−2γ dz

∣∣∣∣
� (1 + |xd|)−γ(1 + |yd|)−γ‖f‖L 2d−2

d−1+2γ

‖g‖L 2d−2
d−1+2γ

.

We postulate the inequality

(60)
∥∥∥f ∗ Fζ 
→z

[
e2πixdh(ζ)ψ(ζ)

]∥∥∥
L 2d−2

d−1−2γ
,2

� (1 + |xd|)−γ‖f‖L 2d−2
d−1+2γ

.
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The space on the left is the Lorentz space; see [3] for definitions. Inequality (60)
immediately leads to (59):∣∣∣∣

∫
Rd−1

[
f ∗ Fζ 
→z

[
e2πixdh(ζ)ψ(ζ)

]]
(z) ·

[
g ∗ Fζ 
→z

[
e2πiydh(ζ)ψ(ζ)

]]
(z) · |z|−2γ dz

∣∣∣∣
�

∥∥∥f ∗ Fζ 
→z

[
e2πixdh(ζ)ψ(ζ)

]∥∥∥
L 2d−2

d−1−2γ
,2

·
∥∥∥g ∗ Fζ 
→z

[
e2πiydh(ζ)ψ(ζ)

]∥∥∥
L 2d−2

d−1−2γ
,2

· ‖|z|−2γ‖L d−1
2γ

,∞

(60)

� (1 + |xd|)−γ(1 + |yd|)−γ‖f‖L 2d−2
d−1+2γ

‖g‖L 2d−2
d−1+2γ

.

We are required to prove (60). Let us denote the operator we want to estimate
by Cxd

:

Cxd
[f ] = f ∗ Fζ 
→z

[
e2πixdh(ζ)ψ(ζ)

]
.

By the Plancherel theorem,

‖Cxd
‖L2→L2

� 1.

By the Van der Corput lemma,

‖Cxd
‖L1→L∞ � (1 + |xd|)−

d−1
2 .

The real interpolation formulas (see [3], §5.3)

[L1, L2] 2γ
d−1 ,

2d−2
d−1+2γ

= L 2d−2
d−1+2γ

; [L∞, L2] 2γ
d−1 ,

2d−2
d−1+2γ

= L 2d−2
d−1−2γ , 2d−2

d−1+2γ

lead to the inequality

‖Cxd
‖L 2d−2

d−1+2γ
→L 2d−2

d−1−2γ
,2

� ‖Cxd
‖L 2d−2

d−1+2γ
→L 2d−2

d−1−2γ
, 2d−2
d−1+2γ

� (1 + |xd|)−γ ,

which is exactly (60). �

Interpolation between (57) and Lemma 4.5 leads to the inequality

(61) ‖Bxd,yd
‖Lp×Lp

� (1 + |xd|)α−γ(1 + |yd|)α−γ(1 + |xd − yd|)β+γ− d−1
p + d−1

2

for p ∈ [1, 2d−2
d−1+2γ ]. Let us restrict our attention to this case for awhile. To fin-

ish the proof of Theorem 1.16, we invoke a version of the Stein–Weiss inequality
(Theorem 7.4 in Subsection 7.2 below):

∣∣B[f, g]
∣∣ = ∣∣∣∣

∫∫
R×R

Bxd,yd

[
f(·, xd), g(·, yd)

]
dxd dyd

∣∣∣∣
(61)

�
∫∫
R×R

(1 + |xd|)α−γ(1 + |yd|)α−γ(1 + |xd − yd|)β+γ− d−1
p + d−1

2

· ‖f(·, xd)‖Lp(Rd−1)‖g(·, yd)‖Lp(Rd−1) dxd dyd
Th.7.4

� ‖f‖Lp
‖g‖Lp

provided a = γ − α and b = −β − γ − d−1
2 + d−1

p satisfy the requirements of

Theorem 7.4. The inequality (30) leads to a ≥ 0, the requirement (31) leads
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to a+ b ≥ 1− 1
p (with the same exclusion of the endpoint case if p > 1), and (32)

gives 2a+ b ≥ 2− 2
p . The case b = 1 and p = 2 is impossible (β + γ is negative in

this case). The “if” part of Theorem 1.16 is proved in the case p ∈ [1, 2d−2
d−1+2γ ].

To deal with the remaining case, we start from the estimate∥∥Bxd,yd

∥∥
L2×L2

� (1 + |xd|)α(1 + |yd|)α(1 + |xd − yd|)β ,

which follows from the representation (58); we use the trivial inequality∥∥∥f ∗ Fζ 
→z

[
e2πixdh(ζ)a(ζ)

]∥∥∥
L∞

� ‖f‖L2

∥∥e2πixdh(ζ)ψ(ζ)
∥∥
L2

� ‖f‖L2
.

We interpolate this bound with Lemma 4.5:∥∥Bxd,yd

∥∥
Lp×Lp

�
(
1 + |xd|

)α−(d−1)( 1
p−

1
2 )

·
(
1 + |yd|

)α−(d−1)( 1
p−

1
2 )

(1 + |xd − yd|)β, p ∈
[ 2d− 2

d− 1 + 2γ
, 2

]
.

We invoke Theorem 7.4 with a = (d− 1)( 1p − 1
2 )− α and b = −β. Since b ≤ 0, the

condition a+ b > 1− 1
p is stronger than 2a+ b ≥ 2− 2

p . The condition a+ b > 1− 1
p

is exactly (31). The condition a > 0 also follows from it:

α ≤ α+ β <
d

p
− d+ 1

2
=

d− 1

p
− d− 1

2
+

1

p
− 1 ≤ d− 1

p
− d− 1

2
.

The “if” part of Theorem 1.16 is now proved.

Remark 4.6. Note that we did not use that α or β are integers provided we define
our bilinear form by (52).

4.3. Strichartz estimates. With the same method as in the previous section, we
can get a collection of sharp (up to the endpoint) Strichartz estimates. For that we
need the mixed norm spaces Lr(Lp):
(62)∥∥g∥∥

Lr(Lp)
=

∥∥∥∥g∥∥
Lp(x)

∥∥
Lr(t)

=

(∫
R

( ∫
Rd−1

|g(x, t)|p dx
) r

p

dt

) 1
r

, g : Rd → R.

We also use Theorem 7.6 here in order to work with the cases r > 2 as well. This
provides some new information even in the case α = β = 0 considered in [6]. The
cases r > 2 were excluded in that paper and it is not clear whether the methods
of [6] work in this situation.

Theorem 4.7. The inequality∣∣∣B(f, g)
∣∣∣ � ‖f‖Lr(Lp)‖g‖Lr(Lp)

holds true if

(1) r ∈ [1, 2] and
• p ≤ 2;
• γ ≥ α;
• α+ β < d−1

p + 1
r − d+1

2 with equality permitted if r = 1;

• 2α + β − γ < d−1
p + 2

r − d+3
2 with equality also permitted if r < 2 or

γ > α;
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(2) r ∈ (2,∞] and
• p ≤ 2;
• γ − α > 1

2 − 1
r ;

• α+ β < d−1
p + 1

r − d+1
2 ;

• 2α+ β − γ < d−1
p + 2

r − d+3
2 .

The proof is a direct application of Theorems 7.4 and 7.6. Consider the case p ∈
[1, 2d−2

d−1+2γ ]. Set a = γ−α, b = −β− γ− d−1
2 + d−1

p , and p = r (that is, the value of

p in those theorems is replaced by r). We note that the conditions of Theorem 7.4
can be summarized as a ≥ 0, a + b > 1 − 1

p , and 2a + b ≥ 2 − 2
p . When p = 1,

combinations with a + b ≥ 0 are also accepted, and when p = 2 the case a = 0,
b = 1 is excluded.

The three conditions stated in the case r ∈ [1, 2] are equivalent to a ≥ 0, a+ b >
1 − 1

r , and 2a + b > 2 − 2
r , respectively. The three conditions stated in the case

r ∈ (2,∞] are equivalent to the conditions in Theorem 7.6, namely a > 1
2 − 1

r ,

a+ b > 1− 1
r , and 2a+ b > 2− 2

r .

