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TRANSVERSALS, DUALITY, AND IRRATIONAL ROTATION

ANNA DUWENIG AND HEATH EMERSON

Abstract. An early result of Noncommutative Geometry was Connes’ obser-
vation in the 1980’s that the Dirac-Dolbeault cycle for the 2-torus T2, which
induces a Poincaré self-duality for T2, can be ‘quantized’ to give a spectral
triple and a K-homology class in KK0(Aθ ⊗Aθ,C) providing the co-unit for a
Poincaré self-duality for the irrational rotation algebra Aθ for any θ ∈ R ∖Q.
Connes’ proof, however, relied on a K-theory computation and does not supply
a representative cycle for the unit of this duality. Since such representatives
are vital in applications of duality, we supply such a cycle in unbounded form
in this article. Our approach is to construct, for any non-zero integer b, a
finitely generated projective module Lb over Aθ ⊗Aθ by using a reduction-to-
a-transversal argument of Muhly, Renault, and Williams, applied to a pair of
Kronecker foliations along lines of slope θ and θ + b, using the fact that these
flows are transverse to each other. We then compute Connes’ dual of [Lb] and
prove that we obtain an invertible τb ∈ KK0(Aθ,Aθ), represented by an equi-
variant bundle of Dirac-Schrödinger operators. An application of equivariant
Bott Periodicity gives a form of higher index theorem describing functoriality
of such ‘b-twists’ and this allows us to describe the unit of Connes’ duality in
terms of a combination of two constructions in KK-theory. This results in an
explicit spectral representative of the unit – a kind of ‘quantized Thom class’
for the diagonal embedding of the noncommutative torus.

1. Introduction

The (irrational) rotation algebra Aθ is the crossed-product C*-algebra C(T)⋊θZ

associated to a rotation z ↦ e2πiθz of the circle by an (irrational) angle θ. The
complex coordinate V (z) = z on T and the generator U of the group action in the
crossed-product, are a pair of unitaries in Aθ which generate it as a C*-algebra and
satisfy the relation

V U = e2πiθUV.

In particular, when θ = 0 we obtain the commutative C*-algebra C(T2) of continu-
ous functions on the 2-torus, and accordingly Aθ is often called the ‘noncommutative
torus.’

Compact spinc-manifolds such as T2 exhibit duality in KK. Two C*-algebras A
and B are dual in KK if there exists a pair of classes

Δ ∈ KK0(A⊗B,C), Δ̂ ∈ KK0(C,B ⊗A)
satisfying the zig-zag equations:

(1A ⊗ Δ̂) ⊗A⊗B⊗A (Δ⊗ 1A) = 1A, (Δ̂⊗ 1B) ⊗B⊗A⊗B (1B ⊗Δ) = 1B.
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We will refer to the class Δ̂ as the unit, and Δ as the co-unit of the duality, with
reference to the theory of adjoint functors. A cup-cap operation using Δ determines
a map

Δ ∪ ∶KKi(D1,Aθ ⊗D2) ≅ KKi(Aθ ⊗D1,D2),
for any pair D1,D2 of separable C*-algebras, and it can be checked that Δ̂ provides
a similar map which inverts it, because of the zig-zag equations.

If X is a compact spinc-manifold, then the diagonal embedding δ∶X → X ×X
has a normal bundle ν with canonical K-orientation and a Thom class ξ ∈ K−n(ν).
Using a tubular neighbourhood embedding ν ⊆ X×X, we can extend the Thom cycle
and class to zero outside the neighbourhood, yielding a K-theory class for X ×X

that is equal by definition to Δ̂ ∈ KK+n (C, C(X ×X)), and which is supported in
an arbitrarily small neighbourhood of the diagonal X ⊂ X ×X. This construction
determines the unit for a self-duality for X.

The co-unit Δ ∈ KK−n(C(X ×X),C) in this duality is represented, analytically,
by the Dirac cycle for X, consisting of the Dirac operator acting on L2-spinors
on X. This gives a cycle for KK−n(C(X),C), and pulling it back by the
*-homomorphism C(X × X) → C(X) of restriction to the diagonal results in a
cycle for KK−n(C(X ×X),C).

In the 80’s, Connes suggested that there might be C*-algebras which behave in
some sense like ‘noncommutative manifolds,’ and one possible way in which this
might happen would be if there were examples of C*-algebras arising in geometric
situations which exhibit KK-duality. He pointed out that the Dirac cycle for the 2-
torus can be adapted slightly so as to give a cycle and class Δθ ∈ KK0(Aθ ⊗Aθ,C)
inducing duality even for the noncommutative Aθ’s (see [3] and [2]). There are
now several other examples of C*-algebras with KK-theoretic duality: groupoid
C*-algebras arising from hyperbolic dynamical systems ([12] and [13]), crossed-
products by actions of Gromov hyperbolic groups on their boundaries [8], and
orbifold C*-algebras [6]. Duality for Cuntz-Pimsner algebras is studied in [25]; in
the special case of Aθ, they recover Connes’ formula for the unit Δ̂θ in terms of
known K-theory generators for Aθ. In some cases, the Baum-Connes conjecture
boils down to a form of duality between a group C*-algebra and its classifying
space, and some of these special cases are studied in [22].

Connes’ remark about Aθ was that the class Δθ built from the Dolbeault operator
on T2 induces a self-duality for Aθ because the induced intersection form

K∗(Aθ) ×K∗(Aθ) 
→ K∗(Aθ ⊗Aθ)
⟨⋅,Δθ⟩
→ Z

can be computed directly and is non-degenerate. However, Connes’ formula for the
unit Δ̂θ has no obvious representative cycle. What is desired in a KK-duality is
a pair of cycles: one for the K-theory and one for the K-homology of Aθ ⊗ Aθ in
this case. Cycles lead to applications (for example to ‘noncommutative Lefschetz
fixed-point formulas’ [7].)

The purpose of this article is to describe a geometrically defined spectral (that is,
unbounded) cycle for K0(Aθ ⊗Aθ) representing Δ̂θ. Our method yields a connec-
tion between Connes’ Dolbeault duality class, and a geometric construction with
noncompact transversals, which goes back to ideas in [21].

Let Bθ and Bθ+b denote the transformation groupoids corresponding to Kronecker
flows on T2 along lines of slope θ and θ + b. Since Bθ and Bθ+b are transverse, the
restriction of the groupoid Bθ ×Bθ+b to the diagonal T2 in its unit space T2 ×T2 is
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étale. A well-known construction of Muhly, Renault, and Williams [20] provides an
explicit strong Morita equivalence between the restricted groupoid and Bθ × Bθ+b,
and hence with (T ⋊θ Z) × (T ⋊θ+b Z), and then with (T ⋊θ Z) × (T ⋊θ Z).

We obtain a strong Morita equivalence between the unital C*-algebra of the
restricted groupoid and Aθ ⊗ Aθ. Since the former is étale, the strong Morita
equivalence bimodule is finitely generated projective as an Aθ ⊗ Aθ-module. Let
[Lb] ∈ KK0(C,Aθ ⊗Aθ) be its class.

We next construct a morphism

τb ∈ KK0(Aθ,Aθ)

for any b ∈ Z, which we call the ‘b-twist,’ and which is represented by applying
descent

KKZ

0(C(T), C(T)) → KK0(C(T) ⋊θ Z, C(T) ⋊θ Z) = KK0(Aθ,Aθ)

to the class of a Z-equivariant bundle of Dirac-Schrödinger operators ∂
∂r

+ r over
the circle T. The b-twist has the features of acting as multiplication by the matrix
[ 1 b
0 1 ] on K0(Aθ) with the standard identification K0(Aθ) ≅ Z2, and acting as the

identity on K1(Aθ). (In particular, τb is not represented by any automorphism of
Aθ.)

In Section 4, using equivariant Bott Periodicity, we prove a kind of index theorem
about b-twists, to the effect that the family of morphisms {τb}b∈Z form a cyclic group
in the invertibles in KK0(Aθ,Aθ).

The main result of this article is:

Theorem 1.1. The class Δθ of Connes, and Δ̂θ ∶= (1Aθ
⊗ τ−b)∗([Lb]) for b > 0

are the co-unit and unit of a KK-self-duality for Aθ.

The description of Δ̂θ given in the theorem leads to an explicit unbounded
representative of Δ̂θ in the form of a self-adjoint operator on a Hilbert module –
a kind of ‘quantized’ Thom class for the diagonal embedding T2

θ → T2
θ × T2

θ. See
Theorem 6.5 for the exact statement.

2. Preliminaries

2.1. Irrational rotation on the circle. In this paper, we are mainly interested
in a class of group actions, but we will use groupoid methods prolifically.

Irrational rotation on the circle T is given by the Z-action n ↦ αn where
αn([x]) = [x+nθ], [x] ∈ T ∶= R/Z. The action determines a transformation groupoid
Aθ ∶= T ⋊θ Z with composition rules

[x] [x − nθ] [(x − nθ) −mθ] [x] [x − (n +m)θ]

([x] , n) (α−n [x] , m) = ([x] , n +m)

Inverses are given by ([x] , n)−1 = (α−n [x] , −n).
The irrational rotation algebra Aθ is the groupoid C*-algebra of this groupoid.

Equivalently, Aθ is the crossed-product

Aθ ∶= C∗(Aθ) ≅ C(T) ⋊θ Z.
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As is well-known, the irrational rotation algebra is the universal C*-algebra Aθ

generated by two unitaries U,V subject to the relation V U = e2πiθUV. Note that

(2.1) A ∶=
⎧⎪⎪⎨⎪⎪⎩

∑
m,n∈Z

am,nV
mUn ∣ (am,n)m,n ∈ S(Z2)

⎫⎪⎪⎬⎪⎪⎭
is a dense subalgebra, where (am,n)m,n ∈ S(Z2) if and only if for all k ∈ Z+,

sup
m,n

{(∣m∣k + ∣k∣k) ∣am,n∣} < ∞.

In the crossed product picture, V corresponds to the generator of C(T) and U to
the generator of Z.

As such, Aθ is sometimes referred to as the noncommutative torus, since the C*-
algebra C(T2) of continuous functions on the 2-torus is generated by two commuting
unitaries U,V (namely, the coordinate projections).

2.2. Poincaré duality. A KK-theoretic Poincaré duality between two C*–algebras
A and B, determines an isomorphism between the K-theory groups of A and the
K-homology groups of B. An important motivating example comes from smooth
manifold theory: If X is a smooth compact manifold, then it is a result of Kasparov
that C(X) is Poincaré dual to C0(TX), where TX is the tangent bundle. The
Poincaré duality isomorphism sends the K-theory class defined by the symbol of an
elliptic operator, to the K-homology class of the operator.

If X carries a spinc-structure, i.e. a K-orientation on its tangent bundle, then
C0(TX) is KK-equivalent to C(X) by the Thom isomorphism, and so C(X) has a
self-duality of a dimension shift of dimX. A basic example is X = T2.

Duality in this sense is an example of an adjunction of functors, and is, like with
adjoint functors in general, determined by two classes, usually called the the unit
and co-unit, here denoted Δ̂ and Δ respectively.

Definition 2.1. We say that two (nuclear, separable, unital) C*-algebras A,B are
Poincaré dual (with dimension shift of zero) if there exist Δ ∈ KK0(A⊗B,C) and
Δ̂ ∈ KK0(C,B ⊗A) which satisfy the following so-called zig-zag equations,

Δ̂⊗B Δ ∶=(1A ⊗ Δ̂) ⊗A⊗B⊗A (Δ⊗ 1A) = 1A ∈ KK0(A,A) and

Δ̂ ⊗A Δ ∶=(Δ̂⊗ 1B) ⊗B⊗A⊗B (1B ⊗Δ) = 1B ∈ KK0(B,B).
(2.2)

We call (Δ, Δ̂) (Poincaré) duality pair.

The co-unit Δ ∈ KK0(A⊗B,C), for example, determines a cup-cap product map

(2.3) Δ ∪ ∶KK∗(D1,B ⊗D2) → KK∗(A⊗D1,D2), Δ ∪ f ∶= (1A ⊗C f) ⊗A⊗B Δ.

The unit can be similarly used to define a system of maps dual to the above, and
some manipulations show that the maps are inverse if the zig-zag equations hold.

There are now a number of examples of Poincaré dual pairs of C*-algebras: see
[6], [12], [8], [13]. The first noncommutative example, a Poincaré self-duality for
the irrational rotation algebra Aθ, is due to Connes (see [2]) and is the primary
interest of this article.

Although we have not included it in the definition, one hopes to find explicit
cycles for the classes Δ and Δ̂ in a Poincaré duality. Connes has defined a cycle ([2],
p. 604) whose class Δθ ∈ KK0(Aθ ⊗ Aθ,C) determines the duality for Aθ alluded
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to above, but the formula he gave for the dual class Δ̂θ ∈ KK0(C,Aθ ⊗ Aθ) =
K0(Aθ ⊗Aθ) was of the type Δ̂ = x ⊗C y + x′ ⊗C y′ + . . . , where x, x′ ∈ K∗(A) and
y, y′ ∈ K∗(B), and ⊗C refers to the external product in KK; this does not specify
a cycle, but a class. It is this missing cycle, representing Δ̂θ, that this article aims
to supply.

Connes’ class Δθ ∈ KK0(Aθ ⊗Aθ,C) can be defined as follows.

Lemma 2.2. On L2 ∶= L2(T ×Z), define

ω1, ω2∶C(T) → B(L2) and u, v∶Z→ U(L2)

for f ∈ C(T), k ∈ Z, ξ ∈ L2(T), en ∈ 	2(Z) by

ω1(f) (ξ ⊗ en) ∶= (α−n(f) ⋅ ξ) ⊗ en
ω2(f) (ξ ⊗ en) ∶= (f ⋅ ξ) ⊗ en

and uk (ξ ⊗ en) ∶= ξ ⊗ ek+n
vk (ξ ⊗ en) ∶= (k.ξ) ⊗ en−k,

where k.ξ = ξ ○ α−k for ξ in the subspace C(T) ⊆ L2(T).
Then the pairs (ω1, u) and (ω2, v) are covariant for (C(T), α,Z) and hence

induce representations of Aθ on L2. Moreover, these two representations commute
and thus give a representation π of Aθ ⊗Aθ on L2, so we obtain an unbounded
cycle

(L2 ⊕L2, π ⊕ π, dΔ) for KK0(Aθ ⊗Aθ,C),
where

dΔ ∶= [ 0 DZ − iDT

DZ + iDT 0 ]

with

DZ = 2πMZ and DT = −i ∂
∂Θ

, i.e. (DZ ± iDT) (zm ⊗ en) = 2π(n ± im) ⋅ zm ⊗ en.

