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LOCAL C1,β-REGULARITY AT THE BOUNDARY OF TWO

DIMENSIONAL SLIDING ALMOST MINIMAL SETS IN R3

YANGQIN FANG

Abstract. In this paper, we will give a C1,β-regularity result on the boundary
for two dimensional sliding almost minimal sets in R3. This effect may apply
to the regularity of the soap films at the boundary, and may also lead to the
existence of a solution to the Plateau problem with sliding boundary conditions
proposed by Guy David in the case that the boundary is a 2-dimensional
smooth submanifold.

1. Introduction

Jean Taylor, in [13], proved a celebrated regularity result of Almgren almost min-
imal sets, that gives a complete classification of the local structure of 2-dimensional
(almost) minimal sets, that is, every 2-dimensional almost minimal set E, in an
open set U ⊆ R3 with gauge function h(t) ≤ Ctα, is local C1,β equivalent to a
2-dimensional minimal cone. This result may apply to many actual surfaces, soap
films are considered as typical examples. In [5], Guy David gave a new proof of
this result and generalized it to any codimension. Even with this very nice regu-
larity property, we still do not know the behavior of almost minimal sets E at the
boundary E ∩ ∂U , since it could be more and more complicated when points tend
to the boundary, that is, the behaves of soap films at the boundary is not clear.

In [7], Guy David proposed to consider the Plateau Problem with sliding bound-
ary conditions, since it is very natural to the soap films, here we mean that the soap
films can be consider as sliding almost minimal sets. We see that, away from the
boundary, sliding almost minimal sets are almost minimal, Jean Taylor’s regularity
also applies, so that we already know the behavior of sliding almost minimal sets
except at the boundary. Indeed, the feature that allow surfaces moving along the
boundary could make the local structure more simple. Motivated by these, the
regularity at the boundary would be well worth our considering. In fact, we are
looking for a result similar to Jean Talyor’s, for which together with Jean Taylor’s
theorem will imply the local Lipschitz retract property of sliding (almost) minimal
sets, and the existence of minimizers for the sliding Plateau Problem will easily
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follows. Certainly we will get the whole story about the regularity of the soap
films.

In [13], Jean Taylor gave a full list of a two dimensional minimal cones in R
3,

that is, planes, cones of type Y, and cones of type T. One of the advantages for
the sliding boundary conditions is that we perceived the chance to determine the
possibility of minimal cones in the upper half space Ω0 of R3, where minimal cone
is a cone which is minimal under the sliding deformations. Indeed, there are seven
kinds of cones which are minimal, they are ∂Ω0, cones of type V, cones of type
P+, cones of type Y+, cones of type T+ and cones ∂Ω0 ∪ Z where Z are cones of
type P+ or Y+, see Section 3 in [9] for the precise definition of cones of type P+,
Y+, T+ and V. Let us refer to Remark 3.11 in [9] for the claim there are at most
seven, Theorem 3.10 in [9] proved some cones are minimal, and the rest is proved
by Cavallotto [2]. We ascertain that there are only three kinds of cones which are
minimal and contains the boundary ∂Ω0, they are ∂Ω0 and ∂Ω0 ∪ Z where Z is
cone of type P+ or Y+, see Theorem 3.10 in [9] for the statement.

Another advantages of the sliding almost minimal sets is that they are not far
from usual almost minimal sets, away from the boundary, they are almost minimal,
we have also the monotonicity of density property, and at the boundary we can
establish a similar monotonicity of density property without too much effort, see
Theorem 2.3 for precise statement. But in fact, the monotonicity of density property
is not enough, we have estimated the decay of the almost density, and that is also
possible with sliding on the boundary, see Corollary 3.16.

In [9], we proved a Hölder regularity of two dimensional sliding almost minimal
set at the boundary. That is, suppose that Ω ⊆ R3 is a closed domain with boundary
∂Ω a C1 manifold of dimension 2, E ⊆ Ω is a 2 dimensional sliding almost minimal
set with sliding boundary ∂Ω, and that ∂Ω ⊆ E. Then E, at the boundary, is
locally biHölder equivalent to a sliding minimal cone in the upper half space Ω0. In
this paper, we will generalized the biHölder equivalence to a C1,β equivalence when
the gauge function h satisfies that h(t) ≤ Ctα1 and ∂Ω is a 2 dimensional C1,α

manifold. Let us refer to Theorem 1.2 for details. Where the sliding minimal cones
always contain the boundary ∂Ω0, namely only there kinds of cones can appear:
∂Ω0 and ∂Ω0 ∪ Z, where Z are cones of type P+ or Y+.

Let us introduce some notation and definitions before state our main theorem. A
gauge function is a nondecreasing function h : [0,∞) → [0,∞] with limt→0 h(t) = 0.
Let Ω be a closed domain of R3, L be a closed subset in R3, E ⊆ Ω be a given set.
Let U ⊆ R3 be an open set. A family of mappings {ϕt}0≤t≤1, from E into Ω, is
called a sliding deformation of E in U , while ϕ1(E) is called a competitor of E in
U , if following properties hold:

• ϕt(x) = x for x ∈ E \ U , ϕt(x) ⊆ U for x ∈ E ∩ U , 0 ≤ t ≤ 1,
• ϕt(x) ∈ L for x ∈ E ∩ L, 0 ≤ t ≤ 1,
• the mapping [0, 1]× E → Ω, (t, x) 	→ ϕt(x) is continuous,
• ϕ1 is Lipschitz and ϕ0 = idE .

Definition 1.1. Let L,Ω ⊆ R3 be two closed sets, L ⊆ Ω. We say that an
nonempty set E ⊆ Ω is locally sliding almost minimal at x ∈ E with sliding
boundary L and with gauge function h, called (Ω, L, h) locally sliding almost at
x ∈ E for short, if H2 E is locally finite, and for any sliding deformation {ϕt}0≤t≤1

of E in B(x, r), we have that

H2(E ∩B(x, r)) ≤ H2(ϕ1(E) ∩B(x, r)) + h(r)r2.
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We say that E is sliding almost minimal with sliding boundary L and gauge
function h, denote by SAM(Ω, L, h) the collection of all such sets, if E is locally
sliding almost minimal at all points x ∈ E.

For any x ∈ R
3, we let τ x : R3 → R

3 be the translation defined by τ x(y) = y+x,
and let μr : R3 → R3 be the mapping defined by μr(y) = ry for any r > 0. For
any S ⊆ R3 and x ∈ S, a blow-up limit of S at x is any closed set in R3 that can be
obtained as the Hausdorff limit of a sequence μ1/rk

◦ τ−x(S) with limk→∞ rk = 0.

A set X in R
3 is called a cone centered at the origin 0 if for any μt(X) = X for

any t ≥ 0; in general, we call a cone X centered at x if τ−x(X) is a cone centered
at 0. We denote by Tan(S, x) the tangent cone of S at x, see Section 2.1 in [1]. We
see that if there is unique blow-up limit of S at x, then it coincide with the tangent
cone Tan(S, x). Our main theorem is the following.

Theorem 1.2. Let Ω ⊆ R3 be a closed set such that the boundary ∂Ω is a 2-
dimensional manifold of class C1,α for some α > 0 and Tan(Ω, z) is a half space
for any z ∈ ∂Ω. Let E ⊆ Ω be a closed set such that E ⊇ ∂Ω and E is a sliding
almost minimal set with sliding boundary ∂Ω and with gauge function h satisfying
that

h(t) ≤ Cht
α1 , 0 < t ≤ t0, for some Ch > 0, α1 > 0 and t0 > 0.

Then for any x0 ∈ ∂Ω, there is unique blow-up limit of E at x0; moreover, there
exist a radius r > 0, a sliding minimal cone Z in Ω0 with sliding boundary ∂Ω0,
and a mapping Φ : Ω0 ∩ B(0, 2r) → Ω of class C1,β, which is a diffeomorphism
between its domain and image, such that Φ(0) = x0, Φ(∂Ω0 ∩ B(0, 2r)) ⊆ ∂Ω,
|Φ(x)− x0 − x| ≤ 10−2r for x ∈ B(0, 2r), and

E ∩B(x0, r) = Φ(Z) ∩B(x0, r).

The theorem above, together with the Jean Taylor’s theorem, will imply that
any sliding almost minimal set E as in the theorem is local Lipschitz neighborhood
retract. This effect may gives the existence of a solution to the Plateau problem
with sliding boundary conditions in a special case, see Theorem 8.1.

2. Lower bound of the decay for the density

In this section, we will consider a simple case that Ω is a half space and L is its
boundary; without loss of generality, we assume that Ω is the upper half space, and
change the notation to be Ω0 for convenience, i.e.

Ω0 = {(x1, x2, x3) ∈ R
3 | x3 ≥ 0}, L0 = ∂Ω0.

It is well known that for any 2-rectifiable set E, there exists an approximate
tangent plane Tan(E, y) of E at y for H2-a.e. y ∈ E. We will denote by θ(y) ∈
[0, π/2] the angle between the segment [0, y] and the plane Tan(E, y), by θx(y) ∈
[0, π/2] the angle between the segment [x, y] and the plane Tan(E, y), for x ∈ R3.

For any gauge function h in this paper, we always assume that there is a number
rh > 0 such that

(2.1)

∫ rh

0

h(2t)

t
dt < ∞,

and put

h1(t) =

∫ t

0

h(2s)

s
ds, for 0 ≤ t ≤ rh.
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For any mapping f : E ⊆ Rm → Rn, we denote by ap Jkf(x) = ‖ ∧k apDf(x)‖ the
k dimensional approximate Jacobian of f at x, if f is approximate differentiable at
x, see Section 3.2.1 in [10]

In this section, we will compare a set E to the cone over E ∩ ∂B(0, r), then
establish a monotonicity of density formula for any 2-rectifiable set E which is
locally sliding almost minimal at 0, see Theorem 2.3.

Lemma 2.1. Let E ⊆ Ω0 be any 2-rectifiable set. Then, by putting u(r) =
H2(E ∩ B(x, r)), we have that u is differentiable almost every r > 0, and for such
r,

H1(E ∩ ∂B(x, r)) ≤ u′(r).

Proof. Considering the function ψ : R3 → R defined by ψ(y) = |y − x|, we have
that, for any y �= x and v ∈ R3,

Dψ(y)v =

〈
y − x

|y − x| , v
〉
,

thus

(2.2) ap J1(ψ|E)(y) = sup{|Dψ(y)v| : v ∈ Tan(E, x), |v| = 1} = cos θx(y).

Employing Theorem 3.2.22 in [10], we have that, for any 0 < r < R < ∞,∫ R

r

H1(E ∩ ∂B(x, t))dt =

∫
E∩B(x,R)\B(x,r)

cosx(y)dH2(y) ≤ u(R)− u(r),

we get so that, for almost every r ∈ (0,∞),

H1(E ∩ ∂B(x, t)) ≤ u′(r).

�

Lemma 2.2. Let E be a 2-rectifiable (Ω0, L0, h) locally sliding almost minimal at
x ∈ E.

• If x ∈ E ∩ L0, then for H1-a.e. r ∈ (0,∞),

(2.3) H2(E ∩B(x, r)) ≤ r

2
H1(E ∩ ∂B(x, r)) + h(2r)(2r)2.

• If x ∈ E \ L0, then inequality (2.3) holds for H1-a.e. r ∈ (0, dist(x, L0)).

Proof. If H2(E ∩ ∂B(x, r)) > 0, then H1(E ∩ ∂B(x, r)) = ∞, and nothing need to
do. We assume so that H2(E ∩ ∂B(x, r)) = 0.

Let f : [0,∞) → [0,∞) be any Lipschitz function, we let φ : Ω0 → Ω0 be defined
by

φ(y) = f(|y − x|) y − x

|y − x| .

Then, for any y �= x and any v ∈ R
3, by putting ỹ = y − x, we have that

Dφ(y)v =
f(|ỹ|)
|ỹ| v +

|ỹ|f ′(|ỹ|)− f(|ỹ|)
|ỹ|2

〈
ỹ

|ỹ| , v
〉
ỹ

If the tangent plane Tan2(E, y) of E at y exists, we take v1, v2 ∈ Tan2(E, y) such
that |v1| = |v2| = 1, v1 is perpendicular to y = x, and that v2 is perpendicular to
v1, let v3 be a vector in R3 which is perpendicular to Tan2(E, y) and |v3| = 1, then

ỹ = 〈ỹ, v2〉v2 + 〈ỹ, v3〉v3 = |ỹ| cos θx(y)v2 + |ỹ| sin θx(y)v3,
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and

Dφ(y)v1 ∧Dφ(y)v2 =
f(|ỹ|)2
|ỹ|2 v1 ∧ v2 +

|ỹ|f ′(|ỹ|)f(|ỹ|)− f(|ỹ|)2
|ỹ|3 cos θx(y)v1 ∧ ỹ,

thus

ap J2(φ|E)(y) = ‖Dφ(y)v1 ∧Dφ(y)v2‖

=
f(|ỹ|)
|ỹ|

(
f ′(|ỹ|)2 cos2 θx(y) +

f(|ỹ|)2
|ỹ|2 sin2 θx(y)

)1/2

.

We consider the function ψ : R3 → R defined by ψ(y) = |y − x|. Then, by (2.2),
we have that

ap J1(ψ|E)(y) = cos θx(y).

For any ξ ∈ (0, r/2), we consider the function f defined by

f(t) =

⎧⎪⎨⎪⎩
0, 0 ≤ t ≤ r − ξ
r
ξ (t− r + ξ), r − ξ < t ≤ r

t, t > r.

Then we have that

ap J2(φ|E)(y) ≤
f(|ỹ|)f ′(|ỹ|)

|ỹ| cos θx(y) +
f(|ỹ|)2
|ỹ|2 sin θx(y).

Applying Theorem 3.2.22 in [10], by putting Aξ = E ∩B(0, r) \B(0, r− ξ), we get
that

H2(φ(E ∩B(0, r))) ≤
∫
Aξ

r2

ξ2
· |ỹ| − r + ξ

|ỹ| cos θx(y)dH2(y) +
r2

(r − ξ)2
H2(Aξ)

=

∫ r

r−ξ

r2(t− r + ξ)

ξ2t
H1(E ∩ ∂B(x, t))dt+ 4H2(Aξ),

thus

H2(E ∩B(0, r)) ≤ (2r)2h(2r) + lim
ξ→0+

r2
∫ r

r−ξ

t− r + ξ

tξ2
H1(E ∩ ∂B(x, t))dt.

Since the function g(t) = H1(E∩B(x, t))/t is a measurable function, we have that,
for almost every r,

lim
ξ→0+

∫ ξ

0

tg(t− r + ξ)

ξ2
dt =

1

2
g(r),

thus for such r,

H2(E ∩B(x, r)) ≤ (2r)2h(2r) +
r

2
H1(E ∩ ∂B(x, r)).

�

For any set E ⊆ R
3, we set

ΘE(x, r) = r−2H2(E ∩B(x, r)), for any r > 0,

and denote by ΘE(x) = limr→0+ ΘE(x, r) if the limit exist, we may drop the script
E if there is no danger of confusion.

Theorem 2.3. Let E be a 2-rectifiable (Ω0, L0, h) locally sliding almost minimal
at x ∈ E.

