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C∗-ALGEBRAS, GROUPOIDS AND COVERS OF SHIFT SPACES

KEVIN AGUYAR BRIX AND TOKE MEIER CARLSEN

Abstract. To every one-sided shift space X we associate a cover ˜X, a groupoid
GX and a C∗-algebra OX. We characterize one-sided conjugacy, eventual conju-
gacy and (stabilizer-preserving) continuous orbit equivalence between X and Y
in terms of isomorphism of GX and GY, and diagonal-preserving ∗-isomorphism
of OX and OY. We also characterize two-sided conjugacy and flow equiva-
lence of the associated two-sided shift spaces ΛX and ΛY in terms of isomor-
phism of the stabilized groupoids GX×R and GY×R, and diagonal-preserving
∗-isomorphism of the stabilized C∗-algebras OX⊗K and OY⊗K. Our strategy
is to lift relations on the shift spaces to similar relations on the covers.

Restricting to the class of sofic shifts whose groupoids are effective, we
show that it is possible to recover the continuous orbit equivalence class of X
from the pair (OX, C(X)), and the flow equivalence class of ΛX from the pair
(OX ⊗ K, C(X) ⊗ c0). In particular, continuous orbit equivalence implies flow
equivalence for this class of shift spaces.
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Introduction

In [19], Cuntz and Krieger used finite type symbolic dynamical systems to con-
struct a family of simple C∗-algebras today known as Cuntz–Krieger algebras. Such
a dynamical system is up to conjugacy determined by a finite square {0, 1}-matrix
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A, and the C∗-algebra OA comes equipped with a distinguished commutative sub-
algebra DA called the diagonal and a circle action γ : T � OA called the gauge
action. This construction has allowed for new and fruitful discoveries in both sym-
bolic dynamics and in operator algebras via translations of interesting problems
and results.

One of the most important relations among two-sided subshifts besides conjugacy
is flow equivalence. Cuntz and Krieger showed that if the subshifts ΛA and ΛB ,
determined by irreducible matrices which are not permutations A and B, are flow
equivalent, then there is a ∗-isomorphism between the stabilized Cuntz–Krieger
algebras OA ⊗ K −→ OB ⊗ K which maps DA ⊗ c0 onto DB ⊗ c0. Here, K is the
C∗-algebra of compact operators on separable Hilbert space and c0 is the maximal
abelian subalgebra of diagonal operators. The stabilized Cuntz–Krieger algebras
together with their diagonal subalgebra therefore constitute an invariant of flow
equivalence. However,

A =

(
1 1
1 1

)
, A′ =

⎛⎜⎜⎝
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

⎞⎟⎟⎠
are examples of irreducible and nonpermutation matrices which are not flow equiv-
alent but whose Cuntz–Krieger algebras OA and OA′ are ∗-isomorphic, cf. [51,
Lemma 6.4]. This raised the question: Is it possible to characterize flow equiva-
lence in terms of the associated C∗-algebras?

In the striking paper [41], Matsumoto and Matui employ topological groupoids to
answer this question: Using Renault’s groupoid reconstruction theory [50] (which
is based on work of Kumjian [26]) they prove that ΛA and ΛB (determined by
irreducible and nonpermutation {0, 1}-matrices A and B) are flow equivalent if and
only if there is a ∗-isomorphism Φ: OA ⊗ K −→ OB ⊗ K satisfying Φ(DA ⊗ c0) =
DB ⊗ c0, cf. [41, Corollary 3.8]. In the particular case above, it follows that no
∗-isomorphism OA ⊗K −→ OA′ ⊗K will map DA ⊗ c0 onto DA′ ⊗ c0.

In [36] (see also [37]), Matsumoto introduces the notion of continuous orbit
equivalence. He proves that one-sided shift spaces XA and XB (determined by
irreducible and nonpermutation {0, 1}-matrices A and B) are continuously orbit
equivalent if and only if there is a ∗-isomorphism OA −→ OB which carries DA onto
DB. For this reason, Matsumoto remarks that continuous orbit equivalence is a one-
sided analog of flow equivalence. These results on flow equivalence and continuous
orbit equivalence are generalized to include all finite type shifts in [10, Corollaries
7.1 and 7.2].

In the more general setting of directed graphs, the second-named author and
Rout used groupoids to show that XA and XB (for {0, 1}-matrices A and B with
no zero rows and no zero columns) are one-sided eventually conjugate if and only
if there is ∗-isomorphism Φ: OA −→ OB satisfying Φ(DA) = DB and Φ ◦ γA =
γB ◦ Φ [12, Corollary 4.2]. Furthermore, they show that ΛA and ΛB are conjugate
if and only if there is a ∗-isomorphism Φ: OA⊗K −→ OB⊗K satisfying Φ(DA⊗c0) =
DB⊗c0 and Φ◦(γA⊗id) = (γB⊗id)◦Φ [12, Corollary 5.2]. From this we understand
that one-sided eventual conjugacy is a one-sided analog of two-sided conjugacy. In
a similar spirit, one-sided conjugacy for shifts of finite type was characterized using
groupoids in terms of the Cuntz–Krieger algebra with its diagonal and a certain
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completely positive map by the authors [4, Theorem 3.3]. Orbit equivalence of
general directed graphs were studied in [2, 5, 17].

The aim of this paper is to study general shift spaces and provide similar charac-
terizations in terms of groupoids and C∗-algebras. When X is a shift space which is
not of finite type then the shift operation σX is not a local homeomorphism [44, The-
orem 1] so (X, σX) is not a Deaconu–Renault system (in the sense of [53, Section
8]). The Deaconu–Renault groupoid naturally associated to X then fails to be étale.
Therefore, a näıve strategy to generalize Cuntz and Krieger’s results does not work
here. The bulk of the work is therefore to circumvent this problem.

Matsumoto is the first to associate a C∗-algebra to a general two-sided subshift
and study its properties, see [28–32]. Unfortunately, there was a mistake in one
of the foundational results. The second-named author and Matsumoto [11] then
provided a new construction which is in general not ∗-isomorphic to Matsumoto’s
algebra. This new construction lacks a universal property and therefore has the
downside of not always admitting a gauge action. The second-named author finally
introduced a C∗-algebra OX associated to a general one-sided shift space X using a
Cuntz–Pimsner construction [8] which satisfies Matsumoto’s results and admits a
gauge action. We refer the reader to [11, 15, 21] for a more detailed description of
the history of associating a C∗-algebra to general subshifts.

The C∗-algebra OX has appeared in various guises throughout the literature.
In [55, Section 4.3] (see also [16, Corollary 6.7]), Thomsen realized it as a groupoid
C∗-algebra of a semi-étale groupoid, Carlsen and Silvestrov describe it as one of
Exel’s crossed products [15, Theorem 10], while Dokuchaev and Exel use partial
actions [21, Theorem 9.5]. Matsumoto then took a slightly different approach and
considered certain labeled Bratteli diagrams called λ-graph systems and associated
to each λ-graph system L a C∗-algebra OL [33–35]. Any two-sided subshift Λ has
a canonical λ-graph system LΛ and the spectrum of the diagonal subalgebra of
OL is (homeomorphic to) the λ-graph LΛ. Matsumoto then studied orbit equiv-
alence, eventual conjugacy and two-sided conjugacy of these λ-graphs and how
they are reflected in the C∗-algebras [37, 40]. Recently, Exel and Steinberg have
further investigated semigroups of shift spaces and shown that there is a universal
groupoid which can be suitably restricted to model either Matsumoto’s C∗-algebras
or OX, [23, Theorem 10.3].

Our approach is based on [7, Chapter 2]: To any one-sided shift space (X, σX),

we construct a cover X̃ equipped with a local homeomorphism σ
˜X : X̃ −→ X̃ and a

surjection πX : X̃ −→ X satisfying σX ◦πX = πX ◦σ˜X. The pair (X̃, σ˜X) is a Deaconu–

Renault system. From (X̃, σ
˜X), we construct the Deaconu–Renault groupoid GX

which is étale and consider the associated groupoid C∗-algebra OX. Starling con-

structed the space X̃ as the tight spectrum of a certain inverse semigroup SX as-
sociated to X and showed that OX is ∗-isomorphic to the tight C∗-algebra of SX,

cf. [54, Theorem 4.8]. The construction of X̃ generalizes the left Krieger cover of a
sofic shift (see [25] where it is called the past state chains or [24, Exercise 6.1.9]).
From [6, Remark 3.8], we therefore know that for sofic shifts the C∗-algebra OX is
∗-isomorphic to a Cuntz–Krieger algebra.

The paper is structured in the following way: In Section 2, we define the cover X̃
and the associated groupoid GX. We characterize when GX is principal or effective,
respectively, in terms of conditions on X (Propositions 2.9 and 2.10). In Section 3,
we show that any ∗-isomorphism OX −→ OY which maps C(X) onto C(Y) is in
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fact diagonal-preserving (Theorem 3.3). Sections 4, 5 and 7 give complete char-
acterizations of one-sided conjugacy (Theorem 4.4), one-sided eventual conjugacy
(Theorem 5.3) and two-sided conjugacy (Theorem 7.5), respectively, in terms of iso-
morphism of groupoids and diagonal-preserving ∗-isomorphism of C∗-algebras. As
opposed to Matsumoto, our results are not limited to the case where the groupoid
is effective, and we characterize the relations on the shift spaces and not only the
covers (or the λ-graphs).

In Section 6 we study continuous orbit equivalence: We characterize stabilizer-
preserving continuous orbit equivalence in terms of isomorphisms of groupoids
which respect certain cocycles, and ∗-isomorphisms of C∗-algebras which respect
certain gauge actions (Theorem 6.4). Section 8 concerns flow equivalence: We can
characterize flow equivalence in terms of isomorphism of stabilized groupoids which
respects certain cohomological data, and ∗-isomorphism of stabilized C∗-algebras
which respect certain gauge actions suitably stabilized (Theorem 8.9). When the
groupoids involved are effective, some of the conditions simplify. In particular, we
obtain the following result related to the flow equivalence problem for sofic shifts.

Theorem (Proposition 2.10, Theorem 8.11, Corollary 8.12). Let ΛX and ΛY be
two-sided sofic shift spaces such that GX and GY are effective. Then ΛX and ΛY

are flow equivalent if and only if there is a ∗-isomorphism Φ: OX ⊗K −→ OY ⊗K

satisfying Φ(C(X) ⊗ c0) = C(Y) ⊗ c0. Furthermore, if X and Y are continuously
orbit equivalent, then ΛX and ΛY are flow equivalent.

In most sections we prove our results by lifting a relation on the shift spaces to
a similar relation on the covers. We can then encode this relation into structure-
preserving ∗-isomorphisms of the C∗-algebras using groupoids as an intermediate
step. The results of [14] then allow us to reconstruct the groupoid from the C∗-
algebras.

1. Preliminaries

We let Z denote the integers and let N = {0, 1, 2, . . .} and N+ = {1, 2, 3, . . .}
denote the nonnegative and positive integers, respectively.

1.1. Symbolic dynamics. Let A be a finite set of symbols (the alphabet) consid-
ered as a discrete space and let |A| denote its cardinality. Then

AN = {x = x0x1x2 · · · | xi ∈ A, i ∈ N}
is a second-countable, compact Hausdorff space when equipped with the subspace
topology of the product topology on AN. The shift-operation σ : AN −→ AN is the
continuous surjection given by σ(x)n = xn+1, for x ∈ AN. A one-sided shift space
is a pair (X, σX) in which X ⊆ AN is closed and shift-invariant in the sense that
σ(X) ⊆ X (we do not assume equality) and where σX := σ|X : X −→ X.

Let X be a one-sided shift space over the alphabet A. If x = x0x1x2 · · · ∈ X, we
write x[i,j) = xixi+1 · · ·xj−1 for 0 � i < j and x[i,∞) = xixi+1 · · · for 0 � i. A
finite word μ = μ1 · · ·μk with μi ∈ A, for each i = 0, . . . , k, is admissible in X if
x[i,j) = μ for some x ∈ X. Let |μ| = k denote the length of μ. The empty word ε
is the unique word of length zero which satisfies εμ = μ = με for any word μ. The
collection of admissible words in X of length l is denoted Ll(X) and the language of
X is then the monoid consisting of the union L(X) =

⋃
l�0 Ll(X); the product being

concatenation of words.
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The cylinder set of a word μ ∈ L(X) is the compact and open set

ZX(μ) = {μx ∈ X | x ∈ X},

and the collection of sets of the form ZX(μ) constitute a basis for the topology of
X. A point x ∈ X is isolated if there is a k ∈ N such that {x} = ZX(x[0,k)).

A point x ∈ X is periodic if there exists p ∈ N+ such that σp
X(x) = x and

eventually periodic if there is an n ∈ N such that σn
X(x) is periodic. The least period

of an eventually periodic point x ∈ X is

lp(x) = min{p ∈ N+ | ∃n,m ∈ N : p = n−m, σn
X(x) = σm

X (x)}.

A point is aperiodic if it is not eventually periodic. The stabilizer of x ∈ X is the
group Stab(x) = {p ∈ Z | ∃k, l ∈ N : p = k − l, σk

X(x) = σl
X(x)}.

Following [30], we define for every x ∈ X and l ∈ N the predecessor set as

Pl(x) = {μ ∈ Ll(X) | μx ∈ X}.

Two points x, y ∈ X are l-past equivalent if Pl(x) = Pl(y), in which case we write
x ∼l y. Let [x]l be the l-past equivalence class of x. A point x ∈ X is isolated
in past equivalence if there is an l ∈ N such that [x]l is a singleton. A shift space
X satisfies Matsumoto’s condition (I) [30, p. 680] if no points are isolated in past
equivalence; this is a generalization of Cuntz and Krieger’s condition (I). We shall
also consider the slightly weaker condition that there are no periodic points which
are isolated in past equivalence.

A two-sided shift space is a subset Λ ⊆ AZ which is closed and shift invariant
with respect to the shift operation σ : AZ −→ AZ given by σ(x)n = xn+1, for x =
. . . x−1x0x1 . . . ∈ Λ and n ∈ Z. Let σΛ = σ|Λ : Λ −→ Λ. A pair of two-sided shift
spaces (Λ1, σ̄1) and (Λ2, σ̄2) are two-sided conjugate if there is a homeomorphism
h : Λ1 −→ Λ2 satisfying h ◦ σ1 = σ2 ◦ h. We shall consider conjugacy of two-sided
shift spaces in Section 7.

Given a two-sided shift space (Λ, σ̄Λ) there is a corresponding one-sided shift
space defined by

XΛ = {x[0,∞) ∈ AN | x ∈ Λ}
together with the obvious shift operation. Conversely, if (X, σX) is a one-sided shift
space and σX is surjective, then the pair consisting of the projective limit

ΛX = lim←−(X, σX)

together with the induced shift homeomorphism σX : ΛX −→ ΛX given by σX(x)n =
xn+1 for x ∈ Λ is the corresponding two-sided shift space (this is called the natural
extension of X in [22, Section 9]). The two operations are mutually inverse to each
other. See [24, 27] for excellent introductions to the general theory of symbolic
dynamics.

1.2. C∗-algebras of shift spaces. To each shift space X, there is a universal
unital C∗-algebra OX which was first constructed as a Cuntz–Pimsner algebra [8,
Definition 5.1]. In Section 2, we follow [7, Chapter 2] and construct a second-
countable, amenable, locally compact, Hausdorff and étale groupoid GX whose C∗-
algebra is canonically isomorphic to OX. For an introduction to (étale) groupoid
C∗-algebras see [46, 49] or the introductory notes [52].
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We briefly recall the universal description of OX given in [8, Remark 7.3]. Given
words μ, ν ∈ L(X), consider the set

CX(μ, ν) := {νx ∈ X | μx ∈ X}
which is closed (but not necessarily open) in X. We shall refer to the commutative
C∗-algebra

DX := C∗{1CX(μ,ν) | μ, ν ∈ L(X)}
inside the C∗-algebra of bounded functions on X as the diagonal. The C∗-algebra
OX is the universal unital C∗-algebra generated by partial isometries (sμ)μ∈L(X)

satisfying

sμsν =

{
sμν μν ∈ L(X),

0 otherwise,

and such that the map
1C(μ,ν) 
−→ sνs

∗
μsμs

∗
ν ,

for μ, ν ∈ L(X), extends to ∗-homomorphism DX −→ C∗(sμ | μ ∈ L(X)). This map is
injective and the projections {sνs∗μsμs∗ν}μ,ν generate a commutative C∗-subalgebra
which is ∗-isomorphic to DX via the above map. We shall henceforth identify DX

with this C∗-subalgebra of OX.
The universal property ensures that there is a canonical gauge action γX : T �

OX of the circle group T given by

γX
z (sμ) = z|μ|sμ,

for every z ∈ T and μ ∈ L(X). The fixed point algebra under the gauge action is an
AF-algebra which is denoted FX. Note that DX ⊆ FX.

2. Basic constructions

Let X be a one-sided shift space. In this section, we associate a cover X̃ to X and
build a groupoid GX from the cover and its dynamical properties. This construction
is due to the second-named author in [7, Chapter 2]. The C∗-algebra OX is then
constructed as a groupoid C∗-algebra.

2.1. The cover X̃. Consider the set I = {(k, l) ∈ N × N | k � l} equipped with
the partial order � given by

(k1, l1) � (k2, l2) ⇐⇒ k1 � k2 and l1 − k1 � l2 − k2.

For every (k, l) ∈ I we define an equivalence relation on X by

x
k,l∼ x′ ⇐⇒ x[0,k) = x′

[0,k) and
⋃
l′�l

Pl′(σ
k
X(x)) =

⋃
l′�l

Pl′(σ
k
X(x

′)).

The (k, l)-equivalence class of x ∈ X is denoted k[x]l and each kXl = {k[x]l | x ∈ X}
is a finite set. If (k1, l1) � (k2, l2), then

x
k2,l2∼ x′ =⇒ x

k1,l1∼ x′,

for every x, x′ ∈ X. Hence there is a well-defined map (k1,l1)Q(k2,l2) : k2
Xl2 −→ k1

Xl1

given by

(k1,l1)Q(k2,l2)(k2
[x]l2) = k1

[x]l1 ,

for every k2
[x]l2 ∈ k2

Xl2 . When the context is clear, we shall omit the subscripts of
the map. The spaces kXl together with the maps Q thus define a projective system.
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Definition 2.1. Let X be a one-sided shift space. The cover of X is the second-

countable compact Hausdorff space X̃ defined as the projective limit lim←−
(k,l)∈I

(kXl, Q).

We identify this with

X̃ =

{
(k[kxl]l)(k,l)∈I ∈

∏
(k,l)∈I

kXl | (k1, l1) � (k2, l2) : k1
[k1

xl1 ]l1 = k1
[k2

xl2 ]l1

}
equipped with the subspace topology of the product topology of

∏
(k,l)∈I kXl.

The topology of X̃ is generated by compact open sets of the form

U(x, k, l) = {x̃ ∈ X̃ | kxl
k,l∼ x},

for x ∈ X and (k, l) ∈ I. In order to see that sets of the above form constitute a
basis, let x̃ ∈ U(y, k1, l1) ∩ U(z, k2, l2). Set k := max{k1, k2} and l := l1 + l2. The
pair (k, l) thus majorizes both (k1, l1) and (k2, l2), and

x̃ ∈ U(kxl, k, l) ⊆ U(y, k1, l1) ∩ U(z, k2, l2),

Given a word μ ∈ L(X), we also consider the compact open sets

Uμ :=
⋃

x∈C(μ)

U(x, |μ|, |μ|).

We shall now determine a shift operation on X̃ endowing it with the structure of
a dynamical system. For any (k, l) ∈ I with k � 1, observe that

x
k,l∼ y =⇒ σX(x)

k−1,l∼ σX(y).

Therefore, there is a well-defined map kσl : kXl −→ k−1Xl given by

kσl(k[x]l) = k−1[σX(x)]l,

for every k[x]l ∈ kXl, k � 1. When the context is clear, we shall omit the subscripts.
Furthermore, this shift operation intertwines the maps Q in the sense that the
diagram

k2
Xl2 k2−1Xl2

k1
Xl1 k1−1Xl1

σ

Q Q

σ

commutes for every (k1, l1), (k2, l2) ∈ I with (k1, l1) � (k2, l2) and k1 � 1. It follows

that there is an induced shift operation σ
˜X : X̃ −→ X̃ given by

kσ˜X(x̃)l = k+1σl(k+1[k+1xl]l) = k[σX(k+1xl)]l,

for every x̃ = (k[kxl]l)(k,l)∈I ∈ X̃. The pair (X̃, σ
˜X) is then a dynamical system.

There is a canonical continuous and surjective map πX : X̃ −→ X given in the

following way: If x̃ ∈ X̃, then x = πX(x̃) ∈ X is the unique element with the
property that x[0,k) = (kxl)[0,k), for every (k, l) ∈ I. This map intertwines the shift

operations in the sense that

σX ◦ πX = πX ◦ σ
˜X.

We shall refer to πX as the canonical factor map associated to X. It is injective
(and thus a homeomorphism) if and only if X is a shift of finite type.
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On the other hand, there is a function ιX : X −→ X̃ given by sending x ∈ X

to x̃ ∈ X̃ for which kxl = x, for every (k, l) ∈ I. This satisfies the relation
πX ◦ ιX = idX. If x ∈ X is isolated, then π−1

X (x) = {ιX(x)}. However, ιX is in general
not continuous.

Example 2.2. The even shift Xeven is the strictly sofic one-sided shift space over
the alphabet {0, 1} determined by the forbidden words F = {102n+11 | n ∈ N} (see,
e.g., [27, Section 3] for an introduction to sofic shifts). The space Xeven contains no
isolated points, but 0∞ is the unique element for which P2(0

∞) = {00, 10, 01}, so
0∞ is isolated in past equivalence. Hence ιeven(0

∞) ∈ X̃even is isolated and ιeven is
not continuous.