The operator dΔ is, more precisely, the closure of the corresponding essentially
self-adjoint operator with essential domain two copies of the Schwartz space

⎧⎪⎪⎨⎪⎪⎩
∑

m,n∈Z
am,nz

m ⊗ en ∈ L2(T) ⊗ l2(Z) ∣ (am,n)m,n ∈ S(Z2)
⎫⎪⎪⎬⎪⎪⎭
.

For the definition of S(Z2), see Equation (2.1).

Definition 2.3. We let Δθ ∈ KK0(Aθ ⊗Aθ,C) be the class of the cycle described
in Lemma 2.2.

3. Pairs of transverse Kronecker flows

The Kronecker flow on the 2-torus T2 for angle θ is given by the R-action on
T2 = R2/Z2 defined by

βt [ xy ] = [ x+tθy+t ] .
The corresponding transformation groupoid Bθ ∶= T2 ⋊θ R is defined as:

[ xy ] [ x−tθy−t ] [ (x−tθ)−sθ(y−t)−s ] [ xy ] [ x−(t+s)θ
y−(t+s) ]

([xy ], t) ([x−tθy−t ], s) = ([xy ], t+s)
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In particular, ([ xy ] , t)−1 = ([ x−tθy−t ] , −t). We denote the momentum maps of Bθ by
sθ and rθ. Orbits of the Kronecker flow are lines x⃗ + t [ θ1 ] in the 2-torus T2. If

(3.1) X ∶= {t [ 1
0 ] ∣ t ∈ R} ⊆ T2 = (Bθ)(0)

denotes the x-axis, then the associated reduction groupoid,
Rθ ∶= s−1θ (X) ∩ r−1θ (X) ⊆ Bθ,

is isomorphic to Aθ: an element ([ xy ] , s) is in Rθ if and only if [y] = [0] and s ∈ Z,
and the map

(3.2) Rθ T ×Z

([ xy ] , s) ([x], s)

is a groupoid isomorphism between Rθ and Aθ.
In particular, since X is closed and meets every orbit, and since the restriction

of Bθ’s range and source maps to s−1θ (X) and to r−1θ (X) are open maps onto their
image, Example 2.7 in [20] implies that we have an equivalence Xθ of groupoids,

Xθ ∶ Bθ ↷ s−1θ (X) ↶ Aθ.

Instead of reducing Bθ to its x-axis, we could have reduced to a line t [ q
−p ] of

slope −p
q

for p, q relatively prime, in which case we would have gotten an equivalence
between Bθ and AM(θ) where

(3.3) M(θ) = mθ+n
pθ+q for M = [m n

p q ] ∈ SL2(Z)
is the Möbius transform of θ. An alternative approach is to change the slope on
the foliated torus instead of the rotational angle on the circle, using the following:

Lemma 3.1. For any M = [m n
p q ] in GL2(Z), the transformation groupoids Bθ

and BM(θ) are isomorphic via

ϕM
θ ∶ Bθ 
→ BM(θ)

([ xy ] , t) -→ (M [ xy ] , t(pθ + q))

Note that ϕN
M(θ)○ϕM

θ = ϕNM
θ for N another such matrix and ϕ�2

θ = idBθ
. Further,

even though M(θ) = (−M)(θ), we should note that ϕM
θ ≠ ϕ−Mθ .

Definition 3.2. Let XM
θ be the (BM(θ),Aθ)-equivalence constructed out of Xθ via

ϕM
θ .

Given two matrices M,N ∈ GL2(Z), then XM
θ × XN

θ is a groupoid equivalence
between BM(θ) × BN(θ) and Aθ ×Aθ. Moreover, if M(θ) ≠ N(θ), the diagonal

DM,N ∶= {[x, y, x, y] ∣ [x, y] ∈ T2} ⊆ T2 ×T2 = (BM(θ) × BN(θ))(0)

meets every orbit. Hence, BM(θ) × BN(θ) is equivalent to the reduction groupoid

DM,N ∶= (BM(θ) × BN(θ))
DM,N

D
M,N

via r−1θ (DM,N), and all in all we have the following chain of equivalences:

DM,N ↷ r−1θ (DM,N) ↶ BM(θ) × BN(θ) ↷ XM
θ ×XN

θ ↶ Aθ ×Aθ.

Thus, we can construct a Morita equivalence from the C*-algebra of DM,N to
Aθ ⊗Aθ. It will turn out that DM,N is an étale groupoid with compact unit space,
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so its C*-algebra is unital, and the Morita equivalence is actually a right f.g.p.
module over Aθ ⊗Aθ, i.e. corresponds to a K-theory class.

While this description of the K-theory class is nice and geometric, we will try to
find an easier one. To this end, consider the following diagram:
(3.4)

(DM,N)(0) = DM,N (BM(θ) × BN(θ))(0) BM(θ) × BN(θ) Aθ ×Aθ

? (Bθ × Bθ)(0) Bθ × Bθ Aθ ×Aθ

⊆ ⊆ XM
θ ×X

N
θ

⊆ ⊆

↺
Xθ×Xθ

ϕM
θ ×ϕ

N
θ

≅ ↺

The right-hand square of the diagram commutes since, by definition, the map
ϕM
θ ×ϕN

θ turns the equivalence Xθ×Xθ into the equivalences XM
θ ×XN

θ . The middle
square commutes since ϕM

θ ×ϕN
θ is a groupoid isomorphism, i.e. it maps unit space

to unit space. We want to fill in the bottom left to make the left-hand square
commute as well. In other words, the question mark represents the preimage of
DM,N under ϕM

θ × ϕN
θ , which we compute to be

(ϕM(θ)
M−1 ×ϕ

N(θ)
N−1 ) (DM,N) = {(M−1 [ xy ] ,0,N−1 [ xy ] ,0) ∣ [ xy ] ∈ T2} .(3.5)

This justifies denoting this subset of (Bθ × Bθ)(0) by Fg for g ∶= N−1M . As far as
K-theory is concerned, the f.g.p. Aθ ⊗ Aθ-module constructed out of the bottom
row of Diagram (3.4),

Fg ∶= r−1θ (Fg) ∩ s−1θ (Fg) ↷ r−1θ (Fg) ↶ Bθ × Bθ ↷ Xθ ×Xθ ↶ Aθ ×Aθ =∶ A,

is the same as the module constructed from the top row,
DM,N = r−1θ (DM,N) ∩ s−1θ (DM,N) ↷ r−1θ (DM,N) ↶ BM(θ) ×BN(θ) ↷ XM

θ ×XN
θ ↶ A,

by commutativity of the diagram, and since the induced C*-isomorphism between
the C*-algebras of DM,N and Fg is unital. The clear advantage of considering Fg

instead of DM,N is that we only have to deal with the matrix g = N−1M , and not
with all 8 entries of M and N . The inequality M(θ) ≠ N(θ) (i.e. g(θ) ≠ θ), which
we needed to construct DM,N , can be rephrased to
(3.6) μ(g) ∶= (aθ + b) − (cθ + d)θ ≠ 0 where g = [ a b

c d ] .
We can construct the equivalence between Fg and A = Aθ × Aθ using Yg ∶=

r−1θ (Fg) and X ∶= Xθ ×Xθ as
Fg ↷ Yg ∗B X ↶ A,

c.f. Proposition 5.1 for the details in the case where g is upper triangular. This
equips Cc(Yg ∗B X) with a Cc(Fg) −Cc(A) pre-imprimitivity bimodule structure,
which can be completed to a C∗(Fg) − C∗(A) Morita equivalence bimodule we
call Zg.

Lemma 3.3. Let X be the x-axis in T2 = (Bθ)(0) as in Equation (3.1). If we use
the bijection

s−1θ (X) T ×R

([ xy ] , s) ([x − sθ], s)
([ x+sθs ] , s) ([x], s)
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to identify Xθ with T ×R, then Xθ has the following actions by Bθ and Aθ:

Bθ ↷ Xθ ∶ ([ x+(s+r)θ
s+r ] , r) .([x], s) = ([x], r + s)

Xθ ↶ Aθ ∶ ([x], s).([x], k) = ([x − kθ], s + k)

where we used the map from Equation (3.2) to identify s−1θ (X) ∩ r−1θ (X) ≅ Aθ.

The proof is straight forward. Let us next describe Fg: one checks

r−1θ (Fg) = {([ xy ] , t1, g [ xy ] , t2) ∣ [ xy ] ∈ T2, t1, t2 ∈ R}
and thus

Fg = {([ xy ] , k+lθμ(g) , g [
x
y ] , k(cθ+d)+l(aθ+b)μ(g) ) ∣k, l ∈ Z} ,

where μ(g) is as in Equation (3.6). In the following, we will write [ xy ] + t ( θ
1 ) ∶=

[ x+tθy+t ].

Lemma 3.4. The groupoid Fg is isomorphic to the transformation groupoid of
the following Z2 action on T2:

T2 ↶ Z2 ∶ [ xy ] . (k, l) = [ xy ] + k+lθ
μ(g) ( θ

1 )

In particular, Fg is étale with compact unit space and its C∗-algebra C∗(Fg) is
therefore unital.

Proof. The map

Fg = r−1θ (Fg) ∩ s−1(Fg) 
→ T2 ⋊Z2

([ xy ] , k+lθμ(g) , g [
x
y ] , k(cθ+d)+l(aθ+b)μ(g) ) -→ ([ xy ] , k, l)

(3.7)

is an isomorphism of groupoids, where the right-hand side is the alleged transfor-
mation groupoid. In particular, the unit space of Fg is T2 and hence compact.

Since Z2 is discrete, the transformation groupoid is étale, and so its unit space
is clopen. Its characteristic function is hence a continuous, compactly supported
function on Fg and serves as unit in C∗(Fg). �

Corollary 3.5. The bimodule Zg is finitely generated projective as a right C∗(A)-
module, so Lg = ι∗(Zg) defines a class in KK(C, C∗(A)) where ι∶C → C∗(Fg) is
the unique unital map.

Proof. We have seen that C∗(Fg), which acts by compact operators on the Morita
bimodule Zg, is unital. Therefore, the operator idZg

is C∗(A)-compact, which
means Zg is f.g.p. by [10, Proposition 3.9]. �

Definition 3.6. We let

[Lg] ∶= ι∗(Zg) ∈ KK0(C, C∗(A)) = KK0(C,Aθ ⊗Aθ)
be the class of the finitely generated projective right C∗(A)-module constructed
from any g ∈ SL2(Z) satisfying Equation (3.6). For g = [ 1 b

0 1 ] with b ∈ Z ∖ {0}, we
write Lb instead of Lg.

We will use the following lemmas in the arguments to follow.
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Lemma 3.7. If we use the bijection
Yg = r−1θ (Fg) 
→ R2 ×T2

([ xy ] , t1, g [ xy ] , t2) -→ (t1, t2, [ xy ])
to identify Yg ≅ R2 × T2, then the right action by B ∶= Bθ × Bθ on an element
(t1, t2, [ xy ]) ∈ Yg is given by

(t1, t2, [ xy ]).([ xy ] − t1 ( θ
1 ) , r1, g [

x
y ] − t2 ( θ

1 ) , r2) = (t1 + r1, t2 + r2, [ xy ]).
If we further use the bijection in Equation (3.7) to identify Fg ≅ T2 ⋊Z2, then

the left action of Fg on Yg is given by

([ xy ] + k+lθ
μ(g) ( θ

1 ) , k, l).(t1, t2, [
x
y ]) = ( k+lθ

μ(g) + t1,
k(cθ+d)+l(aθ+b)

μ(g) + t2, [ xy ] + k+lθ
μ(g) ( θ

1 )) .

Elements of Yg∗X , where X = Xθ×Xθ as before, are given by those (t1, t2, [x, y], [v],
s1, [w], s2) in (R2 ×T2) × (T ×R ×T ×R) which satisfy

sY(t1, t2, [x, y]) = rX ([v], s1, [w], s2)
⇐⇒ [x, y] − t1[θ, 1] = [v,0] + s1[θ, 1] and g[x, y] − t2[θ, 1] = [w,0] + s2[θ, 1].

In other words,
[ xy ] = [ v0 ] + (s1 + t1) ( θ

1 ) = g−1 ([w0 ] + (s2 + t2) ( θ
1 )) .

Now, in the balanced Yg ∗B X , we identify the following elements of Yg ∗ X :
(t1, t2, [x, y], [v], s1, [w], s2) ∼ (t1 + t′1, t2 + t′2, [x, y], [v], s1 − t′1, [w], s2 − t′2)

for any t′1, t
′
2 ∈ R. We conclude:

Lemma 3.8. If we let
Zg ∶= {(r1, r2, [ v

w ]) ∈ R2 ×T2 ∣ g ([ v0 ] + r1 ( θ
1 )) = [w0 ] + r2 ( θ

1 )} ,
then the following are mutually inverse bijections:

Yg ∗B X Zg

[t1, t2, [x, y] , [v] , s1, [w] , s2] (t1 + s1, t2 + s2, [ v
w ])

[r1, r2, [v + r1θ, r1] [v] ,0, [w] ,0] (r1, r2, [ v
w ])

4. The b-twist

Connes’ cycle (Definition 2.3 and prior discussion) and corresponding class Δθ ∈
KK0(Aθ ⊗ Aθ,C) is the co-unit of the duality we are going to establish. By the
general mechanics of KK, the class Δθ determines a map

Δθ ∪ ∶KK0(C,Aθ ⊗Aθ) → KK0(Aθ,Aθ), f ↦ (f ⊗ 1Aθ
) ⊗A3

θ
(Δθ ⊗ 1Aθ

),
and the first zig-zag equation asserts that, if f ∈ KK0(C,Aθ ⊗Aθ) is the unit for a
duality with co-unit Δθ, then Δθ ∪ f = 1Aθ

.
We are going to show in this article that

(4.1) Δθ ∪ [Lb] = τb,

where [Lb] = [Lg] ∈ KK0(C,Aθ⊗Aθ) is the class of the finitely generated projective
Aθ ⊗Aθ-module constructed in the last section from the transversals for g = [ 1 b

0 1 ]
upper triangular and non-trivial, and τb is a certain invertible in KK0(Aθ,Aθ)
which we describe explicitly first.
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Let b ∈ Z be any integer. Equip Cc(T ×R) with the following structure:

φ,ψ ∈ Cc(T ×R) ∶ ⟨φ1 ∣φ2⟩C(T) ([x]) = ∫
R

φ1φ2 ([x] , r) dr,

Z↷ Cc(T ×R) ∶ (l ● φ)([x] , r) = φ ([x − lθ] , r − l) ,
C(T) ↷ Cc(T ×R) ∶ (f ● φ)([x] , r) = f ([x + rb])φ([x], r),
Cc(T ×R) ↶ C(T) ∶ (φ ● f)([x], r) = φ([x] , r)f([x]).