• If x ∈ L0, then Θ(x, r) + 8h1(r) is nondecreasing as r ∈ (0, rh).
• If x�∈L0, then Θ(x, r)+8h1(r) is nondecreasing as r∈(0,min{rh, dist(x, L)}).
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Proof. From Lemma 2.2 and Lemma 2.1, by putting u(r) = H2(E ∩ B(x, r)), we
get that, if x ∈ L,

(2.4) u(r) ≤ r

2
u′(r) + h(2r)(2r)2,

for almost every r ∈ (0,∞); if x �∈ L, then (2.4) holds for almost every r ∈
(0,min{rh, dist(x, L)}).

We put v(r) = r−2u(r), then v′(r) ≥ −8r−1h(2r), we get that Θ(x, r) + 8h1(r)
is nondecreasing. �

Remark 2.4. Let E be a 2-rectifiable (Ω0, L0, h) locally sliding almost minimal at
some point x ∈ E. Then by Theorem 2.3, we get that ΘE(x) exists.

3. Estimation of upper bound

In the previous section, we get a monotonicity of density formula, that is
ΩE(x, r)−ΘE(x)+ 8h1(r) is nondecreasing, thus we get the estimation ΘE(x, r)−
ΘE(x) ≥ −8h1(r) when r small. But in fact we need a good estimation for
|ΩE(x, r) − ΘE(x)|, so we have to get some estimation for upper bound. The
main purpose of this section is get the control of H2(E ∩B(0, r)) by a convex com-
bination of H2(Z ∩ B(0, r)) and ΘE(0)r

2, where Z is the cone over E ∩ ∂B(0, r),
see Theorem 3.15 and Corollary 3.16.

Let Z be a collection of cones. We say that a set E ⊆ R3 is locally Ck,α-
equivalent (resp. Ck-equivalent) to a cone in Z at x ∈ E for some nonnegative
integer k and some number α ∈ (0, 1], if there exist 
0 > 0 and τ0 > 0 such that for
any τ ∈ (0, τ0) there is 
 ∈ (0, 
0), a cone Z ∈ Z and a mapping Φ : B(0, 2
) → R3,
which is a homeomorphism of class Ck,α (resp. Ck) between B(0, 2
) and its image
Φ(B(0, 2
)) with Φ(0) = x, satisfying that

(3.1) ‖Φ− id−Φ(0)‖∞ ≤ 
τ

and

(3.2) E ∩B(x, 
) ⊆ Φ (Z ∩B (0, 2
)) ⊆ E ∩B(x, 3
).

Similarly, if Ω ⊆ R3 is a closed set with the boundary ∂Ω is a 2-dimensional
manifold, a set E ⊆ Ω is called locally Ck,α-equivalent to a sliding minimal cone
Z in Ω0 at x ∈ E ∩ ∂Ω, if there exist 
0 > 0 and τ0 > 0 such that for any
τ ∈ (0, τ0) there is 
 ∈ (0, 
0) and a mapping Φ : B(0, 2
) ∩ Ω0 → Ω, which
is a diffeomorphism of class Ck,α between its domain and image with Φ(0) = x
satisfying that Φ(L0 ∩B(0, 2
)) ⊆ ∂Ω and (3.1) and (3.2).

Suppose that Ω ⊆ R3 is closed set with the boundary ∂Ω is a 2-dimensional C1

manifold. Suppose that E ⊆ Ω is sliding almost minimal with sliding boundary
∂Ω and gauge function h. Then, by putting U = Ω \ ∂Ω, we see that E ∩ U is
almost minimal in U , applying Jean Taylor’s theorem, E is locally C1,β-equivalent
to a minimal cone at each point x ∈ E ∩ U for some β > 0 in case h(r) ≤ crα for
some c > 0, α > 0, r0 > 0 and 0 < r < r0. We see from [9, Theorem 6.1] that, at
x ∈ E ∩∂Ω, E is locally C0,β-equivalent to a sliding minimal cone in Ω0 in case the
gauge function h satisfying (2.1).
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3.1. Approximation of E∩∂B(0, r) by rectifiable curves. For any sets X,Y ⊆
R3, any z ∈ R3 and any r > 0, we denote by dz,r the normalized local Hausdorff
distance defined by

dz,r(X,Y ) =
1

r
sup

{
dist(x, Y ) : x ∈ X ∩B(z, r)

}
+

1

r
sup

{
dist(y,X) : y ∈ Y ∩B(z, r)

}
.

It is quite easy to see that for r > 0,
• dz,r(X,Y ) ≤ dz,r(X,Z) + dz,r(Z, Y ) if Z is a cone centered at z;
• dz,r(X,Y ) = dz,1(X,Y ), if X and Y are cones centered at z;
• dz,r(X,Y ) ≤ dz,r(X,E) + dz,r(E, Y ), if X and Y are cones centered at z,

E ∩B(0, r) �= ∅, dz,r(X,E) � 1 and dz,r(X,E) � 1.
A cone in R3 is called of type Y if it is the union of three half planes with common

boundary line and that make 120◦ angles along the boundary line. A cone Z ⊆ Ω0

is called of type P+ is if it is a half plane perpendicular to L0; a cone Z ⊆ Ω0 is
called of type Y+ is if Z = Ω0 ∩ Y , where Y is a cone of type Y perpendicular to
L0; for convenient, we will also use the notation P+, to denote the collection of all
of cones of type P+, and Y+ to denote the collection of all of cones of type Y+.

For any set E ⊆ Ω0 with 0 ∈ E, and any r > 0, we set

εP (r) = inf{d0,r(E,Z) : Z ∈ P+},
εY (r) = inf{d0,r(E,Z) : Z ∈ Y+}.

If E is 2-rectifiable and H2(E) < ∞, then E ∩ ∂B(0, r) is 1-rectifiable and
H1(E ∩ ∂B(0, r)) < ∞ for H1-a.e. r ∈ (0,∞), we denote by R0 the collection
of such r; we now consider the function u : (0,∞) → R which is defined by
u(r) = H2(E ∩ B(0, r)), it is quite easy to see that u is nondecreasing, thus u
is differentiable for H1-a.e.; we will denote by R the set r ∈ (0,∞) such that
H1(E ∩ ∂B(0, r)) < ∞, u is differentiable at r, and for any continuous nonnegative
function f

(3.3) lim
ξ→0+

1

ξ

∫
t∈(r−ξ,r)

∫
E∩∂B(0,t)

f(z)dH1(z)dt =

∫
E∩∂B(0,r)

f(z)dH1(z),

and

(3.4) sup
ξ>0

1

ξ

∫
t∈(r−ξ,r)

H1(E ∩ ∂B(0, t))dt < +∞.

It is not hard to see that H1((0,∞) \ R) = 0, see for example Lemma 4.12 in [5].

Lemma 3.1. Let E ⊆ R3 be a connected set. If H1(E) < ∞, then E is path
connected.

For a proof, see for example Lemma 3.12 in [8], so we omit it here.

Lemma 3.2. Let X be a locally connected and simply connected compact metric
space. Let A and B be two connected subsets of X. If F is a closed subset of X
such that A and B are contained in two different connected components of X \ F ,
then there exists a connected closed set F0 ⊆ F such that A and B still lie in two
different connected components of X \ F0.

Proof. See for example 52.III.1 on page 335 in [12], so we omit the proof here. �
For any r > 0, we put zr = (0, 0, r) ∈ R3.
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Lemma 3.3. Let E ⊆ Ω0 be a 2-rectifiable set with H2(E) < ∞. Suppose that
0 ∈ E, and that E is locally C0-equivalent to a sliding minimal cone of type P+ at
0. Then for any τ ∈ (0, τ0) there exist r = r(τ ) > 0 such that, for any r ∈ (0, r)∩R0

and ε > εP (r), we can find yr ∈ E ∩ ∂B(0, r) \ L0 , xr,1, xr,2 ∈ E ∩ L0 ∩ ∂B(0, r)
and two simple curves γr,1, γr,2 ⊆ E ∩ ∂B(0, r) satisfying that
(1) |yr − zr| ≤ εr and |xr,1 − xr,2| ≥ (2− 2ε)r;
(2) γr,i joins yr and xr,i, i = 1, 2;
(3) γr,1 and γr,2 are disjoint except for point yr.

Proof. Since E is locally C0-equivalent to a sliding minimal cone of type P+ at 0,
for any τ ∈ (0, τ0), there exist 
 > 0, sliding minimal cone Z of type P+, and a
mapping Φ : Ω0 ∩B(0, 2
) → Ω0 which is a homeomorphism between Ω0 ∩B(0, 2
)
and Φ(Ω0 ∩ B(0, 2
)) with Φ(0) = 0 and Φ(∂Ω0 ∩ B(0, 2
)) ⊆ ∂Ω0 such that (3.1)
and (3.2) hold. We new take r = 
. Then for any r ∈ (0, r),

Φ−1 [E ∩ ∂B(0, r)] ⊆ Z ∩B(0, 3
).

Without loss of generality, we assume that Z = {(x1, 0, x3) | x1 ∈ R, x3 ≥ 0}.
Applying Lemma 3.2 with X = Z ∩B(0, 3
), F = Φ−1 [E ∩ ∂B(0, r)], A = {0} and
B = Z ∩ ∂B(0, 3
), we get that there is a connected closed set F0 ⊆ F such that A
and B lie in two different connected components of X\F0, thus Φ(F0) ⊆ E∩∂B(0, r)
is connected. We put a1 = {(x1, 0, 0) | x1 < 0} and a2 = {(x1, 0, 0) | x1 > 0}. Then
F0 ∩ ai �= ∅, i = 1, 2; otherwise A and B are contained in a same connected
component of X \ F0. We take zr,i ∈ F0 ∩ ai, and let xr,i = Φ(zr,i) ∈ E ∩ ∂B(0, r).
Then |xr,1 − xr,2| ≥ (2− 2ε)r.

Since Φ(F0) is connected and H1(Φ(F0)) ≤ H1(E ∩ ∂B(0, r)) < ∞, by Lemma
3.1, Φ(F0) is path connected. But Φ is a homeomorphism, we get that F0 =
Φ−1(Φ(F0)) is path connected. Let γ be a simple curve which joins zr,1 and zr,2.
We see that B(zr, εr) ∩ γ �= ∅, because εP (r) < ε and zr ∈ Z for sliding minimal
cone Z of type P+. We take yr ∈ B(zr, εr) ∩ γ. �

Lemma 3.4. Let E ⊆ Ω0 be a 2-rectifiable set with H2(E) < ∞. Suppose that
0 ∈ E, and that E is locally C0-equivalent to a sliding minimal cone of type Y+ at
0. Then for any τ ∈ (0, τ0) there exist r = r(τ ) > 0 such that, for any r ∈ (0, r)∩R0

and ε > εY (r), we can find yr ∈ E∩∂B(0, r)\L0 , xr,1, xr,2, xr,3 ∈ E∩L0∩∂B(0, r)
and three simple curves γr,1, γr,2, γr,3 ⊆ E ∩ ∂B(0, r) satisfying that
(1) |zr − yr| ≤ εr, and there exists Z ∈ Y+ through 0 such that dist(x, Z) ≤ εr

for x ∈ γr,i;
(2) γr,i join yr and xr,i;
(3) γr,i and γr,j are disjoint except for point yr.

Proof. Since E is locally C0-equivalent to a sliding minimal cone of type Y+ at
0, for any τ ∈ (0, τ0), there exist τ > 0, 
 > 0, sliding minimal cone Z of type
Y+, and a mapping Φ : Ω0 ∩ B(0, 2
) → Ω0 which is a homeomorphism between
Ω0 ∩ B(0, 2
) and Φ(Ω0 ∩ B(0, 2
)) with Φ(0) = 0 and Φ(∂Ω0 ∩ B(0, 2
)) ⊆ ∂Ω0

such that (3.1) and (3.2) hold. We now take r = 
. Then for any r ∈ (0, r),

Φ−1 [E ∩ ∂B(0, r)] ⊆ Z ∩B(0, 3
).

Applying Lemma 3.2 with X = Z ∩B(0, 3
), F = Φ−1 [E ∩ ∂B(0, r)], A = {0} and
B = Z ∩ ∂B(0, 3
), we get that there is a connected closed set F0 ⊆ F such that A
and B lie in two different connected components of X\F0, thus Φ(F0) ⊆ E∩∂B(0, r)
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is connected. We let ai, i = 1, 2, 3, be the three component of Z ∩ L0 \ A. Then
F0 ∩ ai �= ∅, i = 1, 2, 3; otherwise A and B are contained in a same connected
component of X \ F0. We take zr,i ∈ F0 ∩ ai, and let xr,i = Φ(zr,i) ∈ E ∩ ∂B(0, r).

Then |xr,1 − xr,2| ≥ (
√
3− 2ε)r.

Using the same arguments as in the proof of Lemma 3.3, we get that F0 is path
connected. We see that Z is of type Y+, denote by �(Z) the spine of Z, that is, the
half line through 0 and perpendicular to ∂Ω0. We find a point yr ∈ F0 ∩ �(Z) and
curves γr,i satisfying the conditions. �

3.2. Approximation of rectifiable curves in S
2 by Lipschitz graph. We

denote by S2 the unit sphere in R3. We say that a simple rectifiable curve γ ⊆ S2

is a Lipschitz graph with constant at most η, if it can be parametrized, after a
rotation, by

z(t) =
(√

1− v(t)2 cos θ(t),
√
1− v(t)2 sin θ(t), v(t)

)
,

where v is Lipschitz with Lip(v) ≤ η.

Lemma 3.5. Let T ∈ [π/3, 2π/3] be a number, and γ : [0, T ] → S2 a simple
rectifiable curve given by

γ(t) =
(√

1− v(t)2 cos θ(t),
√
1− v(t)2 sin θ(t), v(t)

)
,

where v is a Lipschitz function with v(0) = v(T ) = 0, θ is a continuous function
with θ(0) = 0 and θ(T ) = T . Then there is a small number τ0 ∈ (0, 1) such that
whenever |v(t)| ≤ τ0, we have that

(3.5) |v(t)| ≤ 10
√
H1(γ)− T .

Moreover, there is an ε0 > 0 such that (3.5) holds whenever H1(γ)− T ≤ ε0.

Proof. We let A = γ(0) = (1, 0, 0), B = γ(T ) = (cosT, sinT, 0), and let C = γ(t0)
be a point in γ such that

|v(t0)| = max{|v(t)| : t ∈ [0, T ]}.
We let γi, i = 1, 2, be two curves such that γ1(0) = A, γ1(1) = C, γ2(0) = B,
γ2(1) = C and γi ⊆ γ, let s = inf{s ∈ [0, 1] : γ1(s) ∈ γ2}, and put D = γ1(s). By
setting C1, C2 and C3 the arcs AD, BD and CD respectively, i.e., AD is the arc of
the great circle on the unity sphere which joint the points A and D. Then we have
that

H1(γ) ≥ H1(γ1 ∪ γ2) ≥ H1(C1) +H1(C2) +H1(C3).