Consider the case p ∈ [ 2d−2
d−1+2γ , 2] and set a = (d − 1)( 1p − 1

2 ) − α, b = −β,

and p = r in the same sense as above. Since b ≤ 0, the condition a+b > 1
p is stronger

than 2a+b ≥ 2− 2
p . The condition a+b > 1

p is equivalent to α+β < d−1
p + 1

r −
d+1
2

with equality permitted if r = 1. In the case r ≤ 2, the requirement a ≥ 0 is
rewritten as α < d−1

p − d−1
2 . It also follows from α + β ≤ d−1

p + 1
r − d+1

2 . The

condition a > 1
2 − 1

r arising in the case r ≥ 2 follows from the same inequality.

5. Robust estimates

5.1. Introduction to “numerology”.

Remark 5.1. We are mostly interested in the case k > s in (12). We claim that
in the “subcritical” case k ≤ s, the second term on the right hand side of this
inequality is unnecessary. If k ≤ s and HDR(Σ, k, s, �, p) is true, then a simpler
inequality

(63) ‖φ∇k f̂‖H−s(Σ) � ‖f‖Lp(Rd)

also holds true. Indeed, if HDR(Σ, k, s, �, p) is true, then (15) and (17) are valid.
However, in this case, these conditions are also sufficient for (63) to be true (see
Theorem 1.16 and Figure 1).

Remark 5.2. In the “supercritical” case k > s, the condition (15) follows from (17)
since κp ≤ σp in this case (see Figure 1 as well). Note also that (16) is equivalent
to

(64) s ≥
(
1 +

�

κp

)
k − �.

This inequality, in its turn, leads to (13) provided κp ≥ 0 (which is true by (17)).
Thus, in the case k > s, the conditions in Proposition 1.11 are reduced to (14),
(64), and (17).

In our proof, the parameters k and s will be varied, however, � and p will be
steady. It appears convenient to draw diagrams of admissible pairs (k, s). We have
already drawn such a diagram for the case k ≤ s (Figure 1). For our first attempt to
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Figure 1. Diagram for the case k ≤ s.

the “numerology”, we neglect the integer nature of k and imagine this parameter
is real positive. We have three inequalities in the subcritical case: k ≤ s, (15),
and (17). The cases of equality correspond to lines on the diagram, and all three
inequalities are satisfied inside the domain bounded by the bold broken line. We
also note that the lines 2k− s = κp and k = s intersect at the point (κp, κp), which
we denote by K.

Now we pass to the “supercritical” case k > s. We need to draw two additional
lines k = s+ 1 and

(65) s =
(
1 +

�

κp

)
k − �,

which correspond to (14) and (16), respectively. The structure of the domain of
admissible parameters will depend on the mutual disposition of these two lines and
the line s = 2k − κp. Before we classify the cases of disposition, we note that
the line (65) passes through K. There is one more nice point lying on it: the
point L = (0,−�). We will consider the cases κp < 2 and κp ≥ 2 separately.

Case (κp < 2). In this case, the condition (14) is unnecessary; it follows from (17)
and s ≥ 0. This case, in its turn, is naturally split into subcases � ≤ κp (see
Figure 2, note that the broken line has a nontrivial angle at K) and � > κp (see
Figure 3), note that (16) follows from (17) when � ≥ κp.

Case (κp ≥ 2). In this case, there will be three subcases: � ≤ κp

κp−1 (if this inequality

turns into equality, then KL passes through the point (1, 0)),
κp

κp−1 < � ≤ κp,

and � > κp. In the first case, the condition (14) is unnecessary (see Figure 4). In
the second case, all the conditions are required (see Figure 5). In the third case,
the condition (16) is unnecessary (see Figure 6).
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Figure 2. Diagram for the case � ≤ κp < 2.

5.2. Convexity properties of the function N . It is useful to consider the ex-
pression

N(k, s) =
∥∥∥ψ(·)∂kf̂

∂ξkd
(·, h(·))

∥∥∥2

Ḣ−s

as a function of the parameters k and s. We always assume k is a nonnegative integer
and s is a nonnegative real. Since we will be working with points in the (k, s)-plane,
we will give names to some regions there.

Definition 5.3. Let d, p, �, and h be fixed. The domain{
(k, s) ∈ R2

∣∣∣ k ∈ (0, σp), s ≥ 0, s ≥ k − 1, 2k − s ≤ κp

}
is called the friendly region. The domain where s ≥ k is called the subcritical
region. The set of all points (k, s) such that HDRloc(h, k, s, �, p) holds true is called
the HDR-domain.

If X is an arbitrary point in the (k, s) plane, kX will usually denote its k-
coordinate, and sX will denote its s-coordinate.

Remark 5.4. The HDR-domain lies inside the friendly domain (by Proposition 1.11).

Lemma 5.5. For any k and s, there exists a constant C such that the inequality

N(k, s) ≤ C‖f‖2Lp
+

√
N(k1, s1)N(k2, s2), 2k = k1 + k2, 2s = s1 + s2,

is true provided (k, s) lies in the friendly region and 0 ≤ kj < σp for j = 1, 2.

Wewill need an “algebraic” lemma that will link the quantitiesN(k, s),N(k1, s1),
and N(k2, s2) together.
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Figure 3. Diagram for the case κp < 2 and � > κp.

Figure 4. Diagram for the case κp ≥ 2 and � ≤ κp

κp−1 .
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Lemma 5.6. For any k, k1, k2 ∈ Z+ such that 2k = k1 + k2, there exist coeffi-
cients c1, c2, . . . , c|k1−k| such that

(66)

(−1)|k−k1|
∥∥∥ψ(·)∂kf̂

∂ξkd
(·, h(·))

∥∥∥2

Ḣ−s
−�

〈
ψ(·)∂

k1 f̂

∂ξk1

d

(·, h(·)), ψ(·)∂
k2 f̂

∂ξk2

d

(·, h(·))
〉
Ḣ−s

=

|k−k1|∑
j=1

cj
∂2j

∂r2j

∥∥∥ψ(·)∂k−j f̂

∂ξk−j
d

(·, h(·) + r)
∥∥∥2

Ḣ−s

for any function f and any s.

Proof. First, by the Newton–Leibniz formula,

∂2j

∂r2j

∥∥∥ψ(·)∂k−j f̂

∂ξk−j
d

(·, h(·) + r)
∥∥∥2

Ḣ−s
= Cj

2j

〈
ψ(·)∂

kf̂

∂ξkd
(·, h(·)), ψ(·)∂

kf̂

∂ξkd
(·, h(·))

〉
Ḣ−s

+ 2

j−1∑
i=0

Ci
2j

〈
ψ(·)∂

k+j−if̂

∂ξk+j−i
d

(·, h(·)), ψ(·)∂
k+i−j f̂

∂ξk+i−j
d

(·, h(·))
〉
Ḣ−s

.

Thus, it is clear that

�
〈
ψ(·)∂

k1 f̂

∂ξk1

d

(·, h(·)), ψ(·)∂
k2 f̂

∂ξk2

d

(·, h(·))
〉
Ḣ−s

is a linear combination of all the other terms in the identity (66). The only non-
trivial question is why does the term

∥∥∥ψ(·)∂kf̂

∂ξd
(·, h(·))

∥∥∥2

Ḣ−s

have coefficient (−1)|k−k1|. For this we observe that the binomial coefficients that
appear in (66) once the Newton–Leibniz formula is applied are the same ones that
arise in the trigonometric identity

(−1)|k−k1| − cos(2|k − k1|θ) =
|k−k1|∑
j=1

cj [2 cos θ]
2j .

The result follows by evaluating the trigonometric sum at θ = π
2 . �

Proof of Lemma 5.5. Lemma 5.6 says that

∥∥∥ψ(·)∂kf̂

∂ξkd
(·, h(·))

∥∥∥2

Ḣ−s

≤
∣∣∣∣〈ψ(·)∂k1 f̂

∂ξk1

d

(·, h(·)), ψ(·)∂
k2 f̂

∂ξk2

d

(·, h(·))
〉
Ḣ−s

∣∣∣∣
+ C

|k−k1|∑
j=1

∣∣∣∣ ∂2j

∂r2j

∥∥∥ψ(·)∂k−j f̂

∂ξk−j
d

(·, h(·) + r)
∥∥∥2

Ḣ−s

∣∣∣∣.
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Figure 5. Diagram for the case κp ≥ 2 and
κp

κp−1 < � ≤ κp.