Let H±b be the completion of Cc(T×R) with respect to the pre-inner product given
above and set Hb ∶= H+b ⊕H−b . For λ ∈ R×, let dλ,+ be the closure of the following
essentially self-adjoint Dirac-Schrödinger operator on L2(R) with essential domain
the Schwartz functions S(R) on R:

dλ,+ ∶= λM + ∂
∂r

with adjoint dλ,− ∶= λM − ∂
∂r
.

Here, M is the operator that multiplies by the input of the R-component.
If A and B are Z-C*-algebras, we will denote by ΨZ

∗(A,B) the Z-equivariant
unbounded cycles for KKZ

∗(A,B) in the sense of [24, Definition 2.11]. Our KK-
automorphism τb of Aθ will be obtained by applying Kasparov’s descent map

j∶KKZ

0(C(T), C(T)) → KK0(Aθ,Aθ).
By [24, Proposition 2.12], the descent construction of Kasparov adapts to one at
the level of unbounded cycles, giving a map

ΨZ

0(C(T), C(T)) → Ψ0(Aθ,Aθ),
which, by a slight abuse of notation, we will also denote by j. Utilizing it, we will
obtain an unbounded cycle representing τb, which is easier to compute with.

Theorem 4.1. If Z acts by rotation on T, and λ ∈ R×, then the pair (Hb, idC(T)⊗
dλ) with

dλ ∶= [ 0 dλ,−

dλ,+ 0 ]

is a cycle in ΨZ
0(C(T), C(T)).

Recall that idC(T) ⊗ dλ denotes the closure of the operator idC(T) ⊙ dλ and that
the latter’s domain contains the dense subspace C(T) ⊙S(R). The proof proceeds
through the following two lemmas.

Lemma 4.2. The operator idC(T)⊗dλ is odd, self-adjoint, regular, and has com-
pact resolvent.

Note that this in particular implies that idC(T) ⊗ dλ is linear with respect to the
right C(T)-action.

Proof. By construction, idC(T) ⊙ dλ is odd and symmetric. We compute

d2
λ = [λ

2M2 − ∂2

∂r2 − λ 0
0 λ2M2 − ∂2

∂r2 + λ
] ,(4.2)

Consider the L2-normalized functions

ψ0(r) = ∣λ∣ 12 π 1
4 e−∣λ∣

r2
2 and ψl = (2l∣λ∣)− 1

2 ⋅ (∣λ∣M − ∂
∂r

)ψl−1.

Note that ψ0 is a Schwartz function, i.e. in the domain of dλ,±, and therefore so are
all ψl. Moreover, they span a dense subspace of L2(R) ([26, Proposition 9.8]) and
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they are eigenfunctions of λ2M2 − ∂2

∂r2 ([26, Lemma 9.6]) with corresponding set of
eigenvalues

{(2l + 1)∣λ∣ ∶ l = 1,2, . . .} .
We conclude that the operator d2

λ +1 has the eigenfuctions ψl⊕0 and 0⊕ψl. Thus,
the orthonormal basis {ψl ⊕ 0,0⊕ ψl ∶ l ∈ N0} of L2(R) ⊕ L2(R) is in the range of
d2
λ + 1, which proves that the range of (idC(T) ⊙ dλ)

2 + 1 is dense, so idC(T) ⊗ dλ
is self-adjoint and regular. Moreover, d2

λ + 1 is diagonalizable and its eigenvalues
(2l + 1)∣λ∣ tend to infinity. This shows that d2

λ + 1 has compact inverse, and that
((idC(T)⊗dλ)2+1)−1 = idC(T)⊗(d2

λ + 1)−1 is compact as tensor product of compact
operators. Thus, idC(T) ⊗ dλ has compact resolvent. �

Lemma 4.3. The operator idC(T) ⊗ dλ is almost equivariant, i.e. for any n ∈ Z,
the operator (idC(T)⊗dλ)−Adn(idC(T)⊗dλ) on Dom(idC(T)⊗dλ) extends to an ad-
jointable operator. Furthermore, the subalgebra {f ∈C(T) ∶ [idC(T)⊗dλ, f]∈L(Hb)}
is dense in C(T).

Proof. For φ ∈ C(T) ⊙ S(R) ⊆Hb
±, we have n ● ∂φ

∂r
= ∂

∂r
(n ● φ), and

n ● (M(−n) ● φ) ([x], r) = (M(−n).φ) ([x − nθ], r − n)
= (r − n) ⋅ φ([x], r).

Hence we have on the dense subspace (C(T) ⊙ S(R))⊕2 of Hb,

(idC(T) ⊗ dλ) −Adn(idC(T) ⊗ dλ)=[
0 λM
λM 0 ] − [ 0 Adn(λM)

Adn(λM) 0 ]=[ 0 λn
λn 0 ] .

Thus, for any fixed n ∈ Z, the operator (idC(T) ⊗ dλ) −Adn(idC(T) ⊗ dλ) extends to
an adjointable operator.

Let f ∈ C∞(T). We have M(f ● φ) = f ● (Mφ) , as f● does not change the
R-coordinate. Secondly, define

fb([x], r) ∶= f ([x + br]) ,
so that f ● φ = fb ⋅ φ, and

∂(f●φ)
∂r

− f ● ∂φ
∂r

= ∂fb
∂r

⋅ φ.
This is a bounded operator of φ, i.e.

Hb
± ⊇ C(T) ⊙ S(R) ∋ φ -→ (λM ± ∂

∂r
) (f ● φ) − f ● (λM ± ∂

∂r
) (φ) = ±∂fb

∂r
⋅ φ

extends to an adjointable operator on H±b with adjoint φ ↦ ±∂fb
∂r

⋅φ. Thus, the dense
subalgebra C∞(T) of C(T) is contained in {f ∈ C(T) ∶ [idC(T) ⊗ dλ, f] ∈ L(Hb)}.

�

This concludes the proof of Theorem 4.1.
It follows that j((Hb, idC(T) ⊗ dλ)) =∶ (Hb,Dλ) is a cycle in Ψ0(Aθ,Aθ), where

j is the descent map on cycles ΨZ
0 (C(T), C(T)) → Ψ0(C(T) ⋊θ Z, C(T) ⋊θ Z) =

Ψ0(Aθ,Aθ). For reference, let us explicitly describe the structure of Hb, which can
be constructed using descent and the definition of its lift Hb on page 263:

Lemma 4.4. The left A-action on Cc(Z ×T ×R) ⊆ H±b is given by

(a.Hb
Φ)(n, [x], r) = ∑

m∈Z
a([x + rb],m)Φ(n −m, [x −mθ], r −m).(4.3)
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and the right action by
(Φ.Hb

a)(n, [x], r) = ∑
m∈Z

Φ(m, [x], r)a([x−mθ], n −m).(4.4)

Its (pre-)inner product is given by:

⟨Φ1 ∣Φ2⟩Hb

Aθ
([w], l2) = ∑

k1

∫
R

Φ1(k1, [w + k1θ], r)Φ2(l2 + k1, [w + k1θ], r)dr.(4.5)

Definition 4.5. The b-twist τb is the element of KK0(Aθ,Aθ) represented by
the descent (Hb,D1) of the Z-equivariant unbounded cycle (Hb, idC(T) ⊗ d1) for
KKZ

0(C(T), C(T)).
Remark 4.6. Note that since we have proved that dλ defines an elliptic operator for
any real λ /= 0, any two of the cycles (Hb, idC(T) ⊗ dλ) with λ of the same sign, are
homotopic to each other as unbounded Kasparov modules from C∞(T) to C(T) in
the sense of [11, Definition 4.4]. In particular, by Theorem 4.1 of the same pre-
print, they represent the same class in KK-theory. (Of course, dλ is not homotopic
to d−λ, since their nonzero Fredholm indices have opposite signs.)

The duality result we are proving in this article, like all dualities known to
the authors, uses Bott Periodicity (specifically in this case, Z-equivariant Bott
Periodicity) at some point in the proof. In our case, it is embedded in the proof of
the following result.

Theorem 4.7. The twist morphisms {τb}b∈Z ∈ KK0(Aθ,Aθ) form a cyclic group
of KK-equivalences under composition. In particular,

τ−b = τ−1b ∈ KK0(Aθ,Aθ).
Recall that Kasparov’s bivariant category RKKZ

∗(R; ⋅ , ⋅ ) has objects Z-C*-
algebras and morphisms A → B are the elements of the abelian group

RKKZ

∗(R;A,B),
which is the quotient of the set of cycles (E , F ) for KKZ

∗(C0(R)⊗A,C0(R)⊗B) for
which the left and right actions of C0(R) on the module E are equal, by homotopy
(with a similar requirement on the homotopy). See [14, 2.19].

Such a cycle can be considered as a family (Et, Ft)t∈R of KK∗(A,B)-cycles which
is essentially equivariant in the sense that, for all t ∈ R, any integer l maps Et to
Et+l and
(4.6) (−l) ○ Ft+l ○ l − Ft

is a compact operator on Et.
Let

p∗R∶KKZ

∗(A,B) → RKKZ

∗(R;A,B)
be Kasparov’s inflation map, which (on cycles) associates to a cycle for KK∗(A,B)
the corresponding constant field of cycles over R. The inflation map converts ana-
lytic problems into topological problems, as we shall see shortly in connection with
our own problems.

The following result follows from the Dirac-dual-Dirac method.
Lemma 4.8 (See [8, Theorem 54]). p∗

R
is an isomorphism for all A,B.

We will be setting A = B = C(T) in the following, and apply the inflation map
to the class of the equivariant cycles (Hb, idC(T) ⊗ dλ) discussed above.
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Definition 4.9. The topological b-twist τ̂ b ∈ RKKZ

0(R;C(T), C(T)) is the class of
the bundle of *-homomorphisms

τ̂ bt ∶C(T) → C(T), τ̂ bt (f)([x]) ∶= f([x + bt]),

The family of automorphisms {τ̂ bt }t∈R is equivariant if the action by Z on R is by
translation and on C(T) is by irrational rotation, since b is an integer.

Since the Kasparov product of two families of automorphisms in RKKZ

0 is simply
given by composition, we see that the product of τ̂ b with τ̂ b

′

is exactly τ̂ b+b
′

. Clearly,
τ̂0 is the identity, and so we conclude that b ↦ τ̂ b is a group homomorphism from
Z to invertibles in RKKZ

0(R;C(T), C(T)) (under composition).

Theorem 4.10. Let (Hb, idC(T) ⊗ dλ) be the Dirac-Schrödinger cycle for
KKZ

0 (C(T), C(T)) of Theorem 4.1, with λ > 0. Then

p∗R([(Hb, idC(T) ⊗ dλ)]) = τ̂ b ∈ RKKZ

0(R;C(T), C(T)).

Proof. As explained at the beginning of this section, p∗
R
([(Hb, idC(T) ⊗ dλ)]) is

represented by the constant bundle of cycles which consists, for each t ∈ R, of the
Dirac-Schrödinger cycle.

First, we will modify the operator

dλ = [ 0 dλ,−

dλ,+ 0 ] , dλ,± = λM ± ∂
∂r
,

on L2(R) ⊕ L2(R) by changing the implicit reference point t = 0 in the cycle; we
do this to turn our constant family over R, which is essentially Z-equivariant in
the sense of Equation (4.6), into a Z-equivariant family. We will then apply an
argument of Lück-Rosenberg.

If Ut is a left translation unitary with t ∈ R, then

Ut ○ dλ,+ ○U−t = λ(M − t) + ∂
∂r

=∶ dtλ,+,

and a similar statement holds for dλ,− and hence for dλ. We thus obtain an equivari-
ant family of operators dtλ on L2(R) ⊕L2(R), all unitary conjugates and bounded
perturbations of each other since

dλ − dtλ = dλ −Ut ○ dλ ○U−t = [ 0 λt
λt 0 ] ;

in particular, they represent the same class in KK-theory by [11, Proposition 4.7].
We now tensor dtλ by the identity on C(T) to obtain a family

{(Hb, idC(T) ⊗ dtλ)}t

of cycles for KKZ

0 (C(T), C(T)), in which only the operator is varying with t ∈ R

while the modules Hb stay constant. This describes a cycle that is a bounded
perturbation of the constant cycle which represents p∗

R
[(Hb, idC(T) ⊗ dλ)]. In par-

ticular,

(4.7) p∗R ([(Hb, idC(T) ⊗ dλ)]) = [(Hb, idC(T) ⊗ dtλ)t∈R] ∈ RKKZ

0 (R;C(T), C(T)) .

and our new bundle of cycles is Z-equivariant on the nose, as a bundle.
We next describe a homotopy, which we will describe as a family of homotopies

parameterized by t ∈ R. Fix t.
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The following is based on arguments of Lück and Rosenberg in [17]. For λ ∈
[1,+∞), the spectrum of the operator

dtλ ∶= [ 0 λ(M − t) − ∂
∂r

λ(M − t) + ∂
∂r

0 ]

on L2(R) ⊕L2(R) is given by

{(±
√

2l + 1)λ ∶ l = 0,1,2, . . .} ,

and dtλ is orthogonally diagonalizable with eigenspaces all of multiplicity 1. The
kernel of dtλ is spanned by the unit vector ψt

0,λ ⊕ 0 where

(4.8) ψt
0,λ(r) = ( λ√

π
)

1
2

⋅ e−
λ(r−t)2

2 ,

and the Fredholm index of dtλ is 1.
For each λ, let prtλ be projection to the kernel of dλ. Since the minimal nonzero

eigenvalue of dtλ has a distance
√

2λ to the origin, we obtain Part (1) of the following

Lemma 4.11. With dtλ as above and f(dtλ) ∈ L(L2(R)⊕2) the operator obtained
from f ∈ C0(R) by functional calculus, we have

(1) limλ→+∞ ∥f(dtλ) − f(0) ⋅ prtλ∥ = 0.
(2) If χ ∈ Cb(R) is a normalizing function, and εt is the (Borel measurable)

sign function on R given by
εt(r) ∶= r−t

∣r−t∣ ,

acting as a multiplication operator on L2(R), then

(4.9) Fλ,t ∶= χ(dtλ) → [ 0 εt

εt 0 ] for λ → +∞
in the strong operator topology.