We see that C1 ∪ C2 is a simple Lipschitz curve joining A and B, and let γ3 :
[0, �] → S2 giving by

γ3(t) =
(√

1− w(t)2 cos θ(t),
√
1− w(t)2 sin θ(t), w(t)

)
be its parametrization by length. We assume that γ3(t1) = D, then w′(t) > 0 on

(0, t1), or w
′(t) < 0 on (0, t1), thus |w(t)| =

∫ t1
0

|w′(t)|dt.
We let the number τ0 ∈ (0, 1) to be the small number τ1 in Lemma 7.8 in [5]. If

H1(γ)− T ≤ τ0, then we have that∫ �

0

|w′(t)|2dt ≤ 14(�− T ),
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thus

|w(t1)| =
∫ t1

0

|w′(t)|dt ≤
(
t1

∫ t1

0

|w′(t)|2dt
)1/2

≤
√
14�(�− T ).

We get so that

|v(t0)| ≤ H1(C3) + |w(t1)| ≤ (H1(γ)− �) +
√
14�(�− T )

≤
√
14H1(γ)(H1(γ)− T ) ≤ 10

√
H1(γ)− T .

If H1(γ)− T > τ0, then v(t) ≤ τ0 ≤ 10
√
τ0 ≤ 10

√
H1(γ)− T . �

Lemma 3.6. Let a and b be two points in Ω0 ∩ ∂B(0, 1) satisfying

π

3
≤ distS2(a, b) ≤

2π

3
.

Let γ be a simple rectifiable curve in Ω0∩∂B(0, 1) which joins a and b, and satisfies

length(γ) ≤ distS2(a, b) + τ0,

where τ0 > 0 is as in Lemma 3.5. Then there is a constant C > 0 such that, for
any η > 0, we can find a simple curve γ∗ in Ω0 ∩ ∂B(0, 1) which is a Lipschitz
graph with constant at most η joining a and b, and satisfies that

H1(γ∗ \ γ) ≤ H1(γ \ γ∗) ≤ Cη−2(length(γ)− distS2(a, b)).

Moreover, if we denote by Γa,b the geodesic joining a and b, then we can assume
that

(3.6) dist(x,Γa,b) ≤ η dist(x, {a, b}), ∀x ∈ γ∗.

The proof will be the same as in [5, p.875-p.878], so we omit it.

3.3. Comparison surfaces. Let Γ be a Lipschitz curve in S2. We assume for
simplicity that its extremities a and b lie in the horizontal plane. Let us assume
that a = (1, 0, 0) and b = (cosT, sinT, 0) for some T ∈ [π/3, 2π/3]. We also assume
that Γ is a Lipschitz graph with constant at most η, i.e. there is a Lipschitz function
s : [0, T ] → R with s(0) = s(T ) = 0 and Lip(s) ≤ η, such that Γ is parametrized by

z(t) = (w(t) cos t, w(t) sin t, s(t)) for t ∈ [0, T ],

where w(t) = (1− |s(t)|2)1/2.
We set

DT = {(r cos t, r sin t)| | 0 < r < 1, 0 < t < T},
and consider the function v : DT → R defined by

v(r cos t, r sin t) =
rs(t)

w(t)
for 0 ≤ r ≤ 1 and 0 ≤ t ≤ T.

For any function f : DT → R, we denote by Σf the graphs of f over DT .

Lemma 3.7. There is a universal constant κ > 0 such that we can find a Lipschitz
function u on DT satisfying that

(3.7)

Lip(u) ≤ Cη,

u(r, 0) = u(r cosT, r sinT ) = 0, for 0 ≤ r ≤ 1,

u(r cos t, r sin t) = v(r cos t, r sin t) for 1− 2κ ≤ r ≤ 1, 0 ≤ t ≤ T,

u(r cos t, r sin t) = 0, for 0 ≤ r ≤ 2κ, 0 ≤ t ≤ T
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and

(3.8) H2(Σv)−H2(Σu) ≥ 10−4(H1(Γ)− T ).

The proof is the same as Lemma 8.8 in [5], we omit it here.

3.4. Retractions. In this subsection, we assume that E ⊆ Ω0 is a 2-rectifiable set
satisfying that
(a) H2(E) < ∞, 0 ∈ E,
(b) E is locally (Ω0, L0, h) sliding almost minimal at 0,
(c) E is locally C0-equivalent to a sliding minimal cone of type P+ or Y+.
For any r > 0, we let ε(r) = εP (r) if E is locally C0-equivalent to a sliding minimal
cone of type P+, and let ε(r) = εY (r), if E is locally C0-equivalent to a sliding
minimal cone of type Y+. Recall that R0 is denoted by the collection of radii
r ∈ (0,∞) such that H1(E ∩ ∂B(0, r)) < ∞. For any r ∈ (0, r) ∩ R0, we will
discuss two situations: first, if Z is a sliding minimal cone of type P+, we put
Xr = {xr,1, xr,2}, where xr,1 and xr,2 are considered as in Lemma 3.3. Second, if
Z is a sliding minimal cone of type Y+, we put Xr = {xr,1, xr,2, xr,3}, where xr,1,
xr,2 and xr,3 are consider as in Lemma 3.4. We see that Xr ⊆ E ∩ ∂B(0, r) ∩ L0.

We take yr as in Lemma 3.3 or Lemma 3.4. For any x ∈ Xr, we let γx be the
curve joining x and yr which is considered as in Lemma 3.3 or Lemma 3.4, put
Γx = μ1/r(γx). Then by Lemma 3.6, there is a curve Γx,∗ on Ω0 ∩ ∂B(0, 1) joining

μ1/r(x) and μ1/r(yr) which is a Lipschitz graph with constant at most η ≤ 10−6.

Let Cx be the arc on ∂B(0, 1) joining μ1/r(x) and μ1/r(yr), let Dx and Mx be the
cone over Cx and Γx,∗ respectively. By Lemma 3.7, we can find Lipschitz graph Σx

corresponding to Mx such that (3.7) and (3.8) hold, that is,

(3.9)

Σx ∩B(0, 2κ) = Dx ∩B(0, 2κ),

Σx ∩B(0, 1) \B(0, 1− 2κ) = Mx ∩B(0, 1) \B(0, 1− 2κ),

H2(Mx ∩B(0, 1))−H2(Σx) ≥ 10−4(H1(Γx,∗)−H1(Cx)).

We put
(3.10)

X=
⋃

x∈Xr

Dx, Γ=
⋃

x∈Xr

Γx, Γ∗=
⋃

x∈Xr

Γx,∗, C=
⋃

x∈Xr

Cx, M=
⋃

x∈Xr

Mx, Σ=
⋃

x∈Xr

Σx.

From (3.9), we see that

(3.11) H2(M∩B(0, 1))−H2(Σ) ≥ 10−4
(
H1(Γ∗)−H1(C)

)
.

By Lemma 3.5 and Lemma 3.6, we have that

dH(Cx,Γx,∗) ≤ 10
(
H1(Γx,∗)−H1(Cx)

)1/2 ≤ 10
(
H1(Γ∗)−H1(C)

)1/2
and

(3.12) d0,1(X,M) ≤ dH(C,Γ∗) ≤ max
x∈Xr

dH(Cx,Γx,∗) ≤ 10
(
H1(Γ∗)−H1(C)

)1/2
.

For any r ∈ (0, r) ∩ R0, we put j(r) = r−1H1(E ∩ ∂B(0, r)) − H1(C), and denote
by R1 the set {r ∈ (0, r)∩R : j(r) ≤ τ0}, where τ0 is the small number considered
as in Lemma 3.5, R ⊆ R0 is defined in (3.3) and (3.4). Then (3.12) implies that

(3.13) d0,r(X,M) ≤ 10j(r)1/2.
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Lemma 3.8. If ε(r) < 1/2, then for any ε ∈ (ε(r), 1/2), there is a sliding minimal
cone Z = Zr such that

d0,1(X,Z) ≤ 4ε.

Moreover, we have that

d0,r(E,X) ≤ 5ε(r).

Proof. There exists sliding minimal cone Z such that d0,r(E,Z) ≤ ε, thus for any
x ∈ Xr, there is xz ∈ Z ∩ (L0 ∩ ∂Br) satisfying that |x− xz| ≤ 2εr. We get so that

dH([x, yr], [xz, zr]) ≤ 2εr.

Since dist(0, [x, yr]) > r/2 for any x ∈ Xr, we have that

dH(X ∩B(0, r/2), Z ∩B(0, r/2)) ≤ 2εr.

Thus

d0,1(X,Z) = d0,r/2(X,Z) ≤ 4ε,

and

d0,r(E,X) ≤ d0,r(E,Z) + d0,r(Z,X) ≤ 5ε.

�

Lemma 3.9. Let 0 < δ, ε < 1/2 be positive numbers. Let v1, v2, v3 ∈ R
3 be three

unit vectors.
• If |〈v2, vi〉| ≤ δ for i = 1, 3, then for any v ∈ R

3 with 〈v, v2〉 = 0 and
dist(v, span{v1, v2}) ≤ ε|v|, we have that

|〈v, v3〉 − 〈v1, v3〉〈v, v1〉| ≤ (ε+ δ)|v|, and |〈v, v1〉| ≥ (1− ε− δ)|v|.
• If 〈v1, v3〉 < 1 and 0 < 64δ < 1 − 〈v1, v3〉, then for any w1, w3 ∈ R

3 with
〈vi, wi〉 ≥ (1− δ)|wi|, i = 1, 3, we have that

(3.14) |w1|+ |w3| ≤ 2 · (1− 〈v1, v3〉)−1/2 |w1 − w3|.

Proof. We write v = v⊥ + λ1v1 + λ2v2, λi ∈ R, 〈v⊥, vi〉 = 0. Since 〈v, v2〉 = 0, we
have that λ2 = −λ1〈v1, v2〉, thus

λ1 =
〈v, v1〉

1− 〈v1, v2〉2
, λ2 = −〈v, v1〉〈v1, v2〉

1− 〈v1, v2〉2
,

we get so that

(3.15) v = v⊥ +
〈v, v1〉v1 − 〈v, v1〉〈v1, v2〉v2

1− 〈v1, v2〉2
,

and then

〈v, v3〉 = 〈v⊥, v3〉+
〈v1, v3〉 − 〈v2, v3〉〈v1, v2〉

1− 〈v1.v2〉2
〈v, v1〉,

thus

|〈v, v3〉 − 〈v1, v3〉〈v, v1〉| ≤ ε|v|+ δ2 + δ

1− δ2
|v| ≤ (ε+ 2δ)|v|.

We get also, from (3.15), that

|v| ≤ |v⊥|+ 1 + |〈v1.v2〉|
1− 〈v1, v2〉2

|〈v, v1〉| ≤ ε|v|+ 1

1− δ
|〈v, v1〉|,

thus

|〈v, v1〉| ≥ (1− ε)(1− δ)|v| ≥ (1− ε− δ)|v|.
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We can certainly assume wi �= 0, otherwise the inequality (3.14) will be trivial
true. Since 〈vi, wi〉 ≥ (1− δ)|wi|, we have that 〈vi, wi/|wi|〉 ≥ 1− δ, and∣∣∣vi − wi/|wi|

∣∣∣2 = 2− 2〈vi, wi/|wi|〉 ≤ 2δ,

we have so that∣∣∣∣ w1

|w1|
− w3

|w3|

∣∣∣∣2 =

∣∣∣∣( w1

|w1|
− v1

)
−
(

w3

|w3|
− v3

)
+ (v1 − v3)

∣∣∣∣2
≥ |v1 − v3|2 − 2|v1 − v3|

(∣∣∣∣ w1

|w1|
− v1

∣∣∣∣+ ∣∣∣∣ w3

|w3|
− v3

∣∣∣∣)
≥ |v1 − v3|2 − 4

√
2δ|v1 − v3|,

and

〈w1, w3〉 = |w1||w3|
〈

w1

|w1|
,
w3

|w3|

〉
≤ |w1||w3|

(
〈v1, v3〉+ 2

√
2δ|v1 − v3|

)
.

Thus

|w1−w3|2≥|w1|2+|w3|2−2|w1||w3|
(
〈v1, v3〉+ 2

√
2δ|v1 − v3|

)
≥(1−s)(|w1|+|w3|)2,

where s = 1
2 (1+ 〈v1, v3〉+2

√
2δ|v1 − v3|) ≤ 1

2 (1 + 〈v1, v3〉) + 1
4 (1− 〈v1, v3〉). Hence

|w1|+ |w3| ≤ (1− s)−1/2|w1 − w3| ≤ 2(1− 〈v1, v3〉)−1/2|w1 − w3|.
�

Lemma 3.10. For any r ∈ (0, r) ∩ R1, we let Σ be as in (3.10). Then there is a
universal constant C > 0 and a Lipschitz mapping p : Ω0 → Σ with Lip(p) ≤ C,
such that p(z) ∈ L for z ∈ L, and that p(z) = z for z ∈ Σ.

Proof. We see from (3.9) that

Σ ∩B(0, 1) \B(0, 1− 2κ) = M∩B(0, 1) \B(0, 1− 2κ)),

and
Σ ∩B(0, 2κ) = X ∩B(0, 2κ).

For any z ∈ Ω0 \ {0}, we denote by �(z) the line which goes through 0 and z, and
denote ∂Dx = �(x) ∪ �(yr). Let σ ∈ (0, 10−3) be fixed. We put

Rx = {z ∈ Ω0 | dist(z,Dx) ≤ σ dist(z, ∂Dx)},
Rx

1 = {z ∈ Ω0 | dist(z,Dx) ≤ σ dist(z, �(yr))},
and

R =
⋃

x∈Xr

Rx, R1 =
⋃

x∈Xr

Rx
1 .

Then we see that Rx ⊆ Rx
1 , and that both of them are cones,

Rxi ∩Rxj = Rxi
1 ∩R

xj

1 = �(yr) for xi, xj ∈ Xr, xi �= xj .

Since Γx,∗ is a Lipschitz graph with constant at most η such that (3.6) hold, we
have that

Mx ⊆ Rx and Σx ⊆ Rx,

when η small enough.
We will construct a Lipschitz retraction p0 : Ω0 → R1 such that p0(z) = z for

z ∈ R1, p0(z) ∈ L0 for z ∈ L0, and Lip(p0) ≤ 25. We now distinguish two cases,
depending on cardinality of Xr.
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Case 1. card(Xr) = 2. We assume that Xr = {x1, x2}. Then |yr| = |x1| = |x2| = r,
and

0 ≤ 〈x1, x2〉+ r2 ≤ 2ε2r2.

Since |yr − zr| ≤ εr, we have that |〈yr, x〉| ≤ εr2 for any x ∈ L ∩ ∂B(0, r).
We now let e1 and e2 be two unit vectors in L0 such that 〈x1, e1〉 = 〈x2, e1〉 ≥ 0

and e2 = −e1. Then

0 ≤ 〈xi, e1〉 ≤ εr, i ∈ {1, 2}.
We let Ω′

1 and Ω′
2 be the two connected components of Ω0 \ (∪iDxi

) such that
ei ∈ Ω′

i. We put Ωi = Ω′
i \R1. We claim that

(3.16) |〈z1 − z2, ei〉| ≤ 10(σ + ε)|z1 − z2|
whenever z1, z2 ∈ ∂Ωi, z1 �= z2, i ∈ {1, 2}.