Figure 6. Diagram for the case 2 ≤ κp ≤ �.

By the Cauchy–Schwarz inequality, the first summand on the right can be estimated
by

√
N(k1, s1)N(k2, s2). All the remaining terms are bounded by C‖f‖2Lp

, pro-

vided (29) holds true with (α, β, γ, p) = (k− j, 2j, s, p) for any j = 1, 2, . . . , |k−k1|.
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By Theorem 1.16, this holds exactly when

k − j ≤ s,

k + j < σp,

2k − s ≤ κp,

j = 1, 2, . . . , |k − k1|.

The first list of conditions turns into k−1 ≤ s. So, the first and the third conditions
are fulfilled inside the friendly region. The second list is reduced to k1, k2 < σp. �

Corollary 5.7. For any k and s, there exists a constant C such that the inequality

N(k, s) ≤ C‖f‖2Lp
+

N(k1, s1) +N(k2, s2)

2
, 2k = k1 + k2, 2s = s1 + s2,

is true provided (k, s) lies in the friendly region and 0 ≤ kj < σp for j = 1, 2.

Lemma 5.8. Let a : {0} ∪ [M..N ] → R be a finite sequence and let 2M ≤ N .
Assume that

∀k ∈ [M + 1..N − 1] ak ≤ 1 +
ak+1 + ak−1

2
,

aM ≤ 1 + a0+a2M

2 , and a0 ≤ 1, aN ≤ 1. Then, aM � 1.

Proof. Consider the sequence {bk}k, bk = ak +k2. Its terms satisfy the inequalities

∀k ∈ [M + 1..N − 1] bk ≤ bk+1 + bk−1

2

and bM ≤ b0+b2M
2 . In particular, {bk}k is convex on [M..N ]. We also subtract the

linear function k bN−b0
N + b0 from it:

ck = bk −
(
k
bN − b0

N
+ b0

)
, k ∈ {0} ∪ [M..N ].

The sequence {ck}k is convex on [M..N ], equals zero at the endpoints 0 and N , and
also satisfies the inequality 2cM ≤ c2M . Thus, cM ≤ 0 (otherwise, c2M ≥ 2cM ≥
cM , which contradicts the convexity of c on the interval [M..N ]). Therefore, bM ≤
k
N (bN − b0), and finally, aM ≤ M(N2+1)

N . �

Remark 5.9. In fact, we have proved that ak � 1 for any k ∈ [M..N ].

Remark 5.10. Using the homogeneity, one can replace the assumptions of Lemma 5.8
by

∀k ∈ [M + 1..N − 1] ak ≤ C +
ak+1 + ak−1

2
,

aM ≤ C+ a0+a2M

2 , and a0 ≤ C, aN ≤ C for some positive constant C. Then, aM �
C.

Corollary 5.11. The HDR-domain is convex in the sense that if (k, s) is a convex
combination of (k1, s1) and (k2, s2) (we assume k, k1, k2 ∈ Z+), and the latter two
points belong to the HDR-domain, then the former point lies in it as well.

Proof. Consider the line passing through our three points. Let X0, X2, . . . , XN be
all the points with integer first coordinates lying on the segment connecting (k1, s1)
and (k2, s2) (we enumerate the points in such a way that the k-coordinate increases
with the index). Consider also the sequence

aj = N(kXj
, sXj

), j = 0, 1, . . . , N.
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By Corollary 5.7, this sequence satisfies the inequality

(67) aj ≤ C‖f‖2Lp
+

aj−1 + aj+1

2
, j = 1, 2, . . . , N − 1.

By the assumption, a0, aN � ‖f‖2Lp
+ ‖ψ(·)f̂(·, h(·))‖2H� . Thus, by Lemma 5.8

with M = 0 (in the light of Remark 5.10), aj is bounded by C(‖f‖2Lp
+‖ψf̂‖2H�(Σ)).

In particular, (k, s) belongs to the HDR-domain. �

Corollary 5.12. Let X be a point with natural k-coordinate lying in the intersec-
tion of friendly and subcritical domains. Suppose that the point Y lies on the
segment LX, has natural first coordinate kY , and lies in the friendly domain.
If 2kY ≤ kX , then Y lies belongs to the HDR-domain.

Proof. The proof of this corollary is very much similar to the proof of the previous
one. We consider all the points on the segment LX that have integer first coor-
dinates and lie inside the friendly domain. Suppose the leftmost of them has first
coordinate M ; let us call our points YM , YM+1, . . . , YN (so, YN = X). We also add
the point Y0 = L to our sequence and consider the numbers

aj = N(kYj
, sYj

), j = 0,M,M + 1,M + 2, . . . , N.

These numbers satisfy the inequality (67) for j ∈ [M + 1..N − 1]. Moreover,
Corollary 5.7 provides the inequality

aM ≤ C‖f‖2Lp
+

a0 + a2M
2

.

Note that 2M ≤ N since N = kX and kY ∈ [M..N ] since Y lies in the friendly
domain and kX ≥ 2kY . At the endpoint M , we have the inequality

N(kX , sX) � ‖f‖2Lp

since X lies in the subcritical part of the friendly domain (this inequality is the

case β = 0 in Theorem 1.16). Thus, aN � ‖f‖2Lp
. Clearly, a0 ≤ ‖ψ(·)f̂(·, h(·))‖2H� .

So, Lemma 5.8 says all the points YM , YM+1, . . . , YN belong to the HDR-domain.
In particular, Y does. �

Our general strategy will be to apply Corollary 5.12 to the points X close to
the point K = (κp, κp). This will enable us to obtain “almost extremal points”
of the HDR region; after that, we will apply Corollary 5.11 to pass to convex
hulls. Before we pass to the cases, we explain the obstructions that prevent us
from proving the sufficiency of the conditions in Proposition 1.11. They are of two
types. First, we are able to work with points whose first coordinates are integers
only. However, in the general case, the extremal points of the domain of admissible
parameters need not necessarily have integer first coordinates. So, we cannot prove
(and even formulate) HDR for them. This makes the convex hull we obtain smaller
(we are able to reach only some “integer” points close to the extremal points) than
it should be. The second obstruction is more severe. The problem comes from
the inequality 2kY ≤ kX in Corollary 5.12. That restricts our “extremal points”
from having too large k-coordinate, roughly speaking, their k-coordinates should
satisfy 2k < σp, if we want to apply Corollary 5.12. This will result in a considerable
gap between our results and the conditions listed in Proposition 1.11 in the case
when � ≥ 2.

Now we pass to the cases.
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Figure 7. What we can reach in the case � ≤ κp < 2.

5.3. Statement of results by cases.

Case (� ≤ κp < 2). Our reasonings are illustrated by Figure 7. Clearly, here we
are interested in the case k = 1 only (because if k ≥ 2 and (k, s) lies in the HDR
domain, then k ≤ s automatically). We consider the point P = (2, 4 − κp) and
assume P lies in the friendly region, that is, 2 < σp. We draw a segment that
connects P with L (it is the slant punctured segment on Figure 7). It crosses the

line k = 1 at the point (1, 2− κp+�
2 ). We apply Corollary 5.12 to the points P as X

and (1, 2− κp+�
2 ) as Y and obtain the theorem below.

Theorem 5.13. Let � ≤ κp < 2 and let 2 < σp. Then, HDRloc(h, 1, s, �, p) holds
true provided

s ≥ min
(
1, 2− κp + �

2

)
.

Case (κp < 2, � > κp). Our reasonings are illustrated by Figure 8. This case is
simpler than the previous one. We only need 2 < σp here. In this case, if (1, s)
lies on the vertical punctured segment, then it is an average of L and a point
inside the intersection of the friendly domain with the subcritical domain. Thus,
Corollary 5.12 leads to the theorem below.