(3) If f is a smooth, periodic function on R, then
lim

λ→+∞
∥[Fλ,t, f]∥ = 0.

The proof of (2) is carried out in [17, p. 582-583], and of (3) in [17, p. 584-586].
Define a family {Wλ,t}λ = {W +

λ,t ⊕ W −
λ,t}λ∈[1,+∞] of Hilbert spaces by setting

W −
λ,t ∶= L2(R) for all λ ∈ [1,+∞], and

W +
λ,t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L2(R) if 1 ≤ λ < ∞,

L2(R) ⊕C if λ = ∞.

We let δt0 = (0,1) ∈W +
∞,t = L2(R) ⊕C.

To endow this field with a structure of a continuous field, we only need to be
concerned about the point ∞: We declare a section ξt of the field {W +

λ,t}λ∈[1,+∞]
with value f + zδt0 at λ = +∞, f ∈ L2(R) and z ∈ C, to be continuous at infinity if
(4.10) ∥ξt(λ) − (f + zψt

0,λ)∥L2(R) → 0 as λ → +∞,

where ψt
0,λ ∈ L2(R) is the normalized 0-eigenvector of dtλ as defined in Equation

(4.8).
We now describe a continuous family of self-adjoint, grading-reversing operators

Fλ,t∶Wλ,t →Wλ,t
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for λ ∈ [1,+∞]. For finite λ, set

Fλ,t ∶= χ(dtλ), where dtλ = [ 0 λ(M − t) − ∂
∂r

λ(M − t) + ∂
∂r

0 ] .

This odd, self-adjoint operator has the form

Fλ,t = [ 0 G∗λ,t
Gλ,t 0 ]

for suitable Gλ,t.
At infinity, we have W∞,t = (L2(R)⊕C)⊕L2(R) with the first summand L2(R)⊕C

graded even and the second summand L2(R) graded odd. We let

G∞,t∶L2(R) ⊕C → L2(R)

be multiplication by the sign function εt on the summand L2(R), and zero on the
C-summand. Thus, the operator G∗∞,t∶L2(R) → L2(R) ⊕C is multiplication by εt

on L2(R), followed by the inclusion into L2(R)⊕C by zero in the second summand.
The operator F∞,t is the odd, self-adjoint operator on W∞,t given by the matrix

F∞,t ∶= [ 0 G∗∞,t

G∞,t 0 ] .

This is the correct choice in order to make (Fλ,t)λ a continuous family, i.e. an
adjointable operator on the module of sections, because of (4.9) in Lemma 4.11.
Note that the operator L2(R) → L2(R) of multiplication by εt has no kernel. Since,
however, G∞,t kills the second summand C of L2(R) ⊕ C, the operator G∞,t has
a 1-dimensional kernel. The cokernel of G∞,t is clearly trivial, and therefore G∞,t

(and F∞,t) also has index 1.
The family of operators {Fλ,t}λ∈[1,+∞] induces an odd, self-adjoint operator Ft

on the sections Et of the field {Wλ,t}λ∈[1,+∞]. In other words, we have constructed
a Z/2-graded Hilbert C([1,+∞])-module and an odd, self-adjoint operator Ft on
Et. Further, 1 − F 2

t is compact: for finite λ,

1 − F 2
λ,t = (1 − χ2)(dtλ)

is compact by Lemma 4.11. By the same lemma,

∥(1 −F 2
λ,t) − (1 − χ2)(0) ⋅ prλ,t∥ = ∥1 − F 2

λ,t − prλ,t∥ → 0 for λ→ ∞.

As prtλ = ∣ψt
0,λ⟩ ⟨ψt

0,λ∣ and 1 − F 2
∞,t = (0⊕ 1) ⊕ 0 = ∣δt0⟩ ⟨δt0∣ on (L2(R) ⊕C) ⊕L2(R),

we see that 1−F 2
λ,t is asymptotic to ∣ξ⟩ ⟨ξ∣, the rank-one operator corresponding to

the continuous section given by ξλ ∶= ψt
0,λ for λ < ∞ and ξ(∞) = δt0.

The definitions above supply a homotopy of KK0(C,C)-cycles between the
bounded transform (Wλ,t, Fλ,t) of (Wλ,t, d

t
λ) = (L2(R) ⊕ L2(R), dtλ) for any finite

λ and any t ∈ R, on the one hand, and the sum of the cycle (C ⊕ 0,0) with the
degenerate cycle

(L2(R) ⊕L2(R), [ 0 εt

εt 0 ])
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on the other hand. Here, both C⊕ 0 and L2(R)⊕L2(R) are Z/2-graded with their
respective first summand even and second odd, and εt is the sign function as before.

Further, the homotopy is equivariant for Z if one allows the real parameter t ∈ R
to change with the integer action: translation by n ∈ Z conjugates dtλ to dt+nλ . This
means that the construction can be carried out in RKKZ(R; ⋅, ⋅), as we now show.

Set
Eλ,t ∶= C(T) ⊗Wλ,t and Fλ,t ∶= idC(T) ⊗ Fλ,t,

endowed with its standard right Hilbert C(T)-module structure, and carrying the
Z/2-grading inherited from the gradings on Wλ,t. On Eλ,t and for f ∈ C(T) consid-
ered a periodic function on R, we let

νλ,t(f) ∈ L(Eλ,t)

be the operator defined as follows. Set

fb([x], r) = f([x + br]),

where b is the integer which was fixed in the beginning. For finite λ, we let ν±λ,t(f)
act on E±λ,t = C(T) ⊗ L2(R) by multiplication by the function fb on T × R. For
λ = ∞, we let ν+∞,t(f) act on E+∞,t = C(T)⊗(L2(R) ⊕C) = (C(T) ⊗L2(R)) ⊕ C(T)
by multiplication by fb on the first factor C(T) ⊗L2(R), and on the second factor
C(T) by multiplication by the function f t

b ∈ C(T), where

f t
b([x]) ∶= f([x + bt]).

For t ∈ R and λ ∈ (0,∞], let

Yλ,t ∶= (νλ,t,Eλ,t,Fλ,t) and Yλ ∶= {Yλ,t}t∈R .

These RKK-cycles are Z-equivariant, and (λ ↦ Yλ) is a homotopy of RKKZ-cycles.
For any λ ∈ (0,∞), Equation (4.7) yields that Yλ is a compact perturbation of the
constant family {Yλ,0}t∈R, because they arise as the bounded transform of {(L2(R)⊕
L2(R), dtλ)}t∈R resp. pr∗

R
(L2(R)⊕L2(R), dλ) after fibrewise tensoring with the right-

Hilbert C(T)-bimodule (ν,C(T)). Thus, Yλ and {Yλ,0}t∈R determine the same class
in RKKZ. By definition of the inflation map, pr∗

R
((Hb, idC(T)⊗dλ)) = {Yλ,0}t∈R for

any finite λ, so we have shown that pr∗
R
((Hb, idC(T) ⊗ dλ)) and Yλ determine the

same class.
On the other hand, at λ = ∞, we have that Y∞ is the sum of the topological

b-twist τ̂ b = {τ̂ bt }t∈R, see Definition 4.9, and the degenerate (t ↦ (Hb, [ 0 εt

εt 0 ])). In
particular, τ̂ b also determines the same class as Yλ in RKKZ. This concludes our
proof of Theorem 4.10. �

Proof of Theorem 4.7. Since pr∗
R

is an isomorphism, it follows from Theorem 4.10
that b ↦ [(Hb, idC(T)⊗dλ)] is a group homomorphism from Z to KKZ

0(C(T), C(T)).
Using descent, the map

b ↦ j[(Hb, idC(T) ⊗ dλ)] = [(Hb,Dλ)] = τb

is a group homomorphism from Z to KK0(Aθ,Aθ), as claimed. �
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5. Connes’ duality and transversals

Let Δθ ∈ KK0(Aθ⊗Aθ,C) be Connes’ class of Definition 2.3. The main technical
result of this paper is the following.

Theorem 5.1. Let g = [ 1 b
0 1 ] for b ≠ 0 and Lb ∶= Lg. Then

(5.1) (1Aθ
⊗ [Lb]) ⊗A⊗3

θ
(Δθ ⊗ 1Aθ

) = [(Hb,
1
b
D2πb)] ∈ KK0(Aθ,Aθ).

In particular, if b > 0, then this class coincides with τb ∈ KK0(Aθ,Aθ), the b-twist
(Definition 4.5).

We proceed to the proof of Theorem 5.1.

5.1. Computation of the module in the zig-zag product. Our goal is to
compute (1Aθ

⊗ [Lg]) ⊗A⊗3
θ

(Δθ ⊗ 1Aθ
) ∈ KK0(Aθ,Aθ) for g upper-triangular, and

prove that it equals the class of the b-twist of Theorem 4.1.
In fact, some of the calculations we will do for arbitrary g, since it involves little

additional effort and leads to the following observation: only for upper-triangular g,
the Hilbert Aθ-bimodule involved in the Kasparov product of the left hand side of
(5.1) is of the kind one gets from applying descent to an equivariant module (such
as the one appearing in our cycle for the b-twist).

As the module Lg and the C*-algebra Aθ are ungraded, the module underlying
this class is comprised of two copies of

(Aθ ⊗Lg) ⊗A⊗3
θ

(L2 ⊗Aθ) ,

where L2 = L2(T)⊗	2(Z) as before (see Lemma 2.2). We initially focus on describ-
ing this bimodule. Observe first that one is reduced to computing Lg⊗Aθ

L2, where
the balancing is over Aθ ⊗ 1 acting on the right of Lg, and Aθ acting on the left of
L2 via ω2 ⋊ v. This is because the maps

(Aθ ⊗Lg) ⊗A⊗3
θ

(L2 ⊗Aθ) ←→ Lg ⊗Aθ
L2

defined on elementary tensors by

(a⊗Φ) ⊗ (f ⊗ b) -→ Φ.Lg
(1⊗ b) ⊗ (ω1 ⋊ u)(a) (f)

(1⊗Φ) ⊗ (f ⊗ 1) ←
� Φ⊗ f
(5.2)

are inverse to one another and therefore equip the right-hand side with the structure
of a right-Hilbert Aθ-bimodule as follows:

Aθ ↷ (Lg ⊗Aθ
L2) ∶ ξ(Φ⊗ f) ∶= Φ⊗ (ω1 ⋊ u)(ξ) (f) ,

(Lg ⊗Aθ
L2) ↶ Aθ ∶ (Φ⊗ f)ξ ∶= Φ.Lg

(1⊗ ξ) ⊗ f.
(5.3)

Moreover, Lg⊗Aθ
L2 has Aθ⊗Aθ-valued inner product given on elementary tensors

by

⟨Φ⊗ f1 ∣Ψ⊗ f2⟩ = ⟪(1⊗Φ) ⊗ (f1 ⊗ 1) ∣ (1⊗Ψ) ⊗ (f2 ⊗ 1)⟫(1Aθ
⊗Lg)⊗A⊗3

θ
(L2⊗1Aθ

)

= ⟨f1 ⊗ 1 ∣ (⟨1⊗Φ ∣ 1⊗Ψ⟩Aθ⊗Lg

A⊗3
θ

) ⋅ (f2 ⊗ 1)⟩
L2⊗Aθ

,(5.4)

where ⋅ denotes, for the moment, the left-action of A⊗3
θ on L2 ⊗Aθ.
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Lemma 5.2. The maps

Cc(Zg) 
→ Cc(Zg) ⊙A A ⊆ Lg ⊗Aθ
L2

Φ -→ Φ⊗ (z0 ⊗ ε0)
Φ.Lg

(V lU−k ⊗ 1) ←
� Φ⊗ (zl ⊗ εk)
(5.5)

are mutually inverse. In particular with the help of Formula (5.2), a copy of the
space Cc(Zg) is sitting densely inside of (Aθ ⊗Lg) ⊗A⊗3

θ
(L2 ⊗Aθ).

In the above lemma, we write A for two things: on the one hand, it denotes the
dense subspace of L2 consisting of elements ∑n,m an,mzn⊗ εm. On the other hand,
it denotes the subalgebra of Aθ consisting of elements ∑n,m an,mV nUm. In both
of these cases, (an,m)n,m is assumed to be of Schwartz decay. Recall also that ⊙
denotes the algebraic tensor product before completion.

Proof. On the right-hand side, the balancing gives us the following equality for
Φ ∈ Cc(Zg), f ∈ A ⊆ L2, and any acting element ξ ∈ A ⊆ Aθ:

Φ⊗ (ω2 ⋊ v)(ξ) (f) = Φ.Lg
(ξ ⊗ 1) ⊗ f.