Lemma 2.3. The shift operation σ
˜X : X̃ −→ X̃ is a local homeomorphism.

Proof. We show that σ
˜X is open and locally injective. For the first part, let z ∈ X

and (k, l) ∈ I with k � 1 and suppose a = z0 ∈ A. We claim that

σ
˜X(U(z, k, l)) = U(σX(z), k − 1, l).

The left-to-right inclusion is straightforward. For the converse let x̃ ∈
U(σX(z), k − 1, l) and note that (0, 1) � (k − 1, l). Since k−1xl

k−1,l∼ σX(z) it

thus follows that k−1xl
0,1∼ σX(z). As a ∈ P1(σX(z)), we see that ak−1xl ∈ X. A

similar argument shows that arxs ∈ X, for every (r, s) ∈ I. Put rys = arxs+1, for

every (r, s) ∈ I. Now, if (k1, l1) � (k2, l2) in I, then ak2
xl2+1

k1,l1∼ ak1
xl1+1 and so

(k1,l1)Q(k2,l2)(k2
[k2

yl2 ]l2) = k1
[ak2

xl2+1]l1 = k1
[ak1

xl1+1]l1 = k1
[k1

yl1 ]l1 .

Hence ỹ = (r[rys]s)(r,s)∈I ∈ X̃. Observe now that

kyl = akxl+1
k,l∼ z,

showing that ỹ ∈ U(z, k, l). Finally, we see that x̃ = σ
˜X(ỹ) ∈ σ

˜X(U(z, k, l)) so σ
˜X is

open.
In order to see that σ

˜X is locally injective let z ∈ X with a = z0 ∈ A. We
claim that σ

˜X is injective on U(x, 1, 1). Indeed, suppose x̃, ỹ ∈ U(x, 1, 1) and
σ
˜X(x̃) = σ

˜X(ỹ). In particular, (kxl)0 = z0 = (kyl)0 for every (k, l) ∈ I. Hence

kxl = aσX(kxl)
k,l∼ aσX(kyl) = kyl

for every (k, l) ∈ I from which it follows that x̃ = ỹ. We conclude that σ
˜X is a local

homeomorphism. �

Remark 2.4. The cover (X̃, σ
˜X) is a Deaconu–Renault system in the sense of [14,

Section 8], and the construction is a generalization of the left Krieger cover (see [25]
where it is called the past state chains or [24, Exercise 6.1.9]) of a sofic shift space.

In particular, the cover (X̃, σ
˜X) of a sofic shift (X, σX) is (conjugate to) a shift of

finite type.

The next lemma shows how the topologies of X and X̃ interact.

Lemma 2.5. Let X be a one-sided shift space and let k : X −→ N be a map. Then

the map k
˜X : X̃ −→ N satisfying k

˜X = k ◦ πX is continuous if and only if k is
continuous.
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Proof. Define k
˜X : X̃ −→ N by k

˜X = k◦πX. If k is continuous, then k
˜X is continuous.

Suppose k is not continuous. Then there is an element x ∈ X and a convergent
sequence (xn)n with limit x such that k(xn) �= k(x) for all n ∈ N. In particular,
the set

Ci = {xn | n ∈ N} ∩ Z(x[0,i))

is nonempty for each i ∈ N. As πX is surjective, C̃i = π−1
X (Ci) is nonempty. Choose

t̃i ∈ C̃i for each i ∈ N. Then πX(t̃i) = xni
for some ni ∈ N so k̃(t̃i) �= k(x) for all

i ∈ N. Furthermore, the sequence (t̃i)i has a convergent subsequence (t̃ij )j with

some limit x̃ which satisfies

πX(x̃) = πX( lim
j→∞

t̃ij ) = lim
j→∞

πX(t̃ij ) = lim
j→∞

xnij
= x,

so x̃ ∈ π−1
X (x). Then t̃ij −→ x̃ in X̃ and k

˜X(x̃) = k(x) �= k
˜X(t̃ij ) for every j ∈ N, so

k
˜X is not continuous. �

The cover X̃ may contain isolated points even if X does not, cf. Example 2.2.
In [10, Lemma 4.3(1)], it is shown that every isolated point in a shift of finite type
is eventually periodic. This is also the case for the class of sofic shift space but it
need not be true in general.

Lemma 2.6. Let X be a one-sided sofic shift. If x ∈ X is isolated, then x is
eventually periodic.

Proof. Let x ∈ X be isolated. Then x̃ ∈ π−1
X (x) is isolated. The cover X̃ is (con-

jugate to) a shift of finite type, so x̃ is eventually periodic, cf. [10, Lemma 4.3(1)].
Hence x = πX(x̃) is eventually periodic. �

Example 2.7. Consider the shift space Xω over the alphabet {0, 1} generated by
the sequence

ω = 01010010001000 · · · .
Since ω is not periodic, Xω is infinite. The shift operation σω is not surjective and
Xω is not minimal. We can identify Xω with the orbit of ω together with all its
accumulation points, i.e.,

Xω = {σi
ω(ω) : i ∈ N} ∪ {0n10∞ : n ∈ N} ∪ {0∞}

in which {σi(ω) : i ∈ N} are exactly the isolated points of Xω. In particular, ω ∈ Xω

is isolated and aperiodic. It follows from Lemma 2.6 that Xω is not sofic. Observe
also that 0∞ ∈ Xω is periodic point isolated in past equivalence. In fact, every
point in {0n10∞ : n ∈ N} is isolated in past equivalence, so π−1

Xω
(x) contains an

isolated point for every x ∈ Xω.

2.2. The groupoid GX. The pair (X̃, σ
˜X) is a Deaconu–Renault system in the sense

of [14, Section 8]. The associated Deaconu–Renault groupoid [20] is

GX = {(x̃, p, ỹ) ∈ X̃× Z× X̃ | ∃i, j ∈ N : p = i− j, x̃, ỹ ∈ X̃, σi
˜X
(x̃) = σj

˜X
(x̃)}.

The product of (x̃, p, ỹ) and (ỹ′, q, z̃) is defined if and only if ỹ = ỹ′ in which case

(x̃, p, ỹ)(ỹ′, q, z̃) = (x̃, p+ q, z̃),
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while inversion is given by (x̃, p, ỹ)−1 = (ỹ,−p, x̃). The range and source maps are
given as

r(x̃, p, ỹ) = (x̃, 0, x̃), s(x̃, p, ỹ) = (ỹ, 0, ỹ),

respectively, for (x̃, p, ỹ) ∈ GX. The topology of GX is generated by sets of the form

Z(U, i, j, V ) = {(x̃, i− j, ỹ) ∈ GX | (x̃, ỹ) ∈ U × V }

where U, V ⊆ X̃ are open subsets such that σi
˜X
|U and σj

˜X
|V are injective and σi

˜X
(U) =

σj
˜X
(V ). We naturally identify the unit space G(0)

X = {(x̃, 0, x̃) ∈ GX | x ∈ X̃} with the

space X̃ via the map (x̃, 0, x̃) 
−→ x̃. Equipped with this topology, GX is topological
groupoid which is second-countable, locally compact Hausdorff and étale (in the

sense that r, s : GX −→ GX are local homeomorphism onto G(0)
X ), cf. [53, Lemma

3.1]. By [53, Lemma 3.5], GX is also amenable.

The isotropy of a point x̃ ∈ X̃ is the set

Iso(x̃) = {(x̃, p, x̃) ∈ GX}
which carries a natural group structure. In our case, the group Iso(x̃) is always
(isomorphic to) 0 or Z. The stabilizer is Stab(x̃) = {p ∈ Z | (x̃, p, x̃) ∈ Iso(x̃)}. The
isotropy subgroupoid of GX is the group bundle

Iso(GX) =
⋃
x̃∈˜X

Iso(x̃).

The groupoid GX is principal if Iso(GX) = G(0)
X , and effective if Iso(GX)

◦ = G(0)
X ,

where Iso(G)◦ denotes the interior of the isotropy subgroupoid. Since GX is second-
countable and Hausdorff the latter is equivalent to GX being topologically principal,
i.e., that the set of points with trivial isotropy is dense in the unit space, cf. [50,
Propostion 3.6]. Below we characterize when the groupoid GX is principal and
effective in terms of X. First we need a lemma.

Lemma 2.8. Let X be a one-sided shift space and let x̃, ỹ ∈ X̃.

(i) If πX(x̃) = πX(ỹ) and σk
˜X
(x̃) = σk

˜X
(ỹ) for some k ∈ N, then x̃ = ỹ.

(ii) If πX(x̃) = πX(ỹ) is aperiodic and σl
˜X
(x̃) = σk

˜X
(ỹ) for some k, l ∈ N, then

x̃ = ỹ.

Proof. (i): Fix k ∈ N such that σ̃k
X(x̃) = σ̃k

X(ỹ) and let 0 � r � s be integers with
r + k � s. An (r, s)-representative of σ̃k

X(x̃) and σk
˜X
(ỹ) is given by σk

X(r+kxs) and

σk
X(r+kys), respectively. So

σk
X(r+kxs)

r,s∼ σk
X(r+kys).

Since πX(x̃) = πX(ỹ) we also have r+kxs
r+k,s∼ r+kys. It follows that x̃ = ỹ.

(ii): Let x = πX(x̃) = πX(ỹ) be aperiodic. If σl
˜X
(x̃) = σk

˜X
(ỹ) for some k, l ∈ N,

then σl
X(x) = σk

X(x), so k = l. Part (i) implies that x̃ = ỹ. �

Assertion (ii) may fail without the hypothesis of aperiodicity; this happens, e.g.,
for the even shift, cf. Example 2.2. It follows from Lemma 2.8(ii) that the preimage
under πX of an aperiodic element consists only of aperiodic elements. The preimage
under πX of an eventually periodic point contains an eventually periodic point but
we do not know if it consists only of eventually periodic points.
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Proposition 2.9. Let X be a one-sided shift space. The following conditions are
equivalent:

(i) X contains no eventually periodic points;

(ii) X̃ contains no eventually periodic points;
(iii) GX is principal.

Proof. (i) ⇐⇒ (ii): It follows from Lemma 2.8(ii) that if x ∈ X is aperiodic, then

any x̃ ∈ π−1
X (x) ∈ X̃ is aperiodic. So if X consists only of aperiodic points, then

X̃ contains only aperiodic points. Conversely, if x ∈ X is eventually periodic, then

ιX(x) ∈ X̃ is eventually periodic.
The equivalence (ii) ⇐⇒ (iii) is obvious. �

Proposition 2.10. Let X be a one-sided shift space. The conditions

(i) X satisfies Matsumoto’s condition (I);

(ii) X̃ contains no isolated points;

are equivalent and strictly stronger that the following equivalent conditions

(iii) X contains no periodic points isolated in past equivalence;

(iv) X̃ has a dense set of aperiodic points;
(v) GX is effective;

which are strictly stronger than

(vi) X contains a dense set of aperiodic points.

Proof. (i) ⇐⇒ (ii): Suppose x ∈ X is isolated in past equivalence so that [x]l =

{x}, for some l ∈ N. Then {ι(x)} = U(x, 0, l) so ι(x) is isolated in X̃. Conversely, if

x̃ ∈ X̃ is isolated, say {x̃} = U(x, r, s) for some integers 0 � r � s, then {σr
˜X
(x̃)} =

U(σr
X(x), 0, s), so πX(σ

r
˜X
(x̃)) ∈ X is isolated in s-past equivalence.

The implication (ii) =⇒ (iii) is clear.

(iii) =⇒ (iv): Let EP(X̃) be the collection of eventually periodic points in X̃
and set

EPp
n = {x̃ ∈ EP(X̃) | σn+p

˜X
(x̃) = σn

˜X
(x̃)},

for n ∈ N and p ∈ N+. Then EP(X̃) =
⋃

n,p EP
p
n. If there is an open set U ⊆ X̃

consisting of eventually periodic points, then it follows from the Baire Category
Theorem that EPp

n has nonempty interior for some n ∈ N and p ∈ N+. In particular,
there are an x ∈ X and integers 0 � r � s with r � n such that U(x, r, s) ⊆ EPp

n.
Since ιX(x) ∈ U(x, r, s) it follows that σn

X(x) is p-periodic. We claim that σn
X(x) is

isolated in past equivalence.
Write x = μα∞ for some words μ, α ∈ L(X) with |μ| = n and |α| = p and suppose

y ∼p+n+r−s σ
n
X(x) = σn+p

X (x).

Then μαy ∈ X and ιX(μαy) ∈ U(x, r, s), so αy = y. Hence y = σp
X(x) as wanted.

(iv) =⇒ (iii): Suppose x ∈ X is a periodic point and there is an l ∈ N such
that [x]l = {x}. Then U(x, 0, l) = {ιX(x)} is an open set consisting of points with
nontrivial isotropy.

The equivalence (iv) ⇐⇒ (v) is obvious.
(iv) =⇒ (vi): Suppose X contains an open set U consisting of eventually

periodic points. Then

U =
⋃

α,β∈L(X)

{αβ∞} ∩ U,
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and by the Baire Category Theorem there are α, β ∈ L(X) such that {αβ∞} is an
isolated eventually periodic point in U . Then ιX(αβ

∞) is an isolated eventually

periodic point in X̃.
To see that (iii) does not imply (i) observe that if X is the shift space generated

by an aperiodic substitution, then X contains no eventually periodic points, so
GX is principal, cf. [48, Definition 5.15]. However, if the substitution in addition
to being aperiodic is also primitive and proper then, according to [9, Proposition
3.5], X contains a point which is isolated in past equivalence, so X does not satisfy
Matsumoto’s condition (I).

Finally, the even shift is an example of a shift with a dense set of aperiodic
points but it contains a periodic point which is isolated in past equivalence, cf. Ex-
ample 2.2. �

Any groupoid homomorphism is assumed to be continuous and a groupoid iso-
morphism is assumed to be a homeomorphism. A continuous cocycle on GX is a
groupoid homomorphism GX −→ Z. Let B1(GX) be the collection of continuous
cocycles on GX. There is a map κX : C(X,Z) −→ B1(GX) given by

(2.1) κX(f)(x̃, p, ỹ) =
l∑

i=0

f(πX(σ
i
˜X
(x̃)))−

k∑
j=0

f(πX(σ
j
˜X
(x̃))),

for f ∈ C(X,Z), (x̃, p, ỹ) ∈ GX and where k, l ∈ N satisfy p = l − k and σl
˜X
(x̃) =

σk
˜X
(ỹ). Observe that κX(f) is the unique cocycle satisfying

κX(f)(x̃, 1, σ˜X(x̃)) = f(πX(x̃)),

for x̃ ∈ X̃. The canonical continuous cocycle cX : GX −→ Z is defined by

cX(x̃, p, ỹ) = p,

for (x̃, p, ỹ) ∈ GX. Note that cX = κX(1) and c−1
X (0) = {(x̃, 0, ỹ) ∈ GX} ⊆ GX is a

clopen subgroupoid which is always principal.

2.3. The C∗-algebra C∗(GX) = OX. The groupoid GX is second-countable, lo-
cally compact Hausdorff and étale, cf. Section 2.2. Let Cc(GX) be the ∗-algebra
consisting of compactly supported and complex-valued maps with the convolution
product. As GX is also amenable, the full C∗(GX) and the reduced C∗

r (G) groupoid
C∗-algebras are canonically ∗-isomorphic, cf. [52, Theorem 4.1.4] or [1, Proposition
6.1.8]. Therefore, [52, Proposition 3.3.3] allows us to consider C∗(GX) as a subset
of C0(GX).

There is a canonical ∗-isomorphism OX −→ C∗(GX) sending sa 
−→ 1Ua
for each

a ∈ A, cf. [7, Chapter 2]. According to [47, Proposition 1.9] the canonical inclusions
of C(X) and Cc(c

−1
X (0)) into Cc(GX) extend to injective ∗-homomorphisms of C(X)

and C∗(c−1
X (0)) into C∗(GX). We will therefore simply identify OX with C∗(GX),

DX with C(X̃), and FX with C∗(c−1
X (0)). The inclusion X̃ −→ GX then induces a

conditional expectation pX : OX −→ DX given by restriction so that

pX(g)(x̃) = g(x̃, 0, x̃).

for g ∈ OX and x̃ ∈ X̃.
Any continuous cocycle c ∈ B1(GX) induces a strongly continuous action βc : T �

OX satisfying
βc
z(f) = znf
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for z ∈ T and n ∈ N and f ∈ Cc(GX) with supp(f) ⊆ c−1({n}). The canonical
gauge action γX = βκX(1) is of the form

γX
z (g)(x̃, p, ỹ) = zpg(x̃, p, ỹ),

for every z ∈ T, g ∈ Cc(GX) and (x̃, p, ỹ) ∈ GX.
LetK denote the C∗-algebra of compact operators on separable Hilbert space and

let c0 denote the canonical maximal abelian C∗-subalgebra of diagonal operators in
K.

3. Preserving the diagonal

Let X and Y be one-sided shift spaces. A ∗-isomorphism Φ: OX −→ OY is
diagonal-preserving if Φ(DX) = DY. In this section we prove that any ∗-isomorphism
Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) is diagonal-preserving (Theorem 3.3).
First we need some preliminary results. Recall that [47, Proposition 1.9] allows us
to consider C∗(Iso(GX)

◦) as a subalgebra of C∗(GX) = OX.

Lemma 3.1. Let X be a one-sided shift space. We have C∗(Iso(GX)
◦) = D′

X =
C(X)′. If the groupoid GX is effective, then DX = D′

X.

Proof. The identification of C∗(Iso(GX)
◦) and D′

X follows from [14, Corollary 5.3],
and D′

X ⊆ C(X)′ is a consequence of C(X) ⊆ DX. It remains to verify the inclusion
C(X)′ ⊆ D′

X.
Let ξ ∈ C(X)′ and observe that

ξ(x̃, p, ỹ)g(πX(ỹ)) = (ξ � g)(x̃, p, ỹ) = (g � ξ)(x̃, p, ỹ),= g(πX(x̃))ξ(x̃, p, ỹ),

for (x̃, p, ỹ) ∈ GX and all g ∈ C(X). It follows that ξ(x̃, p, ỹ) �= 0 only if πX(x̃) =
πX(ỹ). Similarly, if ξ(x̃, p, ỹ) �= 0 implies that x̃ = ỹ, then ξ � f = f � ξ for all
f ∈ DX, i.e., ξ ∈ D′

X.
Suppose ξ(x̃, p, ỹ) �= 0, for some (x̃, p, ỹ) ∈ GX. Then x := πX(x̃) = πX(ỹ) since

ξ ∈ C(X)′. We will show that x̃ = ỹ. Pick nonnegative integers k, l ∈ N such that
p = k − l and σk

˜X
(x̃) = σl

˜X
(ỹ). If k = l then Lemma 2.8(i) implies that x̃ = ỹ, so

we may assume that k > l. It follows that σk
X(x) = σl

X(x) in X so x = μα∞, where
μ and α are words with |μ| = l and |α| = p. The support of ξ is open in GX so

it contains an open bisection of the form Z(Ũ , k, l, Ṽ ), where Ũ and Ṽ are open

sets in X̃. Since Ũ and Ṽ are open neighborhoods around x̃ and ỹ, respectively, we

may assume that πX(Ũ), πX(Ṽ ) ⊆ Z(μα), since πX is continuous, Given any ũ ∈ Ũ ,

there is a (unique) element γ = (ũ, p, ṽ) ∈ Z(Ũ , k, l, Ṽ ) and σk
˜X
(ũ) = σl

˜X
(ṽ). Since

ξ(γ) �= 0 it follows that πX(ũ) = πX(ṽ) = x.

The set ι(X) ∩ Ũ is dense in Ũ , and whenever ι(t) ∈ Ũ we see from the above
argument that

t = πX(ι(t)) = x.

It follows that ι(x) is dense in Ũ so Ũ = {ι(x)}. A similar argument shows that

Ṽ = {ι(x)}. Hence (x̃, p, ỹ) = (ι(x), p, ι(x)), so ξ ∈ D′
X.

Finally, if GX is effective, then DX is maximally abelian in OX so DX = D′
X. �

Consider the equivalence relation ∼ on the space X̃ × T given by (x̃, ζ) ∼ (ỹ, θ)

if and only if x̃ = ỹ and ζp = θp for all p ∈ Stab(x̃). Then the quotient X̃ × T/ ∼
is compact and Hausdorff and as we shall see (homeomorphic to) the spectrum of
C∗(Iso(GX)

◦).
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Lemma 3.2. Let ∼ be the equivalence relation on X̃×T defined above. There is a
∗-isomorphism Ξ: C∗(Iso(GX)

◦) −→ C(X̃× T/ ∼) given by

(3.1) Ξ(f)([x̃, ζ]) =
∑

p∈Stab(x̃)

f(x̃, p, x̃)ζn,

for f ∈ Cc(Iso(GX)
◦) and [x̃, ζ] ∈ X̃× T/ ∼.

Proof. The map Ξ: Cc(Iso(GX)
◦) −→ C(X̃×T/ ∼) given in (3.1) is well-defined by

the definition of ∼ and linear. If f, g ∈ Cc(Iso(GX)
◦) and [x̃, z] ∈ X̃× T/ ∼, then

Ξ(f)([x̃, ζ])Ξ(g)([x̃, ζ]) =
∑

k,l∈Stab(x̃)

f(x̃, k, x̃)g(x̃, l, x̃)ζk+l

=
∑

n,m∈Stab(x̃)

f(x̃, n−m, x̃)g(x̃,m, x̃)ζn

= Ξ(f � g)([x̃, ζ]),

so Ξ is multiplicative. It is straightforward to see that Ξ also respects the
∗-involution.