Without loss of generality, we assume z1, z2 ∈ ∂Ω1, because for another case we
will use the same treatment. We see that

dist(zi, Dxj
) = σ dist(zi, �(yr)).

0

w2
w1

z2

z2 z2

z1

z

D

2 z1

yr

rx,y

´´

´´

Figure 1. The angle between z1 − z2 and Dx is small.

(1) In case z1, z2 ∈ ∂Rxi
1 ∩ Ω1, without loss of generality, we assume that

z1, z2 ∈ ∂Rx1
1 ∩ Ω1. We let z̃i ∈ Dx1

and z′i ∈ �(yr) be such that

|zi − z̃i| = dist(zi, Dx1
), |zi − z′i| = dist(zi, �(yr)), i ∈ {1, 2}.

We put

w1 = z1 − z̃1 + z̃2, w2 = z1 − z′1 + z′2,

then we get that z1 − z2 = (z1 − w2) + (w2 − z2). Moreover, we have that
z1 − w2 is perpendicular to w2 − z2 and parallel to yr. Thus |w2 − z2| ≤
|z1 − z2|, |z1 − w2| ≤ |z1 − z2| and

dist(w2 − z2, span{x1, yr}) = σ|w2 − z2|.
Applying Lemma 3.9, we get that

|〈z1 − w2, e1〉| ≤ ε|z1 − w2| and |〈w2 − z2, e1〉| ≤ (σ + 3ε) |w2 − z2|,
thus

|〈z1 − z2, e1〉| ≤ |〈z1 − w2, e1〉|+ |〈w2 − z2, e1〉| ≤ (σ + 4ε) |z1 − z2|.
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(2) In case z1 ∈ ∂Rx1 ∩Ω1, z2 ∈ ∂Rx2 ∩Ω1. We let z̃i ∈ Dxi
and z′i ∈ �(yr) be

such that

|zi − z̃i| = dist(zi, Dxi
), |zi − z′i| = dist(zi, �(yr)), i = 1, 2.

Then by Lemma 3.9, we have that〈
zi − z′i,

xi

|xi|

〉
≥ (1− σ − ε)|zi − z′i|, i = 1, 2.

Since z1 − z2 = (z1 − z′1) + (z′2 − z2) + (z′1 − z′2), we have that

|〈z′1 − z′2, e1〉| ≤ ε|z′1 − z′2| ≤ ε|z1 − z2|

and

|〈zi − z′i, e1〉| ≤ (σ + ε) |zi − z′i|,
we get so that

(3.17)
|〈z1 − z2, e1〉| ≤ |〈z1 − z′1, e1〉|+ |〈z′2 − z2, e1〉|+ |〈z′1 − z′2, e〉|

≤ 2 · (σ + ε) (|z1 − z′1|+ |z2 − z′2|) + ε|z1 − z2|.

Since z′1 − z′2 is perpendicular to z1 − z′1 and z2 − z′2, 〈x1/|x1|, x2/|x2|〉 ≤
−1 + 2ε2 and〈

zi − z′i,
xi

|xi|

〉
≥ (1− σ − ε)|zi − z′i|, i = 1, 2,

by (3.14) in Lemma 3.9, we get that

|z1 − z′1|+ |z2 − z′2| ≤ 2 ·
(
2− 2ε2

)−1/2 |(z1 − z′1)− (z2 − z′2)| ≤ 4|z1 − z2|.

Thus inequality (3.17) implies that

|〈z1 − z2, e1〉| ≤ (8σ + 9ε)|z1 − z2| ≤ 10(σ + ε)|z1 − z2|,

and we finished the proof of the claim (3.16).
We now define p0 : Ω0 → R1 as follows: for any z ∈ Ωi, we let p0(z) be the

unique point in ∂Ωi such that p0(z) − z parallels e; and for any z ∈ R1, we let
p0(z) = z. Since p0(z)− z parallels e, we see that p0(L0) ⊆ L0. We will check that

p0 is Lipschitz with Lip(p0) ≤
2

1− 10(σ + ε)
.

Indeed, for any z1, z2 ∈ Ω0, we put

p0(zi) = zi + tie, ti ∈ R,

then
|t1 − t2| = |〈(t1 − t2)e, e〉| ≤ |〈p0(z1)− p0(z2), e〉|+ |〈z1 − z2, e〉|

≤ 10(σ + ε)|p0(z1)− p0(z2)|+ |z1 − z2|,
and

|p0(z1)− p0(z2)| ≤ |z1 − z2|+ |t1 − t2| ≤ 10(σ + ε)|p0(z1)− p0(z2)|+ 2|z1 − z2|,

thus

|p0(z1)− p0(z2)| ≤
2

1− 10(σ + ε)
|z1 − z2|.
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Case 2. card(Xr) = 3. We assume that Xr = {x1, x2, x3}, then

|〈xi, yr〉| ≤ εr2,

(
−1

2
−
√
3ε

)
r2 ≤ 〈xi, xj〉 ≤

(
−1

2
+ 2ε

)
r2.

We put

e1 =
x2 + x3

|x2 + x3|
, e2 =

x1 + x3

|x1 + x3|
, e3 =

x2 + x1

|x2 + x1|
,

and let Ω′
1, Ω

′
2 and Ω′

3 be the three connected components of Ω0 \ (∪iDxi
) such

that ei ∈ Ω′
i. By putting Ωi = Ω′

i \R1, we claim that

(3.18) |〈z1 − z2, ei〉| ≤
(

9

10
+ 5σ + 5ε

)
|z1 − z2|

whenever z1, z2 ∈ ∂Ωi, z1 �= z2, i ∈ {1, 2, 3}.
Indeed, we only need to check the case z1, z2 ∈ ∂Ω1, and the other two cases

will be the same. Since (−1/2 −
√
3ε)r2 ≤ 〈xi, xj〉 ≤ (−1/2 + 2ε)r2, we have that

(1/2 − ε)r ≤ 〈xi, e1〉 ≤ (1/2 + ε)r for i = 2, 3. In case z1, z2 ∈ ∂Rx2
1 ∩ Ω1 or

z1, z2 ∈ ∂Rx3
1 ∩ Ω1. Let us assume that z1, z2 ∈ ∂Rx2

1 ∩ Ω1. Let z̃i ∈ Dx2
and

z′i ∈ �(yr) be such that

|zi − z̃i| = dist(zi, Dx2
), |zi − z′i| = dist(zi, �(yr)), i = 1, 2.

We put

w1 = z1 − z̃1 + z̃2, w2 = z1 − z′1 + z′2,

then we get that z1 − w2 is perpendicular to w2 − z2 and parallel to yr. Since
z1−z2 = (z1−w2)+(w2−z2), we have that |w2−z2| ≤ |z1−z2|, |z1−w2| ≤ |z1−z2|
and

dist(w2 − z2, span{x1, yr}) = σ|w2 − z2|.
We apply Lemma 3.9 to get that |〈z1 − w2, e1〉| ≤ ε|z1 − w2| and

|〈w2 − z2, e1〉| ≤
(
1

2
+ ε+ σ + ε

)
|w2 − z2|,

thus

|〈z1 − z2, e1〉| ≤ |〈z1 − w2, e1〉|+ |〈w2 − z2, e1〉| ≤
(
1

2
+ σ + 3ε

)
|z1 − z2|.

If z1 ∈ ∂Rx2 ∩ Ω1, z2 ∈ ∂Rx3 ∩ Ω1, we let z̃i ∈ Dxi
and z′i ∈ �(yr) be such that

|z1 − z̃1| = dist(z1, Dx2
), |z2 − z̃2| = dist(z2, Dx3

)

and

|zi − z′i| = dist(zi, �(yr)), i = 1, 2,

then z′1 − z′2 is perpendicular to z1 − z′1 and z2 − z′2, and we get that |(z1 − z′1) −
(z2 − z′2)| ≤ |z1 − z2|, since z1 − z2 = (z1 − z′1)− (z2 − z′2) + (z′1 − z′2). We see that
|〈z′1 − z′2, e1〉| ≤ ε|z′1 − z′2| ≤ ε|z1 − z2| and

|〈zi − z′i, e1〉| ≤
(
1

2
+ ε+ σ + ε

)
|zi − z′i|,

thus

(3.19)

|〈z1 − z2, e1〉| ≤ |〈z1 − z′1, e1〉|+ |〈z2 − z′2, e1〉|+ |〈z′1 − z′2, e〉|

≤
(
1

2
+ σ + 2ε

)
(|z1 − z′1|+ |z2 − z′2|) + ε|z1 − z2|.
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By Lemma 3.9, we get that〈
z1 − z′1,

x2

|x2|

〉
≥ (1− σ − ε)|z1 − z′1| and

〈
z2 − z′2,

x3

|x3|

〉
≥ (1− σ − ε)|z2 − z′2|,

and applying Lemma 3.9 again with 〈x2/|x2|, x3/|x3|〉 ≤ −1/2 + 2ε, we have that

|z1 − z′1|+ |z2 − z′2| ≤ 2 (3/2− 2ε)
−1/2 |(z1 − z′1)− (z2 − z′2)| ≤

9

5
|z1 − z2|

We get, from (3.19), that

|〈z1 − z2, e1〉| ≤
(

9

10
+ 2σ + 5ε

)
|z1 − z2|,

and we proved our claim (3.18).
For any z ∈ Ωi, we now let p0(z) be the unique point in ∂Ωi such that p0(z)− z

parallels ei; and for z ∈ R1, we let p0(z) = z. Then p0(L0) ⊆ L0. We will check
that

p0 is Lipschitz with Lip(p0) ≤ 25.

Indeed, for any z1, z2 ∈ Ωi, we put

p0(zj) = zj + tjei, ti ∈ R, j = 1, 2,

then

|t1 − t2| = |〈(t1 − t2)ei, ei〉| ≤ |〈p0(z1)− p0(z2), ei〉|+ |〈z1 − z2, ei〉|

≤
(

9

10
+ 5σ + 5ε

)
|p0(z1)− p0(z2)|+ |z1 − z2|,

and

|p0(z1)−p0(z2)| ≤ |z1−z2|+|t1−t2| ≤
(

9

10
+ 5σ + 5ε

)
|p0(z1)−p0(z2)|+2|z1−z2|,

thus

|p0(z1)− p0(z2)| ≤
2

1/10− 5(σ + ε)
|z1 − z2|.

By the definition of Rx and Rx
1 , we have that

Rx = {z ∈ Rx
1 | dist(z,Dx) ≤ σ dist(z, �(x))}.

Similar as above, we will get that, for any z1, z2 ∈ Rx
1∩∂Rx with [z1, z2]∩Dx,yr

= ∅,
if card(Xr) = 2 then

|〈z1 − z2, ei〉| ≤ 10(σ + ε)|z1 − z2|;
if card(Xr) = 3 then

|〈z1 − z2, ei〉| ≤
(

9

10
+ 5σ + 5ε

)
|z1 − z2|,

where ei is the vector in 2 with z1, z2 ∈ Ωi.
We now consider the mapping p1 : R1 → R defined by

p1(z) =

{
z, for z ∈ R,

z − tei ∈ ∂R ∩ Ωi, for z ∈ Ωi.

By the same reason as above, we get that

Lip(p1) ≤
2

1/10− 5σ − 5ε
≤ 25.
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We define a mapping p2 : R∩B(0, 1) → Σ as follows: we see that Σx is the graph
over Dx, thus for any z ∈ Rx, there is only one point in the intersection of Σx and
the line which is perpendicular to Dx and through z, we let p2(z) to be the unique
intersection point. That is, p2(z) is the unique point in Σx such that p2(z) − z is
perpendicular to Dx. We will show that p2 is Lipschitz and Lip(p2) ≤ 1 + 104Cη.
Indeed, we assume that Σx is the graph of founction u on Dx, then by Lemma 3.7
we have that Lip(u) ≤ Cη. For any points z1, z2 ∈ Rx, we let z̃i, i = 1, 2, be the
points in Dx such that zi − z̃i is perpendicular to Dx, then

|(p2(z1)− z1)− (p2(z2)− z2)| = |u (z̃1)− u (z̃2)| ≤ Lip(u)|z̃1− z̃2| ≤ Lip(u)|z1− z2|,
thus

|p2(z1)− p2(z2)| ≤ (1 + Lip(u))|z1 − z2| ≤ (1 + 104Cη)|z1 − z2|.
Let p3 : R3 → R

3 be the mapping defined by

p3(x) =

{
x, |x| ≤ 1
x
|x| , |x| > 1.

Then p = p3 ◦ p2 ◦ p3 ◦ p1 ◦ p0 is our desire mapping. �

Lemma 3.11. For any r ∈ (0, r)∩R1, we let Σ be as in (3.10), and let Σr be given
by μr(Σ). Then we have that

H2(E ∩B(0, r)) ≤ H2(Σr) + C

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z) + (2r)2h(2r),

where C > 0 is a universal constant.

Proof. For any ξ > 0, we consider the function ψξ : [0,∞) → R defined by

ψξ(t) =

⎧⎪⎨⎪⎩
1, 0 ≤ t ≤ 1− ξ

− t−1
ξ , 1− ξ < t ≤ 1

0, t > 1,

and the mapping φξ : Ω0 → Ω0 defined by

φξ(z) = ψξ(|z|)p(z) + (1− ψξ(|z|))z,
where p is the Lipschitz mapping considered in Lemma 3.10. We see that φξ(L) ⊆ L.
For any t ∈ [0, 1], we put

ϕt(z) = trφξ (z/r) + (1− t)z, for z ∈ Ω0.

Then {ϕt}0≤t≤1 is a sliding deformation, and we get that

H2(E ∩B(0, r)) ≤ H2(ϕ1(E) ∩B(0, r)) + (2r)2h(2r).

Since ψξ(t) = 1 for t ∈ [0, 1− ξ], we get that

ϕ1(E ∩B(0, (1− ξ)r)) = p(E ∩B(0, (1− ξ)r)) ⊆ Σr.

We set Aξ = B(0, r) \B(0, (1− ξ)r). By Theorem 3.2.22 in [10], we get that

(3.20) H2(ϕ1(E ∩ Aξ)) ≤
∫
E∩Aξ

ap J2(ϕ1|E)(z)dH2(z).

For any z ∈ Aξ and v ∈ R
3, by setting z′ = z/r, we have that

Dϕ1(z)v = ψξ(|z′|)Dp(z′)v + (1− ψξ(|z′|))v + ψ′
ξ(|z′|)〈z/|z|, v〉(rp(z′)− z).
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For any z ∈ Aξ ∩E, we let v1, v2 ∈ Tan(E, x) be such that

|v1| = |v2| = 1, v1 ⊥ z and v2 ⊥ v1,

then we have that 〈z/|z|, v〉 = cos θ(z), and that

|ψξ(|z′|)Dp(z′)vi + (1− ψξ(|z′|))vi| ≤ |Dp(z′)vi| ≤ Lip(p),

thus

(3.21)

ap J2(ϕ1|E)(z) = |Dϕ1(z)v1 ∧Dϕ1(z)v2|

≤ Lip(p)2 +
1

ξ
Lip(p) cos θ(z)|rp(z′)− z|.