For ξ = V l1Uk1 and f = zl2 ⊗ εk2 , we have

(ω2 ⋊ v)(ξ) (f) = λ−k1l2zl2+l1 ⊗ εk2−k1 ,

where λ ∶= e2πiθ. So we have for any choice of l1, k1 ∈ Z:

Φ⊗ (λ−k1l2 ⋅ zl2+l1 ⊗ εk2−k1) = (Φ.Lg
(V l1Uk1 ⊗ 1)) ⊗ (zl2 ⊗ εk2) .

The case k2 ∶= 0, l2 ∶= 0 and k1 replaced by −k1 yields:

Φ⊗ (zl1 ⊗ εk1) = (Φ.Lg
(V l1U−k1 ⊗ 1)) ⊗ (z0 ⊗ ε0) .

It is now easy to see that the two maps are mutually inverse maps, as claimed. �

Formula (5.5) equips the left-hand side with the structure of an A − A-right-
pre-Hilbert module. We let N 0

g be its completion and Ng ∶= N 0
g ⊕ N 0

g with the
standard even grading. By construction, Ng is (isomorphic to) the Aθ −Aθ-right-
Hilbert module underlying (1Aθ

⊗ [Lg]) ⊗A⊗3
θ

(Δθ ⊗ 1Aθ
). We will now study this

A −A-right-pre-Hilbert module in terms of the bimodule structure of Lg.

Lemma 5.3 (The Hilbert bimodule structure of N 0
g ). The bimodule structure on

N 0
g is given on its dense subspace Cc(Zg) by

(5.6)
A ↷ Cc(Zg) ∶ (V l1Uk1 ◻Φ) = λl1k1 Φ.Lg

(V l1U−k1 ⊗ 1),
Cc(Zg) ↶ A ∶ (Φ ◻ V l2Uk2) = Φ.Lg

(1⊗ V l2Uk2).

For Ψ another compactly supported function on Zg, the (pre-)inner product
⟨Φ ∣Ψ⟩N

0
g with value in Cc(Aθ) ⊆ Aθ is given by

⟨Φ ∣Ψ⟩N
0
g ([x], k) = ∫

T

⟨Φ ∣Ψ⟩Lg ([y],0, [x], k)d y,

where ⟨Φ ∣Ψ⟩Lg takes values in Cc(A) = Cc(Aθ ×Aθ).
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Proof. An element Φ ∈ Cc(Zg) corresponds to Φ ⊗ (z0 ⊗ ε0) in Lg ⊗Aθ
L2, see

Formula (5.5). By Formula (5.3), the left action on Lg ⊗Aθ
L2 is given by

V l1Uk1 . (Φ⊗ (z0 ⊗ ε0)) = Φ⊗ (ω1 ⋊ u)(V l1Uk1) (z0 ⊗ ε0) .
We compute

(ω1 ⋊ u)(V l1Uk1) (z0 ⊗ ε0) = λl1k1 zl1 ⊗ εk1 ,

so that
V l1Uk1 . (Φ⊗ (z0 ⊗ ε0)) = λl1k1 Φ⊗ (zl1 ⊗ εk1).

Similarly, the right action on Lg ⊗Aθ
L2 is given by

(Φ⊗ (z0 ⊗ ε0)) . V l2Uk2 = Φ.Lg
(1⊗ V l2Uk2) ⊗ (z0 ⊗ ε0).

The claim about the bimodule structure now follows from Formula (5.5).
Next, we turn to the inner product. Because of Equation (5.4) and Formula

(5.5), the pre-inner product on N 0
g is given by

⟨Φ ∣Ψ⟩N
0
g = ⟨z0 ⊗ ε0 ⊗ 1 ∣ (⟨1⊗Φ ∣ 1⊗Ψ⟩Aθ⊗Lg

A⊗3
θ

) ⋅ (z0 ⊗ ε0 ⊗ 1)⟩
L2⊗Aθ

,(5.7)

where ⋅ is, as before, the left-action of A⊗3
θ on L2 ⊗Aθ. Since

⟨1⊗Φ ∣ 1⊗Ψ⟩Aθ⊗Lg

A⊗3
θ

= 1⊗ ⟨Φ ∣Ψ⟩Lg

Aθ⊗Aθ
,

let us study Equation (5.7) for ⟨1⊗Φ ∣ 1⊗Ψ⟩ replaced by an elementary tensor
1⊗ a⊗ b:

⟨z0 ⊗ ε0 ⊗ 1 ∣ (1⊗ a⊗ b) ⋅ (z0 ⊗ ε0 ⊗ 1)⟩L
2⊗Aθ = ⟨z0 ⊗ ε0 ∣ω2 ⋊ v(a)(z0 ⊗ ε0)⟩

L2

⋅ b.
For a = ∑n,m an,mV nUm, we have

ω2 ⋊ v(a)(z0 ⊗ ε0) = ∑
n,m

an,mzn ⊗ ε−m,

so that
⟨z0 ⊗ ε0 ∣ω2 ⋊ v(a)(z0 ⊗ ε0)⟩

L2

= a0,0.

Thus, for any ([x], k) ∈ T ×Z:

⟨z0 ⊗ ε0 ⊗ 1 ∣ (1⊗ a⊗ b) ⋅ (z0 ⊗ ε0 ⊗ 1)⟩L
2⊗Aθ

Aθ
([x], k) = a0,0 ⋅ b([x], k)

= ∫
T

(a⊗ b)([y],0, [x], k)d y.

We bootstrap from the elementary tensor a⊗b with a ∈ A to a more general element
ζ ∈ Cc(T ×Z ×T ×Z) with the result

⟨z0 ⊗ ε0 ⊗ 1 ∣ (1⊗ ζ) ⋅ (z0 ⊗ ε0 ⊗ 1)⟩L
2⊗Aθ ([x], k) = ∫

T

ζ([y],0, [x], k)d y

and so in particular

⟨Φ ∣Ψ⟩N
0
g ([x], k) = ⟨z0 ⊗ ε0 ⊗ 1 ∣ (1⊗ ⟨Φ ∣Ψ⟩Lg) ⋅ (z0 ⊗ ε0 ⊗ 1)⟩

L2⊗Aθ

= ∫
T

⟨Φ ∣Ψ⟩Lg ([y],0, [x], k)d y,

where the last equation follows from Formula (5.7). �
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Our goal is to show that for g upper-triangular, the module Ng underlying the
cup-cap product (1Aθ

⊗ [Lg]) ⊗A⊗3
θ

(Δθ ⊗ 1Aθ
) is obtained by applying the descent

map to an equivariant module, and to identify this module. Such ‘descended’ mod-
ules are completions of Cc(Z,N) for some right-Hilbert C(T) −C(T)-bimodule N
equipped with a Z-action. As already mentioned, N 0

g is a completion of continuous
compactly supported functions on the space Zg, which for g = [ a b

c d ] is given by

Z[a b
c d
] = {(r1, r2, [ v

w ]) ∈ R2 ×T2 ∣ [ a(v+r1θ)+br1
c(v+r1θ)+dr1 ] = [w+r2θr2 ]} ,

see Lemma 3.8. We therefore need to restrict to those g which make Zg contain a
copy of Z. From the above description, we see that this happens exactly when g
is upper triangular; then the elements of Zg have the restriction [dr1] = [r2] , i.e.
r2 = dr1 + k for some k ∈ Z.

Since g was assumed to be in SL2(Z), c = 0 implies d = a, and μ(g) ≠ 0 (Equa-
tion (3.6)) becomes b ≠ 0. We get

Z[a b
0 a
] ≅ Z ×T ×R

(r, r2, [ v
w ]) ↦ (r2 − ar, [v], r).

(5.8)

The below proposition gives the formulas that Zg inherits from Yg ∗B X via the
identification from Equation (5.8). It also makes use of Lemma 3.7, which gave a
nicer description of the left Fg-action on Yg, and of Lemma 3.3, which gave a nicer
description of the right A-action on X .

Proposition 5.1. For g = [ a b
0 a ], the (Fg,A)-equivalence Zg = Z × T ×R is given

by:
Fg ↷ Zg ∶ ([ v0 ] + ( l1+l2θ

b
+ r) ( θ

1 ) , l1, l2) .(k, [v] , r) = (k + l2, [v] , l1+l2θb
+ r) ,

Zg ↶ A ∶ (k, [v], r).([v], k1, [av + rb + kθ], k2) = (k + k2 − ak1, [v − k1θ], r + k1).

Now, we will finally compute the module structure of Lg, but only for matrices g
of the above form. This, in turn, will then allow us to give the formulas for the
Hilbert module structure of N 0

g ≅ (Aθ ⊗Lg) ⊗A⊗3
θ

(L2 ⊗Aθ).
Let g = [ a b

0 a ]: recall that Zg is the Morita equivalence built as completion of
Cc(Zg), and by ‘forgetting’ its left-action, we arrived at the right-Aθ ⊗Aθ-Hilbert
module Lg = ι∗(Zg). This means that their right Hilbert-module structures coin-
cide, and so according to Theorem 2.8 in [20], the right-Cc(A)-action on the dense
subspace Cc(Zg) of Lg needs to be defined by

(Φ.Lg
f)(z) = ∫

sensible
ν∈A

Φ(z.ν)f(ν−1)dν,

where ν is “sensible” if z.ν makes sense. For z = (k, [v], r) ∈ Zg, this is the case
exactly when ν = ([v],−k1, [av + rb − kθ],−k2) for some ki ∈ Z, in which case

z.ν = (k − k2 + ak1, [v + k1θ], r − k1).
The inverse of such ν in Aθ ×Aθ is ν−1 = ([v + k1θ], k1, [av + rb + (k2 − k)θ], k2).

All in all this means:
(Φ.Lg

f)(k, [v], r) = ∑
k1,k2∈Z

Φ(k − k2 + ak1, [v + k1θ], r − k1)

f([v + k1θ], k1, [av + rb + (k2 − k)θ], k2).
(5.9)
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In particular, for f = V l1Uk1 ⊗ V l2Uk2 :

(Φ.Lg
V l1Uk1 ⊗ V l2Uk2)(k, [v], r) =Φ(k − k2 + ak1, [v + k1θ], r − k1)

e2πil1(v+k1θ)e2πil2(av+rb+(k2−k)θ).
(5.10)

Now that we have concrete formulas for the right-action on Lg, we can make the
structure of N 0

g concrete by using Formula (5.6):
(5.11)

A ↷ N 0
g ∶ (V l1Uk1 ◻Φ)(k, [v], r) = Φ(k − ak1, [v − k1θ], r + k1)e2πil1v,

N 0
g ↶ A ∶ (Φ ◻ V l2Uk2)(k, [v], r) = λl2(k2−k)Φ(k − k2, [v], r)e2πil2(av+rb).

We now compare this right-module structure of N 0
g to the right-module structure it

would have if it came via descent from a suitable (yet to be determined) completion
of Cc(T × R): for any l2, k2 ∈ Z, (k, [v], r) ∈ Zg = Z × R × T, and Φ ∈ Cc(Zg), we
would need

λl2(k2−k)Φ(k − k2, [v], r)e2πil2(av+rb) != (λl2(k2−k)Φ(k − k2) ∗ zl2) ([v], r).

Here, the left-hand side is the right-action by V l2Uk2 on the function Φ, an element
of the dense subspace Cc(Zg) of N 0

g . The right-hand side is the formula for the
right-action by V l2Uk2 as ‘prescribed’ by descent; notice that Φ(k − k2) is our
notation for the function

T ×R ∋ ([v], r) ↦ Φ(k − k2, [v], r)

in Cc(T ×R). In other words, if we define for φ ∈ Cc(T ×R) and f ∈ C(T),

(5.12) (φ ∗ f)([v], r) = φ([v], r)f([av + rb]),

then descent turns this right-action of C(T) on (a completion of) Cc(T × R) into
the right-module structure we have on N 0

g .
For the left-module structure to be coming from descent, we similarly require for

any l1, k1 ∈ Z that

Φ(k − ak1, [v − k1θ], r + k1)e2πil1v != (zl1 ∗ (k1.Φ(k − k1))) ([v], r).

This shows that we need to have a = 1, so that we can define for φ ∈ Cc(T ×R)
the action of k1 ∈ Z and the left-action of f ∈ C(T) by:

(5.13) (k1.φ) ([v], r) = φ([v−k1θ], r+k1) and (f ∗ φ) ([v], r) = f([v])φ([v], r).

For g = [ 1 b
0 1 ] with b ∈ Z×, the inner products of both Lb = Lg and subsequently

of N 0
b ∶= N 0

g are now easy to compute. First, the Aθ ⊗Aθ-valued inner product of
Lb = ι∗(Zg) is just the inner product of Zg. Therefore, Theorem 2.8 in [20] gives
us the following formula for the inner product of two functions Φ,Ψ ∈ Cc(Zg) ⊆ Lb

evaluated at ν ∈ A = Aθ ×Aθ:

⟨Φ ∣Ψ⟩Lb (ν) = ∫
sensible
γ∈Fg

Φ(γ.z)Ψ(γ.z.ν)dγ,

where z ∈ Zg = Z ×R × T is any element such that z.ν makes sense in Zg, and γ is
“sensible” if γ.z is defined. According to Proposition 5.1, when ν = ([v], l1, [w], l2),
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we can take the element z = (0, [v], w−v
b

) for some choice of representatives v,w of
[v,w]. For sensible γ ∈ Fg, we have

γ.z = (k2, [v], k1+k2θ+w−v
b

) ,
where k1, k2 ∈ Z are arbitrary, and then

γ.z.ν = (k2 + l2 − l1, [v − l1θ], k1+k2θ+w−v
b

+ l1) .
All in all:

⟨Φ ∣Ψ⟩Lb ([v], l1, [w], l2)(5.14)

= ∑
k1,k2∈Z

Φ (k2, [v], k1+k2θ+w−v
b

)Ψ (k2 + l2 − l1, [v − l1θ], k1+k2θ+w−v
b

+ l1) .