Next, we show that Ξ is isometric. It follows from [14, Lemma 5.1] that
C∗(Iso(GX)

◦) is a DX-algebra. In particular,

||f || = sup
x̃∈˜X

||πx̃(f)||

for f ∈ C∗(Iso(GX)
◦), where πx̃ : C

∗(Iso(GX)) −→ C∗(Iso(x̃)) is the ∗-homomorphism
given by

πx̃(f)(x̃, p, x̃) = f(x̃, p, x̃),

for (x̃, p, x̃) ∈ Iso(x̃). Since Iso(x̃) is (isomorphic to) the integers or the trivial
group, we have

||πx̃(f)|| = sup
ζ∈T

|
∑

p∈Stab(x̃)

f(x̃, p, x̃)ζp|

from which it follows that Ξ is isometric.
We show that Ξ separates points. First, if [x̃, ζ] �= [x̃, θ], then there is p ∈ Iso(x̃)

such that ζp �= θp. Choose a compact open bisection U ⊆ GX satisfying U∩Iso(x̃) =
{(x̃, p, x̃)} and observe that Ξ(1U )([x̃, ζ]) = ζp and ξ(1U )([x̃, θ]) = θp. Second, if

x̃ �= ỹ in X̃ then we choose a compact open bisection U satisfying (x̃, 0, x̃) ∈ U and
Iso(ỹ) ∩ U = ∅. Then Ξ(1U )([x̃, ζ]) = 1 while Ξ(1U )([ỹ, θ]) = 0. By the Stone–

Weierstrass theorem, the image of Ξ is dense in C(X̃× T/ ∼) and Ξ thus extends
to a ∗-isomorphism as wanted. �
Theorem 3.3. Let X and Y be one-sided shift spaces. If Φ: OX −→ OY is a
∗-isomorphism satisfying Φ(C(X)) = C(Y), then Φ(DX) = DY.

Proof. If Φ: OX −→ OY is a ∗-isomorphism satisfying Φ(C(X)) = C(Y), then
Φ(C(X)′) = C(Y)′. It follows from Lemmas 3.1 and 3.2 that there is a homeo-
morphism

h : X̃× T/ ∼−→ Ỹ × T/ ∼
such that ΞY(Φ(f)) = ΞX(f) ◦ h−1 for f ∈ C∗(Iso(GX)

◦). We see from (3.1) that
if f ∈ C∗(Iso(GX)

◦), then f ∈ DX if and only if ΞX(f)([x̃, z]) = ΞX(f)([x̃, 1]) for

all x̃ ∈ X̃ and all z ∈ T. Since X is a totally disconnected space, the connected

component of [x̃, z] ∈ X̃ × T/ ∼ is the set {[x̃, w] | w ∈ T}. We thus have that
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f ∈ C∗(Iso(GX)
◦) belongs to DX if and only if ΞX(f) is constant on connected

components. Similarly, Φ(f) ∈ DY if and only if ΞY(Φ(f)) is constant on connected
components. Since h is a homeomorphism, it maps connected components onto
connected components. We conclude that Φ(DX) = DY. �

Remark 3.4. Let X be a strictly sofic one-sided shift space and let Y = X̃ be its
cover. Then Y is (conjugate to) a shift of finite type. Although it is possible that
X and Y are homeomorphic so that C(X) and C(Y) are ∗-isomorphic, there is no
∗-isomorphism Φ: OX −→ OY which satisfies Φ(C(X)) = C(Y). Indeed, if this were
the case then Theorem 3.3 would imply that

Φ(DX) = DY = C(Y) = Φ(C(X))

so that C(X) = DX inside OX, and πX is a homeomorphism. However, this is not
possible when X is strictly sofic. Foreshadowing Theorem 6.6 (below) this means

that X and X̃ do not admit a stabilizer-preserving continuous orbit equivalence.

Below, we give a stabilized version of Theorem 3.3. Consider the product X̃ ×
N× T equipped with the equivalence relation ≈ defined by (x̃,m1, z) ≈ (ỹ,m2, w)
if and only if x̃ = ỹ and m1 = m2 and zn = wn for all n ∈ Iso(x̃). The spaces

X̃×N×T/ ≈ and (X̃×T/ ∼)×N are now homeomorphic. An argument similar to
the above then yields the following result.

Corollary 3.5. Let X and Y be one-sided shift spaces and let Φ: OX⊗K −→ OY⊗K

be a ∗-isomorphism satisfying Φ(C(X)⊗c0) = C(Y)⊗c0. Then Φ(DX⊗c0) = DY⊗c0.

4. One-sided conjugacy

A pair of one-sided shift space X and Y are one-sided conjugate if there exists
a homeomorphism h : X −→ Y satisfying h ◦ πX = πY ◦ h. A similar definition
applies to the covers. If X and Y are shifts of finite type, then they are conjugate
if and only if the groupoids GX and GY are isomorphic in a way which preserves a
certain endomorphism, if and only if the C∗-algebras OX and OY are ∗-isomorphic
in a way which preserves a certain completely positive map [4, Theorem 3.3]. In
this section we characterize one-sided conjugacy of general one-sided shift spaces
(Theorem 4.4).

We start by lifting a one-sided conjugacy on the shift spaces to a conjugacy on
the covers. The cover construction is therefore canonical, cf. [25, Theorem 2.13].

Lemma 4.1 (Lifting lemma). Let X and Y be one-sided shift spaces and let h : X −→
Y be a homeomorphism. The following are equivalent:

(i) the map h : X −→ Y is a conjugacy;

(ii) there is a conjugacy h̃ : X̃ −→ Ỹ satisfying h ◦ πX = πY ◦ h̃.

Proof. (i) =⇒ (ii): Let h : X −→ Y be a conjugacy and choose an integer C ∈ N

such that

x[0,C+r) = x′
[0,C+r) =⇒ h(x)[0,r) = h(x′)[0,r)

for r ∈ N and x, x′ ∈ X. Given integers 0 � r � s, we show that

αx
C+r,C+s∼ αx′ =⇒ h(αx) = h(αx′)

for αx, αx′ ∈ X with |α| = r. Start by writing h(αx) = μy and h(αx′) = μy′ for
some y ∈ Y and μ ∈ L(Y) with |μ| = s and observe that h(x) = y and h(x′) = y′
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since h is a conjugacy. Assume now that νy ∈ Y for some ν ∈ L(Y) with |ν| � s.
We need to show that νy′ ∈ Y.

Observe that h−1(νy) = βνx for some βν ∈ L(X) with |βν | = |ν| � s and, by
hypothesis, βνx

′ ∈ X. It is now easily verified that h(βνx
′) = νy′ so that νy′ ∈ Y

as wanted.
This defines an induced map h̃ : X̃ −→ Ỹ determined by

h̃ : C+r[x]C+s 
−→ r[h(x)]s

for integers 0 � r � s. It is readily verified that h̃ is a conjugacy satisfying

h ◦ πX = πY ◦ h̃ using that h is a conjugacy.

(ii) =⇒ (i): Given x ∈ X and any x̃ ∈ π−1
X (x) ⊆ X̃, we observe that

h(σX(x)) = πY(h̃(σ˜X(x̃))) = πY(σ˜Y(h̃(x̃))) = σYh(x).

This shows that h is a conjugacy. �

Let X be a one-sided shift and let GX be the groupoid defined in Section 2. The
map εX : GX −→ GX given by

εX(x̃, p, ỹ) = (σ
˜X(x̃), p, σ˜X(ỹ)),

for (x̃, p, ỹ) ∈ GX, is a continuous groupoid homomorphism. There is an induced
homomorphism ε∗X : Cc(GX) −→ Cc(GX) given by ε∗X(f) = f ◦ εX, for f ∈ Cc(GX).
We also consider two completely positive maps on OX as follows: Let {sa}a∈A be
the canonical generators of OX and consider φX : OX −→ OX given by

(4.1) φX(y) =
∑
a∈A

says
∗
a,

for y ∈ OX, and map τX : OX −→ OX given by

(4.2) τX(y) =
∑
a,b∈A

sbys
∗
a,

for y ∈ OX. The next lemma describes the relationship between these maps. Recall
that pX : OX −→ DX is the conditional expectation onto the diagonal subalgebra in-

duced by the inclusion X̃ −→ GX. The proof of the lemma below is a straightforward
computation, cf. [4, Lemma 3.1].

Lemma 4.2. We have τX(f) = f ◦ εX for f ∈ Cc(GX). Hence τX extends ε∗X to OX.
Furthermore, pX ◦ τX|DX

= φX|DX
.

For the next lemma, recall that FX is the AF core inside OX. A similar result was
presented in [4, Lemma 3.2] but we include a proof for the sake of completeness.

Lemma 4.3. Let X and Y be one-sided shift spaces. If Φ: FX −→ FY is a ∗-
isomorphism satisfying Φ(DX) = DY, then Φ ◦ pX(f) = pY ◦ Φ(f) on FX. If, in
addition, Φ ◦ τX|FX

= τY ◦ Φ, then Φ ◦ φX = φY ◦ Φ on DX.

Proof. Recall that FX = C∗(c−1
X (0)) and the subgroupoid c−1

X (0) ⊆ GX is principal.
By [50, Proposition 4.13] (see also [14, Theorem 3.3]) and [43, Proposition 5.7] and
its proof, there is a groupoid isomorphism κ : c−1

Y (0) −→ c−1
X (0) and a groupoid

homomorphism ξ : c−1
X (0) −→ T such that

Φ(f)(γ) = ξ(κ(γ))f(κ(γ)),



150 K. A. BRIX AND T. M. CARLSEN

for f ∈ FX and γ ∈ c−1
Y (0). In particular, Φ(f)(ỹ) = f(κ(ỹ)) for ỹ ∈ Ỹ since ξ maps

any unit in c−1
X (0) to 1 ∈ T. Then

Φ(pX(f))(ỹ) = pX(f)(κ(ỹ)) = f(κ(ỹ)),

so that Ψ ◦ dX = dY ◦Ψ on FX. If, in addition, Ψ ◦ τX|FX
= τY ◦Ψ, then

Φ(φX(f)) = Φ(dX(τX(f))) = dY(τY(Φ(f))) = φY(Φ(f)),

for f ∈ DX by the above lemma. �

We now characterize one-sided conjugacy of general one-sided shift spaces.

Theorem 4.4. Let X and Y be one-sided shift spaces and let h : X −→ Y be a
homeomorphism. The following are equivalent:

(i) the map h : X −→ Y is a one-sided conjugacy;

(ii) there is a conjugacy h̃ : X̃ −→ Ỹ satisfying h ◦ πX = πY ◦ h̃;
(iii) there is a groupoid isomorphism Ψ: GX −→ GY satisfying h◦πX = πY ◦Ψ(0),

cX = cY ◦Ψ and

(4.3) Ψ ◦ εX = εY ◦Ψ;

(iv) there is a groupoid isomorphism Ψ: GX −→ GY satisfying h ◦πX = πY ◦Ψ(0)

and

Ψ ◦ εX = εY ◦Ψ;

(v) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) with
Φ(g) = g ◦ h−1 for g ∈ C(X), Φ ◦ pX = pY ◦ Φ, Φ ◦ γX

z = γY
z ◦ Φ for z ∈ T,

Φ ◦ φX|DX
= φY ◦ Φ|DX

, and

Φ ◦ τX = τY ◦ Φ;(4.4)

(vi) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) with
Φ(g) = g ◦ h−1 for g ∈ C(X), and

Φ ◦ τX = τY ◦ Φ;

(vii) there is a ∗-isomorphism Ω: DX −→ DY satisfying Ω(C(X)) = C(Y), Ω(g) =
g ◦ h−1 for g ∈ C(X) and Ω ◦ φX|DX

= φY ◦ Ω.

Proof. The equivalence (i) ⇐⇒ (ii) is Lemma 4.1.

(ii) =⇒ (iii): Let h̃ : X̃ −→ Ỹ be a conjugacy satisfying h ◦ πX = πY ◦ h̃. The
map Φ: GX −→ GY given by

Φ(x̃, p, ỹ) = (h̃(x̃), p, h̃(ỹ)),
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for (x̃, p, ỹ) ∈ X̃, is a groupoid isomorphism. Under the identification of Φ(0) and

h̃, we then have πY ◦Ψ(0) = h ◦ πX, cX = cY ◦Ψ and Ψ ◦ εX = εY ◦Ψ.
The implications (iii) =⇒ (iv) and (v) =⇒ (vi) are clear.
(iv) =⇒ (vi) and (iii) =⇒ (v): Let Ψ: GX −→ GY be a groupoid isomorphism

as in (iv). This induces a ∗-isomorphism Φ: OX −→ OY satisfying Φ ◦ pX = pY ◦ Φ
and Φ(C(X)) = C(Y) with Φ(g) = g ◦ h−1 for g ∈ C(X). The relation (4.3)
ensures that Φ ◦ τX = τY ◦ Φ. This is (vi). If, in addition, cX = cY ◦ Φ, then
Φ ◦ γX

z = γY
z ◦Φ for z ∈ T. In particular, Ψ(FX) = FY and Lemma 4.3 implies that

Φ ◦ φX|DX
= φY ◦Ψ|DX

. This is (v).
(vi) =⇒ (vii): As Φ satisfies (4.4) and FX is generated as a C∗-algebra by⋃∞

k=0 τ
k
X(DX), we also have Φ(FX) = FY. Furthermore, Φ(DX) = DY by Theo-

rem 3.3. It therefore follows from Lemma 4.3 that Φ ◦ φX|DX
= φY ◦ Φ|DX

.

(vii) =⇒ (ii): Let h̃ : X̃ −→ Ỹ be the homeomorphism induced by Ω via Gelfand
duality. The relation Ω◦φX|C(X) = φY◦Ω and the fact that φX(f)(x̃) = f(σ

˜X(x̃)) for

f ∈ DX and x̃ ∈ X̃ ensures that h̃ is a conjugacy. The condition Ω(C(X)) = C(Y)

entails that h ◦ πX = πY ◦ h̃. �

Corollary 4.5. Let X and Y be one-sided shift spaces. The following are equivalent:

(i) the systems X and Y are one-sided conjugate;
(ii) there are a groupoid isomorphism Ψ: GX −→ GY and a homeomorphism

h : X −→ Y satisfying h ◦ πX = πY ◦Ψ(0) and Ψ ◦ εX = εY ◦Ψ;
(iii) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) and

Φ ◦ τX = τY ◦ Φ.

If XA and XB are one-sided shifts of finite type determined by finite square
{0, 1}-matrices A and B with no zero rows and no zero columns, respectively, then
we recover [4, Theorem 3.3].

5. One-sided eventual conjugacy

Matsumoto has studied one-sided eventual conjugacy of shifts of finite type [39].
A pair of shifts of finite type X and Y are eventually conjugate if and only if
the groupoids GX and GY are isomorphic in a way which preserves the canonical
cocycle, if and only if the C∗-algebras OX and OY are ∗-isomorphic in a way which
preserves the canonical gauge actions, cf. [12, Theorem 4.1 and Corollary 4.2]. We
characterize eventual conjugacy for general shift spaces in terms of groupoids and
C∗-algebras (Theorem 5.3). We start by lifting an eventual conjugacy on the shift
spaces to an eventual conjugacy on the covers.

Definition 5.1. Two one-sided shift spaces X and Y are eventually conjugate if
there exist a homeomorphism h : X −→ Y and an integer � ∈ N such that

σ�
Y(h(σX(x))) = σ�+1

Y h(x),(5.1)

σ�
X(h

−1(σY(y))) = σ�+1
X h−1(y),(5.2)

for x ∈ X and y ∈ Y. An eventual conjugacy h is a conjugacy if and only if we can
choose � = 0.

A similar definition applies to the covers.
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Lemma 5.2 (Lifting lemma). Let X and Y be one-sided shift spaces and let h : X −→
Y be a homeomorphism. The following are equivalent:

(i) the map h : X −→ Y is an eventual conjugacy;

(ii) there is an eventual conjugacy h̃ : X̃ −→ Ỹ satisfying h ◦ πX = πY ◦ h̃.

Proof. (i) =⇒ (ii): Let h : X −→ Y be an eventual conjugacy and choose � ∈ N

according to (5.1) and (5.2). Then there is a continuity constant C ∈ N with the
property that

x[0,C+r) = x′
[0,C+r) =⇒ h(x)[0,�+r) = h(x′)[0,�+r),

for x, x′ ∈ X and r ∈ N. Fix integers 0 � r � s and put K = C + 2� + s. We will
show that

αx
K+r,K+s∼ αx′ =⇒ h(αx)

r,s∼ h(αx′),

where |α| = � + r. Since K � C, we can write h(αx) = μy and h(αx′) = μy′ for
some y, y′ ∈ Y and μ ∈ L(Y) with |μ| = r. In particular, y[0,2�) = y′[0,2�). Assume

now that νy ∈ Y for some ν ∈ L(Y) with |ν| � s. We need to show that νy′ ∈ Y.
First observe that h−1(νy) = βνx for some word βν ∈ L(X) with |βν | = � + |ν|.

This follows from the computation

x = σ�+r
X (αx) = σ�+r

X (h−1(μy)) = σ�
X(h

−1(y)) = σ
�+|ν|
X (h−1(νy)).

By hypothesis, βνx
′ ∈ X and we claim that h(βνx

′) = νy′.
In order to verify the claim first observe that

σ
2�+|ν|
Y (h(βνx

′)) = σ�
Y(h(x

′)) = σ2�+r
Y (h(αx′)) = σ2�

Y (y′),

and since (βνx)[0,C+2�+|ν|) = (βνx
′)[0,C+2�+|ν|) we have

h(βνx)[0,2�+|ν|) = h(βνx
′)[0,2�+|ν|) = (νy)[0,2�+|ν|) = (νy′)[0,2�+|ν|).

Hence h(βνx
′) = νy′. This shows that there is a well-defined map h̃ : X̃ −→ Ỹ given

by

h̃ : K+r[x]K+s 
−→ r[h(x)]s,

for all integers 0 � r � s. It is straightforward to check that h ◦ πX = πY ◦ h̃ and

that h̃ is an eventual conjugacy using the fact that h is an eventual conjugacy.

(ii) =⇒ (i): Given x ∈ X and any x̃ ∈ π−1
X (x) ⊆ X̃, we have

σ�
Y(h(σX(x))) = πY(σ

�
˜Y
(h̃(σ

˜X(x̃)))) = πY(σ
�+1
˜Y

(h̃(x̃))) = σ�+1
Y (h(x)),

showing that h is an L-conjugacy. �

We can now characterize one-sided eventual conjugacy of general one-sided shifts
spaces, cf. [40, Theorem 1.4]. The proof uses ideas of [12].

Theorem 5.3. Let X and Y be one-sided shift spaces and let h : X −→ Y be a
homeomorphism. The following are equivalent:

(i) the map h : X −→ Y is a one-sided eventual conjugacy;

(ii) there is an eventual conjugacy h̃ : X̃ −→ Ỹ such that h ◦ πX = πY ◦ h̃;
(iii) there is a groupoid isomorphism Ψ: GX −→ GY satisfying h ◦πX = πY ◦Ψ(0)

and

cX = cY ◦Ψ;
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(iv) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ ◦ pX = pY ◦ Φ,
Φ(C(X)) = C(Y) with Φ(g) = g ◦ h−1 for g ∈ C(X) and

Φ ◦ γX
z = γY

z ◦ Φ,(5.3)

for z ∈ T;
(v) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) with

Φ(g) = g ◦ h−1 for g ∈ C(X) and (5.3).

Proof. The equivalence (i) ⇐⇒ (ii) is Lemma 5.2.

(ii) =⇒ (iii): Let h̃ : X̃ −→ Ỹ be an eventual conjugacy satisfying h◦πX = πY◦h̃.
The map Ψ: GX −→ GY given by

Ψ(x̃, p, ỹ) = (h̃(x̃), p, h̃(ỹ))

for (x̃, p, ỹ) ∈ GX is a groupoid isomorphism. Under the identification Ψ(0) = h̃, we
have h ◦ πX = πY ◦Ψ(0) and cX = cY ◦Ψ.

(iii) =⇒ (ii): Let Ψ: GX −→ GY be a groupoid isomorphism satisfying h ◦ πX =

πY ◦Ψ(0) and cX = cY ◦Ψ. Identify X̃ = G(0)
X , Ỹ = G(0)

Y and h̃ = Ψ(0). Then Ψ is of
the form

Ψ(x̃, p, ỹ) = (h̃(x̃), p, h̃(ỹ)),

for (x̃, p, ỹ) ∈ GX, and h ◦ πX = πY ◦ h̃. Let A be the alphabet of X and consider the
compact open bisection

Aa = (σ
˜X(Ua), 0, 1, Ua)

for a ∈ A. Here, Ua =
⋃

x∈ZX(a)
U(x, 1, 1) in X̃. Then

Ψ(Aa) = {(h̃(σ
˜X(x̃)),−1, h̃(x̃)) | x̃ ∈ Ua}

is compact and open and contained in c−1
Y ({−1}). Therefore

Ψ(Aa) =
n⋃

j=1

(Vj , kj , kj + 1,Wj),

for some n ∈ N and some compact open and mutually disjoint subsets V1, . . . , Vn,

and compact open and mutually disjoint subsets W1, . . . ,Wn of X̃ and integers

k1, . . . , kn ∈ N. In particular, h̃−1(Ua) is the disjoint union h̃−1(Ua)=
⋃n

j=1 h̃
−1(Wj)

and

σ
kj+1
˜Y

(h̃(x̃)) = σ
kj

˜Y
(h̃(σ

˜X(x̃)))

for x̃ ∈ h̃−1(Wj) ⊆ Ua. We can now define a continuous map ka : Ua −→ N by

ka(x̃) = kj for x̃ ∈ h̃−1(Wj) ⊆ Ua. Since X̃ is the disjoint union of Ua, a ∈ A, there

is a continuous map k : X̃ −→ N given by k(x̃) = ka(x̃) for x̃ ∈ Ua ⊆ X̃, and

σ
k(x̃)+1
˜Y

(h̃(x̃)) = σ
k(x̃)
˜Y

(h̃(σ
˜X(x̃))),

for x̃ ∈ X̃. Similarly, there is a continuous map k′ : Ỹ −→ N which satisfies

σ
k′(ỹ)+1
˜X

(h̃−1(ỹ)) = σ
k′(ỹ)
˜X

(h̃−1(σ
˜Y(ỹ))),

for ỹ ∈ Ỹ. Let � = max{k(X̃), k′(Ỹ)). Then h̃ is an eventual conjugacy satisfying

h ◦ πX = πY ◦ h̃.
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(iii) =⇒ (iv): A groupoid isomorphism Ψ: GX −→ GY with h ◦ πX = πY ◦ Ψ(0)

induces a ∗-isomorphism Φ: OX −→ OY satisfying Φ ◦ pX = pY ◦ Φ and Φ(C(X)) =
C(Y) with Φ(g) = g ◦ h−1 for g ∈ C(X). The relation cX = cY ◦ Ψ ensures that
Φ ◦ γX

z = γY
z ◦ Φ for z ∈ T.