Theorem 5.14. Let κp < 2, κp < � and let 2 < σp. Then, HDRloc(h, 1, s, �, p)
holds true provided

s ≥ min(1, 2− κp).

Case (2 ≤ κp and � ≤ κp

κp−1 ). Our reasonings are illustrated by Figure 9. We

introduce two auxiliary points P and Q:

P = (�κp
, 2�κp
 − κp); Q = ([κp], [κp]).
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Figure 8. What we can reach in the case κp < 2 and � > κp.

Figure 9. What we can reach in the case 2 ≤ κp and � ≤ κp

κp−1 .

We have used two types of the notion “integer part of a number”; see formula (20).
We connect the point L to P and Q. Since the point Q lies in the intersection

of friendly and subcritical regions, Corollary 5.12 applied to Q in the role of X
says that HDRloc(h, k, sk, �, p) is true for all pairs (k, sk) such that (k, sk) ∈ LQ; in
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other words

sk = −�
[κp]− k

[κp]
+ k.

Clearly, the same assertion is true for larger s when k is fixed. The situation with
the point P is slightly more complicated: it may lie outside the friendly region if
its k-coordinate is too large. If it is not so (i.e., �κp
 < σp), then we may apply
Corollary 5.12 to the point P in the role of X and achieve HDRloc(h, k, sk, �, p) is
true for all pairs (k, sk) such that (k, sk) ∈ LP ; in other words

sk = −�
�κp
 − k

�κp

+ 2k − κpk

�κp

.

We summarize our results.

Theorem 5.15. Let 2 ≤ κp and let � ≤ κp

κp−1 . If �κp
 ≥ σp, then HDRloc(h, k, s, �, p)

holds true if

s ≥ −�
[κp]− k

[κp]
+ k, k ≤ [κp].

If �κp
 < σp, then HDRloc(h, k, s, �, p) holds true if

(68) s ≥ min
(
− �

[κp]− k

[κp]
+ k,−�

�κp
 − k

�κp

+ 2k − κpk

�κp

)
, k ≤ [κp].

Remark 5.16. If k = �κp
 and HDRloc(h, k, s, �, p) holds true, then s ≥ k.

Figure 10. Construction of the points Qj .

Case (2 ≤ κp,
κp

κp−1 ≤ �). This case will be split into many subcases. We will need

to construct two sequences of points generated by P and Q.
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The points Qj , j = 1, 2, . . . , [κp], are generated by Q. Namely,

Qj =

{
LQ ∩ {(j, s) | s ∈ R} if this point lies above the line s = k − 1;

(j, j − 1) in the other case.

The point Qj may be described as the lowest possible point on the line {(j, s) |
s ∈ R} that lies above the segment LQ and belongs to the friendly domain. See
Figure 10.

Lemma 5.17. For any j < [ �−1
� κp], we have Qj = (j, j − 1). For j ≥ � �−1

� κp
, all
points Qj lie on the line LQ.

Proof. The equation of the line LQ is

s = −�
[κp]− k

[κp]
+ k.

To prove the first half of the lemma, it suffices to verify the inequality

j − 1 ≥ −�
[κp]− j

[κp]
+ j

when j ≤ [ �−1
� κp]− 1. This may be rewritten as

�j ≤ (�− 1)[κp].

Clearly, it suffices to prove this inequality for the largest possible j = [ �−1
� κp] − 1.

In this case, we arrive at

�
[�− 1

�
κp

]
≤ (�− 1)[κp] + �.

We estimate the left hand side with (�−1)κp, which, in its turn, does not exceed (�−
1)[κp] + (�− 1). The first assertion of the lemma is proved.

Similar to the previous reasoning, it suffices to verify the inequality

j − 1 ≤ −�
[κp]− j

[κp]
+ j

when j ≥ � �−1
� κp
, to prove the second assertion of the lemma. This may be

rewritten as

j ≥ �− 1

�
[κp],

which follows from j ≥ �−1
� κp, which is weaker than our assumption j ≥ � �−1

� κp
.
So, we have proved the second half of the lemma. �

The lemma says that, among all the points Qj , only those with the indices

[ �−1
� κp] − 1, [ �−1

� κp], and � �−1
� κp
, may be the extremal points of the accessible

domain.
The points Pj , j = 1, 2, . . . , [κp]− 1, are generated by P in a similar manner:

Pj =

{
PL ∩ {(j, s) | s ∈ R} if this point lies above the line s = k − 1;

(j, j − 1) in the other case.

We also consider the point P[κp] separately:

P[κp] =

{
PL ∩ {(j, s) | s ∈ R} if this point lies above the line s = 2k − κp;

([κp], 2[κp]− κp) in the other case.
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Remark 5.18. The point P[κp] lies on LP if and only if κp ≥ �.

Unfortunately, there is no analog of the first assertion of Lemma 5.17 for the
points Pj . Here we can only say that for small j the points Pj lie on the line s = k−1
and then at some moment they jump to the line LP . However, this “moment” can
happen much earlier than �−1

� κp. We can only bound it from above.

Lemma 5.19. For j ≥ � �−1
� κp
, all points Pj lie on the line LP .

Proof. Consider the case � ≤ κp first. The equation of the line LP is

s = −�
�κp
 − k

�κp

+

k

�κp

(2�κp
 − κp).

So, we need to verify the inequality

j − 1 ≤ −�
�κp
 − j

�κp

+

j

�κp

(2�κp
 − κp).

This may be rewritten as
(�− 1)�κp

�κp
 − κp + �

≤ j.

So, it suffices to prove
(�− 1)�κp

�κp
 − κp + �

≤
⌈�− 1

�
κp

⌉
.

We will prove a stronger inequality

(�− 1)�κp

�κp
 − κp + �

≤ �− 1

�
κp,

which is equivalent to

��κp
 ≤ κp

(
�κp
 − κp + �

)
.

This may be restated as

�(�κp
 − κp) ≤ κp(�κp
 − κp),

which is true under our assumption � ≤ κp.
In the other case � > κp, we have⌈�− 1

�
κp

⌉
≥ �(κp − 1)+
 > [κp],

so the statement of the lemma is empty in this case (we consider the points Pj

with j ≤ [κp] only). �

Lemma 5.20. If j is a number between 1 and � �−1
� κp
 and 2j ≤ [κp], then Qj

belongs to the HDR-domain. If 2j ≤ �κp
 and P belongs to the friendly region,
then Pj belongs to the HDR-domain.

Note that P belongs to the friendly region if and only if �κp
 < σp.

Proof. We prove the second assertion; the proof of the first one is completely similar.
We consider two cases: Pj lies on LP and above LP . In the first case, we may apply
Corollary 5.12 with P in the role ofX and Pj in the role of Y . In the second case, we
may apply the same corollary with Pj in the role of Y and the point of intersection
of the lines LPj and {(�κp
, s) | s ∈ R} in the role of X (the latter point lies above P
since Pj lies above the segment LP , and thus belongs to the friendly domain). �
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We finally summarize our results.

Theorem 5.21. Assume 2 ≤ κp,
κp

κp−1 ≤ �. The HDR-domain contains the convex

hull of points specified below. We always include the points (0, 0), (1, 0), and Q in
our list. The other points are specified in the following table:

�κp
 < σp �κp
 ≥ σp

2� �−1
� κp
 ≤ [κp]

Q� �−1
� κp�, Q[ �−1

� κp]
, Q[ �−1

� κp]−1,

P� �−1
� κp�, P[ �−1

� κp]

Q� �−1
� κp�, Q[ �−1

� κp]
,

Q[ �−1
� κp]−1

2[ �−1
� κp] ≤ [κp]

< 2� �−1
� κp
 ≤ �κp


Q[ �−1
� κp]

, Q[ �−1
� κp]−1,

P� �−1
� κp�, P[ �−1

� κp]

Q[ �−1
� κp]

,

Q[ �−1
� κp]−1

2[ �−1
� κp] ≤ [κp] < �κp


< 2� �−1
� κp


Q[ �−1
� κp]

, Q[ �−1
� κp]−1,

P[ �−1
� κp]

Q[ �−1
� κp]

,

Q[ �−1
� κp]−1

[κp] < 2[ �−1
� κp]

≤ �κp
 < 2� �−1
� κp


Q[ �−1
� κp]−1,

P[ �−1
� κp]

Q[ �−1
� κp]−1

�κp
 < 2[ �−1
� κp]

Q
[
[κp]

2 ]
,

P
[
�κp�

2 ]

Q
[
[κp]

2 ]

.