Now we will use Lemma 5.3 to compute a formula for ⟨Φ ∣Ψ⟩Nb where Φ,Ψ ∈
Cc(Zg) ⊆ Ng = Nb:

⟨Φ ∣Ψ⟩Nb ([x], l) = ∫
T

∑
k1,k2∈Z

Φ (k2, [y], k1+k2θ+x−y
b

, )Ψ (k2 + l, [y], k1+k2θ+x−y
b

)d y

= ∫
R

∑
k∈Z

Φ (k, [r], kθ+x−r
b

)Ψ (k + l, [r], kθ+x−r
b

)d r

= ∫
R

∑
k∈Z

Φ (k, [x + kθ − r], r
b
)Ψ (k + l, [x + kθ − r], r

b
)d r.

For this to come from descent, we need

⟨Φ ∣Ψ⟩Nb ([x], l) != ∑
k

⟨Φ(k) ∣Ψ(k + l)⟩Ng

C(T) ([x + kθ]).

This is satisfied if we define

(5.15) ⟨φ ∣ψ⟩N
0
b

C(T) ([x]) ∶= ∫
R

(φψ) ([x − r], r
b
)d r.

In Theorem 5.4 below, we will sum up what we have found so far, namely the
formulas for the lift via descent of the module N 0

b .

5.2. Conclusion of the proof.

Theorem 5.4. Suppose b ∈ Z×. We define the structure of an equivariant, right-
pre-Hilbert C(T)-bimodule on Cc(T ×R) by

φ,ψ ∈ Cc(T ×R) ∶ ⟨φ ∣ψ⟩C(T) ([x]) = ∫
R

(φψ) ([x − r], r
b
)d r,

Z↷ Cc(T ×R) ∶ (l.φ) ([x], r) = φ([x − lθ], r + l),
C(T) ↷ Cc(T ×R) ∶ (f ∗ φ) ([x], r) = f([x])φ([x], r),
Cc(T ×R) ↶ C(T) ∶ (φ ∗ f)([x], r) = φ([x], r)f([x+ rb]).

Let N±b be the completion of Cc(T ×R) with respect to this pre-inner product,
and let Nb ∶= N+b ⊕N−b be standard evenly graded. Define the unbounded operator
dNb,+∶N+b → N−b by

(5.16) dNb,+ ∶= − 1
b

∂
∂r

+ ∂
∂Θ − 2πM,

let dNb,− ∶= d∗Nb,+ and define

(5.17) dNb
∶= [ 0 dNb,−

dNb,+
0 ] .

Then the pair (Nb, dNb
) is a cycle in ΨZ (C(T), C(T)).
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Remark 5.5. To see why we chose this (pre-)Hilbert module structure, see Formula
(5.13), Formula (5.12), and Formula (5.15). To see why we chose this operator, see
the proof of Lemma 5.7.

To prove Theorem 5.4, we will check that (Nb, b ⋅ dNb
) is unitarily equivalent

to the equivariant cycle (Hb, idC(T) ⊗ dλ) of Remark 4.6 for λ ∶= 2πb ∈ R×. Recall
that we defined H±b as the completion of Cc(T×R) with respect to the pre-Hilbert
module structure given on page 263, which is also where the definition of dλ can be
found. Note that the domain of idC(T) ⊗ dλ contains, by definition, the subspace
C(T) ⊙ S(R).

Proof of Theorem 5.4. Define w∶T ×R 
→ T ×R by
w([x], r) ∶= ([x + br] ,−r) ,

so that w = w−1, and let

H±b ⊇ Cc(T ×R) Cc(T ×R) ⊆ N±b

W −1φ ∶=
√
∣b∣ ⋅ φ ○w Wφ ∶= 1√

∣b∣
⋅ φ ○w

W

W−1

It is quickly checked that this induces the claimed structure on H±b .
Finally, a routine computation shows that

W −1 ○ b ⋅ dNb,+ ○W
(5.16)= W −1 ○ (− ∂

∂r
+ b ∂

∂Θ − 2πbM) ○W
= −(b ∂

∂Θ − ∂
∂r

) + b ∂
∂Θ + 2πbM

= 2πbM + ∂
∂r

= d2πb,+

(5.18)

as claimed.
Since we have proved (Hb, dλ) to be an unbounded cycle for any λ ∈ R× (see

Theorem 4.1), it follows that (Nb, b ⋅ dNb
) and hence (Nb, dNb

) are cycles also. �

We will next verify that (Nb,DNb
) satisfies all properties needed to invoke [15,

Theorem 13], the well-known recipe due to Kucerovsky how to determine that a
given unbounded KK-cycle is the Kasparov product of two other cycles.

Theorem 5.6. For (Nb, dNb
) as defined in Theorem 5.4 and

j∶ΨZ

0 (C(T), C(T)) 
→ Ψ0(Aθ,Aθ)
the descent map, the cycle j(Nb, dNb

) = (Nb,DNb
) represents the Kasparov product

(1Aθ
⊗ [Lb]) ⊗A⊗3

θ
(Δθ ⊗ 1Aθ

).

We have already found that the module Nb descends to Nb = N 0
b ⊕ N 0

b - in
fact, this is where the formulas that we used to define Nb came from, see Formula
(5.13), Formula (5.12), and Formula (5.15). Furthermore, we have seen that N ±b
can be regarded as (Aθ ⊗ Lb) ⊗A⊗3

θ
(L2 ⊗ Aθ), two copies of which make up the

module underlying (1Aθ
⊗[Lb])⊗A⊗3

θ
(Δθ⊗1Aθ

) via Equations (5.2) and (5.5). The
identification can be summed up as follows:
(5.19)
(V l1Uk1 ⊗Φ) ⊗B ((zl2 ⊗ εk2) ⊗ V l3Uk3)
hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiijiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiik

∈ (Aθ⊗Lb)⊗A⊗3
θ
(L2⊗Aθ)

≜ λl1(k1+k2) Φ.Lb
(V l1+l2U−(k1+k2)⊗V l3Uk3)

hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiijiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiik
∈N±

b
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We have also already proved that (Nb,DNb
) is indeed in Ψ(Aθ,Aθ). Therefore, we

now only need to prove the following:

Lemma 5.7. For all x in a dense subset of Aθ ⊗Lb, the operator

[[DNb
0

0 dΔ⊗1 ] , [
0 Tx

T ∗x 0 ]]

extends to a bounded operator.

We note that C∞c (Aθ) ⊙C∞c (Zb) is dense in Aθ ⊗Lb by the following:

Lemma 5.8. Suppose Φn ∈ Cc(Z × T ×R) are such that ∥Φn∥∞
n→∞
→ 0 and that,

for all n, the support of Φn is contained in some compact set. Then Φn
n→∞
→ 0

both in Lb and in H±−b.

The proof of Lemma 5.8 employs a “standard trick” that was used in the proof of
Theorem 2.8 in [20]: the inductive limit topology on Cc(G) for G a second countable
locally compact Hausdorff étale groupoid is finer than the topology given by the
C*-norm (see [23, Chapter II, Proposition 1.4(i)]).

Corollary 5.9. If c00 denotes the space of bi-infinite sequences which are even-
tually zero, then the subspace c00 ⊙ span{zn ∣n ∈ Z} ⊙C∞c (R) is dense in both Lb

and H±−b.

Remark 5.10. The statement in Lemma 5.7 implicitly makes use of the identifica-
tion in Equation (5.19). In other words, our claim (for the creation part) can be
rephrased to saying that the following diagram is commutative up to adjointable
operators, where N 1 ∶= Aθ ⊗ [Lb] and N 2 ∶= (L2 ⊕L2) ⊗Aθ:

(5.20)

N 1 ⊗A3⊗
θ

N 2 Nb

N 2 Nb

N 2 N 1 ⊗A3⊗
θ

N 2

Eq. (5.19)
DTx

dΔ⊗1
Tx

Eq. (5.19)

We observe that only the creation-part in Lemma 5.7 has to be shown.

Lemma 5.11. Let D∶Dom(D) → N be a self-adjoint, densely defined unbounded
operator on a right-Hilbert C∗-module N over some C∗-algebra C. Let T ∈ L(N)
be such that Dom(DT ) ∩ Dom(D) and Dom(D) ∩ Dom(DT ∗) are dense. If the
operator DT +TD (or DT −TD) extends to a bounded operator, then its extension
is adjointable and T ∗D +DT ∗ (resp. T ∗D −DT ∗) also extends to an adjointable
operator.

Proof. Let S ∶= T ∗D ± DT ∗ and R ∶= DT ± TD, so that Dom(S) = Dom(D) ∩
Dom(DT ∗) and Dom(R) = Dom(DT ) ∩ Dom(D) are dense by assumption. We
claim that R∗ extends S and that it is an adjointable operator.

We compute for ξ ∈ Dom(S) and ζ ∈ Dom(R)
⟨Rζ ∣ ξ⟩ = ⟨DTζ ∣ ξ⟩ ± ⟨TDζ ∣ ξ⟩ = ⟨Tζ ∣Dξ⟩ ± ⟨Dζ ∣T ∗ξ⟩

= ⟨ζ ∣T ∗Dξ⟩ ± ⟨ζ ∣DT ∗ξ⟩ = ⟨ζ ∣Sξ⟩ .

This shows that Dom(S) is a subset of

Dom(R∗) = {ξ ∈ N ∣ ∃y ∈ N ,∀ζ ∈ Dom(R) ∶ ⟨Rζ ∣ ξ⟩ = ⟨ζ ∣ y⟩}
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Moreover, for any ζ ∈ Dom(R) and ξ ∈ Dom(S),

⟨ζ ∣Sξ⟩ = ⟨Rζ ∣ ξ⟩ = ⟨ζ ∣R∗ξ⟩ .

We know that this property uniquely defines R∗ξ since Dom(R) is dense, and
hence R∗ξ = Sξ on Dom(S). In other words, R∗ extends S. In particular, R∗ is
also densely defined.

Let R be the assumed bounded extension of R. Then for ζ ∈ Dom(R) and
ξ ∈ Dom(R∗), we have

(5.21) ⟨ζ ∣R∗ξ⟩ = ⟨Rζ ∣ ξ⟩ = ⟨Rζ ∣ ξ⟩ , so that ∥⟨ζ ∣R∗ξ⟩∥ ≤ ∥R∥ ⋅ ∥ζ∥ ⋅ ∥ξ∥ .

As Dom(R) is dense, we conclude that the norm inequality in (5.21) holds for all
ζ ∈ N . In particular, choosing ζ = R∗ξ yields ∥R∗(ξ)∥ ≤ ∥R∥ ⋅ ∥ξ∥, so the closed
operator R∗ is bounded by ∥R∥ on its entire dense domain. This implies that R∗

is a bounded operator. Using denseness of Dom(R) once again and Dom(R∗) = N ,
Equation (5.21) shows that (R)∗ = R∗, so that R and R∗ are adjointable operators,
as claimed. �

Corollary 5.12. Let D∶Dom(D) → N and D′∶Dom(D′) → N ′ be two self-adjoint,
densely defined unbounded operators on right-Hilbert C∗-modules N resp. N ′ over
some C∗-algebra C. Let T ∈ L(N ′,N) be such that Dom(DT ) ∩ Dom(D′) and
Dom(D)∩Dom(D′T ∗) are dense. If the operator DT +TD′ (or DT −TD′) extends
to a bounded operator, then its extension is adjointable and T ∗D +D′T ∗ (resp.
T ∗D −D′T ∗) also extends to an adjointable operator.

Proof. Consider the self-adjoint, densely defined operator D ∶= [D 0
0 D′

] and the
adjointable operator T ∶= [ 0 T

0 0 ] on the right-Hilbert C∗-module N ⊕N ′. Then

Dom(DT ) ∩Dom(D) = Dom(D) ⊕ (Dom(DT ) ∩Dom(D′))

and
Dom(D) ∩Dom(DT ∗) = (Dom(D) ∩Dom(D′T ∗)) ⊕Dom(D′)

are both dense by assumption. Since DT ±T D = [ 0 DT±TD′

0 0 ] extends to a bounded
operator by assumption, we may use Lemma 5.11 and the claim follows. �

Proof of Lemma 5.7. We start by considering an elementary tensor x = a ⊗ Φ in
C∞c (Aθ) ⊙C∞c (Zb).

Let us untangle Diagram (5.20) and be precise: Instead of working with DNb
on

Nb, we will work with the corresponding operator D̃ on the actual space N 1⊗A3⊗
θ
N 2

(using Equation (5.19) to figure out D̃). Unfortunately, D̃ is going to be very
unwieldy, which is the reason we instead chose to define D’s lift in Theorem 5.4.
The upshot is that D̃Tx − Tx(dΔ ⊗ 1) will turn out to be extended by a creation
operator, which is clearly adjointable.

Note that, since C∞c (Zb) is a subspace of Dom(D) which contains
C∞c (Zb).Lb

(C∞c (Aθ))2⊙, the map in Equation (5.19) shows that

(5.22) (C∞c (Aθ) ⊙C∞c (Zb)) ⊙A3⊙ (C∞c (Aθ) ⊙C∞c (Aθ)) ⊆ Dom(D̃±).

Consequently, Tx for x = a⊗Φ as above maps C∞c (Aθ) ⊙C∞c (Aθ) into Dom(D̃±).
Note that C∞c (Aθ)⊙C∞c (Aθ) is also contained in the domain of D2,± ∶= dΔ,±⊗1, so
in particular, Dom(D̃±Tx)∩Dom(D2,±) contains this dense subset of (L2⊕L2)±⊗Aθ.
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For a ∈ C∞c (Aθ) ⊆ Aθ and f ∈ C∞c (Aθ) ⊆ (L2⊕L2)±, define the function ψ(a, f) ∈
C∞c (Aθ) ⊆ Aθ by

ψ(a, f) ([x], k) ∶= ∑
n∈Z

a([x − kθ],−n) f([x], n − k),

then for a = V l1Uk1 and f = zl2⊗εk2 , we recover ψ(a, f) = λl1(k1+k2) V l1+l2U−(k1+k2).
This shows that, for c ∈ C∞c (Aθ) and Φ ∈ C∞c (Zb), the map in Equation (5.19)
identifies

N 1 ⊗A3⊗
θ

(N 2)±←→N ±b
(a⊗Φ) ⊗A3⊗

θ
(f ⊗ c) ≜ Φ.Lb

(ψ(a, f) ⊗ c)(5.23)

To find D̃±((a⊗Φ)⊗A3⊗
θ

(f ⊗ c)), we see from Equation (5.23) that we first need

to compute DNb,±(Φ.Lb
(ψ(a, f) ⊗ c)). Note that, if ξ ∶= ψ(a, f) and Ψ ∶= Φ.Lb

ξ,
then Equation (5.9) (the formula for the right action on Lb) reveals that

∂Ψ
∂r

= (∂Φ
∂r

) .Lb
ξ + bΦ.Lb

(ψ(a, f) ⊗ ∂c

∂Θ
) ,

∂Ψ
∂Θ

= (∂Φ
∂Θ

) .Lb
ξ +Φ.Lb

(ψ(a, f) ⊗ ∂c

∂Θ
+ ∂ψ(a, f)

∂Θ
⊗ c) , and

MRΨ = (MRΦ) .Lb
ξ +Φ.Lb

((MZψ(a, f)) ⊗ c) ,

where MR resp. MZ denotes the operator that multiplies by the input of the R- resp.
the Z-component, and ∂

∂r
resp. ∂

∂Θ refers to differentiation with respect to the R-
resp. T-component.