The implication (iv) =⇒ (v) is obvious.
(v) =⇒ (iii): By Theorem 3.3, Φ(DX) = DY. The reconstruction theo-

rem [14, Theorem 6.2] ensures the existence of a groupoid isomorphism Ψ: GX −→
GY satisfying Φ(f) = f ◦ h̃−1 for f ∈ DX, where Ψ(0) = h̃ : X̃ −→ Ỹ is the induced
homeomorphism on the unit spaces, and cX = cY ◦ Φ. Since Φ(C(X)) = C(Y)
with Φ(g) = g ◦ h−1 for g ∈ C(X), the groupoid isomorphism Ψ satisfies h ◦ πX =
πY ◦Ψ(0). �

Corollary 5.4. Let X and Y be one-sided shift spaces. The following are equivalent:

(i) the systems X and Y are one-sided eventually conjugate;
(ii) there exist a groupoid isomorphism Ψ: GX −→ GY and a homeomorphism

h : X −→ Y satisfying h ◦ πX = πY ◦Ψ(0) and cX = cY ◦Ψ;
(iii) there is ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) and

Φ ◦ γX
z = γY

z ◦ Φ for z ∈ T.

When XA and XB are one-sided shifts of finite type determined by finite square
{0, 1}-matrices A and B with no zero rows and no zero columns, respectively, we
recover [12, Corollary 4.2] (see also [39, Theorem 1.2]).

6. Continuous orbit equivalence

The notion of continous orbit equivalence among one-sided shift spaces was in-
troduced by Matsumoto in [36, 37]. It is proven in [10, Corollary 6.1] (see also
[41, Theorem 2.3]) that if X and Y are shifts of finite type, then X and Y are
continuously orbit equivalent if and only if GX and GY are isomorphic, and if and
only if there is a ∗-isomorphism OX −→ OY which maps C(X) onto C(Y). In
this section, we shall for general shift spaces X and Y look at the relationship be-
tween continuous orbit equivalence of X and Y, isomorphism of GX and GY, and
∗-isomorphisms OX −→ OY which map C(X) onto C(Y) (Theorems 6.4 and 6.6).
When the groupoids are effective, the results simplify (Theorem 6.10).

Definition 6.1. Two one-sided shift spaces X and Y are continuously orbit equiva-
lent if there exist a homeomorphism h : X −→ Y and continuous maps kX, lX : X −→
N and kY, lY : Y −→ N satisfying

σ
lX(x)
Y (h(x)) = σ

kX(x)
Y (h(σX(x))),(6.1)

σ
lY(y)
X (h−1(y)) = σ

kY(y)
X (h−1(σY(y))),(6.2)

for x ∈ X and y ∈ Y. The underlying homeomorphism h is a continuous orbit
equivalence and (kX, lX) and (kY, lY) are cocycle pairs for h.

Similar definitions apply to the covers of one-sided shift spaces. Our first aim
is to show that a continuous orbit equivalence between X and Y can be lifted to a

continuous orbit equivalence between X̃ and Ỹ.
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Observe that if h : X −→ Y is an orbit equivalence with cocycles kX, lX : X −→ N

and we define

k
(n)
X (x) =

n−1∑
i=0

kX(σ
i
X(x)), l

(n)
X (x) =

n−1∑
i=0

lX(σ
i
X(x)),

then σ
l
(n)
X

Y (h(x)) = σ
k
(n)
X

Y (h(σn
X(x))), for x ∈ X.

We need some additional terminology. Let X and Y be one-sided shift spaces
and let h : X −→ Y be a continuous orbit equivalence with continuous cocycles
kX, lX : X −→ N and kY, lY : Y −→ N. We say that (h, lX, kX, lY, kY) is least period
preserving if h maps eventually periodic points to eventually periodic points,

lp(h(x)) = l
(p)
X (x)− k

(p)
X (x),

for any periodic point x ∈ X with lp(x) = p, h−1 maps eventually periodic points
to eventually periodic points, and

lp(h−1(y)) = l
(q)
Y (y)− k

(q)
Y (y),

for any periodic point y ∈ Y with lp(y) = q. We say that (h, lX, kX, lY, kY) is
stabilizer-preserving if h maps eventually periodic points to eventually periodic
points,

lp(h(x)) = |l(p)X (x)− k
(p)
X (x)|,

for any periodic point x ∈ X with lp(x) = p, h−1 maps eventually periodic points
to eventually periodic points, and

lp(h−1(y)) = |l(q)Y (y)− k
(q)
Y (y)|,

for any periodic point y ∈ Y with lp(y) = q. cf. [10, p. 1093] and [14, Definition
8.1]. There are analogous definitions for a continuous orbit equivalence between
covers.

Remark 6.2. Not every cocycle pair of a continuous orbit equivalence (even be-
tween finite type shifts) is least period preserving, cf. Remark 6.5. However, we do
not know if there is a continuous orbit equivalence which does not admit a least
period/stabilizer-preserving cocycle pair. In Example 6.13, we exhibit an example
of a continuous orbit equivalence between shifts of finite type which does not admit
a cocycle pair which is least period preserving on all eventually periodic points.

Lemma 6.3 (Lifting lemma). Let X and Y be one-sided shift spaces and let h : X −→
Y be a stabilizer-preserving continuous orbit equivalence with continuous cocycles
lX, kX : X −→ N and lY, kY : Y −→ N. Then there is a stabilizer-preserving con-

tinuous orbit equivalence h̃ : X̃ −→ Ỹ with continuous cocycles l
˜X = lX ◦ πX, k˜X =

kX ◦ πX : X̃ −→ N and l
˜Y = lY ◦ πY, k˜Y = kY ◦ πY : Ỹ −→ N.

Proof. We first verify two claims which will allow us to define the map h̃ : X̃ −→ Ỹ.

Then we show that h̃ with the prescribed cocycles is stabilizer-preserving.
Let x ∈ X and μ, ν ∈ L(X) and suppose h(x) ∈ CY(μ, ν).

Claim 1. There are integers 0 � k � l such that x′ k,l∼ x =⇒ h(x′) ∈ CY(μ, ν).
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Let y := σ
|ν|
Y (h(x)). Then νy, μy ∈ Y and h(x) = νy. From the cocycle rela-

tions (6.1) and (6.2) we have

σ
l
(|ν|)
Y (νy)

X (h−1νy)) = σ
k
(|ν|)
Y (νy)

X (h−1(y)),

and

σ
l
(|μ|)
Y (μy)

X (h−1μy)) = σ
k
(|μ|)
Y (μy)

X (h−1(y)).

Hence if

α′ = h−1(μy)
[0,l

(|μ|)
Y (μy)+k

(|ν|)
Y (νy))

, β′ = (h−1(νy))
[0,l

(|ν|)
Y (νy)+k

(|μ|)
Y (μy))

,

then h−1(μy) = α′z′ and h−1(νy) = β′z′, for some z′ ∈ X. If z′ is eventually
periodic, pick q ∈ N such that z := σq

X(z
′) is periodic and γ := z′[0,q); if z′ is

aperiodic, let q = 0 and let γ be the empty word. Set α := α′γ and β := β′γ and
observe that h(αz) = μy and h(βz) = νy, and x = βz.

By the cocycle relations we have

σ
l
(|α|)
X (αz)

Y (μy) = σ
l
(|α|)
X (αz)

Y (h(αz)) = σ
k
(|α|)
X (αz)

Y (h(z)),

and

σ
l
(|β|)
X (βz)

Y (νy) = σ
l
(|β|)
X (βz)

Y (h(βz)) = σ
k
(|β|)
X (βz)

Y (h(z)),

from which we deduce that

σ
k
(|α|)
X (αz)+|μ|+l

(|β|)
X (βz)

Y (h(z))=σ
l
(|α|)
X (αz)+l

(|β|)
X (βz)

Y (y)=σ
k
(|β|)
X (βz)+|ν|+l

(|α|)
X (αz)

Y (h(z)).

It now follows that In particular,

k
(|α|)
X (αz) + |μ|+ l

(|β|)
X (βz)−

(
k
(|β|)
X (βz) + |ν|+ l

(|α|)
X (αz)

)
is a multiple of lp(h(z)) — if h(z) is aperiodic, we set lp(h(z)) = 0. Without loss
of generality, we may assume there is a nonnegative integer m such that

k
(|α|)
X (αz) + |μ|+ l

(|β|)
X (βz)−

(
k
(|β|)
X (βz) + |ν|+ l

(|α|)
X (αz)

)
= m lp(h(z)) = m

(
l
(lp(z))
X (z)− k

(lp(z))
X (z)

)
.

The final equality follows from the hypothesis that h is stabilizer-preserving. Set

N := l
(|β|)
X (βz) + l

(|α|)
X (αz) +ml

(lp(z))
X (z).

Pick r ∈ N such that k
(|β|)
X and l

(|β|)
X are constant on ZX(x[0,r)) and

h(ZX(x[0,r)))) ⊆ ZY((νy)[0,|ν|+N ).

Pick also s ∈ N such that k
(|α|)
X and l

(|α|)
X are constant on ZX((αz)[0,s)) and

h(ZX((αz)[0,s))) ⊆ ZY((μy)[0,|μ|+N)),

and such that l
(lp(z))
X and k

(lp(z))
X are constant on ZX(z[0,s)). Set k := r + s + |β|

and l := r + s+ |β|+ |α|.
Let x′ ∈ X and suppose x′ k,l∼ x. Then x′∈ZX(x[0,r)), so h(x′)∈ZY((νy)[0,|ν|+N))

and k
(|α|)
X (x′) = k

(|α|)
X (x) and l

(|α|)
X (x′) = l

(|α|)
X (x). Put x′′ := αz[0,m lp(z))σ

(|β|)
X (x′).
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Then σ
|α|+m lp(z)
X (x′′)=σ

(|β|)
X (x′) and x′′∈ZX((αz)[0,s)) so h(x

′′)∈ZY((μy)[0,|μ|+N)).

σ
|ν|+N
Y (h(x′)) = σ

|ν|+l
(|β|)
X (x′)+l

(|α|)
X (αz)+ml

(lp(z))
X (z)

Y (h(x′))

= σ
|ν|+k

(|β|)
X (x′)+l

(|α|)
X (αz)+ml

(lp(z))
X (z)

Y (h(σ
|β|
X (x′)))

= σ
|ν|+k

(|β|)
X (βz)+l

(|α|)
X (αz)+ml

(lp(z))
X (z)

Y (h(σ
|β|
X (x′))),

and

σ
|μ|+N
Y (h(x′′)) = σ

|μ|+l
(|β|)
X (βz)+l

(|α|)
X (x′′)+ml

(lp(z))
X (z)

Y (h(x′′))

= σ
|μ|+l

(|β|)
X (βz)+k

(|α|)
X (x′′)+mk

(lp(z))
X (z)

Y (h(σ
|α|+m lp(z)
X (x′′)))

= σ
|μ|+l

(|β|)
X (βz)+k

(|α|)
X (αz)+mk

(lp(z))
X (z)

Y (h(σ
|β|
X (x′)))

= σ
|ν|+k

(|β|)
X (βz)+l

(|α|)
X (αz)+ml

(lp(z))
X (z)

Y (h(σ
|β|
X (x′))).

Thus σ
|ν|+N
Y (h(x′)) = σ

|μ|+N
Y (h(x′′)) so

h(x′′) ∈ CY((μy)[0,|μ|+N), (νy)[0,|ν|+N)) ⊆ CY(μ, ν)

and this proves Claim 1.

Claim 2. For each (k, l) ∈ I there is (m(k, l), n(k, l)) ∈ I such that

x
m(k,l),n(k,l)∼ x′ =⇒ h(x)

k,l∼ h(x′).

Let (k, l) ∈ I and take μ, ν ∈ L(X) with |ν| = k and |μ| � l and x ∈ CX(μ, ν).
By Claim 1, we may choose

(
r(μ, ν, x), s(μ, ν, x)

)
∈ I such that

h(r(μ,ν,x)[x]s(μ,ν,x)) ⊆ CY(μ, ν).

The topology on X generated by the sets {r[x]s | x ∈ X, (r, s) ∈ I} is compact, so
there is a finite set F ⊆ L(X)× L(X)× X such that⋃

(μ,ν,x)∈F

r(μ,ν,x)[x]s(μ,ν,x) = X.

Set m(k, l) := max{r(μ, ν, x) | (μ, ν, x) ∈ F} and n(k, l) := max{s(μ, ν, x) |
(μ, ν, x) ∈ F}. Then the implication of Claim 2 holds.

We are now ready to prove the lemma. Let (k, l) ∈ I and set

m̃(k, l) :=max{m(k′, l′) | (k′, l′)�(k, l)}, ñ(k, l) :=max{n(k′, l′) | (k′, l′)�(k, l)}.

Then there is a well-defined and continuous map h̃ : X̃ −→ Ỹ given by

k(h̃(x̃))l = h(m̃(k,l)[x]ñ(k,l)),

for (k, l) ∈ I and x̃ = (r[x]s)(r,s)∈I . A similar argument shows that there for

(k, l) ∈ I is (m′(k, l), n′(k, l)) ∈ I such that

y
m′(k,l),n′(k,l)∼ y′ =⇒ h−1(y)

k,l∼ h−1(y′),

and that there is a continuous map h̃′ : Ỹ −→ X̃ given by

k(h
′(ỹ))l = h−1(m̃′(k,l)[y]ñ′(k,l)),
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for (k, l) ∈ I and ỹ = (r[y]s)(r,s)∈I ∈ Ỹ, where m̃′(k, l) = max{m′(k′, l′) | (k′, l′) �
(k, l)} and ñ′(k, l) = max{n′(k′, l′) | (k′, l′) � (k, l)}. Since h′ is the inverse of h̃,
the latter map is a homeomorphism.

It is straightforward to check that h ◦ πX = πY ◦ h̃. Define k
˜X, l˜X : X̃ −→ N

and k
˜Y, l˜Y : Ỹ −→ N by k

˜X = kX ◦ πX, l
˜X = lX ◦ πX and k

˜Y = kY ◦ πY, l
˜Y =

lY ◦ πY. They are continuous. It is straightforward to check that σ
l
˜X
(x̃)

˜Y
(h̃(x̃)) =

σ
k
˜X
(x̃)

˜Y
(h̃(σ

˜X(x̃))) for x̃ ∈ X̃, and that σ
l
˜Y
(ỹ)

˜X
(h̃−1(ỹ)) = σ

k
˜Y
(ỹ)

˜X
(h̃−1(σ

˜X(x̃))) for ỹ ∈ Ỹ.

Thus, (h̃, l
˜X, k˜X, l˜Y, k˜Y) is a continuous orbit equivalence.

We will now show that (h̃, l
˜X, k˜X, l˜Y, k˜Y) is stabilizer-preserving. Pick a periodic

element x̃ ∈ X̃ and let x = πX(x̃) ∈ X. Then x is periodic and if lp(x) = p,
then lp(x̃) = np for some n ∈ N+. Since (h, lX, kX, lY, kY) is stabilizer-preserving,

h(x) ∈ Y is eventually periodic and |l(p)X (x)− k
(p)
X (x)| = lp(h(x)). Furthermore,

|l(lp(x̃))
˜X

(x̃)− k̃
(lp(x̃))
X (x̃)| = n lp(h(x))

is a period for h̃(x̃). In particular, h̃(x̃) is eventually periodic and as above

lp(h̃(x̃)) = m lp(h(x)) for some m ∈ N+. The above computation shows that
m divides n. A similar argument using h−1 instead of h shows that n divides m

and thus that n = m. This shows that lp(h̃(x̃)) = |l(lp(x̃))
˜X

(x̃)− k
(lp(x̃))
˜X

(x̃)|. Since h̃

maps periodic points to eventually periodic points, it also maps eventually periodic
points to eventually periodic points. �

We shall next find conditions on GX and GY and forOX andOY that are equivalent
to the existence of a stabilizer-preserving continuous orbit equivalence between X
and Y. Recall the definition of κX : C(X,Z) −→ B1(GX) from (2.1).

Theorem 6.4. Let X and Y be one-sided shift spaces, let h : X −→ Y be a homeo-
morphism and let dX : X −→ Z and dY : Y −→ Z be continuous maps. The following
conditions are equivalent:

(i) there are continuous maps kX, lX : X −→ N and kY, lY : Y −→ N with dX =
lX−kX and dY = lY−kY such that (h, lX, kX, lY, kY) is a stabilizer-preserving
continuous orbit equivalence;

(ii) there are continuous maps kX, lX : X −→ N and kY, lY : Y −→ N with

dX = lX − kX and dY = lY − kY and continuous maps k
˜X, l˜X : X̃ −→ N and

k
˜Y, l˜Y : Ỹ −→ N with l

˜X = lX ◦ πX, k˜X = kX ◦ πX, l˜Y = lY ◦ πY, k˜Y = kY ◦ πY,

and a homeomorphism h̃ : X̃ −→ Ỹ such that (h̃, l
˜X, k˜X, l˜Y, k˜Y) is a stabilizer-

preserving continuous orbit equivalence satisfying h ◦ πX = πY ◦ h̃;
(iii) there are

• a groupoid isomorphism Ψ: GX −→ GY such that h ◦ πX = πY ◦ Ψ(0)

and κX(dX) = κY(1) ◦Ψ; and
• a groupoid isomorphism Ψ′ : GY → GX such that h−1 ◦πY = πX ◦(Ψ′)(0)

and κY(dY) = κX(1) ◦Ψ′;
(iv) there are

• a ∗-isomorphism Φ: OX −→ OY such that Φ(C(X)) = C(Y), Φ(f) =

f ◦ h−1 for f ∈ C(X) and Φ ◦ γX
z = β

κY(dY)
z ◦ Φ for each z ∈ T; and

• a ∗-isomorphism Φ′ : OY −→ OX such that Φ′(C(Y)) = C(X), Φ′(f) =

f ◦ h for f ∈ C(Y) and Φ′ ◦ γY
z = β

κX(dX)
z ◦ Φ′ for each z ∈ T.
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Proof. (i) =⇒ (ii): This is Lemma 6.3.
(ii) =⇒ (iii): It follows from [14, Proposition 8.3] that there is a groupoid

isomorphism Ψ: GX −→ GY satisfying

Ψ((x̃, 1, σ
˜X(x̃))) = (h̃(x̃), l

˜X(x̃)− k
˜Y(x̃), h̃(σ˜X(x̃)))

for x̃ ∈ X̃, and a groupoid isomorphism Φ′ : GY → GX satisfying

Φ′((ỹ, 1, σ
˜Y(ỹ))) = (h̃−1(ỹ), l

˜Y(y)− k
˜Y(ỹ), h̃

−1(σ
˜Y(ỹ)))

for ỹ ∈ Ỹ. We then have that h ◦ πX = πY ◦ Φ(0), κX(dX) = κY(1) ◦ Φ, h−1 ◦ πY =
πX ◦ (Φ′)(0) and κY(dY) = κX(1) ◦ Φ′.

(iii) =⇒ (i): Let Ψ: GX −→ GY be a groupoid isomorphism satisfying h ◦ πX =

πY ◦ Ψ(0) and κX(dX) = κY(1) ◦ Ψ. Put h̃ := Ψ(0). Then Ψ(x̃, 1, σ
˜X(x̃)) =

(h̃(x̃), dX(πX(x̃)), h̃(σ˜X(x̃))) and it follows from [14, Lemma 8.4] that the map

l
˜X : X̃ −→ N given by

l
˜X(x̃) = min{n ∈ N | n � dX(πX(x̃)), σ

n
˜Y
(h̃(x̃)) = σ

˜Y(h̃(σ˜X(x̃)))}

is continuous. We claim that

l
˜X(x̃) = min{n ∈ N | n � dX(πX(x̃)), σ

n
˜Y
(h̃(πX(x̃))) = σ

˜Y(h̃(σ˜X(πX(x̃))))}.(6.3)

By applying πY, it is easy to see that the left hand side is less than the right

hand side. For the converse inequality, fix x̃ ∈ X̃ and suppose the right hand

side of (6.3) equals n. Set ỹ := σn
˜Y
(h̃(x̃)) and ỹ′ := σ

n−dX(πX(x̃))
˜Y

(h̃(σ
˜X(x̃))). Then

πY(ỹ) = πY(ỹ
′) by hypothesis, and since (h̃(x̃), dX(πX(x̃)), h̃(σ˜X(x̃))) ∈ GY there is

an m ∈ N such that σm
˜Y
(ỹ) = σ

˜Y(ỹ
′). It now follows from Lemma 2.8(i) that ỹ = ỹ′.

This means that there is a map lX : X −→ N such that l
˜X = lX ◦ πX. This map is

continuous by Lemma 2.5. Set kX := dX−lX. Then kX is a continuous map satisfying

dX = lX − kX and σ
l(x)
Y (h(x)) = σ

k(x)
Y (h(σX(x))) for x ∈ X. A similar argument

shows that there are continuous maps lY, kY : Y −→ N satisfying dY = lY − kY
and σ

lY(y)
X (h−1(y)) = σ

kY(y)
X (h−1(σY(y))) for y ∈ Y. Then (h, lX, kX, lY, kY) is a

continuous orbit equivalence.
Finally, we show that (h, lX, kX, lY, kY) is stabilizer-preserving. Observe first

that an argument similar to the one used in the proof of [14, Lemma 8.6] shows

that (h̃, l
˜X, k˜X, l˜Y, k˜Y) is stabilizer-preserving. Fix an eventually periodic element

x ∈ X. Then x̃ = ιX(x) ∈ X̃ is eventually periodic, so h̃(x̃) is eventually periodic.