Since p(z̃) = z̃ for any z̃ ∈ Σ, we have that

|p(z′)− z′| = |p(z′)− p(z̃) + z̃ − z′| ≤ (Lip(p) + 1)|z̃ − z′|,

then we get that

|p(z′)− z′| ≤ (Lip(p) + 1) dist(z,Σ).

We now get, from (3.21), that

ap J2(ϕ1|E)(z) ≤ Lip(p)2 +
1

ξ
Lip(p)(Lip(p) + 1) dist(z,Σr) cos θ(z),

plug that into (3.20) to get that

H2(ϕ1(E ∩Aξ)) ≤ CH2(E ∩ Aξ) +
C

ξ

∫
E∩Aξ

dist(z,Σr) cos θ(z)dH2(z)

≤ CH2(E ∩ Aξ) +
C

ξ

∫ r

(1−ξ)r

∫
E∩∂B(0,t)

dist(z,Σr)dH1(z)dt,

we let ξ → 0+, then we get that, for such r,

lim
ξ→0+

H2(ϕ1(E ∩Aξ)) ≤ Cr

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z),

thus

H2(E ∩B(0, r)) ≤ H2(Σr) + Cr

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z) + (2r)2h(2r).

�

3.5. The comparison statement. For any x, y ∈ Ω0∩∂B(0, 1), if |x−y| < 2, we
denote by gx,y the unique geodesic on Ω0 ∩ ∂B(0, 1) which join x and y. We will
denote by Bt the open ball B(0, t) sometimes for short.

Lemma 3.12. Let τ ∈ (0, 10−4) be a given. Then there is a constant ϑ > 0
such that the following hold. Let a ∈ ∂B(0, 1) and b, c ∈ L0 ∩ ∂B(0, 1) be such
that dist(a, (0, 0, 1)) ≤ τ , dist(b, (1, 0, 0)) ≤ τ and dist(c, (−1, 0, 0)) ≤ τ . Let X be
the cone over ga,b ∪ ga,c. Then there is a Lipschitz mapping ϕ : Ω0 → Ω0 with
ϕ(L0) ⊆ L0, |ϕ(z)| ≤ 1 when |z| ≤ 1, and ϕ(z) = z when |z| > 1, such that

H2(ϕ(X) ∩B(0, 1)) ≤ (1− ϑ)H2(X ∩B(0, 1)) +
ϑπ

2
.
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Proof. We let b0 a unit vector in L0 which is perpendicular to b, and let c0 be a
unit vector in L0 which is perpendicular to c, such that b0 + c0 is parallel to b+ c,
and take

ui =
a− 〈a, i〉i
|a− 〈a, i〉i| , ei =

i− 〈i, a〉a
|i− 〈i, a〉a| , for i ∈ {b, c},

va = λa(eb+ec), vb = λbb0 and vc = λcc0, where λj ∈ R, j ∈ {a, b, c}, will be chosen
later. We let ψ1 : R → R be a function of class C1 such that 0 ≤ ψ1 ≤ 1, ψ1(x) = 0
for x ∈ (−∞, 1/4) ∪ (3/4,+∞), ψ1(x) = 1 for x ∈ [2/5, 3/5], and |ψ′

1| ≤ 10. We
let ψ2 : R → R be a non increasing function of class C1 such that 0 ≤ ψ2 ≤ 1,
ψ2(x) = 1 for x ∈ (−∞, 0], ψ2(x) = 0 for x ∈ [1/5,+∞), and |ψ′

2| ≤ 10. We let
ψ : R3 × R3 → R be a function defined by

(3.22) ψ(z, v) = ψ1(〈z, v〉)ψ2(|z − 〈z, v〉v|).
We now consider the mapping ϕ : R3 → R

3 defined by

ϕ(z) = z + ψ(z, a)va + ψ(z, b)vb + ψ(z, c)vc.

We see that supp(ψ(·, a)), supp(ψ(·, b)) and supp(ψ(·, c)) are mutually disjoint, and
that

{z ∈ R3 : ϕ(z) �= z} ⊆ B(0, 1), ϕ(Ω0) ⊆ Ω0, ϕ(L0) ⊆ L0.

We have that

Dϕ(z)w = w + 〈Dψ(·, a), w〉va + 〈Dψ(·, b), w〉vb + 〈Dψ(·, c), w〉vc.
By setting z⊥v = z − 〈z, v〉v for convenient, if w �= 0 and z⊥v �= 0, we have that

Dψ(·, v)w = ψ′
1(〈z, v〉)ψ2(|z⊥v |)〈w/|w|, v〉+ ψ1(〈z, v〉)ψ′

2(|z⊥v |)〈w⊥
v , z

⊥
v /|z⊥v |〉.

If w is perpendicular to v, then w⊥
v = w; if w is parallel to v and |v| = 1 , then

w⊥
v = 0. We denote by Wj = supp(ψ(·, j)) for j ∈ {a, b, c}. Then

Dψ(·, v)w =

{
w, z /∈ Wa ∪Wb ∪Wc,

w + 〈Dψ(·, v), w〉vj , z ∈ Wa ∪Wb ∪Wc.

But

〈Dψ(·, j), j〉 = ψ′
1(〈z, j〉)ψ2(|z⊥j |), j ∈ {a, b, c},

〈Dψ(·, i), ui〉 = ψ1(〈z, i〉)ψ′
2(|z⊥i |)〈ui, z

⊥
i /|z⊥i |〉, i ∈ {b, c},

and

〈Dψ(·, a), ei〉 = ψ1(〈z, a〉)ψ′
2(|z⊥a |)〈ei, z⊥a /|z⊥a |〉, i ∈ {b, c},

by putting

gj(z) = ψ′
1(〈z, j〉)ψ2(|z⊥j |), j ∈ {a, b, c},

ga,i(z) = ψ1(〈z, a〉)ψ′
2(|z⊥a |)〈ei, z⊥a /|z⊥a |〉, i ∈ {b, c}

and

gi,i(z) = ψ1(〈z, i〉)ψ′
2(|z⊥i |)〈vi, z⊥i /|z⊥i |〉, i ∈ {b, c},

and denote by Xi the cone over ga,i, i ∈ {b, c}, we have that

Dϕ(z)a ∧Dϕ(z)ei = a ∧ ei + ga(z)va ∧ ei + ga,i(z)a ∧ va, z ∈ Xi ∩Wa

and

Dϕ(z)i ∧Dϕ(z)ui = i ∧ ui + gi(z)vi ∧ ui + gi,i(z)i ∧ vi, z ∈ Xi ∩Wi.
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If z ∈ Xi ∩Wa, i ∈ {b, c}, we have that

J2ϕ|X(z) = ‖Dϕ(z)a ∧Dϕ(z)ei‖

≤ 1+〈a∧ei, ga(z)va∧ei+ga,i(z)a∧va〉+
1

2
‖ga(z)va∧ei+ga,i(z)a∧va‖2

= 1 + ga(z)〈a, va〉+ ga,i(z)〈ei, va〉+
1

2

(
ga(z)

2‖va ∧ ei‖2 + ga,i(z)
2|va|2

)
≤ 1 + ga,i(z)〈ei, va〉+ 100|va|2.

Similarly, we have that, for z ∈ Xi ∩Wi,

J2ϕ|X(z) = ‖Dϕ(z)i ∧Dϕ(z)ui‖ ≤ 1 + gi,i(z)〈ui, vi〉+ 100|vi|2.

We see that z⊥a /|z⊥a | = ei when z ∈ Xi \ span{a}, and z⊥i /|z⊥i | = ui in case
z ∈ Xi \ span{i}, thus

ga,i(z) = ψ1(〈z, a〉)ψ′
2(|z⊥a |) and gi,i(z) = ψ1(〈z, i〉)ψ′

2(|z⊥i |).
Hence, for j = a or i, we have that∫

z∈Xi∩Wj

gj,i(z)dH2(z) =

∫
z∈Xi∩Wj

ψ1(〈z, j〉)ψ′
2(|z⊥j |)dH2(z)

=

∫ +∞

0

∫ +∞

0

ψ1(t)ψ
′
2(s)dtds = −

∫ +∞

0

ψ1(t)dt < −1

5
,

Thus

H2(ϕ(X ∩B1)) =

∫
z∈X∩B(0,1)

J2ϕ|X(z)dH2(z)

≤ (1 + 100
∑
j

|vj |2)H2(X ∩B1)−
1

5
(〈va, eb + ec〉+

∑
i

〈ui, vi〉)

If we take λa = 10−3H2(X ∩B1)
−1 and λi = 10−3H2(X ∩B1)

−1〈ui, i0〉, i ∈ {b, c},
then

H2(ϕ(X ∩B1)) ≤ H2(X ∩B1)− 10−4(|eb + ec|2 + 〈ub, b0〉2 + 〈uc, c0〉2).
Since |〈a, w〉| ≤ τ |w| for w ∈ L0, and −1 ≤ 〈b, c〉 ≤ −1 + 2τ2, we get that

|eb + ec|2 = 2(1 + 〈eb, ec〉) =
2

1− 〈eb, ec〉
(1− 〈eb, ec〉2)

≥ 1− (〈b, c〉 − 〈a, b〉〈a, c〉)2
(1− 〈a, b〉2)(1− 〈a, c〉2)

≥ 1− 〈a, b〉2 − 〈a, c〉2 − 〈b, c〉2 + 2〈a, b〉〈b, c〉〈c, a〉
= (1− 〈b, c〉+ 2〈a, b〉〈a, c〉)(1 + 〈b, c〉)− 〈a, b+ c〉2

≥ (1− 3τ2)|b+ c|2.

Since arcsinx = x +
∑

n≥1 Cnx
2n+1 for |x| ≤ 1, where Cn = (2n)!

4n(n!)2(2n+1) , we

have that

H2(X ∩B1)−
π

2
=

1

2
(arccos〈a, b〉+ arccos〈a, c〉)− π

2

= −1

2
(arcsin〈a, b〉+ arcsin〈a, c〉) ≤ 1

2
(1 + τ )|〈a, b+ c〉|.
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If b+ c �= 0, then |b0 + c0| ≥ 1, and we have that〈
a,

b+ c

|b+ c|

〉2

=

〈
a,

b0 + c0
|b0 + c0|

〉2

≤ 2
(
〈a, b0〉2 + 〈a, c0〉2

)
.

We get so that in any case

|〈a, b+ c〉| ≤ 1

2

(
|b+ c|2 + 2〈a, b0〉2 + 2〈a, c0〉2

)
.

Since

〈ub, b0〉2 + 〈uc, c0〉2 =
〈a, b0〉2

1− 〈a, b〉2 +
〈a, c0〉2

1− 〈a, c〉2 ≥ 〈a, b0〉2 + 〈a, c0〉2,

we get that

H2(ϕ(X ∩B1)) ≤ H2(X ∩B1)− 10−4

(
1

2
|b+ c|2 + 〈a, b0〉2 + 〈a, c0〉2

)
≤ H2(X ∩B1)− 10−4

(
H2(X ∩B1)−

π

2

)
.

�

Lemma 3.13. Let τ ∈ (0, 10−4) be a given. Then there is a constant ϑ > 0 such
that the following hold. Let a ∈ ∂B(0, 1) and b, c, d ∈ L0 ∩ ∂B(0, 1) be such that

dist(a, (0, 0, 1)) ≤ τ , dist(b, (−1/2,
√
3/2, 0)) ≤ τ , dist(c, (−1/2,−

√
3/2, 0)) ≤ τ

and dist(d, (1, 0, 0)) ≤ τ . Let X be the cone over ga,b ∪ ga,c ∪ ga,d. Then there is a
Lipschitz mapping ϕ : Ω0 → Ω0 with ϕ(E ∩ L) ⊆ L, |ϕ(z)| ≤ 1 when |z| ≤ 1, and
ϕ(z) = z when |z| > 1, such that

H2(ϕ(X) ∩B(0, 1)) ≤ (1− ϑ)H2(X ∩B(0, 1)) + ϑ
3π

4
.

Proof. We let b0, c0 and d0 be unit vectors in L0 such that

b0 ⊥ b, c0 ⊥ c, d0 ⊥ d.

For i ∈ {b, c, d}, we put

ui =
a− 〈a, i〉i
|a− 〈a, i〉i| , ei =

i− 〈i, a〉a
|i− 〈i, a〉a| .

We take va = λa(eb + ec + ed) and vi = λii0, where λi > 0, i ∈ {b, c, d}, will
be chosen later. We let ψ be the same as in (3.22), and consider the mapping
ϕ : R3 → R3 defined by

ϕ(z) = z + ψ(z, a)va + ψ(z, b)vb + ψ(z, c)vc + ψ(z, d)vd.

We see that supp(ψ(·, a)), supp(ψ(·, b)), supp(ψ(·, c)) and supp(ψ(·, d)) are mutually
disjoint, and that

{z ∈ R3 : ϕ(z) �= z} ⊆ B(0, 1), ϕ(Ω0) ⊆ Ω0, ϕ(L0) ⊆ L0.

By putting Wj = supp(ψ(·, j)) for j ∈ {a, b, c, d}, we have that

Dψ(·, v)w =

{
w, z /∈ Wa ∪Wb ∪Wc ∪Wd,

w + 〈Dψ(·, v), w〉vj , z ∈ Wa ∪Wb ∪Wc ∪Wd,
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and
〈Dψ(·, j), j〉 = ψ′

1(〈z, j〉)ψ2(|z⊥j |), j ∈ {a, b, c, d},
〈Dψ(·, i), ui〉 = ψ1(〈z, i〉)ψ′

2(|z⊥i |)〈ui, z
⊥
i /|z⊥i |〉,

〈Dψ(·, a), ei〉 = ψ1(〈z, a〉)ψ′
2(|z⊥a |)〈ei, z⊥a /|z⊥a |〉, i ∈ {b, c, d},

where zw = z − 〈z, w〉w. By putting

gj(z) = ψ′
1(〈z, j〉)ψ2(|z⊥j |), j ∈ {a, b, c, d},

ga,i(z) = ψ1(〈z, a〉)ψ′
2(|z⊥a |)〈ei, z⊥a /|z⊥a |〉,

gi,i(z) = ψ1(〈z, i〉)ψ′
2(|z⊥i |)〈vi, z⊥i /|z⊥i |〉, i ∈ {b, c, d},

and denote by Xi the cone over ga,i, i ∈ {b, c, d}, we have that

Dϕ(z)a ∧Dϕ(z)ei = a ∧ ei + ga(z)va ∧ ei + ga,i(z)a ∧ va, z ∈ Xi ∩Wa,

Dϕ(z)i ∧Dϕ(z)ui = i ∧ ui + gi(z)vi ∧ ui + gi,i(z)i ∧ vi, z ∈ Xi ∩Wi.

We have that, for i ∈ {b, c, d},

J2ϕ|X(z) = ‖Dϕ(z)a ∧Dϕ(z)ei‖ ≤ 1 + ga,i(z)〈ei, va〉+ 100|va|2, z ∈ Xi ∩Wa,

J2ϕ|X(z) = ‖Dϕ(z)i ∧Dϕ(z)ui‖ ≤ 1 + gi,i(z)〈ui, vi〉+ 100|vi|2, z ∈ Xi ∩Wi.