It follows that, applying the operator D ∶= DNb
on Nb –built out of dNb

(see
Definition 5.16) via descent– to Ψ yields

D±(Ψ) = [∓1
b

∂

∂r
± ∂

∂Θ
− 2πMR] (Φ).Lb

ξ

+Φ.Lb
[ψ (± ∂a

∂Θ
+ 2πMZa, f) + ψ (a,± ∂f

∂Θ
+ 2πMZf,)] ⊗ c.

This element corresponds via Equation (5.23) to the following element in N 1 ⊗A3⊗
θ

(N 2)±:

D̃±((a⊗Φ) ⊗A3⊗
θ

(f ⊗ c))

∶= (a⊗ [−2πMR ∓ 1
b

∂

∂r
± ∂

∂Θ
] (Φ) + [2πMZ ± ∂

∂Θ
] (a) ⊗Φ) ⊗A3⊗

θ
(f ⊗ c)

+ (a⊗Φ) ⊗A3⊗
θ

([2πMZ ± ∂

∂Θ
] (f) ⊗ c)

Since DT = −i ∂
∂Θ and DZ = 2πMZ (defined in Lemma (2.2)), we get

[2πMZ ± ∂

∂Θ
] (f) ⊗ x = (DZ ± iDT)(f) ⊗ c = (dΔθ,± ⊗ 1) (f ⊗ c) = D2,± (f ⊗ c) .

Thus, if we define for x = a⊗Φ:

X±(x)∶=a⊗[−2πMR∓ 1
b

∂

∂r
± ∂

∂Θ
] (Φ) + [2πMZ ± ∂

∂Θ
] (a) ⊗Φ ∈ C∞c (Aθ) ⊙C∞c (Zb),
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then this shows that

D̃±(Tx(f ⊗ c)) =TX±(x)(f ⊗ c) + TxD2,± (f ⊗ c)).

We conclude that D̃±Tx − TxD2,± = TX±(x) extends to an adjointable operator for
x any elementary tensor in C∞c (Aθ) ⊙ C∞c (Zb). By linearity, we conclude that
D̃±Tx − TxD2,± is densely defined and extends to an adjointable operator for any
x ∈ C∞c (Aθ) ⊙C∞c (Zb).

To prove that T ∗x D̃± − D2,±T
∗
x extends to an adjointable as well, we want to

invoke Corollary 5.12. The only thing that remains to check is that Dom(D̃±) ∩
Dom(D2,±T

∗
x ) is dense. So let y ∈ C∞c (Aθ)⊙C∞c (Zb) be another element like x and

let F ∈ C∞c (Aθ) ⊙C∞c (Aθ) ⊆ (L2 ⊕L2)± ⊗Aθ. We have

T ∗x (y ⊗ (f ⊗ c)) = ⟨x ∣ y⟩Aθ⊗Lb

A⊗3
θ

⋅ F,

where ⋅ denotes the action of A⊗3
θ on F . One readily sees from Equation (5.14)

(the formula for the Aθ ⊗Aθ-valued inner product on Lb) that ⟨x ∣ y⟩Aθ⊗Lb

A⊗3
θ

is not
just a smooth but also a compactly supported function on Aθ × Aθ × Aθ. By
bootstrapping from elementary tensors (similarly to how it was done in the proof
of the inner product formula of Lemma 5.3), one finds the following formula for the
A⊗3

θ -action on L2 ⊗Aθ that holds for any a ∈ C∞c (Aθ × Aθ × Aθ) ⊆ A⊗3
θ acting on

the element F :

(a ⋅ F )([x],m1, [y],m2) = ∑
k,l,n

a([x +m1θ],m1 + k − n, [x], k, [y], l)

F ([x − kθ], n, [y − lθ],m2 − l).
Using that a and F are smooth and compactly supported, one sees that a ⋅ F is
also smooth and compactly supported. In particular, this holds for a = ⟨x ∣ y⟩Aθ⊗Lb

A⊗3
θ

.
Thus, T ∗x maps the dense subset of Dom(D̃±) from Equation (5.22) into the dense
subset C∞c (Aθ ×Aθ) of Dom(D2,±), proving the claim. �

6. Conclusion of the duality theorem

As a result of the previous sections, we have obtained the following, where we
use that τ−1b = τ−b by Theorem 4.7.

Theorem 6.1. Let g = [ 1 b
0 1 ] for b > 0 and Lb ∶= Lg (Definition 3.6). Then

(1Aθ
⊗ τ−b)∗([Lb]) ⊗A⊗3

θ
(Δθ ⊗ 1Aθ

) = 1Aθ
,

where τb ∈ KK0(Aθ,Aθ) is the b-twist (Definition 4.5). In particular, the class

Δ̂θ ∶= (1Aθ
⊗ τ−b)∗(Lb)

together with Connes’ class Δθ, satisfy the zig-zag equations. The classes Δθ, Δ̂θ

are the co-unit and unit, respectively, of a self-duality for Aθ.

We have proved the first zig-zag equation, and the second follows in exactly the
same way; we omit the details to avoid much duplication. We can now describe a
spectral cycle representative for Δ̂θ. First, recall that τ−b can be described as the
descended version of the cycle (H−b, d1), i.e.

τ−b = j([(H−b, d1)]) =∶ [(H−b,D1)],
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Thus, its module is a completion of Cc(Z×T×R), described explicitly in Lemma 4.4,
and its operator D1 = [ 0 D1,−

D1,+ 0 ] is given by

D1,± = M ± ∂
∂r
,

where M still denotes multiplication by the input of the R-component. Recall from
Remark 4.6 that we can replace D1 by 1

2π ⋅Dλ for any λ > 0, so for the best final
results, we will choose λ = 2πb > 0:

(6.1) DH ∶= 1
2π

⋅D2πb = [ 0 bM − 1
2π

∂
∂r

bM + 1
2π

∂
∂r

0 ] .

Before we can state the main theorem of this section, we need some notation.

Definition 6.2. For a smooth function F on Z × T × Rn, any N ∈ N0, and α an
n-multi-index, define the semi-norm

∥F ∥Sn

(N,α) ∶= sup {(∥(k, x⃗)∥NN + 1) ∣∂
αΦ

∂x⃗α
(k, [v], x⃗)∣ ∶ (k, [v], x⃗) ∈ Z ×T ×Rn},

where ∂α

∂x⃗α is differentiation with respect to the R-components. If ∥F ∥Sn

(N,α) is finite
for every choice of N and α, then F is called a Schwartz–Bruhat function. We will
denote the locally convex space consisting of such F by Sn.

Remark 6.3. While it is possible to define a larger family of semi-norms by including
differentiation in the T-direction, the above seminorms are sufficient for our goals.

Definition 6.4. For functions on Z×T×Rn, let MR

i be the operator of multiplication
by the input of the ith R-component, and ∂i differentiation with respect to the ith

R-component. Let MZ be the operator of multiplication by the input of the Z-
component.

Note that all of these operators map Sn back into itself. We can now state the
theorem:

Theorem 6.5. Let R± be the completion of the right-A ⊙ A pre-Hilbert module
R∞ ∶= S2 whose structure is defined by:

(F.R(V l1Uk1 ⊗ V l2Uk2))(k, [x], r, s)
= λl1(k+k1)+l2k2 e2πix(l1+l2)e2πi(l2r−k2s)F (k − k2 + k1, [x + k2θ], r, s)

(6.2)

and

⟨F1 ∣F2⟩R (l1, [v], l2, [w])

= ∑
k1,k2∈Z

∫
t
e2πitl2F1(k1, [v − k1θ], k2 + k1θ − v +w, t)

F2(k1 + l2 − l1, [v − (k1 + l2)θ], k2 + k1θ − v +w, t)d t.
(6.3)

Let R ∶= R+ ⊕R− be standard evenly graded and define

dR ∶= [ 0 dR,−

dR,+ 0 ] where dR,± ∶=MR

1 ∓ iMR

2 with Dom(dR,±) ∶= S2.(6.4)

Then (R, dR) is a Kasparov cycle and represents Δ̂θ. In particular, Δ̂θ does not
depend on the choice of b ∈ Z×.
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To prove this, we will make use of the following:

Theorem 6.6 (Special case of [16, Theorem 7.4]). Let Eb ∶= Lb ⊗A⊗2
θ

(Aθ ⊗H−b)
for b > 0, and suppose we have

(1) an odd, self-adjoint, regular operator DE ∶Dom(DE) → Eb so that
(2) (0,DE) is a weakly anticommuting pair, and
(3) a dense A ⊙ A-submodule X ⊆ Lb for which the algebraic tensor product

X ⊙A⊙A Dom(1Aθ
⊗DH) is a core for DE such that

(4) for all Φ ∈ X , both operators η ↦ DE,±(Φ ⊗ η) − Φ⊗ (1Aθ
⊗DH,±)(η) with

domain Dom(1Aθ
⊗DH,±) extend to adjointable operators Aθ ⊗H±−b → E±b .

Then (Eb,DE) is a Kasparov cycle and represents Δ̂θ.

Note that Item (2) is actually true no matter what self-adjoint regular operator
DE is chosen.

The remainder of this section is structured as follows: First, we find a description
of E±b as a completion, called P±b , of Cc(Z × T × R2). We will then prove that
E±b contains S2, Schwartz–Bruhat functions on Z × T × R2, and explicitly describe
the module structure of this subspace. Using a unitary operator, we simplify Eb
to the module R from Theorem 6.5. On this easier module, we study the two
unbounded operators dR,±∶R± → R∓ to then induce them to unbounded operators
DE,±∶ E±b → E∓b . Finally, we will show that the off-diagonal operator DE , built
in the usual way out of DE,±, makes Eb a representative of Δ̂θ. This will prove
Theorem 6.5.

Proposition 6.1 (The balancing). The module E±b = Lb⊗A⊗2
θ
(Aθ⊗H±−b) underlying

Δ̂θ has a copy of P∞ ∶= C∞c (Z × T × R) ⊙ C∞c (R) as a dense subspace via the
following map:

ι0∶ P∞ Lb ⊗A⊗2
θ

(Aθ ⊗H±−b)

Φ⊙ ψ Φ⊗ (1Aθ
⊗ ε0 ⊗ z0 ⊗ ψ)

The proof is routine.

Lemma 6.7. The space P∞ = C∞c (Z × T × R) ⊙ C∞c (R) inherits the following
structure of a pre-Hilbert right-module from E±b via ι0 (the map in Lemma 6.1):
the pre-inner product with values in C∞c (A) is given for Fi ∈ P∞ by

⟨F1 ∣F2⟩P (l1, [v], l2, [w])

= ∑
k1,k2∈Z

∫
R

F1 (k1, [v], k2+k1θ−v+w
b

− r, r)

F2 (k1 + l2 − l1, [v − l1θ], k2+k1θ−v+w
b

− r + l1, r − l2) d r.
(6.5)

The right action of an element ξ ∈ A⊙A on F ∈ P∞ is given by:
(F.Pξ) (k, [v], r, s) = ∑

k1,k2∈Z
F (k − k2 + k1, [v + k1θ], r − k1, s + k2)

⋅ ξ (k1, [v + k1θ], k2, [v + b(r + s) + (k2 − k)θ]) .
(6.6)

The proof is straightforward.

Remark 6.8. If we let P±b be the completion of P∞ with respect to the above inner
product, then ι0 extends, by construction, to a unitary P±b ≅ E±b .
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The next goal is to prove the that Eb contains functions of Schwartz decay.

Proposition 6.2. The injective linear map ι0∶P∞ = C∞c (Z×T×R)⊙C∞c (R) → E±b
from Lemma 6.1 extends to an injective linear map ι∶ S2 → E±b . Moreover, the
image of S2 is a right-A⊙A pre-Hilbert submodule of E±b . The module structure
on S2 induced by ι is given by the same formulas as on P∞.

Corollary 6.9. The completion P±b of P∞ has S2 as a dense subspace.

The main tool needed for the proof of Proposition 6.2 (see page 284) is the
following result, proved using some estimates of quadruple series of rapid decay,
and its corollaries.

Lemma 6.10. For any integer N ≥ 6, there exists a finite number μ(N) ≥ 0 with
the following property: If F1, F2 ∈ S2, then for all M,N ≥ 6,

∥⟨F1 ∣F2⟩∥I ≤ μ(M) ⋅ ∥F1∥S2
(M,0) ⋅ μ(N) ⋅ ∥F2∥S2

(N,0) ,

where we define the inner product of two Schwartz–Bruhat functions by the same
formula as Equation (6.5).

The interested reader can find a proof of the lemma and of the following in the
first-named author’s PhD thesis ([5, Lemma 7.2.5 ff.]). For a definition of the I-
norm, see [23]. Note that the above, in particular, implies that ⟨F1 ∣F2⟩ is indeed
a function on A (i.e., that it takes finite values). With this tool, one proves the
following:

Lemma 6.11. If Fn ∈ P∞ = C∞c (Z × T × R) ⊙ C∞c (R) converges to F ∈ S2 with
respect to ∥ ⋅ ∥S2

(M,0), and Gn ∈ P∞ to G ∈ S2 in ∥ ⋅ ∥S2
(N,0) for some M,N ≥ 6, then

⟨Fn ∣Gn⟩P converges to ⟨F ∣G⟩S in C∗(A). Consequently, the function ⟨F ∣G⟩S is
an element of C∗(A) = Aθ ⊗Aθ.