Hence h(x) = πY(h̃(x̃)) ∈ Y is eventually periodic. Now suppose x is periodic with

lp(x) = p. Then ιX(x) ∈ X̃ is periodic with lp(ιX(x)) = p. Since h̃(ιX(x)) = ιY(h(x))

we also have lp(h(x)) = lp(h̃(x̃)), and using that h̃ is stabilizer-preserving in the
middle equality below we see that

|l(p)X (x)− k
(p)
X (x)| = |l(p)

˜X
(x̃)− k

(p)
˜X

(x̃)| = lp(h̃(x̃)) = lp(h(x))

which shows that (h, lX, kX, lY, kY) is stabilizer-preserving.
(iii) =⇒ (iv): It follows from [14, Theorem 6.2] that there is ∗-isomorphism

Φ: OX −→ OY such that Φ(DX) = DY, Φ(f) = f ◦ h̃−1 for f ∈ DX, and Φ ◦ γX
z =

β
κY(dY)
z ◦Φ for each z ∈ T. Since h ◦πX = πY ◦Φ(0), it follows that Φ(C(X)) = C(Y)

and Ψ(f) = f◦h−1 for f ∈ C(X). Similarly, there is a ∗-isomorphism Φ′ : OY −→ OX
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such that Φ′(C(Y)) = C(X), Φ′(f) = f ◦ h for f ∈ C(Y), and Φ′ ◦ γY
z = β

κX(dX)
z ◦Φ′

for each z ∈ T.
(iv) =⇒ (iii): An application of [14, Theorem 6.2] shows that there is a groupoid

isomorphism Ψ: GX −→ GY such that κX(dX) = κY(1) ◦ Ψ. Since Φ(C(X)) = C(Y)
and Ψ(f) = f ◦ h−1 for f ∈ C(X), it follows that h ◦ πX = πY ◦ Ψ(0). Similarly,
there is a groupoid isomorphism Ψ′ : GY −→ GX such that h−1 ◦ πY = πX ◦ (Ψ′)(0)

and κY(dY) = κX(1) ◦Ψ′. �

Remark 6.5. It is natural to ask if in Theorem 6.4(iii) the groupoid isomorphisms Ψ
and Ψ′ can be chosen to be inverses of each other, and if in (iv) the ∗-isomorphisms
Φ and Φ′ can be chosen to be inverses of each other. This is not the case in general.

Let X = Y be the shift space with only one point. Then (id, 1, 0, 0, 1) is a
stabilizer-preserving continuous orbit equivalence from X to Y (which is not least
period preserving), where dX = 1 and dY = −1. The groupoid GX is canonically
isomorphic to the integer group Z. If Ψ: GX −→ GY is a group isomorphism, then
the conditions κX(dX) = κY(1) ◦ Ψ and κY(dY) = κX(1) ◦ Ψ−1 imply that Ψ maps
the generator 1 to both 1 and −1 and this cannot be the case. Similarly, there is no
∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) and Φ ◦ γX

z = β
κY(dY)
z ◦Φ

and Φ−1 ◦ γY
z = β

κX(dX)
z ◦ Φ−1.

We do not know if there are similar examples where X and Y are not of finite
type.

In [37, p. 61] (see also [40, p. 2]), Matsumoto introduces the notion of a con-
tinuous orbit equivalence between factor maps of two one-sided shift spaces X and
Y satisfying condition (I) (implying that the groupoids GX and GY are effective).
His factor maps can be more general than our πX and πY. In this case, he proves
a result ([37, Theorem 1.2] and [40, Theorem 1.3]) which is similar to the theorem
below. Our results applies to all one-sided shifts.

Theorem 6.6. Let X and Y be one-sided shift spaces and let h : X −→ Y be a
homeomorphism. The following conditions are equivalent:

(i) there is a stabilizer-preserving continuous orbit equivalence h̃ : X̃ −→ Ỹ

satisfying h ◦ πX = πY ◦ h̃;
(ii) there is a groupoid isomorphism Ψ: GX −→ GY satisfying h◦πX = πY ◦Ψ(0);
(iii) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) with

Φ(f) = f ◦ h−1 for f ∈ C(X).

Moreover, if h : X −→ Y is a stabilizer-preserving continuous orbit equivalence, then
the equivalent conditions above hold.

Proof. (i) =⇒ (ii): Let h̃ : X̃ −→ Ỹ be a continuous orbit equivalence and let

k
˜X, l˜X : X̃ −→ N be continuous cocycles for h̃. There is a groupoid homomorphism

Φ: GX −→ GY given by

Φ(x̃,m− n, ỹ) =
(
h̃(x̃), l

(m)
˜X

(x̃)− k
(m)
˜X

(x̃)− l
(n)
˜X

(ỹ) + k
(n)
˜X

(ỹ), h̃(ỹ))
)
,

for (x̃,m− n, ỹ) ∈ GX, The assumption that h̃ be stabilizer-preserving ensures that
Φ is bijective, cf. [14, Lemma 8.8 and Proposition 8.3].

(ii) =⇒ (i): A groupoid isomorphism Φ: GX −→ GY restricts to a homeomor-

phism h̃ = Φ(0) : X̃ −→ Ỹ. If cX is the canonical cocycle for GX and cY is the
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canonical cocycle for GY, then the maps

l
˜X(x̃) = min{l ∈ N | σl

˜Y
(h̃(x̃)) = σ

l−cY◦Φ(x̃,1,σ
˜X
(x̃))

˜Y
(h̃(σ

˜X(x̃)))},
k
˜X(x̃) = l

˜X(x̃)− cY ◦ Φ(x̃, 1, σ
˜X(x̃)),

l
˜Y(ỹ) = min{l ∈ N | σl

˜X
(h̃−1(ỹ)) = σ

l−cX◦Φ−1(ỹ,1,σ
˜Y
(ỹ))

˜X
(h̃−1(σ

˜Y(ỹ)))},
k
˜Y(ỹ) = l

˜Y(ỹ)− cX ◦ Φ−1(ỹ, 1, σ
˜Y(ỹ))

constitute continuous cocycles for h̃ such that (h̃, l
˜X, k˜X, l˜Y, k˜Y) is a stabilizer-

preserving continuous orbit equivalence, cf. [14, Lemma 8.5 and Lemma 8.6]. The

condition h ◦ πX = πY ◦ Φ(0) implies that h ◦ πX = πY ◦ h̃.
The equivalence (ii) ⇐⇒ (iii) is [14, Theorem 8.2]. If Φ: GX −→ GY is a groupoid

isomorphism, then the condition h ◦πX = πY ◦Φ(0) translates to the condition that
the ∗-isomorphism Ψ: OX −→ OY satisfies Ψ(C(X)) = C(Y). The latter condition
implies that Ψ(DX) = DY by Theorem 3.3.

The final remark follows from Lemma 6.3. �

Remark 6.7. We do not know if there exist shift spaces X and Y such that the con-
ditions in Theorem 6.6 are satisfied, but there is no stabilizer-preserving continuous
orbit equivalence between X and Y.

Next, we show that we can relax the conditions in Theorem 6.4 for certain classes
of shift spaces. First we need a preliminary result concerning eventually periodic
points.

In [42, Proposition 3.5], Matsumoto and Matui show that any continuous orbit
equivalence between shift spaces containing a dense set of aperiodic points maps
eventually periodic points to eventually periodic points. The result is only stated for
shifts of finite type associated with irreducible and nonpermutation {0, 1}-matrices,
but the proof holds in this generality, cf. [10, Remark 3.1]. Below, we give a
pointwise version of this result applicable to all shift spaces. We do not know if
any continuous orbit equivalence between shift spaces preserves eventually periodic
points, but we show that this problem hinges on whether there exists a continuous
orbit equivalence which maps an aperiodic isolated point to an eventually periodic
isolated point.

Proposition 6.8. Let X and Y be one-sided shift spaces and let h : X −→ Y be a
continuous orbit equivalence. Then h maps nonisolated eventually periodic points
to nonisolated eventually periodic points.

Proof. It suffices to verify the claim for nonisolated periodic points. Suppose x =
α∞ ∈ X for some word α ∈ L(X) with |α| = p ∈ N+, and let (xn)n be a sequence in
X converging to x. We may assume that xn ∈ ZX(α) for all n.

Suppose now that k := k
(p)
X (x) = l

(p)
X (x). The cocycles kX, lX : X −→ N for h are

continuous, so there exists N ∈ N such that k
(p)
X (xn) = l

(p)
X (xn) = k for n � N . In

particular,

σk
Y(h(xn)) = σk

Y(h(σ
p
X(xn))),(6.4)

for n � N . The sequences h(xn)n and (h(σp
X(xn)))n both converge to h(x) in Y, so

there exists an integer M � N such that

h(xn)[0,k) = h(x)[0,k) = h(σp
X(xn))[0,k),
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whenever n � M . This together with (6.4) means that h(xn) = h(σp
X(xn)) and

hence xn = σp
X(xn), for n � M . Since xn ∈ ZX(α), the sequence (xn)n is eventually

equal to x, so we conclude that x is an isolated point. If x is not isolated, then

l
(p)
X (x) �= k

(p)
X (x), and the observation

σ
l
(p)
X (x)

Y (h(x)) = σ
k
(p)
X (x)

Y (h(σ
(p)
X (x))) = σ

k
(p)
X (x)

Y (h(x))

shows that h(x) is eventually periodic. �
A similar result holds for covers.
Since any homeomorphism respects isolated points, we obtain the corollary be-

low. Sofic shifts contain no aperiodic isolated points (cf. Lemma 2.6), so this result
resolves the problem for this class of shift spaces.

Corollary 6.9. Let X and Y be one-sided shift spaces either containing no aperi-
odic isolated points or no isolated eventually periodic points, then any continuous
orbit equivalence h : X −→ Y maps eventually periodic points to eventually periodic
points. In particular, this applies to sofic shift spaces.

If X and Y contain no periodic points isolated in past equivalence, then X and

Y as well as the covers X̃ and Ỹ contain dense sets of aperiodic points. Hence the
condition that a continuous orbit equivalence be stabilizer-preserving is superfluous.

Theorem 6.10. Let X and Y be one-sided shift spaces with no periodic points
isolated in past equivalence and let h : X −→ Y be a homeomorphism. The following
are equivalent:

(i) the map h : X −→ Y is a continuous orbit equivalence;

(ii) there is a continuous orbit equivalence h̃ : X̃ −→ Ỹ satisfying h◦πX = πY◦h̃;
(iii) there is a groupoid isomorphism Ψ: GX −→ GY satisfying h◦πX = πY ◦Ψ(0);
(iv) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y) and

Φ(f) = f ◦ h−1 for f ∈ C(X).

Proof. (i) =⇒ (ii): Suppose h : X −→ Y is a continuous orbit equivalence with
continuous cocycles kX, lX : X −→ N. Since X and Y contain no periodic points
isolated in past equivalence, it follows from Proposition 2.10 that X and Y contain
dense sets of aperiodic points. The proof of Theorem 6.4 (i) =⇒ (ii) shows

that there is a continuous orbit equivalence h̃ : X̃ −→ Ỹ with continuous cocycles

k
˜X = kX ◦ πX and l

˜X = lX ◦ πX which satisfies h ◦ πX = πY ◦ h̃.
(ii) =⇒ (iii): Let h̃ : X̃ −→ Ỹ be a continuous orbit equivalence and let

k
˜X, l˜X : X̃ −→ N be continuous cocycles for h̃. The map Φ: GX −→ GY given by

Φ(x̃,m− n, ỹ) =
(
h̃(x̃), l

(m)
˜X

(x̃)− k
(m)
˜X

(x̃)− l
(n)
˜X

(ỹ) + k
(n)
˜X

(ỹ), h̃(ỹ))
)
,

for (x̃,m− n, ỹ) ∈ GX, is a groupoid isomorphism satisfying h ◦ πX = πY ◦Ψ(0).
(iii) =⇒ (i): Let Ψ: GX −→ GY be a groupoid isomorphism satisfying h ◦

πX = πY ◦ Ψ(0). Then h̃ := Ψ(0) : X̃ −→ Ỹ is a continuous orbit equivalence

with continuous cocycles l
˜X, k˜X : X̃ −→ N and l

˜Y, k˜Y : Ỹ −→ N given as in the
proof of Theorem 6.6 (ii) =⇒ (i). We will show that there are continuous maps
lX, kX : X −→ N and lY, kY : Y −→ N which are continuous cocycles for h such that
l
˜X = lX ◦ πX, k˜X = kX ◦ πX, l˜Y = lY ◦ πY and k

˜Y = kY ◦ πY. By Proposition 2.10, X
and Y have dense sets of aperiodic points, so it suffices to show that l

˜X and k
˜X are

constant on π−1
X (x) for an aperiodic x ∈ X.
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Let x ∈ X be aperiodic and take x̃, x̃′ ∈ π−1
X (x). Set c

˜X = l
˜X − k

˜X and k :=

max{k
˜X(x̃), k˜X(x̃

′)}. If x is isolated, then π−1
X (x) is a singleton, so we may assume

that x is not isolated. Since σ
c
˜X
(x̃)+k

˜Y
(h̃(x̃)) = σk

˜Y
(h̃(σX(x̃))) and σ

c
˜X
(x̃′)+k

˜Y
(h̃(x̃′)) =

σk
˜Y
(h̃(σX(x̃

′))), it follows that

σ
c
˜X
(x̃)+k

Y (h(x)) = σ
c
˜X
(x̃′)+k

˜Y
(h(x)).

By Proposition 6.8, we know that h(x) is aperiodic, so c
˜X(x̃) = c

˜X(x̃
′).

Set

ṽ := σ
l
˜X
(x̃′)

˜Y
(h̃(x̃)), w̃ := σ

l
˜X
(x̃′)−c

˜X
(x̃)

˜Y
(h̃(σ

˜X(x̃))).

Since c
˜X(x̃) = c

˜X(x̃
′) we have w̃ = σ

k
˜X
(x̃′)

˜Y
(h̃(σ

˜X(x̃))), and πY(ṽ) = πY(w̃). The

point x is aperiodic, so Lemma 2.8 implies that ṽ = w̃. By minimality in the
definition of l

˜X, it follows that l
˜X(x̃) � l

˜X(x̃
′). A symmetric argument shows that

l
˜X(x̃

′) � l
˜X(x̃). Hence l

˜X and k
˜X are constant on π−1

X (x). There are therefore
cocycles lX, kX : X −→ N for h which satisfy l

˜X = lX ◦πX and k
˜X = kX ◦πX, and they

are continuous by Lemma 2.5. A similar argument shows that there are continuous
cocycles lY, kY : Y −→ N satisfying l

˜Y = lY ◦ πY and k
˜Y = kY ◦ πY. Hence h is a

continuous orbit equivalence.
(iii) ⇐⇒ (iv): This is [14, Theorem 8.2]. Note that if Φ: OX −→ OY is a

∗-isomorphism as in (iv), then Φ(DX) = DY by Theorem 3.3. �

Corollary 6.11. Let X and Y be one-sided shift spaces with no periodic points
which are isolated in past equivalence. The following are equivalent:

(i) the systems X and Y are continuously orbit equivalent;
(ii) there is a groupoid isomorphism Ψ: GX −→ GY and a homeomorphism

h : X −→ Y such that h ◦ πX = πY ◦Ψ(0);
(iii) there is a ∗-isomorphism Φ: OX −→ OY satisfying Φ(C(X)) = C(Y).

Remark 6.12. In [6], the second-named author showed that when X is a sofic shift,
then OX is ∗-isomorphic to a Cuntz–Krieger algebra even in a diagonal-preserving
way. However, Corollary 6.11 shows that for a strictly sofic shift X the C∗-algebra
OX together with C(X) can be distinguished from a Cuntz–Krieger algebra, cf. Re-
mark 3.4.

6.1. Examples. We consider a few examples.

Example 6.13. Let XE and XF be the vertex shifts of the reducible graphs

E : .1 . 2

. 3.4

F : .1 . 2

. 3.4

Define a map h : XE −→ XF by exchanging the word (21) with the word 2
except in the case h(21(34)∞) = 21(34)∞. Furthermore, 1(34)∞ is fixed by h and
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h((34)∞) = (43)∞ and h((43)∞) = (34)∞. This is a homeomorphism. Consider
the cocycles kE , lE : XE −→ N and kF , lF : XF −→ N given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kE |XE\Z(2) = 0

kE |Z(2) = 1

lE(1(34)
∞) = 2

lE|Z(1)\{1(34)∞} = 1

lE(21(34)
∞
) = 2

lE|Z(2)\{21(34)∞} = 1

lE((34)
∞
) = 1

lE((43)
∞
) = 1

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kF = 0

lF (1(34)
∞
) = 2

lF |Z(1)\{1(34)∞} = 1

lF (21(34)
∞) = 1

lF |Z(2)\{21(34)∞} = 2

lF ((34)
∞) = 1

lF ((43)
∞) = 1.

They are continuous and h is a continuous orbit equivalence with the specified
cocycles. Hence XA and XB are continuously orbit equivalent.

We will show that no choice of continuous cocycles of h can be least period
preserving on eventually periodic points. Let kE , lE : XE −→ N be any choice of
continuous cocycles for h. Let x = 1(34)∞ ∈ XE and z = σE(x). The computation

σ
lE(x)
F (1(34)∞) = σ

lE(x)
F (h(x)) = σ

kE(x)
F (h(σE(x))) = σ

kE(x)
F (43)∞

shows that kE(x) and lE(x) have the same parity. On the other hand,

σ
lA(z)
F ((43)

∞
) = σ

lA(z)
F (h(z)) = σ

kA(z)
F (h(σE(z))) = σ

kA(z)
F (34)

∞

shows that kE(z) and lE(z) have different parity. Then l
(2)
E (x)−k

(2)
E (x) is odd while

lp(x) = 2.

Below we revisit an example of Matsumoto [36] of infinite and irreducible shifts
of finite type that are continuously orbit equivalent. We show that they are not
eventually conjugate.

Example 6.14. Let X be the full shift on the alphabet {1, 2} and let Y be the
golden mean shift determined by the single forbidden word {22}. Then X and Y are
infinite and irreducible shifts of finite type which are continuously orbit equivalent,
cf. [36, p. 213].

Suppose h : X −→ Y is an eventual conjugacy and that � ∈ N is an integer in
accordance with (5.1) and (5.2). Then both σ�

Y(h(1
∞)) and σ�

Y(h(2
∞)) are constant

sequences in Y, so they are both equal to 1∞ ∈ Y. However, then

1∞ = σ�
X(h

−1(σ�
Y(h(1

∞)))) = σ�
X(h

−1(σ�
Y(h(2

∞)))) = 2∞,

which cannot be the case. Therefore, X and Y are not eventually conjugate.

Example 6.15. Let X = Xeven and Y = Yodd be the even and the odd shift defined
by the following sets of forbidden words

Feven = {102n+11 : n ∈ N}, Fodd = {102n1 : n ∈ N},

respectively. The shift spaces are represented in the labeled graphs E and F below.
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Even: . .

.

1
0

1

0

0

Odd: . .

.

0

1

1

0

0

Define a map h : X −→ Y by exchanging the word 1 by the word (10). This is
a homeomorphism. Furthermore, the cocycles kX, lX : X −→ N and kY, lY : Y −→ N

given by {
kX|Z(0) = 0, lX|Z(0) = 1,

kX|Z(1) = 0, lX|Z(1) = 2
,

{
kY|Z(0) = 0, lY|Z(0) = 1,

kY|Z(1) = 1, lY|Z(1) = 1

are continuous. Hence h is a continuous orbit equivalence and X and Y are contin-
uously orbit equivalent. An argument similar to that of Example 6.14 shows that
X and Y are not one-sided eventually conjugate.

Observe that h(0∞) = 0∞ and h(1∞) = (10)∞ and

lX(0
∞)− kX(0

∞) = 1 = lp(0∞),

lX(1
∞)− kX(1

∞) = 2 = lp((10)∞),

so (kX, lX) is least period preserving. A similar computation shows that (kY, lY) is
also least period preserving.

Example 6.16. Let XE and XF be the edge shifts determined by the reducible
graphs

E : . .

.

e
c

b
d

a

F : . .

.

c′

e′

b′
d′

a′

Define a map h : XE −→ XF by exchanging any occurance of e by e′d′. This is a
homeomorphism. The maps kE , lE : XE −→ N and kF , lF : XF −→ N given by⎧⎪⎨⎪⎩

kE = 0,

lF |Z(a)∪Z(c)∪Z(d) = 1,

lF |Z(b)∪Z(e) = 2,

,

⎧⎪⎨⎪⎩
kF |Z(a′)∪Z(c′)∪Z(d′) = 0,

kF |Z(b′)∪Z(e′) = 1,

lF = 1,
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are continuous cocycles for h. Hence h is a continuous orbit equivalence and XE and
XF are continuously orbit equivalent. A computation shows that (h, kE , lE, kF , lF )
is least period preserving on periodic points but not on eventually periodic points.

In light of Example 6.15 we can identify XE and XF with the covers X̃even and

Ỹodd, respectively, and the cocycles above are induced from the cocycles on the
even and odd shifts. The maps k1, l1, k2, l2 : XE −→ N given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

k1 = 0

l1|Z(a) = 0

l1|Z(b)∪Z(c)∪Z(d) = 1

l1|Z(e) = 2

,

⎧⎪⎨⎪⎩
k2 = 0

l2|XE\Z(e) = 1

l2|Z(e) = 2

are continuous cocycles for h. Then (h, k1, l1, kF , lF ) is not least period preserving
and not constant on the preimages of πeven while (h, k2, l2, kF , lF ) is least period
preserving on all eventually periodic points but not constant on the preimages under
πeven.