This theorem is a straightforward consequence of Lemma 5.20.
We note that the cases � < κp and � ≥ κp are the same for our result (our answer

in these cases are given by the last row in the table above, at least when κp ≥ 3).
However, the forms of the HDR-domain suggested by Proposition 1.11 differ in
these cases (see Figures 5 and 6).

Proof of Theorem 1.12. Since κp is assumed to be a nonnegative integer, we have
K = P = Q. Therefore, all the points Qj and Pj lie on the lines LK and s = k−1.
Since p > 1, we have κp = [σp] < σp as well.

When 0 ≤ � ≤ κp

κp−1 , Theorem 5.15 immediately implies that for points (k, s)

whose first coordinate is a positive integer, HDR(Σ, k, s, �, p) holds whenever con-
ditions (15) and (16) are satisfied; (68) turns into (16).

When � >
κp

κp−1 it remains to apply Theorem 5.21 and decode its results.

For the case 2� �−1
� κp
 ≤ κp, the points Q[ �−1

� κp]−1, Q[ �−1
� κp]

, and Q� �−1
� κp�

straddle the intersection of the lines s = k − 1 and LK. The convex hull of
these three Qj together with points K and (1, 0) contains every point along s =

max(k − 1, k − �
(κp−k)

κp
) with k = 1, 2, . . . , κp. Thus HDR(Σ, k, s, �, p) holds pro-

vided (14), (15), and (16) are all satisfied.
In the case 2� �−1

� κp
 > κp we have 2� �−1
� κp
 > �κp
. Thus, this case is described

in the intersection of the last row and first column in the table above. We observe
that the points P[

κp
2 ] and Q[

κp
2 ] coincide at the location ([

κp

2 ], [
κp

2 ]−1). Then convex

combinations of P[
κp
2 ] and (0, 1) form a segment of the line k = s + 1, and convex

combinations of P[
κp
2 ] and K form a segment of the line s ≥ k− κp−k

κp−[
κp
2 ]

. It follows

that HDR(Σ, k, s, �, p) holds provided (14), (15), and (19) are satisfied. �

6. Sharpness

In this section, we consider the case where Σ is the paraboloid {ξd = |ξd̄|2} as a
representative example. We also assume that ϕ ∈ C∞

0 (Rd−1) is nonnegative.
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6.1. Surface measure conditions. Let χ be a smooth function of one variable
supported in [1, 2] such that χ̂(k)(0) = 1. Consider the functions fn defined as

f̂n(ξ) = ϕ(ξd̄)χ̂
(
2n(ξd − |ξd̄|2)

)
.

The function fn can be written explicitly:

fn(x) = 2−nFξ→x

[
ϕdP

]
χ(2−nxd);

here dP is the Lebesgue measure on the paraboloid Σ. It is easy to observe two
formulas:

∂kf̂n
∂ξkd

(ξ) = 2nkϕ(ξd̄), ξ ∈ Σ; ‖fn‖Lp
� 2nσp .

We will also need the functions

f≤N =

N∑
n=0

(1 + n)−12−nkfn.

Sharpness of (7). Assume φ = 1 on the support of ϕ. We plug f≤N into (3). The
left hand side is bounded away from zero by

∥∥∥∂k f̂≤N

∂ξkd

∥∥∥
H−s(Σ)

= ‖ϕ‖H−s(Σ)

∑
0≤n≤N

(1 + n)−1 � log(N).

As for the Lp norm, we note that the functions fn have disjoint supports, so,

‖f≤N‖Lp
=

( ∑
n≤N

‖fn‖pLp

) 1
p �

( ∑
n≤N

(1 + n)−p 2np(σp−k)
) 1

p

.

Since the left hand side of (3) tends to infinity asN → ∞, the right hand side cannot
be uniformly bounded. This means (7) holds true if p > 1. In the case p = 1, we
get k ≤ d−1

2 instead.

Necessity of p < 2d
d+1+2k in Theorem 1.4. Add the requirements χ̂(j)(0) = 0

for all j < k. Then, fn and f≤N belong to
Σ
Lk
p and the same reasoning gives the

necessity of k < σp in (9) and (10), which is exactly p < 2d
d+1+2k . As usual, the

cases k = d−1
2 are permitted if p = 1.

Necessity of (15). We plug exactly the same functions f≤N into (12). The H−s-
norm on the left hand side and the Lp norm on the right hand side behave in
the same manner as previously. Since we have assumed χ̂(0) = 0, there is no

summand ‖f̂‖H�(Σ) on the right hand side.

Necessity of (31). As it was mentioned earlier, the quadratic inequality (29) is
equivalent to its bilinear version (49). We work with the latter expression here. The
functions f and g will be constructed from the functions fn in a slightly different
manner from before. To define g, we take χ that satisfies χ̂(α)(0) = 1 and set g = f0.
For the function f , we require χ̂(j)(0) = 0 for all j < k = α+ β and χ̂(α+β)(0) = 1,
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and set f = f≤N (with k = α+ β). We plug these functions f and g into (49) and
use the Newton–Leibniz formula (we assume ψ = 1 on the support of ϕ)∣∣∣∣( ∂

∂r

)β〈∂αf̂

∂ξαd
ψ,

∂αĝ

∂ξαd
ψ

〉
Ḣ−γ(Σr)

∣∣∣∣
r=0

∣∣∣∣ =
∣∣∣∣〈∂α+β f̂

∂ξα+β
d

ψ,
∂αĝ

∂ξαd
ψ

〉
Ḣ−γ(Σ)

∣∣∣∣
= ‖ϕ‖2

Ḣ−γ(Σ)

N∑
n=0

1

1 + n
� logN.

On the right hand side, we have

‖g‖Lp
� 1, ‖f≤N‖Lp

�
( ∑

n≤N

(1 + n)−p 2np(σp−α−β)
) 1

p

.

So, the necessity of (31) is proved.

Necessity of α + β < d−1
p + 1

r − d+1
2 in Theorem 4.7. This is proved in the

same manner as in the previous paragraph. One should only replace the formula
for the Lp norm of fn with

‖fn‖Lr(Lp) � 2n(
d−1
p + 1

r−
d+1
2 ).

6.2. Knapp examples. We start with a Schwartz function f with compactly sup-
ported Fourier transform and define the functions fn by the formula

(69) fn(x) = n− d−1
2 f

(x1

n
,
x2

n
, . . . ,

xd−1

n
,
xd

n2

)
.

By homogeneity, ∥∥∥∂kf̂n
∂ξkd

∥∥∥
Ḣ−s(Σ)

= n2k−s
∥∥∥∂kf̂

∂ξkd

∥∥∥
Ḣ−s(Σ)

;

‖fn‖Lp
= nκp‖f‖Lp

with the caveat that the homogeneous Sobolev norm may already be infinite if
s ≥ d−1

2 .

Necessity of (8). This can be obtained by simply plugging fn into (3) and as-
suming φ = 1 in a neighborhood of the origin.

Necessity of the condition 2k−s ≤ κp in Theorem 1.4. We take f ∈ ΣL
k
p and

note that fn ∈ ΣL
k
p as well (recall that Σ is the paraboloid). It remains to plug fn

into (10) with the same assumption about φ.

Necessity of (17). Here we plug fn generated by f ∈ ΣLp into (12) and note

that ‖f̂n‖H�(Σ) = 0.

Necessity of (32). This follows from the formula

∂β

∂rβ

∥∥∥∂αf̂n
∂ξαd

∥∥∥2

Ḣ−γ(Σr)

∣∣∣
r=0

= n4α+2β−2γ ∂β

∂rβ

∥∥∥∂αf̂

∂ξαd

∥∥∥2

Ḣ−γ(Σr)

∣∣∣
r=0

.