Using the fact that the I-norm dominates the C*-norm (see [23, Chapter II,
Proposition 4.2(ii)]), we conclude:

Corollary 6.12. For any integers M,N ≥ 6 and with μ(N) as in Lemma 6.10,
we have for all Fj in S2:

∥⟨F1 ∣F2⟩S∥
C∗(A)

≤ μ(M) ⋅ ∥F1∥S2
(M,0) ⋅ μ(N) ⋅ ∥F2∥S2

(N,0) .

In particular, if F ∈ P∞, then ∥ι0(F )∥Eb ≤ μ(N) ⋅ ∥F ∥S2
(N,0) .

Using the fact that the C*-norm dominates the uniform-norm (see [23, Chap-
ter II, Proposition 4.1(i)]), we also conclude:

Corollary 6.13. For F in S2, we have

∥⟨F ∣F ⟩S∥
C∗(A)

≥ sup {∫
R

∣F ∣2 (k, [v], s − r, r) d r ∶ [v] ∈ T, k ∈ Z, s ∈ R}.

Lemma 6.14. If F in S2 and ξ in A ⊙ A, and if F.S2ξ is defined by the same
formula as Equation (6.6), then F.S2ξ is an element of S2. Moreover, if Fn ∈
P∞ = C∞c (Z × T × R) ⊙ C∞c (R) converges to F in S2, then Fn.Pξ converges to
F.S2ξ in S2.
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Proof of Proposition 6.2. Take any F ∈ S2 and let Fn ∈ P∞ = C∞c (Z × T × R) ⊙
C∞c (R) be a sequence which converges to F in S2; in particular, for any ε > 0 and
for n,m sufficiently large,

∥Fn − Fm∥S2
(4,0) ≤ ∥Fn − F ∥S2

(4,0) + ∥F −Fm∥S2
(4,0) < ε.

By Corollary 6.12, the sequence (ι0(Fn))n is therefore Cauchy in E±b and hence
converges; let ι(F ) denote the limit in E±b . Note that, if limSn Fn = F = 0, then
limEn ι0(Fn) = 0 by the same corollary, so ι(F ) does not depend on the chosen
sequence in P∞ and for F ∈ P , we have ι(F ) = ι0(F ). Using Corollary 6.12 yet
again, we get for any integer N ≥ 6:

∥⟨ι(F ) ∣ ι(F )⟩E∥
1
2

C∗(A)
= ∥ι(F )∥Eb = lim

n→∞
∥ι0(Fn)∥Eb

≤ lim
n→∞

(∥Fn∥S2
(N,0) ⋅ μ(N)) = ∥F ∥S2

(N,0) ⋅ μ(N).(6.7)

To check that the extended map ι is injective, note first that there exists a constant
K such that for any F ∈ S2 and any N ≥ 2:

K ⋅ (∥F ∥S2
(N,0))

2
≥ sup {∫

R

∣F ∣2 (k, [v], s − r, r) d r ∶ [v] ∈ T, k ∈ Z, s ∈ R}.

Using Lemma 6.13, this implies

∥ι(F )∥2Eb ≥ sup {∫
R

∣F ∣2 (k, [v], s − r, r) d r ∶ [v] ∈ T, k ∈ Z, s ∈ R},

i.e. if ∥ι(F )∥Eb = 0, then F ≡ 0, so ι is injective. Some more estimates with Lemma
6.11 and Corollary 6.12 show

ι(F ).Ebξ = ι(F.S2ξ) and ⟨F ∣G⟩S = ⟨ι(F ) ∣ ι(G)⟩E

where ξ ∈ A⊙A, which concludes our proof. �

Remark 6.15. One proves mutatis mutandis that the inclusions C∞c (Z×T×R) ⊆ Lb

and C∞c (Z×T×R) ⊆ H±b (which are dense by Corollary 5.9) extend to injective linear
maps S1 → Lb resp. S1 → H±b , and that the respective right pre-Hilbert module
formulas on C∞c (Z × T ×R) are still valid for elements in S1. Fully analogously to
the map ι0∶P∞ = C∞c (Z×T×R)⊙C∞c (R) → E±b from Lemma 6.1, we could therefore
have defined the map

ι′∶ S1 ⊙S(R) Lb ⊗A⊗2
θ

(Aθ ⊗H±−b) = E±b
Φ⊙ ψ Φ⊗ (1Aθ

⊗ ε0 ⊗ z0 ⊗ ψ),

which clearly also has dense image. By construction, ι′ and ι0 give rise to the same
extension, namely the injective linear map ι∶ S2 → E±b from Proposition 6.2.

Now that we have simplified Eb, we would like to show that it is unitarily equiv-
alent to the module R from Theorem 6.5.

Definition 6.16. Let

χ∶ S2 → S2, χ(F )(k, [x], r, s) ∶=∫
t
F (k, [x], r, t)e−2πitsd t,

and Γ∶ S2 → S2, Γ(F )(k, [x], r, s) ∶=F (k, [x − kθ], b(r + s + k), s)
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with inverses given by

χ−1(F )(k, [x], r, s) ∶=∫
q
F (k, [x], r, q)e2πiqsd q

and Γ−1(F )(k, [x], r, s) ∶=F (k, [x + kθ], r
b
− s − k, s).

And define

Ξ ∶= Γ ○ χ∶ S2 S2

Ξ(F )(k, [x], r, s) ∫t F (k, [x − kθ], b(r + s + k), t)e−2πitsd t.

with inverse

Ξ−1(F )(k, [x], r, s) = ∫q F (k, [x + kθ], r
b
− q − k, q)e2πiqsd q.

Theorem 6.17. The map Ξ extends to a unitary from R±, the completion of
the pre-Hilbert module R∞ defined in Theorem 6.5, to P±b , the completion of the
pre-Hilbert module P∞ defined in Lemma 6.7.

Proof. A direct computation shows that the linear map Ξ∶R∞ → S2 ⊆ P±b preserves
the pre-inner product and right A⊙A-module structure on S2 = R∞ ⊆ R±. As Ξ is
a bijection S2 → S2, and as S2 is dense in both R± and P±b by definition, Ξ extends
to a unitary R± ≅ P±b . �

Corollary 6.18. The map ι ○ Ξ ∶ R∞ → E±b = Lb ⊗A⊗2
θ

(Aθ ⊗ H±b ) extends to a
unitary R± ≅ E±b , where ι is the injective linear map from Proposition 6.2.

We now turn to the operator.

Lemma 6.19. The closure of the operator dR from Equation (6.4) is self-adjoint
and regular.

Proof. Because MR
1 and MR

2 are obviously symmetric in view of the inner product
defined on R± (see Equation (6.3)), so is dR. Since the domain of dR is the dense set
S2, it thus suffices to check that dR ± i has dense range. For any given ψ1, ψ2 ∈ S2,
define

φ1(k, [x], r, s) ∶=
(r + is) ⋅ψ2(k, [x], r, s) ∓ iψ1(k, [x], r, s)

1 + s2 + r2 , and

φ2(k, [x], r, s) ∶=
(r − is) ⋅ψ1(k, [x], r, s) ∓ iψ2(k, [x], r, s)

1 + s2 + r2 .

These functions lie in the domain of our operator dR and satisfy (dR± i)(φ1⊕φ2) =
ψ1 ⊕ ψ2, so the range of dR ± i contains S⊕2

2 and is hence dense. �

Corollary 6.20 (Using Theorem 6.17). On Pb, the closure of the operator

dP ∶= [ 0 dP,−

dP,+ 0 ] where dP,± ∶=Ξ ○ dR,± ○Ξ−1 with Dom(dP,±) ∶= S2 ⊆ P±b ,(6.8)

is self-adjoint and regular.
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Note that the definition of dP,± indeed makes sense since dR,± maps its domain
S2 back into itself. A direct computation shows:

Lemma 6.21. We have

Ξ ○MR

1 ○Ξ−1 = b (MR

1 +MZ +MR

2 ) and Ξ ○MR

2 ○Ξ−1 = i

2π
(∂2 − ∂1) ,

where Ξ∶ S2 → S2 is the map defined in Definition 6.16. In particular,

dP,± = [b(MR

1 +MZ) ∓ 1
2π

∂1] + [bMR

2 ± 1
2π

∂2] .

We should remark that we have written dP,± in such a way because the Z-
and the first R-component both arose from the copy of Lb inside of E±b , while the
second R-component arose from the copy of H±−b; cf. the map ι0 in Lemma 6.1 with
extension ι constructed in Proposition 6.2.

As ι is an injective map and as dP,± maps its domain S2 back into itself, it makes
sense to define the following operator on Eb:

DE ∶= [ 0 DE,−
DE,+ 0 ] where DE,± ∶=ι ○ dP,± ○ ι−1 with Dom(DE,±) ∶= ran(ι) ⊆ E±b .

(6.9)

Note that DE is densely defined according to Lemma 6.1. Moreover, its closure is
self-adjoint and regular because the closure of dP is by Corollary 6.20.

Recall that we chose
DH,± = bMR ± 1

2π
∂

∂r
in Equation (6.1). Its domain can be chosen to be Dom(DH,±) ∶= S1 ⊆ H±−b thanks
to Remark 6.15.

Lemma 6.22. Let

DL,± ∶=b (MR +MZ) ∓ 1
2π

∂

∂r
with Dom(DL,±) ∶= S1 ⊆ Lb.

On the image under ι of the subspace S1 ⊙S(R) of S2, we have

DE,± =DL,± ⊗A⊗2
θ

(1Aθ⊗H±−b) + 1Lb
⊗A⊗2

θ
(1Aθ

⊗DH,±) .

In the above, we have written ⊗A⊗2
θ

(instead of the more customary ⊗) to em-
phasize that E±b = Lb ⊗A⊗2

θ
(Aθ ⊗H±−b) is the balanced tensor product (so it is not

obvious a priori that the above operator is well-defined).

Proof. Recall that ι is the extension of the map

ι0∶ C∞c (Z ×T ×R) ⊙C∞c (R) Lb ⊗A⊗2
θ

(Aθ ⊗H±−b) = E±b

from Lemma 6.1 to all of S2. In particular, on the subspace S1 ⊙ S(R), ι is given
by the exact same formula as ι0, namely

ι(Φ⊙ ψ) = Φ⊗ (1Aθ
⊗ ε0 ⊗ z0 ⊗ ψ).

It is then obvious that DE,±, defined as ι ○ dP,± ○ ι−1 with

dP,± = [b(MR

1 +MZ) ∓ 1
2π

∂1] + [bMR

2 ± 1
2π

∂2]

computed in Lemma 6.21, is indeed as claimed. �
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Lemma 6.23. The operator dP,± leaves the subspace S1 ⊙ S(R) of S2 invariant.
Moreover, S1 ⊙S(R) is a core for dP,±.

The invariance is obvious, and the proof regarding the core requires only an ap-
plication of Corollary 6.12 (in fact, one proves that any subspace of S2 = Dom(dP,±)
which is dense with respect to the family of seminorms on S2, is a core for dP,±).
Since DE,± ∶= ι○dP,± ○ ι−1 (see Equation (6.9)), a consequence is that Item (3) holds
for (Eb,DE):

Corollary 6.24. The dense A⊙A-submodule Dom(DL) = S1 ⊆ Lb makes S1⊙A⊙A
Dom(1Aθ

⊗DH) a core for DE .

Item (4) holds as well for (Eb,DE):

Lemma 6.25. For all Φ ∈ Dom(DL) = S1 ⊆ Lb, both operators η ↦ DE,±(Φ⊗ η) −
Φ⊗(1Aθ

⊗DH,±)(η) with domain Dom(1Aθ
⊗DH,±) extend to adjointable operators

Aθ ⊗H±−b → E±b .

Proof. For η = a⊗Ψ for a ∈ A and Ψ ∈ S1 ⊆ H±−b and Φ ∈ S1 ⊆ Lb:

DE,±(Φ⊗A⊗2
θ

η) −Φ⊗A⊗2
θ

(1Aθ
⊗DH,±)(η)

= (DL,±Φ) ⊗A⊗2
θ

(a⊗Ψ) +Φ⊗A⊗2
θ

(a⊗DH,±(Ψ)) −Φ⊗A⊗2
θ

(1Aθ
⊗DH,±)(η)

= (DL,±Φ) ⊗A⊗2
θ

η = TDL,±Φ(η).

We conclude for general η that DE,±(Φ⊗A⊗2
θ
η)−Φ⊗A⊗2

θ
(1Aθ

⊗DH,±)(η) = TDL,±Φ(η),
so we have shown that the operator in question is extended by a creation operator,
which is clearly adjointable. �

Proposition 6.3. The pair (Eb,DE) is a Kasparov cycle and represents Δ̂θ.

Proof. Recall that Δ̂θ was defined as [Lb] ⊗A⊗2
θ

(1Aθ
⊗x−b). We have checked that

the items in Theorem 6.6 are all satisfied:
As explained on page 286, the closure of DE is self-adjoint and regular (i.e.

Item (1) holds) because DE is unitarily equivalent to the operator dP , whose closure
is self-adjoint and regular by Corollary 6.20. We explained that (0,DE) is a weakly
anticommuting pair (i.e. Item (2) holds), and in Lemma 6.24, we have proved that
for the dense submodule X ∶= S1 of Lb, the algebraic tensor product S1⊙Dom(1Aθ

⊗
DH) is a core for DE (i.e. Item (3) holds). Lastly, in Lemma 6.25 we have shown
that, for Φ ∈ X , the operator DETΦ − TΦ(1Aθ

⊗DH) has an adjointable extension,
i.e. Item (4) holds as well. �

Proof of Theorem 6.5. We have shown in Corollary 6.18 that R is unitarily equiv-
alent to Eb, and we have defined DE exactly so that the unitary equivalence turns
it into dR. The claim now follows from Proposition 6.3. �
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