7. Two-sided conjugacy

In [12, Corollary 5.2], the second-named author and Rout show that two-sided
subshifts of finite type ΛX and ΛY are conjugate if and only if the groupoids GX×R
and GY×R are isomorphic in a way which respects the canonical cocycle and if and
only if OX ×K and OY ⊗K are ∗-isomorphic in a way which intertwines the gauge
actions suitably stabilized. In this section, we characterize when a pair of general
two-sided shift spaces are conjugate in terms of isomorphism of the groupoids GX×R
and GY ×R and ∗-isomorphism of OX ⊗K and OY ⊗K (Theorem 7.5).

Recall that if X is a one-sided shift space and σX is surjective, then the corre-
sponding two-sided shift space ΛX is constructed as the projective limit

ΛX = lim←−(X, σX).

We shall write elements of X as x, y, z · · · and elements of ΛX as x, y, z · · · .

Lemma 7.1. Let X be a one-sided shift space and let X̃ be the associated cover.
Then σX is surjective if and only if σ

˜X is surjective.

Proof. If σ
˜X is surjective, then the relation σX ◦ πX = πX ◦ σ

˜X ensures that σX is

surjective. On the other hand, suppose σX is surjective and let x̃ ∈ X̃. Take x ∈ X
and integers 0 � r < s such that x̃ ∈ U(x, r, s). Since σX is surjective, there exists
a ∈ A such that ax ∈ X. We have

x̃ ∈ U(x, r, s) = U(σX(ax), r, s) = σ
˜X(U(ax, r + 1, s)).

In particular, we may pick ỹ ∈ U(ax, r + 1, s) such that σ
˜X(ỹ) = x̃. �

Following [13], we let R be the full countable equivalence relation on N×N. The
product of (n,m), (n′,m′) ∈ R is defined exactly when m = n′ in which case

(n,m)(n′,m′) = (n,m′).

Inversion is given as (n,m)−1 = (m,n), and the source and range maps are

s(n,m) = m, r(n,m) = n,

respectively, for (n,m) ∈ R.
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Given a one-sided shift space X, we consider the product groupoid GX×R whose

unit space we shall identify with X̃×N via the correspondence ((x̃, 0, x̃), (0, 0)) 
−→
(x̃, 0). The canonical cocycle is the continuous map c̄X : GX × R −→ Z given by
c̄X
(
(x̃, k, ỹ), (n,m)

)
= k, for

(
(x̃, k, ỹ), (n,m)

)
∈ GX ×R.

We start by describing two-sided conjugacy in terms of sliding block codes on the
corresponding one-sided shift spaces. Recall that a sliding block code ϕ : X −→ Y
between one-sided shift spaces X and Y is a continuous map satisfying ϕ◦πX = πY◦ϕ.

Definition 7.2. Let X and Y be one-sided shift spaces and let ϕ : X −→ Y be a
sliding block code. We say that ϕ is almost injective (with lag �1) if there exists
�1 ∈ N such that

ϕ(x) = ϕ(x′) =⇒ σ�1
X (x) = σ�1

X (x′),

for every x, x′ ∈ X. We say that ϕ is almost surjective (with lag �2) if there exists

�2 ∈ N such that for each y ∈ Y there exists x ∈ X such that σ�2
Y (ϕ(x)) = σ�2

Y (y).

Almost injective and almost surjective sliding block codes between covers is
defined analogously.

Lemma 7.3. Let ΛX and ΛY be two-sided subshifts. If ΛX and ΛY are two-sided
conjugate, then there is a surjective sliding block code ϕ : X −→ Y which is almost
injective. Conversely, if there exists a sliding block code ϕ : X −→ Y which is almost
injective and almost surjective, then ΛX and ΛY are conjugate.

Proof. If ΛX and ΛY are two-sided conjugate, we may assume that there exist a
two-sided conjugacy H : ΛX −→ ΛY and � ∈ N such that

x[0,∞) = x′[0,∞) =⇒ H(x)[0,∞) = H(x′)[0,∞),

y[0,∞) = y′[0,∞) =⇒ H−1(y)[�,∞) = H−1(y′)[�,∞)

for x, x′ ∈ ΛX, y, y
′ ∈ ΛY. Therefore, there is a well-defined map ϕ : X −→ Y given

by

ϕ(x) = H(x)[0,∞),(7.1)

for every x ∈ X and x ∈ ΛX with x = x[0,∞). The map ϕ is a surjective sliding

block code. Furthermore, if ϕ(x) = ϕ(x′) then σ�
X(x) = σ�

X(x
′) for x, x′ ∈ X.

Conversely, suppose ϕ : X −→ Y is an almost injective and almost surjective
sliding block code with lag �. Define a map h : ΛX −→ ΛY by

h(. . . , x2, x1, x0) = (. . . , ϕ(x2), ϕ(x1), ϕ(x0)),

for (. . . , x2, x1, x0) ∈ ΛX. Note that σY(ϕ(xi+1)) = ϕ(xi) for i ∈ N. Therefore h is
a well-defined sliding block code. We will show that h is injective and surjective.

Suppose first that (. . . , x2, x1, x0), (. . . , x
′
2, x

′
1, x

′
0) ∈ ΛX and ϕ(xi) = ϕ(x′

i) for
every i ∈ N. Then

xi = σ�
X(xi+�) = σ�

X(x
′
i+�) = x′

i

for i ∈ N so h is injective.
Now let (. . . , y2, y1, y0) ∈ ΛY and choose x, x′ ∈ X such that

σ�
Y(ϕ(x)) = σ�

X(y2�) = y�, σ�
Y(ϕ(x

′)) = σ�
X(y2�+1) = y�+1.

Note that

ϕ(σ�+1
X (x′)) = y� = ϕ(σ�

X(x))
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so σ2�+1
X (x′) = σ2�

X (x) since ϕ is almost surjective with lag �. Put z0 = σ2�
X (x) and

z1 = σ2�
X (x′) and observe that σX(z1) = z0. Continuing this process inductively

defines an sequence (. . . , z2, z1, z0) ∈ ΛX which is sent to (. . . , y2, y1, y0) via h.
Hence h is surjective and thus a two-sided conjugacy. �

Next we lift surjective sliding block codes on one-sided shift spaces to surjective
sliding block codes on the covers.

Lemma 7.4. Let X and Y be one-sided shift spaces and let ϕ : X −→ Y be a surjec-

tive sliding block code. Then there exists a surjective sliding block code ϕ̃ : X̃ −→ Ỹ
satisfying ϕ ◦ πX = πY ◦ ϕ̃.

If, in addition, σX is surjective and ϕ is almost injective with lag �, then ϕ̃ is
almost injective with lag �.

Proof. Since ϕ is a sliding block code there exists an integer K ∈ N such that

(7.2) x[0,r+K) = x′
[0,r+K) =⇒ ϕ(x)[0,r) = ϕ(x′)[0,r)

for r ∈ N and x, x ∈ X. We want to show that

(7.3) x
r+K,s+K∼ x′ =⇒ ϕ(x)

r,s∼ ϕ(x′),

for x, x′ ∈ X and integers 0 � r � s.
Suppose νσr

Y(ϕ(x)) = νϕ(σk
X(x)) where ν ∈ L(Y) with |ν| � s. We need to show

that νσk
Y(ϕ(x

′)) ∈ Y. As ϕ is surjective and commutes with the shift, there exists
a word μ ∈ L(X) with |μ| = |ν| such that μσk

X(x) ∈ X and νϕ(σk
X(x)) = ϕ(μσk

X(x)).
By hypothesis, μσk

X(x
′) ∈ X and we claim that ϕ(μσk

X(x
′)) = νσk

Y(ϕ(x
′)). Indeed,

μσk
X(x)[0,|μ|+K) = μσk

X(x
′)[0,|μ|+K), so

ϕ(μσk
X(x

′))[0,|ν|) = ϕ(μσk
X(x))[0,|ν|) = |ν|

by the choice of K. This proves the claim.

Define ϕ̃ : X̃ −→ Ỹ by

rϕ̃(x̃)s = ϕ(r+Kxs+K),

for x̃ ∈ X̃ and integers 0 � r � s. It is straightforward to check that the induced

map ϕ̃ : X̃ −→ Ỹ is a surjective sliding block code satisfying ϕ ◦ πX = πY ◦ ϕ̃.
Suppose now that σX is surjective and that there is � ∈ N such that ϕ(x) = ϕ(x′)

implies σ�
X(x) = σ�

X(x
′) for all x, x′ ∈ X. Equivalently, there exists a surjective

sliding block code ρ : Y −→ X satisfying σ�
X = ρ ◦ ϕ. An argument similar to the

one above shows that there is an induced surjective sliding block code ρ̃ : Ỹ −→ X̃
with ρ ◦ πY = πX ◦ ρ̃. It is straightforward to verify that σ�

˜X
= ρ̃ ◦ ϕ̃. Hence ϕ̃ is

almost injective. �

We now arrive at the main theorem of this section which characterizes two-sided
conjugacy of general shift spaces. The proof uses ideas of [12]. Let πX×N : X̃×N −→
X× N be the map πX×N(x̃, n) = (πX(x̃), n), for (x̃, n) ∈ X̃× N.

Theorem 7.5. Let ΛX and ΛY be two-sided shift spaces. The following are equiv-
alent:

(i) there is a sliding block code ϕ : X −→ Y which is almost injective and almost
surjective;

(ii) there is a two-sided conjugacy h : ΛX −→ ΛY;
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(iii) there are a groupoid isomorphism Ψ: GX×R −→ GY ×R and a homeomor-
phism ψ : X× N −→ Y × N satisfying ψ ◦ πX×N = πY×N ◦Ψ(0) and

c̄X = c̄Y ◦Ψ;

(iv) there is a ∗-isomorphism Φ: OX⊗K −→ OY ⊗K satisfying Φ(C(X)⊗ c0) =
C(Y)⊗ c0 and

Φ ◦ (γX ⊗ id) = (γY ⊗ id) ◦ Φ.(7.4)

Proof. The equivalence (i) ⇐⇒ (ii) is Lemma 7.3.
(ii) =⇒ (iii): Let h : ΛX −→ ΛY be a conjugacy as in the proof of Lemma 7.3 and

let ϕ : X −→ Y be the surjective and almost injective sliding block code of (7.1).
By Lemma 7.4 there exists a surjective and almost injective sliding block code

ϕ̃ : X̃ −→ Ỹ satisfying ϕ ◦ πX = πY ◦ ϕ̃. Since ϕ is continuous, there exists L ∈ N

such that
x[0,L) = x′

[0,L) =⇒ ϕ(x)[0,�) = ϕ(x′)[0,�),

for x, x′ ∈ X. Define an equivalence relation ∼ on words of length L in the following
way: Two words μ, ν ∈ LL(X) are ∼-equivalent, if there are x ∈ Z(μ) and x′ ∈ Z(ν)
such that ϕ(x) = ϕ(x′). Then ϕ(x) = ϕ(x′) if and only if σ�

X(x) = σ�
X(x

′) and
x[0,L) ∼ x′

[0,L). For every ∼-equivalence class [μ] = {ν ∈ LL(X) : μ ∼ ν}, fix a

partition

N =
∐
ν∈[μ]

Nν

and bijections fν : Nν −→ N. Define ω : X× N −→ N by

ω(x, n) = f−1
x[0,L)

(n),

for (x, n) ∈ X× N. Then ψ : X× N −→ Y × N given by

ψ(x, n) = (ϕ(x), ω(x, n)),

for (x, n) ∈ X × N, is a homeomorphism. Furthermore, the map Ψ: GX × R −→
GY ×R given by

Ψ
(
(x̃, k), n, (ỹ, l)

)
=

(
(ϕ̃(x̃), ω(πX(x̃), k)), n, (ϕ̃(ỹ), ω(πX(ỹ), l))

)
for

(
(x̃, k), n, (ỹ, l)

)
∈ GX × R, is a groupoid isomorphism satisfying ψ ◦ πX×N =

πY×N ◦Ψ(0).
(iii) =⇒ (i): Suppose Ψ: GX×R −→ GY×R is a groupoid isomorphism satisfying

the hypotheses of (iii). Define a map κ̃ : X̃ −→ Ỹ by Ψ(0)(x̃, 0) = (κ̃(x̃), n) for x̃ ∈ X̃
and some n ∈ N. Then κ̃ is well-defined and continuous since Ψ(0) is continuous.
By an argument similar to one in the proof of [12, Theorem 5.1], there exists L ∈ N

such that ϕ̃ := σL
˜Y
◦ κ̃ is a sliding block code which is almost injective and almost

surjective, say with lag �. Define also κ : X −→ Y by ψ(x, 0) = (ϕ(x),m) for x ∈ X
and some m ∈ N. Then κ is continuous and κ ◦ πX = πY ◦ κ̃. It follows that
ϕ := σL

Y ◦ κ : X −→ Y is a sliding block code.

Let y ∈ Y and choose ỹ ∈ π−1
Y (y). Pick x̃ ∈ X̃ such that σ�

˜Y
(ϕ̃(x̃)) = σ�

˜Y
(ỹ). If

x = πX(x̃), then σ�
Y(ϕ(x)) = σ�

Y(y) and ϕ is almost surjective.
In order to see that ϕ is almost injective, choose distinct x, x′ ∈ X such that

y := ϕ(x) = ϕ(x′). Choose distinct n, n′ ∈ N such that ψ(x, 0) = (y, n) and
ψ(x′, 0) = (y, n′) and pick ỹ ∈ π−1

Y (y). Since Φ(0) is a homeomorphism, there are

unique and distinct x̃, x̃′ ∈ X such that Φ(0)(x̃, 0) = (ỹ, n) and Φ(0)(x̃′, 0) = (ỹ, n′).
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It follows that σ�
˜X
(x̃) = σ�

˜X
(x̃′) since ϕ̃ is almost injective. Since ψ ◦ πX×N =

πY×N ◦ Φ(0), we have πX(x̃) = x and πX(x̃
′) = x′. Hence σ�

X(x) = σ�
X(x

′) and ϕ is
almost injective.

(iii) =⇒ (iv): A groupoid isomorphism Ψ: GX × R −→ GY × R induces a
∗-isomorphism Φ: OX ⊗ K −→ OY ⊗ K satisfying Φ(DX ⊗ c0) = DY ⊗ c0. Since
ψ ◦ πX×N = πY×N ◦ Ψ(0), we also have Φ(C(X) ⊗ c0) = C(Y) ⊗ c0. The relation
c̄X = c̄Y ◦ Φ ensures that (7.4) is satisfied.

(iv) =⇒ (ii): By Corollary 3.5, Φ(DX⊗c0) = DY⊗c0. From [14, Theorem 8.10]
there is a groupoid isomorphism Ψ: GX×R −→ GY×R satisfying Φ(f) = f ◦Ψ−1 ∈
DY ⊗ c0 for f ∈ DX ⊗ c0, and c̄X = c̄Y ◦ Ψ. Since Φ(g) = g ◦ ψ̃−1 ∈ C(Y) ⊗ c0
for g ∈ C(X) ⊗ c0, there is a homeomorphism ψ : X × N −→ Y × N such that
ψ ◦ πX×N = πY×N ◦Ψ(0). �

Corollary 7.6. Let ΛX and ΛY be two-sided shift spaces. The following are equiv-
alent:

(i) the two-sided subshifts ΛX and ΛY are two-sided conjugate;
(ii) there is a groupoid isomorphism Ψ: GX × R −→ GY × R and a homeo-

morphism ψ : X × N −→ Y × N satisfying ψ ◦ πX×N = πY×N ◦ Ψ(0) and
c̄X = c̄Y ◦Ψ;

(iii) there is a ∗-isomorphism Φ: OX⊗K −→ OY ⊗K satisfying Φ(C(X)⊗ c0) =
C(Y)⊗ c0 and Φ ◦ (γX ⊗ id) = (γY ⊗ id) ◦ Φ.

If ΛA and ΛB are the two-sided subshifts associated to finite square {0, 1}-
matrices with no zero rows and no zero columns, then we recover [12, Corollary
5.2]. See also [40, Theorem 1.5].

8. Flow equivalence

It is proven in [10, Corollary 6.3] (see also [41, Corollary 3.8]) that if ΛX and ΛY

are two-sided subshifts of finite type, then ΛX and ΛY are flow equivalent if and only
if GX ×R and GY ×R are isomorphic, and if and only if there is a ∗-isomorphism
OX⊗K −→ OY⊗K which maps C(X)⊗c0 onto C(Y)⊗c0. In this section, we shall for
general shift spaces X and Y look at the relationship between flow equivalence of ΛX

and ΛY, isomorphism of GX×R and GY×R, and ∗-isomorphisms OX⊗K −→ OY⊗K

which map C(X)⊗ c0 onto C(Y)⊗ c0.
The ordered cohomology [41, p. 868] of X is the group

HX = C(X,Z)/{f − f ◦ σX : f ∈ C(X,Z)},

with the positive cone

HX
+ = {[f ] ∈ HX | f � 0}.

The ordered cohomology of the cover X̃ is defined analogously. An isomorphism of
cohomology groups is positive if it maps the positive cone onto the positive cone,
and two maps f, f ′ ∈ C(X,Z) are cohomologous if [f ] = [f ′] in HX.

Remark 8.1. Recall that B1(GX) is the collection of groupoid homomorphisms from
GX to Z. The first cohomology group of GX is the group

H1(GX) = B1(GX)/{∂(f) | f ∈ C(G(0)
X ,Z)},
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where ∂ : C(G(0)
X ,Z) −→ B1(GX) is ∂(f)(γ) = f(r(γ))− f(s(γ)), for f ∈ C(G(0)

X ,Z)

and γ ∈ GX, cf. [41, p. 870]. There is a canonical isomorphism Θ: H1(GX) −→ H
˜X

given by Θ([f ]) = [g], where

g(x̃) = f(x̃, 1, σ
˜X(x̃)),

for x̃ ∈ X̃, cf. [10, Proposition 4,7].

The factor map πX : X̃ −→ X induces a well-defined injective map π∗
X : H

X −→ H
˜X

given by π∗
X([f ]) = [f ◦ πX], for f ∈ C(X,Z). Note π∗

X(H
X
+) ⊆ H

˜X
+ and π∗

X([1X]) =

1
˜X. The ordered cohomology (HΛX , HΛX

+ ) of a two-sided subshift ΛX is defined

analogously, and there is a canonical isomorphism (HX, HX
+)

∼= (HΛX , HΛX
+ ). This

was shown in [41, Lemma 3.1] for infinite irreducible shifts of finite type but as
noted in [10, Section 2.5] the proof holds for general shifts.

If X is a one-sided shift space, then the stabilization of X is the space X×N with
the shift operation SX : X× N −→ X× N given by

SX(x, n) =

{
(x, n− 1) if n > 0,

(σX(x), 0) if n = 0,

for (x, n) ∈ X× N. We define S
˜X : X̃× N −→ X̃× N in a similar way.

The ordered cohomology for the stabilized system is the group

HX×N = C(X× N,Z)/{f − f ◦ SX : f ∈ C(X× N,Z)},

with the positive cone

HX×N

+ = {[f ] ∈ HX×N | f � 0}.

The ordered cohomology is stable in the following sense.

Lemma 8.2. Let X be a one-sided shift space and let ι0 : X −→ X×N be the inclu-
sion given by ι0(x) = (x, 0). There is a surjective homomorphism
ι∗0 : C(X × N,Z) −→ C(X,Z) defined by ι∗0(ξ)(x) = ξ(x, 0), and an isomorphism

H(ι0) : H
X×N −→ HX such that H(ι0)([ξ]) = [ι∗0(ξ)]. Moreover, H(ι0)(H

X×N

+ ) =

HX
+ and H(ι0)([1X×N]) = [1X].

Proof. It is straightforward to check that ι∗0 : C(X×N,Z) −→ C(X,Z) is a surjective
homomorphism. Since ι0 is a sliding block code, there is a well-defined surjective
map H(ι0) : H

X×N −→ HX given by H(ι0)([ξ]) = [ι∗0(ξ)]. Any class [ξ] ∈ HX×N can
be represented by a map ξ ∈ C(X×N,Z) which is supported on X×{0}. If ξ(x, 0) =
b(x) − b(σX(x)), for some b ∈ C(X,Z) and x ∈ X, we may take η ∈ C(X × N,Z)
supported on X× {0} such that η(x, 0) = b(x). Then ξ = η− η ◦ SX on X× {0}, so
H(ι0) is injective.

It is clear the ι∗0(ξ) � 0 if ξ � 0. Conversely, let g ∈ C(X,Z) and assume that
g � 0. Take η ∈ C(X × N,Z) supported on X × {0} such that ξ(x, 0) = g(x) for

x ∈ X, and note that ι∗0(ξ) = g and ξ � 0. Hence H(ι0)(H
X×N

+ ) = HX
+. Finally,

ι∗0(1X×N) = 1X. �

We will write an element of GX×R as
(
(x̃, k), n, (ỹ, l)

)
instead of

(
(x̃, n, ỹ), (k, l)

)
,

where (x̃, k), (ỹ, l) ∈ X̃×N and σj
˜X
(x̃) = σi

˜X
(ỹ) for some i, j ∈ N with n = j − i. We
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then have that

GX ×R = {
(
(x̃, k), n, (ỹ, l)

)
| ∃i, j ∈ N : n = j − i, Sk+j

˜X
(x̃, k)

= Sl+i
˜X

(ỹ, l), σj
˜X
(x̃) = σi

˜X
(ỹ)}.