Necessity of 2α+ β − γ ≤ d−1
p + 2

r − d+3
2 in Theorem 4.7. One can prove this

in the same manner as in the previous paragraph. One should only replace the
formula for the Lp norm of fn with

‖fn‖Lr(Lp) � 2n(
d−1
p + 2

r−
d+3
2 ).
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6.3. Pure shifts. We start with a Schwartz function f and consider its shifts in
the xd direction:

(70) fn(x) = f(x1, x2, . . . , xd−1, xd − n).

We also assume

∂j f̂

∂ξjd
= 0 on Σ for j = 1, 2, . . . , k

and f̂ = 1 on the support of φ. Then f̂n(ξ) = f(ξ)e2πinξd and

∥∥∥φ∂kf̂n
∂ξkd

∥∥∥
H−s(Σ)

= (2πn)k
∥∥φe2πin|·|2∥∥

H−s

� nk
(
n−(d−1)

∫
Rd−1

∣∣∣φ̌ ∗ e−2πi |z|2
4n

∣∣∣2(z) · (1 + |z|)−2s dz
) 1

2

� nk
(
n−(d−1)

∫
|z|�n

(1 + |z|)−2s dz
) 1

2 � nk−s.

Necessity of (6). This follows from the fact that ‖fn‖Lp
does not depend on n.

Necessity of (13). Note that ‖f̂n‖H�(Σ) does not exceed cn� (this estimate reduces
to the product rule in the case � ∈ Z+; the general case follows from the case � ∈ Z+

by the Cauchy–Schwarz inequality). Comparing the left and right parts of (12), we
get (13).

Necessity of (14). We consider the functions fn generated by the rule (70) from

a function f ∈
Σ
Lp such that ∂f̂

∂ξd
= ϕ and ϕ = 1 on the support of φ, and all higher

order (up to order k) derivatives of f̂ vanish on Σ. Then, fn ∈ ΣLp as well, so, there

is no term ‖f̂n‖H� on the right hand side of (12). However, on left hand side, we
cannot have nk−s, but only have growth nk−s−1 since

∂kf̂n
∂ξkd

∣∣∣
Σ
(ξd̄) = (2πin)k−1ϕ(ξd̄)e

2πin|ξd̄|2 .

Thus, nk−s−1 should be bounded if (12) holds, which is exactly (14).

Necessity of (30). Consider a Schwartz function f of d variables such that for
any j ∈ [0..α+ β] we have

(71)
∂j f̂

∂ξjd
= 1 on Σ ∩ V.

Let fn be generated by (70) from f . We plug fn into (29). We first compute the
“interior” derivative:

∂αf̂n
∂ξαd

(ξ)ψ(ξ) =
∂α

[
f̂ e2πinξd

]
∂ξαd

(ξ)ψ(ξ) = e2πinξdψ(ξ)
α∑

j=0

Cj
α

∂j f̂

∂ξjd
(ξ)(2πin)α−j.
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Therefore,

( ∂

∂r

)β∥∥∥∂αf̂n
∂ξαd

ψ
∥∥∥2

Ḣ−γ(Σr)

∣∣∣∣
r=0

(72)

=
( ∂

∂r

)β∥∥∥e2πin(|ξd̄|2+r)ψ(ξd̄)

α∑
j=0

Cj
α

∂j f̂

∂ξjd
(ξd̄, |ξd̄|2 + r)(2πin)α−j

∥∥∥2

Ḣ−γ

∣∣∣∣
r=0

=
( ∂

∂r

)β∥∥∥e2πin|ξd̄|2ψ(ξd̄) α∑
j=0

Cj
α

∂j f̂

∂ξjd
(ξd̄, |ξd̄|2 + r)(2πin)α−j

∥∥∥2

Ḣ−γ

∣∣∣∣
r=0

=

β∑
k=0

Ck
β

〈
e2πin|ξd̄|

2

ψ(ξd̄)

α∑
j=0

Cj
α

∂j+kf̂

∂ξj+k
d

(ξd̄, |ξd̄|2)(2πin)α−j,

e2πin|ξd̄|
2

ψ(ξd̄)
α∑

j=0

Cj
α

∂j+β−kf̂

∂ξj+β−k
d

(ξd̄, |ξd̄|2)(2πin)α−j

〉
Ḣ−γ

(71)
=

β∑
k=0

Ck
β

〈
e2πin|ξd̄|

2

ψ(ξd̄)

α∑
j=0

Cj
α(2πin)

α−j, e2πin|ξd̄|
2

ψ(ξd̄)

α∑
j=0

Cj
α(2πin)

α−j

〉
Ḣ−γ

= 2β(1 + 2πin)2α
∥∥∥e2πin|·|2ψ(·)∥∥∥2

Ḣ−γ

= 2β(1 + 2πin)2α
∫

Rd−1

∣∣∣[ψ̂ ∗
(
n− d−1

2 e2πi
|ζ|2
4n

)]
(z)

∣∣∣2|z|−2γ dz

� n2α−d+1

∫
|z|�n

|z|−2γ dz � n2α−2γ .

Thus, the left hand side of (29) grows at least as fast as n2α−2γ , whereas the right
hand side does not change. This proves the necessity of the condition (30).

Necessity of condition γ ≥ α in Theorem 4.7. This is obtained by completely
the same method in the case r ≤ 2. For the case r ≥ 2, we can only prove the
necessity of the nonstrict inequality γ−α ≥ 1

2 −
1
r . For that we slightly modify the

construction above. We consider the function

Fn =

2n∑
j=n

εjfAj ,

where the functions fj are generated by (70), A is a sufficiently large number, and εj
are randomly chosen signs. Then,

E
( ∂

∂r

)β∥∥∥∂αF̂n

∂ξαd
ψ

∥∥∥2

Ḣ−γ(Σr)

∣∣∣∣
r=0

=
2n∑
j=n

( ∂

∂r

)β∥∥∥∂αf̂Aj

∂ξαd
ψ

∥∥∥2

Ḣ−γ(Σr)

∣∣∣∣
r=0

(72)

� n2α−2γ+1.

On the other hand, disregarding the choice of the signs εj ,

‖Fn‖Lr(Lp) � n
1
r
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provided A is sufficiently large (this number is needed to diminish the influence
of Schwartz tails on this almost orthogonality). It remains to choose εj with the
largest possible quantity on the left hand side and compare the two sides.

Necessity of condition p ≤ 2 in Theorem 4.7. This can be obtained by a
construction similar to the one described in the previous paragraph, except with
functions fn shifted in the x1 direction instead of the xd direction.

6.4. Shifted Knapp example. We need to modify the classical Knapp construc-
tion to get the necessity of (16). We take some sequence {Dn}n and modify the
functions fn generated by (69). Now we also shift them:

fn = n−d−1f
(x1

n
,
x2

n
, . . . ,

xd−1

n
,
xd −Dn

n2

)
.

We require Dn � n2 and do not require the vanishing f ∈ ΣLp. The Lp norms are
influenced by scaling but do not depend on the size of the shifts:

‖fn‖Lp
� n(d+1)( 1

p−1).

Let f̂(ζ, |ζ|2) be g(ζ), here g is a smooth function, let us assume it is compactly
supported and has nonzero integral. Then,

‖f̂n‖Ḣ�(Σ) =
∥∥∥g(n·)e2πiDn|·|2

∥∥∥
Ḣ�

= n�− d−1
2

∥∥∥g(·)e2πiDn
n2 |·|2

∥∥∥
Ḣ�

� n�− d−1
2

(Dn

n2

)�

.

The latter estimate can be proved via the product rule for the case � ∈ Z+ and
reduced to this case with the help of the Cauchy–Schwarz inequality. Similarly,

∥∥∥∂kf̂n
∂ξkd

∥∥∥
Ḣ−s(Σ)

� Dk
n

∥∥∥g(n·)e2πiDn|·|2
∥∥∥
Ḣ−s

= Dk
nn

−s− d−1
2

∥∥∥g(·)e2πiDn
n2 |·|2

∥∥∥
Ḣ−s

� Dk
nn

−s− d−1
2

(Dn

n

)− d−1
2

( ∫
|z|� Dn

n2

|z|−2s
) 1

2 � Dk
nn

−s− d−1
2

(Dn

n2

)−s

.