Since z⊥a /|z⊥a | = ei when z ∈ Xi \ span{a}, and z⊥i /|z⊥i | = ui in case z ∈
Xi \ span{i}, we have that

ga,i(z) = ψ1(〈z, a〉)ψ′
2(|z⊥a |) and gi,i(z) = ψ1(〈z, i〉)ψ′

2(|z⊥i |).

Thus, for j = a or i,∫
z∈Xi∩Wj

gj,i(z)dH2(z) = −
∫ +∞

0

ψ1(t)dt < −1

5
.

Hence

H2(ϕ(X ∩B1)) =

∫
z∈X∩B1

J2ϕ|X(z)dH2(z)

≤
(
1 + 100(|va|2 + |vb|2 + |vc|2 + |vd|2)

)
H2(X ∩B1)

− 1

5
(〈va, eb + ec + ed〉+ 〈ub, vb〉+ 〈uc, vc〉+ 〈ud, vd〉) .

If we take λa = 10−3H2(X∩B1)
−1 and λi = 10−3H2(X∩B1)

−1〈ui, i0〉, i ∈ {b, c, d},
then

H2(ϕ(X ∩B1)) ≤ H2(X ∩B1)− 10−4

(
|eb + ec + ed|2 +

∑
i

〈ui, i0〉2
)
.

Since |〈a, w〉| ≤ τ |w|, for w ∈ L0, and −1/2 −
√
3τ ≤ 〈i1, i2〉 ≤ −1/2 +

√
3τ ,

i1, i2 ∈ {b, c, d}, i1 �= i2, we get that 〈i, j〉−〈a, i〉〈a, j〉 < 0. By putting e = (0, 0, 1),
it is evident that

〈a, w〉2 ≤ 1− 〈a, e〉2, for any w ∈ L0 with |w| = 1.

We put N = 〈a, b〉2 + 〈a, c〉2 + 〈a, d〉2, and we claim that

(3.23) N ≤ (3/2 + 25τ )
(
1− 〈a, e〉2

)
.
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Indeed, for any w = λb+ μc with λ, μ ≥ 0, we have that

|w|2 = λ2 + μ2 + 2λμ〈b, c〉 ≥ λ2 + μ2 − (1 + 4τ )λμ,

〈w, d〉2 ≤ (1/2 +
√
3τ )2(λ+ μ)2 ≤ (1/4 + 2τ )(λ+ μ)2

and

〈w, b〉2 + 〈w, b〉2 + 〈w, b〉2 = (λ2 + μ2)(1 + 〈b, c〉2) + 4λμ〈b, c〉+ 〈w, d〉2

≤ (3/2 + 4τ ) (λ2 + μ2)− (3/2− 10τ )λμ

≤ (3/2 + 25τ )|w|2.
Hence, for any w ∈ L0, we have that

〈w, b〉2 + 〈w, b〉2 + 〈w, b〉2 ≤ (3/2 + 25τ )|w|2,
we now take w = a− 〈a, e〉e, then

N ≤ (3/2 + 25τ )|a− 〈a, e〉e|2 = (3/2 + 25τ )(1− 〈a, e〉2),
the claim (3.23) follows.

Since (1− x)1/2 ≤ 1− x/2− x2/8 for any x ∈ (0, 1), and

(1− 〈a, b〉2)(1− 〈a, c〉2)(1− 〈a, d〉2) ≥ 1−N,

we have that, for {i, j, k} = {b, c, d},

〈ei, ej〉 =
〈i, j〉 − 〈a, i〉〈a, j〉

(1− 〈a, i〉2)1/2(1− 〈a, j〉2)1/2

≥ (〈i, j〉 − 〈a, i〉〈a, j〉)(1− 〈a, k〉2/2− 〈a, k〉4/8)
(1−N)1/2

.

Note that
〈a, b〉4 + 〈a, c〉4 + 〈a, d〉4 ≥ N2/3,

and

|〈a, b+ c+ d〉| ≤ 1

2

(
|b+ c+ d|2 + 1− 〈a, e〉2

)
,

we get so that

|eb + ec + ed|2 ≥ 3 + (1−N)−1/2
(
− 3 + (3/2−

√
3τ )N +

1

12
(1/2−

√
3τ )N2

+ |b+ c+ d|2 − 〈a, b+ c+ d〉2 + 〈a, b〉〈a, c〉〈a, d〉〈a, b+ c+ d〉

+
1

4
〈a, b〉〈a, c〉〈a, d〉

(
〈a, b〉3 + 〈a, c〉3 + 〈a, d〉3

))
≥ (1−N)−1/2

(
(1− τ2)|b+ c+ d|2 − 2τN − 2τ3|〈a, b+ c+ d〉|

)
≥ (1− τ )|b+ c+ d|2 − 6τ (1− 〈a, e〉2).

Since 1/(1 − x) = 1 + x + x2/(1 − x) for x ∈ [0, 1), and 〈a, i〉2 ≤ 1 − 〈a, e〉2 for
i ∈ {b, c, d}, we have that

〈a, e〉2
1− 〈a, i〉2 = 〈a, e〉2 + 〈a, e〉2〈a, i〉2

1− 〈a, i〉2 ≤ 〈a, e〉2 + 〈a, i〉2

and

〈ub, b0〉2 + 〈uc, c0〉2 + 〈ud, d0〉2 =
∑

i∈{b,c,d}

1− 〈a, e〉2 − 〈a, i〉2
1− 〈a, i〉2

= 3(1− 〈a, e〉2)−N ≥ (1− τ )(1− 〈a, e〉2).
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We get so that

H2(ϕ(X ∩B1)) ≤ H2(X ∩B1)− 10−4(1− 10τ )
(
|b+ c+ d|2 + 1− 〈a, e〉2

)
Since arcsinx = x +

∑
n≥1 Cnx

2n+1 for |x| ≤ 1, where Cn = (2n)!
4n(n!)2(2n+1) , we

have that arcsin〈a, i〉 ≥ 〈a, i〉 − τ 〈a, i〉2, thus

H2(X ∩B1)−
3π

4
= −1

2
(arcsin〈a, b〉+ arcsin〈a, c〉+ arcsin〈a, c〉)

≤ −1

2
〈a, b+ c+ d〉+ τ

2
N

≤ 1

2

(
|b+ c+ d|2 + 1− 〈a, e〉2

)
+ τ

(
1− 〈a, e〉2

)
.

Thus

H2(ϕ(X ∩B1)) ≤ (1− 10−4)H2(X ∩B1)− 10−4 · 3π
4
.

�

Let E ⊆ Ω0 be a 2-rectifiable set satisfying (a), (b) and (c). We will denote
by R2 the set

{
r ∈ R1 : 10C(1 + Cη−2)

(
ε(r) + j(r)1/2

)
≤ 1/2− 10−4

}
, where we

take constant C to be the maximum value of the constants in Lemma 3.6 and
Lemma 3.11.

Lemma 3.14. For any r ∈ (0, r) ∩ R2, we have that

H2(E ∩Br) ≤ (1− 2 · 10−4)
r

2
H1(E ∩ ∂Br) + (2 · 10−4 − ϑκ2)

r2

2
H1(X ∩ ∂B1)

+ ϑκ2r2Θ(0) + (2r)2h(2r).

Proof. Let Σ, Σr, ξ, ψξ, φξ and {ϕt}0≤t≤1 be the same as in the proof of Lemma
3.11. We see that

ϕ1(E ∩B(0, (1− ξ)r)) = p(E ∩B(0, (1− ξ)r)) ⊆ Σr,

and that Σ∩B(0, 2κ) = X ∩B(0, 2κ), where X is a cone defined in (3.10). We see
that if Θ(0) = π/2, then X satisfies the conditions in Lemma 3.12; if Θ(0) = 3π/4,
then X satisfies the conditions in Lemma 3.13. Thus we can find a Lipschitz
mapping Ω0 → Ω0 with ϕ(E ∩L) ⊆ L, |ϕ(z)| ≤ 1 when |z| ≤ 1, and ϕ(z) = z when
|z| > 1, such that

H2
(
ϕ(X) ∩B(0, 1)

)
≤ (1− ϑ)H2(X ∩B(0, 1)) + ϑΘ(x).

Let ϕ̃ : Ω0 → Ω0 be the mapping defined by ϕ̃(x) = rϕ(x/r), then

H2(E ∩B(0, r)) ≤ H2(ϕ̃ ◦ ϕ1(E) ∩B(0, r)) + (2r)2h(2r)

≤ H2(ϕ̃ ◦ ϕ1(E ∩B(0, (1− ξ)r))) +H2(ϕ1(E ∩Aξ))

≤ H2(Σr \B(0, κr)) + (1− ϑ)(κr)2H2(X ∩B(0, 1))

+ ϑ · (κr)2Θ(0) +H2(ϕ1(E ∩Aξ)).

But we see that Σr = {rx : x ∈ Σ}, Σ ∩B(0, 2κ) = X ∩B(0, 2κ), and

lim
ξ→0+

H2(ϕ1(E ∩Aξ)) ≤ C

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z),
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we get so that

H2(Σr \B(0, κr)) = r2
(
H2(Σ)−H2(X ∩B(0, κ))

)
,

and
H2(E ∩B(0, r)) ≤ r2H2(Σ)− (κr)2H2(X ∩B(0, 1))

+ (1− ϑ)(κr)2H2(X ∩B(0, 1)) + (κr)2ϑ ·Θ(0)

+ C

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z) + (2r)2h(2r).

Since M is the cone over Γ∗, and X is the cone over C, by (3.11), we get that

H2(Σ) ≤ H2(M∩B(0, 1))− 10−4
(
H1(Γ∗)−H1(C)

)
= (1/2− 10−4)H1(Γ∗) + 10−4H1(C),

and then

(3.24)

H2(E ∩Br) ≤ (1/2− 10−4)r2H1(Γ∗) + (10−4 − ϑκ2/2)r2H1(C)

+ ϑκ2r2Θ(0) + C

∫
E∩∂Br

dist(z,Σr)dH1(z) + (2r)2h(2r).

By (3.13) and Lemma 3.8, we have that

d0,r(E,M) ≤ d0,r(E,X) + d0,r(X,M) ≤ 5ε(r) + 10j(r)1/2,

thus for any z ∈ E ∩ ∂B(0, r),

dist(μ1/r(z),M) = r−1 dist(z,M) ≤ 5ε(r) + 10j(r)1/2.

Since Σ \B(0, 1− 2κ) = M∩B(0, 1) \B(0, 1− 2κ), we have that

dist(z,Σr) = r dist(μ1/r(z),Σ) = r dist(μ1/r(z),M) ≤ 5rε(r) + 10rj(r)1/2,

and we get so that
(3.25)∫

E∩∂B(0,r)

dist(z,Σr)dH1(z) ≤ r
(
5ε(r) + 10j(r)1/2

)
H1

(
(E ∩ ∂Br) \ (Σr ∩ ∂Br)

)
.

By Lemma 3.6, we have that

H1(Γ∗ \ Γ) ≤ H1(Γ \ Γ∗) ≤ Cη−2(H1(Γ)−H1(C)),

thus
H1(C) ≤ H1(Γ∗) ≤ H1(Γ) ≤ H1(μ1/r(E ∩ ∂Br)).

Since μ1/r(Γ) ⊆ E ∩ ∂Br and Σr ∩ ∂Br = μ1/r(Σ ∩ ∂B1) = μ1/r(Γ∗), by setting

Γr = μ1/r(Γ) and Γr,∗ = μ1/r(Γ∗), we have that

(3.26)
H1

(
(E ∩ ∂Br) \ (Σr ∩ ∂Br)

)
≤ H1

(
(E ∩ ∂Br) \ Γr

)
+H1

(
Γr \ Γr,∗

)
≤ H1(E ∩ ∂Br)−H1(Γr) + Cη−2r(H1(Γ)−H1(C))

≤ (1 + Cη−2)(H1(E ∩ ∂Br)− rH1(C)).

We obtain, from (3.24), (3.25) and (3.26), that

H2(E ∩Br) ≤ (1/2− 10−4)r2H1(Γ∗) + (10−4 − ϑκ2/2)r2H1(C)

+ 10C(1 + Cη−2)(ε(r) + j(r)1/2)r(H1(E ∩ ∂Br)− rH1(Γ∗))

+ ϑκ2r2Θ(0) + (2r)2h(2r).
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Since r ∈ (0, r) ∩ R2, we have that 10C(1 + Cη−2)
(
ε(r) + j(r)1/2

)
≤ 1/2 − 10−4,

thus

H2(E ∩Br) ≤ (1− 2 · 10−4)
r

2
H1(E ∩ ∂Br) + (2 · 10−4 − ϑκ2)

r2

2
H1(C)

+ ϑκ2r2Θ(0) + (2r)2h(2r).

�

Theorem 3.15. There exist λ, μ ∈ (0, 10−3) and r1 > 0 such that, for any 0 < r <
r1,

H2(E ∩Br) ≤ (1−μ−λ)
r

2
H1(E ∩ ∂Br)+μ

r2

2
H1(X ∩ ∂B1)+λΘ(0)r2+4r2h(2r).

Proof. Recall that R1 = {r ∈ (0, r) ∩ R : j(r) ≤ τ0} and

R2 =
{
r ∈ R1 : 10C(1 + Cη−2)

(
ε(r) + j(r)1/2

)
≤ 1/2− 10−4

}
.

We put τ1 = min{τ0, (100C(1 + Cη−2))−2}, and take δ such that

(3.27) κ < δ < κ+ (10Θ(0)ϑ)−1(1− 2 · 10−4)τ1.

We see that ε(r) → 0 as r → 0+, there exist r2 ∈ (0, r) such that, for any r ∈ (0, r2),

(3.28) ε(r) ≤ 10−2 min{τ1, ϑ(δ2 − κ2)}.
If r ∈ (0, r2) and j(r) ≤ τ1, then r ∈ R2, then by Lemma 3.14, we have that

H2(E ∩Br) ≤ (1− 2 · 10−4)
r

2
H1(E ∩ ∂Br) + (2 · 10−4 − ϑκ2)

r2

2
H1(X ∩ ∂B1)

+ ϑκ2r2Θ(0) + (2r)2h(2r).

We only need to consider the case r ∈ (0, r2), j(r) > τ1 and H1(E ∩ ∂Br) < +∞,
thus

(3.29) H1(X ∩ ∂B1) + τ1 ≤ 1

r
H1(E ∩ ∂Br).

By the construction of X, we see that X∩B(0, 1) is local Lipschitz neighborhood
retract, let U be a neighborhood of X ∩ B(0, 1) and ϕ0 : U → X ∩ B(0, 1) be a
retraction such that |ϕ0(x)− x| ≤ r/2. We put U1 = μ8r/9(U), ϕ1 = μ8r/9 ◦ ϕ0 ◦
μ9/(8r), and let s : [0,∞) → [0, 1] be a function given by

s(t) =

⎧⎪⎨⎪⎩
1, 0 ≤ t ≤ 3r/4,

−(8/r)(t− 7r/8), 3r/4 < t ≤ 7r/8,

0, t > 7r/8.

We see, from Lemma 3.8, that there exist sliding minimal cone Z such that
d0,r(E,X) ≤ 5ε(r), then for any x ∈ E ∩B(0, r) \B(0, 3r/4),

dist(x,X) ≤ 5ε(r)r ≤ 20ε(r)

3
|x| ≤ 7ε(r)|x|.