Let πX×N : X̃ × N −→ X × N be the map defined by πX×N(x̃, n) = (πX(x̃), n),

for (x̃, n) ∈ X̃ × N. There is an injective homomorphism κX×N : C(X × N,Z) −→
B1(GX ×R) defined by

κX×N(f)
(
(x̃, k), n, (ỹ, l)

)
=

j+k∑
r=0

f
(
πX×N(S

r
˜X
(x̃, k))

)
−

i+l∑
r=0

f
(
πX×N(S

r
˜X
(ỹ, l))

)
where i, j ∈ N are such that σj

˜X
(x̃) = σi

˜X
(ỹ) and n = j − i. In particular,

κX×N(f) : GX ×R −→ Z it the unique cocycle satisfying

κX×N(f)
(
(x̃, k), 1, S

˜X(x̃, k)
)
= f

(
πX×N(x̃, k)

)
,

for (x̃, k) ∈ X̃× N.
If ΛX and ΛY are conjugate subshifts, then they have isomorphic ordered coho-

mology. We give a one-sided decription below.

Lemma 8.3. Let ΛX and ΛY be two-sided subshifts that are conjugate. Then there
exist

(i) • a surjective and almost injective sliding block code ϕ : X −→ Y and an
injective homomorphism ϕ∗ : C(Y,Z) −→ C(X,Z) given by ϕ∗(g) =
g ◦ ϕ;

• a positive isomorphism H(ϕ) : HY −→ HX satisfying H(ϕ)([1Y]) =
[1X] and H(ϕ)[g] = [g ◦ ϕ] for g ∈ C(Y,Z);

(ii) a groupoid isomorphism Ψ: GX × R −→ GY × R and a homeomorphism
ψ : X× N −→ Y × N satisfying ψ ◦ πX×N = πY×N ◦Ψ(0);

(iii) • a homomorphism ψ∗ : C(Y × N,Z) −→ C(X × N,Z) such that
κX×N(ψ

∗(η)) = κY×N(η) ◦Ψ for η ∈ C(Y × N,Z),
• a homomorphism ψ# : C(X × N,Z) −→ C(Y × N,Z) such that
κY×N(ψ

#(ζ)) = κX×N(ζ) ◦Ψ−1 for ζ ∈ C(X× N,Z); and
• a positive isomorphism H(ψ) : HY×N −→ HX×N such that H(ψ)([η]) =
[ψ∗(η)] for η ∈ C(Y×N,Z), H(ψ)−1([ζ]) = [ψ#(ζ)] for ζ ∈ C(X×N,Z)
and H(ϕ) ◦H(ι0) = H(ι0) ◦H(ψ).

Proof. (i): Since ΛX and ΛY are conjugate there is a surjective and almost injective
sliding block code ϕ : X −→ Y, cf. Lemma 7.3. The map ϕ∗ : C(Y,Z) −→ C(X,Z)
given by ϕ∗(g) = g ◦ ϕ for g ∈ C(Y,Z) is an injective homomorphism.

Since ϕ is a sliding block code the map H(ϕ) : HY −→ HX given by H(ϕ)[g] =
[g ◦ ϕ] is well-defined and injective. In order to see that H(ϕ) is surjective, recall
that ϕ is almost injective and pick � ∈ N accordingly. Take f ∈ C(X,Z). Define a
map g : Y −→ N by g(y) = f ◦ σ�

X(ϕ
−1(y)), for y ∈ Y. Since ϕ is almost injective

with lag � this is well-defined and g is continuous, and H(ϕ)[g] = [f ◦ σ�
X] = [f ].

Hence H(ϕ) is surjective. It is straightforward to verify that H(ϕ)(HY
+) = HX

+ and
H(ϕ)([1Y]) = [1X].

(ii): By (the proof of) Theorem 7.5, there is a surjective sliding block code

ϕ̃ : X̃ −→ Ỹ such that ϕ ◦ πX = πY ◦ ϕ̃ and a map ω : X × N −→ N such that the
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map Ψ: GX ×R −→ GY ×R defined by

Ψ
(
(x̃, k), n, (ỹ, l)

)
=

(
(ϕ̃(x̃), ω(πX(x̃), k)), n, (ϕ̃(ỹ), ω(πX(ỹ), l))

)
(8.1)

is a groupoid isomorphism, and the map ψ : X× N −→ Y × N defined by

ψ(x, n) = (ϕ(x), ω(x, n)),

is a homeomorphism satisfying ψ ◦ πX×N = πY×N ◦Ψ(0).
(iii): Choose � ∈ N such that ϕ(x) = ϕ(x′) =⇒ σ�

X(x) = σ�
X(x

′) and let
ω : X×N −→ N be the map from (8.1). Define ω′ : Y×N −→ N by letting ω′(y, n) =
m where ψ−1(y, n) = (x,m) for some x ∈ X. Since ψ is a homeomorphism, ω′ is
continuous. Let ψ∗ : C(Y × N,Z) −→ C(X× N,Z) be the map defined by

ψ∗(η)(x, n) =

ω(x,n)∑
r=0

η(Sr
Y(ψ(x, n)))−

ω(x,n−1)∑
r=0

η(Sr
Y(ψ(x, n− 1))),

for η ∈ C(Y × N,Z) and (x, n) ∈ X× N with n ≥ 1, and

ψ∗(η)(x, 0) =

ω(x,0)+1∑
r=0

η(Sr
Y(ψ(x, 0)))−

ω(σX(x),0)∑
r=0

η(Sr
Y(ψ(σX(x), 0))),

for η ∈ C(Y × N,Z) and x ∈ X. Let ψ# : C(X× N,Z) −→ C(Y × N,Z) be the map
defined by

ψ#(ζ)(y, n) =

ω′(y,n)+�∑
r=0

ζ(Sr
X(ψ

−1(y, n)))−
ω′(y,n−1)+�∑

r=0

ζ(Sr
X(ψ

−1(y, n− 1))),

for ζ ∈ C(X× N,Z) and (y, n) ∈ Y × N with n ≥ 1, and

ψ#(ζ)(y, 0) =

ω′(y,0)+�+1∑
r=0

ζ(Sr
X(ψ

−1(y, 0)))−
ω′(σY(y),0)+�∑

r=0

ζ(Sr
X(ψ

−1(σY(y), 0))),

for ζ ∈ C(X× N,Z) and y ∈ Y. It is straightforward to check that ψ∗ and ψ# are
homomorphisms, and that κX×N(ψ

∗(η)) = κY×N(η) ◦ Ψ for η ∈ C(Y × N,Z), and
κY×N(ψ

#(ζ)) = κX×N(ζ) ◦Ψ−1 for ζ ∈ C(X× N,Z).
Let η ∈ C(Y × N,Z) and observe that

ψ∗(η − η ◦ SY)(x, n) = η(ω(x, n))− η(ω(x, n− 1)) = (η − η ◦ SX)(x, n)

for (x, n) ∈ X× N with n ≥ 1, and

ψ∗(η − η ◦ SY)(x, 0) = η(ω(x, 0))− η(ω(σX(x), 0)) = (η − η ◦ SX)(x, 0)

for x ∈ X. Hence ψ∗ induces a map H(ψ) : HY×N −→ HX×N given by H(ψ)([η]) =
[ψ∗(η)] for η ∈ C(Y × N,Z).

Suppose η ∈ C(Y × N,Z) is supported on Y × {0}. Then

ι∗0(ψ
∗(η))(x) = η(ϕ(x), 0) = ϕ∗(ι∗0(η))(x)

for x ∈ X. Since any element in HY×N can be represented by a map η ∈ C(Y×N,Z)
which is supported on Y × {0}, it follows that H(ϕ) ◦ H(ι0) = H(ι0) ◦ H(ψ).
Therefore, H(ψ) is a positive isomorphism.
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Suppose ζ ∈ C(X× N,Z) is is supported on Y × {0}. Then

φ∗(ι∗0(ψ
#(ζ)))(x) = ψ#(ζ)(ϕ(x), 0) = ζ(x, 0) = ι∗0(ζ)(x)

for x ∈ X. It follows that (H(ϕ) ◦ H)(ι0)([ψ
#(ζ)]) = H(ι0)([ζ]). Since H(ϕ) ◦

H(ι0) = H(ι0)◦H(ψ) andH(ι0) is an isomorphism, we conclude thatH(ψ)−1([ζ]) =
[ψ#(ζ)]. Any element in HY×N can be represented by a map η ∈ C(Y × N,Z)
which is supported on Y × {0}, so it follows that H(ψ)−1([ζ]) = [ψ#(ζ)] for every
ζ ∈ C(X× N,Z). �

Let f : X −→ N+ be a continuous map. Following [43], we consider the space

Xf = {(x, i) ∈ X× N | i < f(x)}
with the shift operation σf : Xf −→ Xf given by

σf (x, i) =

{
(x, i− 1) i > 0,(
σX(x), f(σX(x))− 1

)
i = 0,

for (x, i) ∈ Xf . We equip Xf with the subspace topology of X × N with the
product topology where N is endowed with the discrete topology. Then Xf

is compact and Hausdorff, and σf is surjective if and only if σX is surjective. If
A is the alphabet of X, then the pair (Xf , σf ) is conjugate to a shift space
Xf = j(X) over A × {0, 1, . . . ,max{f(x) | x ∈ X} − 1} where j : Xf −→
(A× {0, 1, . . . ,max{f(x) | x ∈ X} − 1})N is the injective sliding block code given
by

j(x, i) = (x0, i)(x0, i− 1) · · · (x0, 0)(x1, f(σX(x))− 1) · · · (x1, 0) · · ·
for x = x0x1 · · · ∈ X and i = 0, 1, . . . , f(x) − 1. By a slight abuse of notation, we
shall identify Xf and Xf and consider the two-sided subshift ΛXf

as well as the

cover X̃f . Note that ΛX and ΛXf
are flow equivalent, cf. [10, Section 5]. A similar

construction applies to two-sided subshifts.
We shall make use of the following characterization of flow equivalence. This is

probably known to experts but we have not been able to find a proper reference.

Lemma 8.4. A pair of two-sided subshifts ΛX and ΛY are flow equivalent, if and
only if there are continuous maps f ∈ C(X,N+) and g ∈ C(Y,N+) such that ΛXf

and ΛYg
are conjugate.

Proof. Suppose first that there are continuous maps f ∈ C(X,N+) and g∈C(Y,N+)
such that ΛXf

and ΛYg
are conjugate. It is well-known that ΛX is flow equivalent

to ΛXf
, and that ΛY is flow equivalent to ΛYg

, cf. [10, Section 5], so it follows that
ΛXf

and ΛYg
are flow equivalent.

If ΛX and ΛY are flow equivalent, then there is a compact metric space Z with
a flow γ : Z × R −→ Z and cross sections X and Y which are conjugate to ΛX and
ΛY, respectively, cf., e.g., [3, 45]. Let hX : ΛX −→ X and hY : ΛY −→ Y be such
conjugacies.

Set A = X ∪ Y . Consider the return time function τX : Z −→ R given by

τX (z) = min{t > 0 | γ(z, t) ∈ X},
for z ∈ Z, and define the map f̄ : ΛX −→ N by

f̄(x) = |{t ∈ (0, τX (hX(x))) | γ(hX(x), t) ∈ Y}|
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for x ∈ ΛX. Then f̄ is continuous and f � 1. Moreover, (ΛX)f̄ is conjugate to
A by construction. By continuity, there is an integer n ∈ N such that x[−n,n] =

x[−n,n] implies f̄(x) = f̄(x). It follows that there is a well-defined continuous map
f : X −→ N satisfying

f(x[0,∞)) = f̄(σn
ΛX
(x))

for x ∈ ΛX. Then (ΛX)f̄ is conjugate to (ΛX)f̄◦σn
ΛX

, and (ΛX)f̄◦σn
ΛX

is conjugate to

ΛXf
. In particular, ΛXf

is conjugate to A.
A similar argument shows that there is a continuous map g : C(Y,N+) such that

ΛYg
is conjugate to A. It follows that ΛXf

and ΛYg
are conjugate. �

Lemma 8.5. Let X be a one-sided shift space and let f : X −→ N+ be continuous.
Then

(i) there are an injective sliding block code ιf : X −→ Xf and a surjective ho-
momorphism ι∗f : C(Xf ,Z) −→ C(X,Z) given by

ι∗f (ξ)(x) =

f(σX(x))−1∑
r=0

ξ(σr
f (ιf (x))),(8.2)

and a positive isomorphism H(ιf ) : H
Xf −→ HX given by H(ιf )([ξ]) =

[ι∗f (ξ)];

(ii) there are
• a groupoid isomorphism Ψf : GX × R −→ GXf

× R and a homeomor-

phism ψ : X× N −→ Xf × N satisfying ψ ◦ πX×N = πY×N ◦Ψ(0)
f ;

• a homomorphism ψ∗ : C(Xf × N,Z) −→ C(X × N,Z) satisfying
κX×N(ψ

∗(ξ)) = κXf×N(ξ) ◦Ψf for ξ ∈ C(Xf × N,Z);

• a homomorphism ψ# : C(X × N,Z) −→ C(Xf × N,Z) satisfying

κXf×N(ψ
#(ζ)) = κX×N(ζ) ◦Ψ−1

f for ζ ∈ C(X× N,Z);

• a positive isomorphism H(ψ) : HXf×N −→ HX×N such that H(ψ)([ξ])
= [ψ∗(ξ)], H(ψ)−1([ζ]) = [ψ#(ζ)], and H(ιf ) ◦H(ι0) = H(ι0) ◦H(ψ).

Proof. (i): The inclusion ιf : X −→ Xf given by ιf (x) = (x, 0) is an injective
sliding block code, and ι∗f : C(Xf ,Z) −→ C(X,Z) given by (8.2) is a surjective
homomorphism. Since

ι∗f (ξ − ξ ◦ σX)(x) = ξ(x, 0)− ξ(σX(x), 0) = ι∗0(ξ)(x)− ι∗f (ξ)(σX(x)),

for ξ ∈ C(Xf ,Z) and x ∈ X, the map ι∗f induces a well-defined surjective map

H(ιf ) : H
Xf −→ HX given by H(ιf )([ξ]) = [ι∗f (ξ)] for ξ ∈ C(Xf ,Z).

To see that H(ιf ) is injective, notice that any element of HXf can be represented
by a map ξ ∈ C(Xf ,Z) which is supported on X×{0} ⊆ Xf . Suppose ξ ∈ C(Xf ,Z)
is supported on X×{0} ⊆ Xf and ι∗f (ξ)(x) = b(x)− b(σX(x)) for some b ∈ C(X,Z).

Let η ∈ C(Xf ,Z) be given by η(x, n) = 0 for n > 0 and η(x, 0) = b(x). Then

ξ(x, 0) = η(x, 0)− η ◦ σf(σX(x))
f (x, 0), so ξ is cohomologous to zero.

Note that ι∗f (ξ) � 0 when ξ � 0. Conversely, let g ∈ C(X,Z) and take ξ ∈
C(Xf ,Z) such that ξ(x, i) = 0 for all i > 0 and ξ(x, 0) = g(x). Then ι∗f (ξ) = g and

ξ � 0 if g � 0. Hence H(ι∗f ) is a positive isomorphism.
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(ii): Define ψ : X× N −→ Xf × N by

ψ(x, j) =
(
(x, i), k

)
where i, k ∈ N with i < f(x) and j = kf(x) + i. Then ψ is a homeomorphism.

Define Ψf : GX ×R −→ GXf
×R by

Ψf ((x̃, j), p, (x̃
′, j′)) =

((
(x̃, i), k

)
, l − l′,

(
(x̃′, i′), k′

))
for

(
(x̃, j), p, (x̃′, j′)

)
∈ GX×R and s, s′ ∈ N such that σs

˜X
(x̃) = σs′

˜X
(x̃′) and p = s−s′.

Here, i, i′, k, k′ ∈ N with i < f(πX(x̃)) and i′ < f(πX(x̃
′)), and j = kf(πX(x̃)) + i

and j′ = k′f(πX(x̃
′)) + i′, and

l = i+
s∑

r=1

f(σr
X(πX(x̃))), l′ = i′ +

s′∑
r=1

f(σr
X(πX(x̃

′))).

Then Ψf is a groupoid isomorphism such that ψ ◦ πX×N = πY×N ◦Ψ(0)
f .

(iii): Let ψ∗ : C(Xf × N,Z) −→ C(X× N,Z) be defined by

ψ∗(ξ)(x, j) =
k+1∑
r=0

ξ(Sr
f (ψ(x, j)))−

k∑
r=0

ξ(Sr
f(ψ(x, j − 1)))

for ξ ∈ C(Xf × N,Z) and (x, j) ∈ X× N with j ≥ 1, where k is the integer part of
j/f(x), and

ψ∗(ξ)(x, 0) =

f(σX(x))−1∑
r=0

ξ(Sr
f (ψ(x, 0)))

for ξ ∈ C(Xf×N,Z) and x ∈ X. Then ψ∗ is a homomorphism such that κX×N(ψ
∗(ξ))

= κXf×N(ξ) ◦Ψf for ξ ∈ C(Xf × N,Z).

Define ψ# : C(X× N,Z) −→ C(Xf × N,Z) by

ψ#(ζ)((x, i), k) =

kf(x)+i∑
j=(k−1)f(x)+i+1

ζ(x, j)

for ζ ∈ C(X× N,Z) and
(
(x, i), k

)
∈ Xf × N with k ≥ 1,

ψ#(ζ)
(
(x, i), 0

)
= ζ(x, i)

for ζ ∈ C(X× N,Z) and (x, i) ∈ Xf with i ≥ 1, and

ψ#(ζ)
(
(x, 0), 0

)
= ζ(x, 0)−

f(σX(x))−1∑
j=1

ζ(σX(x), j)

for ζ ∈ C(X×N,Z) and x ∈ X. Then ψ# is a homomorphism such that κXf×N(ψ
#(ζ))

= κX×N(ζ) ◦Ψ−1
f for ζ ∈ C(X× N,Z)

Since

ψ∗(ξ−ξ◦Sf )(x, j)=ξ((x, 0), 0)−ξ((σX(x), 0), 0)=ξ((x, 0), 0)−ξ◦Sf(σX(x))
X ((x, 0), 0),

for ξ ∈ C(Xf×N,Z) and (x, j) ∈ X×N, ψ∗ induces a well-defined mapH(ψ) : HXf×N

−→ HX×N given by H(ψ)([ξ]) = [ψ∗(ξ)] for η ∈ C(Xf×N,Z). Since ι∗f ◦ι∗0 = ι∗0 ◦ψ∗,

it follows that H(ιf ) ◦H(ι0) = H(ι0) ◦H(ψ). Since H(ι0) and H(ιf ) are positive
isomorphisms, H(ψ) is also a positive isomorphism.
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Suppose ζ ∈ C(X× N,Z) is supported on X× {0}. Then
ι∗f (ι

∗
0(ψ

#(ζ)))(x) = ζ(x, 0) = ι∗0(ζ)(x),

for every x ∈ X. Since every element of HX×N

+ can be represented by a map ζ ∈
C(X×N,Z) which is supported on X×{0}, this shows that H(ιf )◦H(ι0)([ψ

#(ζ)]) =
H(ι0)([ζ]) for every ζ ∈ C(X×N,Z). Since H(ιf )◦H(ι0) = H(ι0)◦H(ψ) and H(ι0)
is an isomorphism, it follows that H(ψ)−1([ζ]) = [ψ#(ζ)] for ζ ∈ C(X× N,Z). �

Let us say that a stabilizer-preserving continuous orbit equivalence (h, lX, kX, lY,
kY) from X to Y is positive if [lX − kX] ∈ HX

+ and [lY − kY] ∈ HY
+.

Lemma 8.6. Let X and Y be one-sided shift spaces and let (h, lX, kX, lY, kY) be
a positive stabilizer-preserving continuous orbit equivalence from X to Y. Then
(h, lX, kX, lY, kY) is least period preserving.

Proof. Since [lX − kX] ∈ HX
+ and [lY − kY] ∈ HY

+, there are bX ∈ C(X,Z) and
nX ∈ C(X,N) such that lX − kX = nX + bX − bX ◦ σX, and bY ∈ C(Y,Z) and
nY ∈ C(Y,N) such that lY − kY = nY + bY − bY ◦ σY. If x ∈ X is periodic with
lp(x) = p, then

l
(p)
X (x)− k

(p)
X (x) =

p−1∑
i=0

(
lX(σ

i
X(x))− kX(σ

i
X(x))

)
=

p−1∑
i=0

(
nX(σ

i
X(x) + bX(σ

i
X(x)− bX(σ

i+1
X (x)

)
=

p−1∑
i=0

nX(σ
i
X(x) � 0.

Since (h, lX, kX, lY, kY) is stabilizer-preserving, we thus have that

l
(p)
X (x)− kX(p)(x) = |l(p)X (x)− kX(p)(x)| = lp(h(x)).

A similar argument shows that l
(lp(y))
Y (y)− kY(lp(y))(y) = lp(h−1(y)) for any peri-

odic y ∈ Y. �

Corollary 8.7. Let ΛX and ΛY be two-sided subshifts and suppose there is a positive
stabilizer-preserving continuous orbit equivalence from X to Y. Then ΛX and ΛY

are flow equivalent.

Proof. Let (h, lX, kX, lY, kY) be a positive stabilizer-preserving continuous orbit
equivalence from X to Y. It follows from Lemma 8.6 that (h, lX, kX, lY, kY) is least
period preserving, and thus from [10, Proposition 3.2] that ΛX and ΛY are flow
equivalent. �

The proof of [42, Theorem 5.11] shows that any continuous orbit equivalence
between shifts of finite type with no isolated points is least period preserving and
positive. However, if X = Y is the shift space with only one point, then (id, 1, 0, 0, 1)
is a stabilizer-preserving continuous orbit equivalence from X to Y which is not
positive. It follows from [10, Proposition 4.5 and Proposition 4.7] that if X and
Y are shifts of finite type that are continuously orbit equivalent, then there is a
least period preserving continuous orbit equivalence between X and Y. We do not
know if there are shifts spaces X and Y that are continuously orbit equivalent,
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but for which there is no positive stabilizer-preserving continuous orbit equivalence
between X and Y.