So, if (12) is true, then

(73) Dk−s
n ns− d−1

2 � D�
nn

−�− d−1
2 + n(d+1)( 1

p−1)

whenever Dn � n2. We recall k − s ≤ � by (13) (the necessity of which is already
proved), so, the first term on the right dominates the left hand side when Dn is
sufficiently large. We want to make Dn as small as possible in such a way that the
left hand side is still greater than the second summand on the right. Let

Dn = n
κp−s

k−s log n.

Note that such a choice of Dn guarantees Dn � n2 by (17) and the assumption k >
s. Plugging it back to (73), we get

nκp−sns− d−1
2 (logn)k−s � n

(κp−s)�

k−s −�− d−1
2 (log n)�,

which, after a tiny portion of algebra and (13), leads to

k�

s+ �− k
≤ κp,

which is (16).
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7. Additional lemmas and supplementary material

7.1. Localization argument. We need to localize the HDR inequalities and also
replace the gradient with a single directional derivative. Namely, we want to re-
duce HDR(Σ, k, s, �, p) to a collection of statements HDRloc(h, k, s, �, p) defined be-
low. A similar principle works for inequalities of the type (3), (9), (10) and the
proof is completely identical.

Definition 7.1. Let the numbers k, s, �, p be of the same nature as in Defini-
tion 1.9. Let U be a neighborhood of the origin in Rd−1, let h : U → R be a
smooth function such that h(0) = 0, ∇h(0) = 0, and the determinant of the Hes-
sian of h at the origin does not vanish. Further, we assume (26). We say that the
statement HDRloc(h, k, s, �, p) holds true if the inequality∥∥∥ψ(·)∂kf̂

∂ξkd
(·, h(·))

∥∥∥
H−s(Rd−1)

�ψ ‖f‖Lp
+

∥∥ψ(·)f̂(
·, h(·)

)∥∥
H�(Rd−1)

holds true for any smooth function ψ supported in U .

Lemma 7.2. The statement HDR(Σ, k, s, �, p) is true provided the statement
HDRloc(h, k, s, �, p) is true for any h satisfying the conditions of Definition 7.1.

Proof. We need to prove (12) with a fixed compactly supported smooth function φ.
We find a smooth partition of unity {Φn}n on Σ, each function Φn supported in a
small ball Vn and each Vn lies in a chart neighborhood of a certain point ξn ∈ Σ.
For each n fixed, we identify ξn with the origin of Rd, the tangent plane TξnΣ
with Rd−1, and get a graph representation for Σ ∩ Vn:

Σ ∩ Vn = {(ζ, hn(ζ)) | ζ ∈ Un},

where Un is a neighborhood of the origin in Rd−1. If the partition of unity is
sufficiently fine, then the function hn satisfies (26). We estimate the left hand side
of (12) by the triangle inequality

‖φ∇kf̂‖H−s(Σ) ≤
∑
n

‖φΦn∇kf̂‖H−s(Σ).

Note that the sum on the right is, in fact, finite. We fix n. We are going to
use the following algebraic fact: there exists a finite collection of vectors vn in Rd

such that any homogeneous polynomial of degree k is a linear combination of the
monomials 〈·, vn〉k; moreover, such vectors vn may be chosen arbitrarily close to any
fixed vector. Since the determinant of the Hessian of hn is nonzero, the normals nζ

to Σ at the points (ζ, hn(ζ)) cover a neighborhood of the vector (0, 0, . . . , 1) in Sd−1

(the unit sphere in Rd). Thus, we may choose finitely many points ζj in a sufficiently
small neighborhood of the origin such that

∀α ∈ Zd
+ such that |α| = k

∂α

∂ξα
is a linear combination of

{ ∂k

∂nkζj

}
j
;(74)

nζj ∦ TζΣ for any j and any ζ ∈ Un.(75)

This allows us to write the estimate

(76) ‖φΦn∇k f̂‖H−s(Σ) �
∑
j

∥∥∥φΦn
∂kf̂

∂nkζj

∥∥∥
H−s(Σ)

.
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Now we restrict our attention to each point ζj individually. We adjust our co-
ordinates to this point: now ζj is the origin, we also identify TζjΣ with Rd−1.
The summand corresponding to j on the right hand side of the previous inequality
transforms into ∥∥∥Ψ∂k f̂

∂ξkd

∥∥∥
H−s(Σ)

,

where Ψ is a certain smooth function supported in Vn. By the assumption (75),

Σ ∩ Vn =
{(

ζ, hn,j(ζ)
) ∣∣∣ ζ ∈ Un,j

}
,

where Un,j is a neighborhood of the origin in Rd−1, and hn,j satisfies (26) (with the
constant 1

4 instead of 1
10 possibly). Take a smooth nonnegative function ψ that is

supported in Un,j and is bounded away from zero on the projection of the support
of Ψ to Rd−1. Then, clearly,

∥∥∥Ψ∂kf̂

∂ξkd

∥∥∥
H−s(Σ)

�
∥∥∥ψ(·)∂kf̂

∂ξkd
(·, h(·))

∥∥∥
H−s(Rd−1)

.

We also note that the norms

‖g‖H−s(Σ) and ‖g
(
·, hn,j(·)

)
‖H−s(Rd−1)

are comparable for functions g supported on Σ∩Vn. Thus, by HDRloc(hn,j , k, s, �, p),
we may bound each summand in (76) by

‖f‖Lp
+ ‖ψ(·)f̂ψ(·, h(·))‖H�(Rd−1) � ‖f‖Lp

+ ‖Ψf̂‖H�(Σ).

It remains to note that we have a finite number of summands both over j and n. �

Remark 7.3. Consider Banach spaces X1, X2, . . . , Xm of functions on Σ such that
multiplication operators

ϕ �→ ψϕ, ϕ ∈ Xm,

are bounded on Xm whenever ψ ∈ C∞
0 (Σ). The inequality

∥∥φ(∇kf̂)
∣∣
Σ

∥∥
H−s(Σ)

�φ

(
‖f‖Lp(Rd) +

m∑
j=1

‖Φf̂‖Xj

)

may be reduced to local form

∥∥∥ψ(·)∂kf̂

∂ξkd
(·, h(·))

∥∥∥
H−s(Rd−1)

�ψ ‖f‖Lp
+

m∑
j=1

‖f̂‖Xj
, suppψ ⊂ U,

and U satisfies the usual assumptions, with the same argument as in the proof
of Lemma 7.2. In particular, the case Xj = {0} allows one to reduce Rk

w(Σ, p, s)
to Rk(Σ, p, s) (see Definitions 3.5 and 3.9).
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7.2. A version of the Stein–Weiss inequality.

7.2.1. Case p ∈ [1, 2]. Let Lp(w) be the weighted Lebesgue space:

f ∈ Lp(w) ⇔ fw ∈ Lp.

Let also Cb be the operator of convolution with the function (1 + |x|)−b. In this
section, we work with functions on R.

Theorem 7.4. Let a ≥ 0 and let p ∈ [1, 2]. The operator Cb maps the space
Lp((1 + |x|)a) to its dual space Lp′((1 + |x|)−a) if

(1) b ≤ 0 and
• p = 1 and a+ b ≥ 0;
• p > 1 and a+ b > 1− 1

p ;

(2) b ∈ (0, 1) and 2a+ b ≥ 2− 2
p ;

(3) b = 1 and
• p < 2;
• p = 2 and a > 0;

(4) b > 1.

Theorem 7.4 is a variation on the classical Stein–Weiss inequality from [23]. In
the classical setting, the convolutional kernel and weights are homogeneous.

Remark 7.5. The conditions listed in Theorem 7.4 are also necessary.

7.2.2. Case p > 2.

Theorem 7.6. Let p ∈ (2,∞], and let

(1) a+ b > 1− 1
p ;

(2) 2a+ b > 2− 2
p ;

(3) a > 1
2 − 1

p .