We consider the mapping ψ : Ω0 → Ω0 defined by

ψ(x) = s(|x|)ϕ1(x) + (1− s(|x|))x,
then ψ(L) = L and ψ(x) = x for |x| ≥ 8r/9.
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Since ε(r) → 0 and U is a neighborhood of X ∩B(0, 1), we can find r1 ∈ (0, r2)
such that, for any r ∈ (0, r1), {x ∈ Ω0 ∩ B(0, 1) : dist(x,X) ≤ 7ε(r)} ⊆ U . Then
we get that ψ(x) ∈ X for any x ∈ E ∩B(0, 3r/4);

dist(ψ(x), X) ≤ 7ε(r)|x| for any x ∈ E ∩B(0, r) \B(0, 3r/4);

and ψ(E ∩ Br) ∩ B(0, r/4) = X ∩ B(0, r/4). We now consider the mapping Π1 :
Ω0 → Ω0 defined by

Π1(x) = s(4|x|)x+ (1− s(4|x|)) x

|x| ,

and the mapping ψ1 : Ω0 → Ω0 defined by

ψ1(x) =

{
Π1 ◦ ψ(x), |x| ≤ r,

x, |x| ≥ r.

We have that ψ1 is Lipschitz, ψ1(L0) = L0 and ψ1(B(0, r)) ⊆ B(0, r),

ψ1(E ∩B(0, r)) ⊆ (X ∩B(0, r)) ∪ {x ∈ ∂Br : dist(x,X) ≤ 7rε(r)}.
Let ϕ be the same as in Lemma 3.12 and Lemma 3.13, and let ψ2 = μδ ◦ ϕ ◦

μ1/δ ◦ ψ1. Then we have that

(3.30)

H2(E ∩B(0, r)) ≤ H2
(
ψ2

(
E ∩B(0, r)

))
+ (2r)2h(2r)

≤ (1− ϑδ2)H2(X ∩B(0, r)) + ϑδ2Θ(0)r2

+H2({x ∈ ∂Br : dist(x,X) ≤ 7rε(r)}) + 4r2h(2r)

≤ (1− ϑδ2)H2(X ∩B(0, r)) + ϑδ2Θ(0)r2

+ 8rε(r)H1(X ∩ ∂Br) + 4r2h(2r)

≤ (1− ϑδ2 + 16ε(r))
r2

2
H1(X ∩ ∂B1) + ϑδ2Θ(0)r2 + 4r2h(2r)

We take μ = 2 ·10−4−ϑκ2 and λ = ϑκ2, then by (3.27) and (3.28), we have that

16ε(r) < ϑ(δ2 − κ2) and ϑ(δ2 − κ2)Θ(0) ≤ (1− 2 · 10−4)
τ1
2
.

We obtain from (3.29) and (3.30) that

H2(E ∩Br) ≤ (1− 2 · 10−4)
r2

2
(H1(X ∩ ∂B1) + τ1)− (1− 2 · 10−4)

τ1r
2

2

+ μ
r2

2
H1(X ∩ ∂B1) + ϑκ2Θ(0)r2 + 4r2h(2r)

+ (16ε(r)− ϑδ2 + ϑκ2)
r2

2
H1(X ∩ ∂B1) + (ϑδ2 − ϑκ2)Θ(0)r2

≤ (1−λ−μ)
r

2
H1(E∩∂Br)+μ

r2

2
H1(X∩∂B1)+λΘ(0)r2+4r2h(2r).

�
For convenient, we put λ0 = λ/(1 − λ), f(r) = Θ(0, r) − Θ(0) and u(r) =

H1(E ∩ B(0, r)) for r > 0. Since f(r) = r−2u(r)− Θ(0) and u is a nondecreasing
function, we have that, for any λ1 ∈ R and 0 < r ≤ R < +∞,

Rλ1f(R)− rλ1f(r) ≥
∫ R

r

(
tλ1f(t)

)′
dt,
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thus

(3.31) f(r) ≤ r−λ1Rλ1f(R) + r−λ1

∫ R

r

(
tλ1f(t)

)′
dt.

Corollary 3.16. If the gauge function h satisfy

h(t) ≤ Cht
α, 0 < t ≤ r1 for some Ch > 0, α > 0,

then for any 0 < β < min{α, 2λ0}, there is a constant C = C(λ0, α, β, r1, Ch) > 0
such that

(3.32) |Θ(0, ρ)−Θ(0)| ≤ Cρβ, for any 0 < ρ ≤ r1.

Proof. For any r > 0, we put u(r) = H2(E ∩ B(0, r)). Then u is differentiable
for H1-a.e. r ∈ (0,∞). By Theorem 3.15 and Lemma 2.1, we have that for any
r ∈ (0, r1) ∩ R,

u(r) ≤ (1− λ)
r

2
H1(E ∩ ∂B(0, r)) + λΘ(0)r2 + 4r2h(2r)

≤ (1− λ)
r

2
u′(r) + λΘ(0)r2 + 4r2h(2r),

thus

rf ′(r) ≥ 2λ

1− λ
f(r)− 8

1− λ
h(2r) = 2λ0f(r)− 8(1 + λ0)h(2r),

and (
r−2λ0f(r)

)′
= r−1−2λ0 (rf ′(r)− 2λ0) ≥ −8(1 + λ0)r

−1−2λ0h(2r).

Recall that H1((0,∞) \ R) = 0. We get so that, from (3.31), for any 0 < r <
R ≤ r1,

(3.33) f(r) ≤ r2λ0R−2λ0f(R) + 8(1 + λ0)r
2λ0

∫ R

r

t−1−2λ0h(2t)dt.

Since h(t) ≤ Cht
α, we have that

f(r) ≤ (r/R)−2λ0f(R) + 23+α(1 + λ0)Chr
2λ0

∫ R

r

tα−2λ0−1dt.

If α > 2λ0, then

(3.34) f(r) ≤
(
f(R) + 23+α(1 + λ0)(1 + λ0)(α− 2λ0)

−1ChR
α
)
(r/R)2λ0 ;

if α = 2λ0, then

f(r) ≤ f(R)(r/R)α + 2α+3(1 + λ0)Chr
α ln(R/r),

thus, for any β ∈ (0, α),

(3.35)
f(r) ≤ f(R)rα + 2α+3(1 + λ0)Chr

βRα−β ln(R/r)

(R/r)α−β

≤
(
f(R) + 2α+3(1 + λ0)Ch(α− β)−1e−1Rα

)
(r/R)β;

if α < 2λ0, then
(3.36)

f(r) ≤ f(R)(r/R)2λ0 + 2α+3(1− λ0)Chr
2λ0 · (2λ0 − α)−1

(
rα−2λ0 −Rα−2λ0

)
≤

(
(r/R)2λ0−αf(R) + 2α+3(1− λ0)Ch(2λ0 − α)−1Rα

)
(r/R)α.
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Hence (3.32) follows from (3.34), (3.35), (3.36) and Theorem 2.3. Indeed, there is
a constant C1(α, β, λ0) > 0 such that

(3.37) r2λ0

∫ R

r

tα−2λ0−1dt ≤ C1(α, β, λ0)R
α · (r/R)β,

and there is a constant C2(α, β, λ0) > 0 such that

f(r) ≤ (f(R) + C2(α, β, λ0)Ch ·Rα) (r/R)β.

�

Remark 3.17. If the gauge function h satisfy that

h(t) ≤ C

(
ln

(
A

t

))−b

for some A, b, C > 0, then (3.33) implies that there exist R > 0 and constant
C(R, λ, b) such that

f(r) ≤ C(R, λ, b)

(
ln

(
A

r

))−b

for 0 < r ≤ R.

4. Approximation of E by cones at the boundary

In the previous section, we get a power decay of the almost density, and in this
section we will use that to get the uniqueness of blow-up limit of E at 0, and also
the estimation d0,r(E,Z) ≤ Crβ for r small, where Z is the unique blow-up limit,
see Theorem 4.14.

We also assume that E ⊆ Ω0 is a 2-rectifiable set satisfying (a), (b) and (c).
We let ε(r) = εP (r) if E is locally C0-equivalent to a sliding minimal cone of type
P+; and let ε(r) = εY (r) if E is locally C0-equivalent to a sliding minimal cone of
type Y+.

For any r > 0, we put

f(r) = Θ(0, r)−Θ(0), F (r) = f(r) + 8h1(r), F1(r) = F (r) + 8h1(r),

and for r ∈ R, we put

Ξ(r) = rf ′(r) + 2f(r) + 16h(2r) + 32h1(r).

We see from Theorem 2.3 that F is nondecreasing, and limr→0+ F (r) = 0, thus
Ξ(r) ≥ 0.

We denote by X(r) and Γ(r), respectively, the cone X and the set Γ which are
defined in (3.10), and by γ(r) the set μr(Γ(r)). Let Π : R3 \ {0} → ∂B(0, 1) be the
mapping defined by Π(x) = x/|x|. For any r2 > r1 > 0, we put A(r1, r2) = {x ∈
R3 : r1 ≤ |x| ≤ r2}. Let λ, μ and r1 be the constants in Theorem 3.15.

Lemma 4.1. For any 0 < r < R < ∞ with H2(E ∩ ∂Br) = H2(E ∩ ∂BR) = 0, we
have that

(4.1)

∫
E∩A(r,R)

1− cos θ(x)

|x|2 dH2(x) ≤ F (R)− F (r),

and

(4.2) H2 (Π(E ∩ A(r, R))) ≤
∫
E∩A(r,R)

sin θ(x)

|x|2 dH2(x).
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Proof. We see that for H2-a.e. x ∈ E, the tangent plane Tan(E, x) exists, we will
denote by θ(x), the angle between the line [0, x] and the plane Tan(E, x). For any
t > 0, we put u(t) = H2(E ∩ B(0, t)), then u : (0,∞) → [0,∞] is a nondecreasing
function. By Lemma 2.2, we have that

u(t) ≤ t

2
H1(E ∩ ∂B(0, t)) + 4t2h(2t),

for H1-a.e. t ∈ (0,∞). Considering the mapping φ : R3 → [0,∞) given by φ(x) =
|x|, we have, by (2.2), that for H2-a.e. x ∈ E,

ap J1(φ|E)(x) = cos θ(x).

Apply Theorem 3.2.22 in [10], we get that∫
E∩A(r,R)

1

|x|2 cos θ(x)dH2(x) =

∫ R

r

1

t2
H1(E ∩ ∂B(0, t)dt

≥ 2

∫ R

r

u(t)

t3
dt−8

∫ R

r

h(2t)

t
dt=2

∫ R

r

1

t3

(∫
E∩B(0,t)

dH2(x)

)
dt−8(h1(R)−h1(r))

= 2

∫
E∩B(0,R)

(∫ R

max{r,|x|}

1

t3
dt

)
dH2(x)− 8(h1(R)− h1(r))

=

∫
E∩A(r,R)

1

|x|2 dH
2(x) + r−2u(r)−R−2u(R)− 8(h1(R)− h1(r)),

thus (4.1) holds.
By a simple computation, we get that

ap J2Π(x) =
sin θ(x)

|x|2 ,

then applying Theorem 3.2.22 in [10], we will get that (4.2) hold. �

For any 0 < r < R, if H2(E ∩ ∂Br) = H2(E ∩ ∂BR) = 0, by Cauchy-Schwarz
inequality, we get from above Lemma that

H2(Π(E ∩A(r, R)))≤R

r
(2Θ(0, R))1/2 (F (R)−F (r))1/2≤ R

r
(2Θ(0, R))1/2 F (R)1/2.

Lemma 4.2. For any r ∈ (0, r1) ∩ R, if Ξ(r) ≤ μτ0, then

dH(Γ(r), X(r) ∩ ∂B(0, 1)) ≤ 10μ−1/2Ξ(r)1/2.

Proof. By lemma 2.1, we get that

1

r
H1(E ∩ ∂B(0, r)) ≤ 2Θ(0) + rf ′(r) + 2f(r),

By Theorem 3.15, we get that

r2Θ(0, r)

≤ (1− λ− μ)
r

2
H1(E ∩ ∂Br) + μ

r2

2
H1(X ∩ ∂B1) + λΘ(0)r2 + 4r2h(2r)

≤ (1− λ− μ)r2

2
(2Θ(0)+rf ′(r)+2f(r))+

μr2

2
H1(X ∩ ∂B1)+λΘ(0)r2 + 4r2h(2r),

thus

H1(X ∩ ∂B1) ≥ 2Θ(0) +
2(λ+ μ)

μ
f(r)− 1− λ− μ

μ
rf ′(r)− μ

8
h(2r).
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By Theorem 2.3, we see that f(r)+8h1(r) is nondecreasing, thus f(r)+8h1(r) ≥ 0
and rf ′(r) + 8h(2r) ≥ 0. Hence

j(r) =
1

r
H1(E ∩Br)−H1(X ∩ ∂B1) ≤

1− λ

μ
rf ′(r)− 2λ

μ
f(r) +

8

μ
h(2r)

≤ 1

μ
(rf ′(r) + 8h1(r) + 16h(2r)) ≤ 1

μ
Ξ(r).

Since

H1(X ∩ ∂B1) ≤ H1(Γ∗(r)) ≤ H1(Γ(r)) ≤ H1(μ1/r(E ∩ ∂Br)),

we have that

0 ≤ H1(Γ(r))−H1(X ∩B1) ≤ j(r) ≤ 1

μ
Ξ(r),

by Lemma 3.5, we get that for any z ∈ Γ(r),

dist (z,X ∩ ∂B(0, 1)) ≤ 10

(
Ξ(r)

μ

)1/2

.

�

Lemma 4.3. For any 0 < r1 < r2 < (1 − τ )r1, if P is a plane such that
H1(E ∩ P ∩Br1) < ∞ and P ∩ Xr = ∅ for any r ∈ [r1, r2], then there is a compact
path connected set

CP,r1,r2 ⊆ E ∩ P ∩A(r2, r1)

such that

CP,r1,r2 ∩ γ(t) �= ∅ for r1 ≤ t ≤ r2.

Proof. We let 
 be the same as in 3.1. Since ‖Φ− id ‖∞ ≤ τ
, we get that

Φ−1
(
E ∩B(0, r2)

)
⊆ Z0,	 ∩B(0, r2 + τ
).

We put

X = Z0,	 ∩B(0, r2 + τ
), F = X ∩ Φ−1(E ∩ Pz).

We take x1, x2 ∈ Xr, x2 �= x1, such that Φ−1(x1) and Φ−1(x2) are contained in two
different connected components of X\F . By Lemma 3.2, there is a connected closed
subset F0 of F such that Φ−1(x) and Φ−1(x2) are still contained in two different
connected components of X\F0. Then F0∩φ−1(γ(t)) �= ∅ for 0 < t ≤ r2; otherwise,
if F0 ∩ φ−1(γ(t0)) = ∅, then x1 and x2 are in the same connected component of
Φ(X) \ Φ(F0), thus Φ

−1(x1) and Φ−1(x2) are in the same connected component of
X \ F0, absurd!