Remark 8.8. Suppose G is a second-countable locally compact Hausdorff étale
groupoid such that Iso(G)◦ is abelian and torsion-free, Γ is an abelian group,

and that c : G −→ Γ is a cocycle. Then c induces an action βc of the dual Γ̂

of Γ on C∗
r (G) such that βc

γ(f)(η) = γ(c(η))f(η) for γ ∈ Γ̂, f ∈ C∗
r (G), and

η ∈ G. In [14, Section 4], a groupoid H(C∗
r (G), C0(G(0)), βc) consisting of equiv-

alence classes of pairs (n, φ), where n is normalizer of C0(G(0)) in C∗
r (G) that

is homogeneous with respect to βc, and φ is a character of C0(G(0)), is con-
structed, and it is shown in [14, Proposition 6.5] that there is an isomorphism
θ(C∗

r (G),C0(G(0)),βc) : G −→ H(C∗
r (G), C0(G(0)), βc) (it is in [14] not assumed that Γ

is abelian and βc is a coaction of Γ rather than an action of Γ̂).
This is used in [14, Theorem 6.2] to prove that if G′ is another second-countable

locally compact Hausdorff étale groupoid, and d : G′ → Γ is a cocycle such that
there is a ∗-isomorphism Φ: C∗

r (G) −→ C∗
r (G′) such that Φ(C0(G(0))) = C0((G′)(0))

and βd
γ ◦ Φ = Φ ◦ βc

γ for all γ ∈ Γ̂, then there is an isomorphism Ψ: G −→ G′ such
that d ◦Ψ = c.

If we let c0 denote the unique cocycle from G to the abelian group {0}, then
any normalizer of C0(G(0) in C∗

r (G) is homogeneous with respect to c0. In partic-
ular, a normalizer n that is homogeneous with respect to c, is also homogeneous
with respect to c0, and there is a homomorphism Φπ : H(C∗

r (G), C0(G(0)), βc) −→
H(C∗

r (G), C0(G(0)), βc0) that sends [n, φ] to [n, φ]. Since θ(C∗
r (G),C0(G(0)),βc0 ) =

Φπ ◦ θ(C∗
r (G),C0(G(0)),βc), it follows that Φπ is an isomorphism.

Therefore, the isomorphism Ψ′ : G −→ G′ constructed in [14, Theorem 3.3] is
equal to the isomorphism Ψ: G −→ G′ constructed in [14, Theorem 6.2] such that
d ◦Ψ = c.

We are now ready to characterize flow equivalence of general two-sided subshifts.
The equivalence (i) ⇐⇒ (iv) in Theorem 8.9 below is a generalization of [10,
Theorem 5.3 (5) ⇐⇒ (6)] which is formulated for shifts of finite type.

Theorem 8.9. Let ΛX and ΛY be two-sided subshifts. The following are equivalent:

(i) the two-sided subshifts ΛX and ΛY are flow equivalent;
(ii) there are

• a groupoid isomorphism Ψ: GX×R −→ GY×R and a homeomorphism
ψ : X× N −→ Y × N such that ψ ◦ πX×N = πY×N ◦Ψ(0);

• a homomorphism ψ∗ : C(Y × N,Z) −→ C(X× N,Z) such that

κX×N(ψ
∗(η)) = κY×N(η) ◦Ψ,(8.3)

for η ∈ C(Y × N,Z);
• a homomorphism ψ# : C(X× N,Z) −→ C(Y × N,Z) such that

κY×N(ψ
#(ζ)) = κX×N(ζ) ◦Ψ−1,(8.4)

for ζ ∈ C(X× N,Z); and
• a positive isomorphism H(ψ) : HY×N −→ HX×N such that H(ψ)([η]) =
[ψ∗(η)] η ∈ C(Y × N,Z), and H(ψ)−1([ζ]) = [ψ#(ζ)] for ζ ∈
C(X× N,Z).
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(iii) there are
• a ∗-isomorphism Φ: OX ⊗ K −→ OY ⊗ K such that Φ(C(X) ⊗ c0) =
C(Y)⊗ c0;

• a homomorphism ψ∗ : C(Y × N,Z) −→ C(X× N,Z) such that

Φ ◦ βκX×N(ψ
∗(η))

z = βκY×N(η)
z ◦ Φ,

for η ∈ C(Y × N,Z) and z ∈ T;
• a homomorphism ψ# : C(X× N,Z) −→ C(Y × N,Z) such that

Φ ◦ βκX×N(ζ)
z = βκY×N(ψ

#(ζ))
z ◦ Φ,

for ζ ∈ C(X× N,Z) and z ∈ T; and
• a positive isomorphism H(ψ) : HY×N −→ HX×N such that H(ψ)([η]) =
[ψ∗(η)] η ∈ C(Y × N,Z), and H(ψ)−1([ζ]) = [ψ#(ζ)] for ζ ∈
C(X× N,Z);

(iv) there are f ∈ C(X,N+) and g ∈ C(Y,N+) such that there is a positive
stabilizer-preserving continuous orbit equivalence between Xf and Yg.

Proof. (i) =⇒ (ii): Suppose ΛX and ΛY are flow equivalent. Then there are
f ∈ C(X,N+) and g ∈ C(Y,N+) such that ΛXf

and ΛYg
are conjugate. It therefore

follows from Lemmas 8.3 and 8.5 that (ii) holds.

(ii) =⇒ (iv): We shall identify GX ×R(0) = X̃× N. Since X̃ is compact and Ψ is

continuous, there is an integer n ∈ N such that Ψ(0)(X̃×{0}) ⊆ Ỹ×{0, . . . , n− 1}.
Define g ∈ C(Y,N+) to be constantly equal to n. Then φYg

: Y×{0, . . . , n−1} −→
Yg given by

φYg
(y, k) = (y, k)(8.5)

for (y, k) ∈ Yg, is a homeomorphism and ΦYg
: GY ×R|

˜Y×{0,...,n−1} −→ GYg
defined

by

ΦYg

(
(ỹ, k),m, (ỹ′, l)

)
=

(
(ỹ, k), k +mn− l, (ỹ′, l)

)
,

for
(
(ỹ, k),m, (ỹ′, l)

)
∈ GY × R|

˜Y×{0,...,n−1}, is an isomorphism such that φYg
◦

πY×N = πYg
◦ Φ(0)

Yg
.

Define f̃ : X̃ −→ N+ by

f̃(x̃) = |{k ∈ N : Ψ(0)(x̃, k) ∈ Ỹ × {0, . . . , n− 1}}|

for x̃ ∈ X̃. Then f̃ is continuous and f̃ � 1. Note that if πX(x̃) = πX(x̃
′) then the

condition ψ ◦ πX×N = πY×N ◦Ψ(0) ensures that

{k ∈ N | Ψ(0)(x̃, k) ∈ Ỹ×{0, . . . , n−1}} = {k′ ∈ N | Ψ(0)(x̃′, k′) ∈ Ỹ×{0, . . . , n−1}},

so f̃(x̃) = f̃(x̃′). By Lemma 2.5, there is a continuous map f : X −→ N+ satisfying

f̃ = f ◦ πX.
For each x ∈ X, there are exactly f(x) integers k(x, 0), . . . , k(x, f(x) − 1) ∈ N

such that ψ(x, k(x, i)) ∈ Y×{0, . . . , n−1}. Arrange the integers in increasing order
and define φXf

: Xf −→ ψ−1(Y × {0, . . . , n− 1}) by
φXf

(x, i) = (x, k(x, i)),(8.6)

for (x, i) ∈ Xf . Define ΦXf
: GXf

−→ GX ×R|π−1
X (ψ−1(Y×{0,...,n−1})) by

ΦXf

(
(x̃, i),m, (x̃′, i′)

)
=

(
(x̃, k(πX(x̃), i)), k − k′, (x̃, k(πX(x̃

′), i′))
)
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where k, k′,∈ N are such that σk
˜X
(x̃) = σk′

˜X
(x̃′) and

m = i+

k∑
r=1

f(σr
X(πX(x̃)))− i′ −

k′∑
r=1

f(σr
X(πX(x̃′))).

Then ΦXf
is an isomorphism such that φXf

◦ πXf
= πX×N ◦ Φ(0)

Xf
.

We have that Φ := ΦYg
◦ Ψ ◦ ΦXf

: GXf
−→ GYg

is an isomorphism and h :=

φYg
◦ ψ ◦ φXf

: Xf −→ Yg is a homeomorphism such that h ◦ πXf
= πYg

◦ Φ(0).
Let ξ ∈ C(Y × N,Z) be defined by

ξ(y, i) =

{
1 if i > 0,

n if i = 0,

for (y, i) ∈ Y×N. Then κYg
(1) ◦ΦYg

= κY×N(ξ). Set η := ψ∗(ξ) ∈ C(X×N,Z) and
define dXf

∈ C(Xf ,Z) by

dXf
(x, i) =

{∑k(x,i)
j=k(x,i−1)+1 η(x, j) if i > 0,

η(x, 0)−
∑k(σX(x),f(σX(x))−1)

j=1 η(σX(x), j) if i = 0,

for (x, i) ∈ Xf . Then κY×N(ξ) ◦ Ψ = κX×N(η) and κX×N(η) ◦ ΦXf
= κXf

(dXf
). We

thus have κYg
(1) ◦ Φ = κXf

(dXf
).

Similarly, κXf
(1) ◦ Φ−1

Xf
= κX×N(ρ) where ρ ∈ C(X× N,Z) is defined by

ρ(x, j) =

⎧⎪⎨⎪⎩
f(σ(x)) if j = 0,

1 if j = k(x, i) for some i ∈ {1, . . . , f(x)− 1},
0 otherwise.

Let χ = ψ#(ρ) ∈ C(Y × N,Z), and let dYg
∈ C(Yg,Z) be defined by

dYg
(y, i) =

{
χ(y, i) if i > 0,

χ(y, 0)−
∑n−1

j=1 χ(σY(y), j) if i = 0,

Then κX×N(ρ) ◦ Ψ−1 = κY×N(χ) and κY×N(χ) ◦ ΦYg
= κYg

(dYg
). Hence, κXf

(1) ◦
Φ−1 = κYg

(dYg
).

It now follows from Theorem 6.4 that there are continuous maps kXf
, lXf

: Xf −→
N and kYg

, lYg
: Yg −→ N such that (h, kXf

, lXf
, kYg

, lYg
) is a stabilizer-preserving

continuous orbit equivalence from Xf to Yg and lXf
−kXf

= dXf
and lYg

−kYg
= dYg

.

Note that [ξ] ∈ HY×N

+ and [η] = [ψ∗(ξ)]=H(ψ)([ξ]) ∈ HX×N

+ . SinceH(ι0) : H
X×N

−→ HX is a positive isomorphism, it follows that there are continuous maps
α, β : X × N −→ N such that α is supported on X × {0} and η = α + β − β ◦ SX.
Then dXf

(x, i) = β(x, k(x, i))− β(x, k(x, i− 1)) for i > 0 and

dXf
(x, 0) = α(x, 0) + β(x, 0)− β(σX(x), k(x, f(σX(x)))− 1)

= α(x, 0) + β(x, 0)− β ◦ σf (x, 0),

for x ∈ X. Thus, [lXf
− kXf

] = [dXf
] ∈ H

Xf

+ .

Similarly, [ρ] ∈ HX×N

+ and [χ] = [ψ#(ρ)] = H(ψ)−1([ρ]) ∈ HY×N

+ , so there
are continuous maps α′, β′ : Y × N −→ N such that γ is supported on Y × {0}
and χ = α′ + β′ − β′ ◦ SY, and then dYg

(y, i) = θ(y, i) − θ(y, i − 1) for i > 0,
and τ (y, 0) = α(y, 0) + β′(y, 0) − β′(σY(y), n − 1), for y ∈ Y. This shows that

[lYg
− kYg

] = [τ ] ∈ H
Yg

+ .
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We conclude that (h, kXf
, lXf

, kYg
, lYg

) is a positive stabilizer-preserving contin-
uous orbit equivalence.

(iv) =⇒ (i): We have that ΛXf
and ΛYg

are flow equivalent according to
Corollary 8.7. Since ΛX and ΛXf

are flow equivalent, and ΛY and ΛYg
are flow

equivalent, it follows that ΛX and ΛY are flow equivalent.
(ii) =⇒ (iii): The isomorphism Ψ: GX ×R −→ GY ×R induces a ∗-isomorphism

Φ: OX⊗K = C∗
r (GX×R) −→ C∗

r (GY ×R) = OY ⊗K satisfying Φ(f) = f ◦Ψ−1, for
f ∈ Cc(GX ×R). In particular, Φ(DX ⊗ c0) = DY ⊗ c0. The hypothesis, ψ ◦ πX×N =

πY×N ◦Ψ(0) ensures that Φ(f) = f ◦ψ−1, for f ∈ C(X)⊗ c0 ⊆ C(X̃)⊗ c0 = DX⊗ c0,

and that Φ−1(g) = g ◦ ψ for g ∈ C(Y) ⊗ c0 ⊆ C(Ỹ) ⊗ c0 = DY ⊗ c0. Therefore,
Φ(C(X)⊗ c0) = C(Y)⊗ c0.

Let η∈C(Y×N,Z) and suppose f ∈Cc(GX×R) has support in κX×N(ψ
∗(η))−1({1}).

By (8.3), Φ(f) = f◦Ψ−1 has support in Ψ(κX×N(ψ
∗(η))−1({1})) = κY×N(η)

−1({1}).
It follows that

Φ ◦ βκX×N(ψ
∗(η))

z = βκY×N(η)
z ◦ Φ,

for z ∈ T. A similar argument using (8.4) shows that Φ◦βκX×N(ζ)
z = β

κY×N(ψ
#(ζ))

z ◦Φ,
for ζ ∈ C(X× N,Z) and z ∈ T.

(iii) =⇒ (ii): By Corollary 3.5, we have Φ(C(X)⊗ c0) = C(Y)⊗ c0, so it follows
from [14, Theorem 3.3] that there is an isomorphism Ψ: GX ×R −→ GY ×R.

Let η ∈ C(Y × N,Z). It then follows from [14, Theorem 6.2] that there is an
isomorphism Ψη : GX ×R −→ GY ×R satisfying κX×N(ψ

∗(η)) = κY×N(η) ◦Ψη, and
according to Remark 8.8, we have Ψ = Ψη. Therefore, κX×N(ψ

∗(η)) = κY×N(η)◦Ψ,
for every η ∈ C(Y×N,Z). A similar argument shows that κY×N(ψ

#(ζ)) = κX×N(ζ)◦
Ψ−1, for every ζ ∈ C(X × N,Z). Finally, the restriction Φ|C(X)⊗c0 : C(X)⊗ c0 −→
C(Y) ⊗ c0 induces a homeomorphism ψ : X × N −→ Y × N such that ψ ◦ πX×N =
πY×N ◦Ψ(0).

The final remark follows from Corollary 3.5. �

If we restrict to the class of shift spaces which produce effective groupoids, we
can relax some of the conditions of Theorem 8.9.

Theorem 8.10. Let ΛX and ΛY be two-sided shift spaces such that X and Y contain
no periodic points isolated in past equivalence. The following are equivalent:

(i) the systems ΛX and ΛY are flow equivalent;
(ii) there is an isomorphism of groupoids Ψ: GX ×R −→ GY ×R and a homeo-

morphism ψ : X×N −→ Y×N satisfying ψ ◦πX×N = πY×N ◦Ψ(0) and a pos-
itive isomorphism θ : HX×N −→ HY×N satisfying θ ◦κX×N = κY×N ◦H1(Ψ).

Proof. (i) =⇒ (ii): This follows from the proof of Theorem 8.9 (i) =⇒ (ii).
(ii) =⇒ (i): Let Ψ: GX × R −→ GY × R be a groupoid isomorphism and

ψ : X × N −→ Y × N be a homeomorphism satisfying h ◦ πX×N = πY×N ◦ Ψ(0). As
in the proof of Theorem 8.9 (ii) =⇒ (iv) we choose n ∈ N+ and f ∈ C(X,N+).
Let g : Y −→ N be constantly equal to n. Then there is a groupoid isomorphism
Ψ′ : GXf

−→ GYg
and a homeomorphism h = φYg

◦ ψ ◦ φXf
such that h ◦ πXf

=

πYg
◦ (Ψ′)(0).

It is not hard to see that the maps φXf
: Xf −→ ψ−1(Y × {0, . . . , n − 1}) and

φYg
: Yg −→ Y× {0, . . . , n− 1} defined in (8.6) and (8.5), respectively, are positive

continuous orbit equivalences. Since X and Y contain dense sets of aperiodic points,
it follows from Theorem 6.10 that ψ : ψ−1(Y×{0, . . . , n−1}) −→ Y×{0, . . . , n−1}
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is a continuous orbit equivalence. By the hypothesis in (ii), ψ is also positive. Hence
h is a positive continuous orbit equivalence. It this follows from Corollary 8.7 that
ΛXf

and ΛYg
are flow equivalent. Since ΛX and ΛXf

are flow equivalent, and ΛY

and ΛYg
are flow equivalent, we conclude that ΛX and ΛY are flow equivalent. �

Finally, we restrict to the class of sofic shifts whose groupoids are effective.

Theorem 8.11. Let ΛX and ΛY be two-sided sofic shift spaces such that X and Y
contain no periodic points isolated in past equivalence. The following are equivalent:

(i) the two-sided subshifts ΛX and ΛY are flow equivalent;
(ii) there is an isomorphism Ψ: GX × R −→ GY × R and a homeomorphism

ψ : X× N −→ Y × N satisfying ψ ◦ πX×N = πY×N ◦Ψ(0);
(iii) there is a ∗-isomorphism Φ: OX⊗K −→ OY ⊗K satisfying Φ(C(X)⊗ c0) =

C(Y)⊗ c0.

Proof. (i) =⇒ (ii): This follows from Theorem 8.9.
(ii) =⇒ (i): As in the proof of (ii) =⇒ (iv) in Theorem 8.9, there are f ∈

C(X,N+), g ∈ C(Y,N+), a groupoid isomorphism Ψ′ : GXf
−→ GYg

and a home-

omorphism h : Xf −→ Yg such that h ◦ πXf
= πYg

◦ (Ψ′)(0). It follows from
Theorem 8.10 and its proof that h is a continuous orbit equivalence and that

(Ψ′)(0) : X̃f −→ Ỹg is a continuous orbit equivalence. Since Xf and Yg are sofic

shift spaces, the covers X̃f and Ỹg are (conjugate to) shifts of finite type. By hy-

pothesis, X and Y have no periodic points isolated in past equivalence, so X̃ and

Ỹ, and thus also X̃f and Ỹg, have no isolated points. It therefore follows the proof

of [42, Theorem 5.11] that the continuous orbit equivalence (Ψ′)(0) is positive and
least period preserving. It follows that h is also positive and least period preserving.
It therefore follows from Corollary 8.7 that Xf and Yg are flow equivalent. Since X
and Xf are flow equivalent, and Y and Yg are flow equivalent, we conclude that X
and Y are flow equivalent.

(ii) ⇐⇒ (iii): This is [14, Corollary 11.4]. Note that if Φ: OX ⊗K −→ OY ×K

is a ∗-isomorphism as in (iii), then Φ(DX ⊗ c0) = DY ⊗ c0 by Corollary 3.5. �

Corollary 8.12. Let X and Y be one-sided sofic shifts with no periodic points
isolated in past equivalence. If X and Y are continuously orbit equivalent, then ΛX

and ΛY are flow equivalent.

References

[1] Claire Anantharaman-Delaroche and Jean Renault, Amenable groupoids, Monographies de
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[53] Aidan Sims and Dana P. Williams, The primitive ideals of some étale groupoid C∗-algebras,
Algebr. Represent. Theory 19 (2016), no. 2, 255–276, DOI 10.1007/s10468-015-9573-4.
MR3489096

https://www.ams.org/mathscinet-getitem?mr=1691469
https://www.ams.org/mathscinet-getitem?mr=1688137
https://www.ams.org/mathscinet-getitem?mr=1716953
https://www.ams.org/mathscinet-getitem?mr=1710375
https://www.ams.org/mathscinet-getitem?mr=1911208
https://www.ams.org/mathscinet-getitem?mr=2300163
https://www.ams.org/mathscinet-getitem?mr=2645883
https://www.ams.org/mathscinet-getitem?mr=2791143
https://www.ams.org/mathscinet-getitem?mr=3589313
https://www.ams.org/mathscinet-getitem?mr=3598806
https://www.ams.org/mathscinet-getitem?mr=4149088
https://www.ams.org/mathscinet-getitem?mr=3276420
https://www.ams.org/mathscinet-getitem?mr=3519423
https://www.ams.org/mathscinet-getitem?mr=2876963
https://www.ams.org/mathscinet-getitem?mr=197683
https://www.ams.org/mathscinet-getitem?mr=405385
https://www.ams.org/mathscinet-getitem?mr=1724106
https://www.ams.org/mathscinet-getitem?mr=2134336
https://www.ams.org/mathscinet-getitem?mr=924156
https://www.ams.org/mathscinet-getitem?mr=584266
https://www.ams.org/mathscinet-getitem?mr=2460017
https://www.ams.org/mathscinet-getitem?mr=1340839
https://arxiv.org/abs/1710.10897
https://www.ams.org/mathscinet-getitem?mr=3489096


C∗-ALGEBRAS, GROUPOIDS AND COVERS OF SHIFT SPACES 185

[54] Charles Starling, Inverse semigroups associated to subshifts, J. Algebra 463 (2016), 211–233,
DOI 10.1016/j.jalgebra.2016.06.014. MR3527546

[55] Klaus Thomsen, Semi-étale groupoids and applications (English, with English and French
summaries), Ann. Inst. Fourier (Grenoble) 60 (2010), no. 3, 759–800. MR2680816

School of Mathematics and Applied Statistics, University of Wollongong, Wollon-

gong NSW 2522, Australia

Email address: kabrix.math@fastmail.com

Department of Science and Technology, University of the Faroe Islands, Vestara
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