Then the operator Cb maps Lp((1 + |x|)a) to Lp′((1 + |x|)−a).

Theorems 7.4 and 7.6 are proved by directly examining the Lp → Lp′ bounded-
ness of integral operators with kernel

Ka,b(x, y) = (1 + |x|)−a(1 + |y|)−a(1 + |x− y|)−b

in the cases p = 1, p = 2, and p = ∞, then performing complex interpolation of
operators. These are elementary bounds based on ‖Ka,b‖L∞ when p = 1, the Schur
test when p = 2, and on ‖Ka,b‖L1

when p = ∞.

7.3. Some endpoint estimates. To formulate the endpoint version of inequal-
ity (3), we need some Besov spaces (see [3]). Given a function f , we define the

Besov B
− d−1

2 ,∞
2 norm by the formula

‖f‖
B

− d−1
2

,∞
2

= sup
k≥0

2−
d−1
2 k‖Pkf‖L2

,

where the Pk, k ≥ 1, are the Littlewood–Paley projectors on the annuli B2k(0) \
B2k−1(0) and P0 is the spectral projector on the unit ball B1(0) (the symbol Br(x)
denotes the (d−1)-dimensional Euclidean ball of radius r centered at x). Using the
standard properties of Besov spaces, one may then define Besov spaces on smooth
submanifolds of Rd as well as on their reasonable subdomains.
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Proposition 7.7. The inequality∥∥ĝ(·, h(·))ψ(·)∥∥
B

− d−1
2

,∞
2 (Rd−1)

�ψ ‖g‖
L1((1+|xd|)−

d−1
2 )

is true for any h and ψ satisfying the standard requirements.

The norm in the weighted space on the right hand side is given by the formula

‖g‖
L1((1+|xd|)−

d−1
2 )

=

∫
Rd

|g(x)|(1 + |xd|)−
d−1
2 dx.

Similarly, f ∈ Lp((1 + |xd|)−α) whenever f(x)(1 + |xd|)−α ∈ Lp.

Proof. Since the delta measures are the extremal points of the unit ball in the
space of measures, it suffices to prove the proposition for the case where g is a delta
measure: ∥∥∥e2πi(〈xd̄,·〉+xdh(·))ψ(·)

∥∥∥
B

− d−1
2

,∞
2

� (1 + |xd|)−
d−1
2 .

By the Van der Corput lemma (for h(·) = |·|2, this is also the Schrödinger dispersive
bound), ∥∥∥Fζ

[
e2πi(〈xd̄,ζ〉+xdh(ζ))ψ(ζ)

]∥∥∥
L∞

� (1 + |xd|)−
d−1
2 .

Thus, we need to prove the inequality

sup
k≥0

(
2−k(d−1)

∫
B

2k
(0)\B

2k−1 (0)

(1 + |xd|)−(d−1) dy

) 1
2

� (1 + |xd|)−
d−1
2 ,

which is obvious. �

Corollary 7.8. Let d be odd. If we apply Proposition 7.7 with the function g(x) =

(−2πixd)
d−1
2 f(x), we get the local form of the endpoint case in (3):∥∥∥∥∂

d−1
2 f̂

∂ξ
d−1
2

d

(·, h(·))ψ(·)
∥∥∥∥
B

− d−1
2

,∞
2 (Rd−1)

�ψ ‖f‖L1
.

Similar to Remark 7.3, we may pass to the global form:∥∥(φ∇ d−1
2 f̂)

∣∣
Σ

∥∥
B

− d−1
2

,∞
2 (Σ)

�φ ‖f‖L1(Rd).

Since B
− d−1

2 ,∞
2 ↪→ H−s for s > d−1

2 , we also have∥∥(φ∇ d−1
2 f̂)

∣∣
Σ

∥∥
H−s(Σ)

�φ ‖f‖L1(Rd)

for s > d−1
2 .

Now we will show how to derive Proposition 1.1 from the case k = 0 considered
in [6] and Proposition 7.7. We consider the inequality∥∥ĝ(·, h(·))ψ(·)∥∥

H−s(Rd−1)
�ψ ‖g‖Lp((1+|xd|)−k),

which, as we have seen, is stronger than (3). Note that in such a formulation, k
might be real. We know the inequality holds true in the case k = 0 (from [6]) and
is almost true when k = s = d−1

2 , p = 1 (from Proposition 7.7). We claim that
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any triple (k, s, 1
p ) that satisfies the necessary conditions of Proposition 1.1 might

be represented as a convex combination of the said cases:(
k, s,

1

p

)
= θ+

(
0, s+,

1

p+

)
+ θ−

(d− 1

2
,
d− 1

2
, 1

)
.

Solving several elementary equations, we see

θ− =
2k

d− 1
, θ+ =

d− 1− 2k

d− 1
, p+ = p

d− 1− 2k

d− 1− 2kp
, s+ =

(s− k)(d− 1)

d− 1− 2k
.

We leave to the reader the verification of the conditions

0 < σp+, and − s+ ≤ κp+

(the easiest way to do this is to sketch the 3D-domain of admissible (k, s, 1
p )) and

explain how we interpolate the inequality. First, we note that a linear operator that
maps g to ψĝ|Σ does not depend on the varying parameters, so we may use the
classical interpolation theory, specifically, the real interpolation method (see [3]).
For the image of our operator, we use the formula

(H−s+ , B
− d−1

2 ,∞
2 )θ−,2 = H−s;

see [3]. For the domain, we need to show that

(Lp+
, L1((1 + |xd|)−

d−1
2 ))θ−,2 ⊃ Lp((1 + |xd|)−k).

In fact,

(Lp+
, L1((1 + |xd|)−

d−1
2 ))θ−,2 = Lp,2((1 + |xd|)−k),

where the latter space is the space of all functions f such that f(1+ |xd|)−k ∈ Lp,2

(see [10]). It is clear that Lp = Lp,p ↪→ Lp,2 since p ≤ 2.
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10.1007/s10958-015-2527-x; English transl., J. Math. Sci. (N.Y.) 209 (2015), no. 5, 792–807.
MR3481451

[25] Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81
(1975), 477–478, DOI 10.1090/S0002-9904-1975-13790-6. MR358216

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio

45221-0025

Email address: goldbeml@ucmail.uc.edu

Chebyshev Lab, St. Petersburg State Univeristy, 14th line 29b, Vasilyevsky Island,

St. Petersburg 199178, Russia; and St. Petersburg Department of Steklov Mathemat-

ical Institute, Fontanka 27, St. Petersburg 191023, Russia

Email address: d.m.stolyarov@spbu.ru

https://www.ams.org/mathscinet-getitem?mr=257819
https://www.ams.org/mathscinet-getitem?mr=1363418
https://www.ams.org/mathscinet-getitem?mr=532769
https://www.ams.org/mathscinet-getitem?mr=3621102
https://www.ams.org/mathscinet-getitem?mr=2112327
https://www.ams.org/mathscinet-getitem?mr=3454378
https://www.ams.org/mathscinet-getitem?mr=3877019
https://www.ams.org/mathscinet-getitem?mr=2219246
https://www.ams.org/mathscinet-getitem?mr=712256
https://www.ams.org/mathscinet-getitem?mr=3401616
https://www.ams.org/mathscinet-getitem?mr=3052498
https://www.ams.org/mathscinet-getitem?mr=3085095
https://www.ams.org/mathscinet-getitem?mr=3298002
https://www.ams.org/mathscinet-getitem?mr=864375
https://www.ams.org/mathscinet-getitem?mr=1232192
https://www.ams.org/mathscinet-getitem?mr=0098285
https://www.ams.org/mathscinet-getitem?mr=3481451
https://www.ams.org/mathscinet-getitem?mr=358216

	1. Introduction
	2. Precursors to the current work
	3. Study of the spaces \Si𝐿_{𝑝}^{𝑘}
	4. Proof of Theorem 1.16
	5. Robust estimates
	6. Sharpness
	7. Additional lemmas and supplementary material
	Acknowledgment
	References