Since H1(Φ(F0)) ≤ H1(E ∩Pz ∩B	) < ∞, we get that Φ(F0) is path connected.
We take z1 ∈ Φ(F0) ∩ γ(r1) and z2 ∈ Φ(F0) ∩ γ(r2), and let g : [0, 1] → Φ(F0) be a
path such that g(0) = z1 and g(1) = z2. We take t1 = sup{t ∈ [0, 1] : |g(t)| ≤ r1}
and t2 = inf{t ∈ [t1, 1] : |g(t)| ≥ r2}. Then Cz,r1,r2 = g([t1, t2]) is our desire set. �

Lemma 4.4. Let T ∈ [π/4, 3π/4] and ε ∈ (0, 1/2) be given. Suppose that F a
2-rectifiable set satisfying

F ⊆ ∂B(0, 1) ∩ {(t cos θ, t sin θ, x3) ∈ R
3 | t ≥ 0, |θ| ≤ T/2, |x3| ≤ ε}.

Then we have, by putting Pθ = {(t cos θ, t sin θ, x3) | t ≥ 0, x3 ∈ R}, that∫ T/2

−T/2

H1(F ∩ Pθ)dθ ≤ (1 + ε)H2(F )
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Proof. For any x = (x1, x2, x3) ∈ F , we have that x2
1 + x2

2 + x2
3 = 1 and |x3| ≤ ε,

thus x2
1+x2

2 ≥ 1− ε2. Since |θ| ≤ T/2 ≤ 3π/8, we get that the mapping φ : F → R

given by

φ(x1, x2, x3) = arctan
x2

x1

is well defined and Lipschitz. Moreover, we have that

ap J1φ(x) = (x2
1 + x2

2)
−1/2 ≤ (1− ε2)−1/2 ≤ 1 + ε.

Hence ∫ T/2

−T/2

H1(F ∩ Pθ)dθ =

∫
F

ap J1φ(x)dH2(x) ≤ (1 + ε)H2(F ).

�

For any 0 < t1 ≤ t2, we put Et1,t2 = Π({x ∈ E : t1 ≤ |x| ≤ t2}). For any t > 0,
we put

ε̄(t) = sup{ε(r) : r ≤ t}.

Lemma 4.5. If r2 > r1 > 0 satisfy that 10(1 + r2/r1)ε̄(r2) < 1/2, then we have
that ∫

X(t)∩∂B(0,1)

H1 (Pz ∩Er1,r2) dH1(z) ≤ 2H2 (Er1,r2) , ∀r1 ≤ t ≤ r2.

Proof. By Lemma 3.8, we have that, for any r > 0, if ε(r) < 1/2, then

d0,r(E,X(r)) ≤ 5ε(r).

We get so that

d0,1(X(t), X(r2)) =d0,t(X(t), X(r2)) ≤ d0,t(E,X(t)) + d0,t(E,X(r2))

≤ 5ε̄(r2) + 5
r2
t
ε̄(r2).

Since

dist(x,X(r2)) ≤ 5r2ε(r2), for any x ∈ E ∩B(0, r2),

we have that

dist(Π(x), X(r2)) ≤
5r2ε(r2)

|x| , for any x ∈ E ∩A(r1, r2),

we get so that

dist(Π(x), X(t)) ≤ 5r2ε(r2)

|x| + 5ε̄(r2) + 5
r2
t
ε̄(r2) ≤ 10(r2/r1 + 1)ε̄(r2) <

1

2
.

Applying Lemma 4.4, we will get the result. �

Lemma 4.6. Let ε ∈ (0, 1/2) be given. Let A ⊆ ∂B(0, 1) be an arc of a great circle
such that 0 < H1(A) ≤ π and

dist(x, L0) ≤ ε, ∀x ∈ A.

Then

dist(x, L0) ≤
π2

2H1(A)2

∫
A

dist(x, L0)dH1(x), ∀x ∈ A.
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Proof. We let P be the plane such that A ⊆ P , let v0 ∈ P ∩ L0 ∩ ∂B(0, 1) and
v2 ∈ P ∩ ∂B(0, 1) be two vectors such that v0 is perpendicular to v1. Then A can
be parametrized as γ : [θ1, θ2] → A given by

γ(t) = v0 cos t+ v1 sin t,

where θ2− θ1 = H1(A). We write v1 = w+w⊥ with w ∈ L0 and w⊥ perpendicular
to L0. Since ap J1γ(t) = 1 for any t ∈ [θ1, θ2], by Theorem 3.2.22 in [10], we have
that ∫

A

dist(x, L0)H1(x) =

∫ θ2

θ1

dist(γ(t), L0)dt =

∫ θ2

θ1

|w⊥ sin t|dt

≥ 2|w⊥|
(
1− cos

θ2 − θ1
2

)
≥ 2(θ2 − θ1)

2

π2
|w⊥|,

and that

dist(x, L0) ≤ |w⊥| ≤ π2

2H1(A)2

∫
A

dist(x, L0)dH1(x).

�

Lemma 4.7. Let r1 and r2 be the same as in Lemma 4.3. If Ξ(ri) ≤ μτ0,
10(1 + r2/r1)ε̄(r2) ≤ 1, then we have that

d0,1(X(r1), X(r2)) ≤
30r2
r1

Θ(0, r2)
1/2 ·F (r2)

1/2+20πμ−1/2 ·
(
Ξ(r1)

1/2 + Ξ(r2)
1/2

)
.

Proof. For z ∈ X(r2)∩ ∂B1, if z /∈ {yr}∪Xr, we will denote by Pz the plane which
is through 0 and z and perpendicular to Tan(X(r2) ∩ ∂B1, z). By Lemma 4.2, we
have that

|z − a| ≤ 10μ−1/2Ξ(r1)
1/2, ∀a ∈ Γ(r2) ∩ Pz.

Since CPz ,r1,r2 ∩ γ(ri) �= ∅, i = 1, 2, we take bi ∈ CPz ,r1,r2 ∩ γ(ri), then

|Π(b1)−Π(b2)| ≤ H1(Π(CPz,r1,r2)) ≤ H1(Pz ∩ Er1,r2),

thus

dist(z,X(r1) ∩ ∂B1) ≤ |z −Π(b2)|+ |Π(b2)−Π(b1)|+ dist(Π(b1), X(r1) ∩ ∂B1)

≤ H1(Pz ∩ Er1,r2) + 10μ−1/2
(
Ξ(r1)

1/2 + Ξ(r2)
1/2

)
.

For any x ∈ Xr, we let Ax be the arc in ∂B(0, 1) which join Π(x) and Π(yr), We see
that X(r2) ∩ ∂B(0, 1) = ∪x∈Xr

Ax, and H1(Ax) ≥ (1/2 − ε̄(r2))π ≥ π/4. Suppose
z ∈ Ax, then

dist(z,X(r1))

≤ π2

2H1(Ax)2

∫
Ax

dist(z,X(r1))dH1(x)

≤ 2π

H1(Ax)

∫
Ax

H1(Pz ∩Er1,r2)dH1(x) + 20πμ−1/2
(
Ξ(r1)

1/2 + Ξ(r2)
1/2

)
≤ 16H2(Er1,r2) + 20πμ−1/2

(
Ξ(r1)

1/2 + Ξ(r2)
1/2

)
≤ 16r2

r1
(2Θ(0, r2))

1/2 F (r2)
1/2 + 20πμ−1/2

(
Ξ(r1)

1/2 + Ξ(r2)
1/2

)
.

�



164 YANGQIN FANG

Remark 4.8. It is easy to see that, for any cones X1 and X2,

dH(X1 ∩ ∂B(0, 1), X2 ∩ ∂B(0, 1)) ≤ 2d0,1(X1, X2).

Since Ξ(r) = rf ′(r) + 2f(r) + 16h(2r) + 32h1(r) and F1(r) = f(r) + 16h1(r), we
see that Ξ(r) = [rF1(r)]

′ for any r ∈ R, we get so that∫ r2

r1

Ξ(t)dt ≤ r2F1(r2)− r1F1(r1).

For any ζ > 2, if r1 ≤ r2 ≤ r, then by Chebyshev’s inequality, we get that,

H1
({

t ∈ [r1, r2]
∣∣∣Ξ(t) ≤ ζF1(r)

2/3
})

≥ r2 − r1 −
1

ζ
rF1(r)

1/3,

thus
{
t ∈ [r1, r2]

∣∣Ξ(t) ≤ ζF1(r)
2/3

}
�= ∅ when r2 − r1 > (1/ζ)rF1(r)

1/3.

Lemma 4.9. Let R0 < (1 − τ )r1 be a positive number such that F (R0) ≤ μτ0/4
and ε̄(R0) ≤ 10−4. For any r ∈ R ∩ (0, R0), if Ξ(r) ≤ μτ0, then there is a constant
C = C(μ,Θ(0)) such that

dist(x,E) ≤ Cr
(
F1(r)

1/3 + Ξ(r)1/2
)
, x ∈ X(r) ∩Br.

Proof. For any k ≥ 0, we take rk = 2−kr. Then there exists tk ∈ [rk, rk−1] such
that

Ξ(tk) ≤
∫ rk−1

rk
Ξ(t)dt

rk−1 − rk
≤ rk−1F1(rk−1)

rk−1/2
= 2F1(rk−1).

We let Xk = X(tk), then for any j > i ≥ 1, we have that
(4.3)
d0,1(Xi, Xj)

≤
j−1∑
k=i

d0,1(Xk, Xk+1)

≤ 60 (Θ(0) + μτ0/4)
1/2

j−1∑
k=i

F1(tk)
1/2 + 20πμ−1/2

j−1∑
k=i

(
Ξ(tk)

1/2 + Ξ(tk+1)
1/2

)

≤
(
60 (Θ(0) + μτ0/4)

1/2
+ 40πμ−1/2

) j−1∑
k=i

2F1(tk)
1/2 + F1(tk−1)

1/2

≤ C1(μ,Θ(0))(j − i)F1(ri−1)
1/2 = C1(μ,Θ(0))F1(ri−1)

1/2 log2(ri/rj),

where C1(μ,Θ(0)) = 3
(
60 (Θ(0) + μτ0/4)

1/2
+ 40πμ−1/2

)
.

For any x ∈ X(r) ∩Br with Ξ(|x|) ≤ μτ0, we assume that tk+1 ≤ |x| < tk, then

dist(x,E)

≤ dH(X(r) ∩B|x|, X(|x|) ∩B|x|) + dH(X(|x|) ∩B|x|, γ(|x|))
≤ 2|x|d0,1(X(r), X(|x|)) + 10μ−1/2|x|Ξ(|x|)1/2

≤ 2|x|(d0,1(X(|x|), Xk) + d0,1(Xk, X1) + d0,1(X1, X(r))) + 10μ−1/2|x|Ξ(|x|)1/2

≤ (40π + 10)μ−1/2|x|
(
Ξ(|x|)1/2 + Ξ(r)1/2

)
+ C2(μ,Θ(0))|x|F1(r)

1/2 log2(r/|x|)

≤ (40π + 10)μ−1/2|x|Ξ(|x|)1/2 + C3(μ,Θ(0))r
(
Ξ(r)1/2 + F1(r)

1/2
)
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For any 0 ≤ a ≤ b ≤ r, we put

I(a, b) =
{
t ∈ [a, b]

∣∣∣Ξ(t) ≤ F1(r)
2/3

}
,

then I(a, b) �= ∅ when b− a > rF1(r)
1/3. If |x| ∈ I(0, r), then

dist(x,E) ≤ C4(μ,Θ(0))r
(
F1(r)

1/3 + Ξ(r)1/2
)
.

We let {si}m+1
i=0 ⊆ [0, r] be a sequence such that

0 = s0 < s1 < · · · < sm < sm+1 = r, si ∈ I(0, r),

and

si+1 − si ≤ 2rF1(r)
1/3.

For any x ∈ X(r) ∩Br, if si ≤ |x| < si+1 for some 0 ≤ i ≤ m, we have that

dist(x,E) ≤
∣∣∣∣x− si

|x|x
∣∣∣∣+ dist

(
si
|x|x,E

)
≤ (si+1 − si) + C4(μ,Θ(0))r

(
F1(r)

1/3 + Ξ(r)1/2
)

≤ (C4(μ,Θ(0)) + 2)r
(
F1(r)

1/3 + Ξ(r)1/2
)
.

�

Definition 4.10. Let U ⊆ R
3 be an open set, E ⊆ R

3 be a set of Hausdorff
dimension 2. E is called Ahlfors-regular in U if there is a δ > 0 and ξ0 ≥ 1 such
that, for any x ∈ E ∩ U , if 0 < r < δ and B(x, r) ⊆ U , we have that

ξ−1
0 r2 ≤ H2(E ∩B(x, r)) ≤ ξ0r

2.

Lemma 4.11. Let R0 be the same as in Lemma 4.9. If E is Ahlfors-regular, and
r ∈ R ∩ (0, R0) satisfies Ξ(r) ≤ μτ0, then there is a constant C = C(μ, ξ0,Θ(0))
such that

dist(x,X(r)) ≤ Cr
(
F1(r)

1/4 + Ξ(r)1/2
)
, x ∈ E ∩B(0, 9r/10).

Proof. Let {Xk}k≥1 be the same as in (4.3). For any t ∈ R with tk+1 ≤ t < tk,
Ξ(t) ≤ μτ0 and x ∈ γ(t), we have that

dist(x,X(r)) ≤ dH(γ(t), X(|x|) ∩B|x|) + dH(X(|x|) ∩B|x|, X(r))

≤ (40π + 10)μ−1/2|x|Ξ(|x|)1/2 + C3(μ,Θ(0))r
(
Ξ(r)1/2 + F1(r)

1/2
)

We put

J(0, r) = {t ∈ [0, r] : Ξ(t) > F1(r)
1/2}.

For any x ∈ γ(t) with t ∈ (0, r) \ J(0, r), we have that

dist(x,X(r)) ≤ C5(μ,Θ(0))r
(
Ξ(r)1/2 + F1(r)

1/4
)
.

We put

E1 =
⋃

t∈J(0,r)

(E ∩ ∂Bt), E2 =
⋃

t∈(0,r)\J(0,r)
(E ∩Bt \ γ(t)),

and

E3 = E ∩Br \ (E1 ∪ E2) =
⋃

t∈(0,r)\J(0,r)
γ(t).
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Then

H2(E1 ∪E2) =

∫
E∩Br

dH2(x)−
∫
E3

dH2(x)≤
∫
E∩Br

dH2(x)−
∫
E3

cos θ(x)dH2(x)

=

∫
E∩Br

(1− cos θ(x))dH2(x) +

∫
E1∪E2

cos θ(x)dH2(x)

≤ r2F (r) +

∫ r

0

H1(E1 ∩ ∂Bt)dt+

∫ r

0

H1(E2 ∩ ∂Bt)dt

≤ r2F (r) +

∫
J(0,r)

(2Θ(0) + tf ′(t) + 2f(t))tdt+ μ−1

∫ r

0

tΞ(t)dt

≤ (2 + μ−1)r2F1(r) + 2Θ(0)

∫
{t∈[0,r]:Ξ(t)>F1(r)1/2}

tdt

≤ (2 + μ−1)r2F1(r)+
2Θ(0)

F1(r)1/2

∫ r

0

tΞ(t)dt≤C6(μ,Θ(0))r2F1(r)
1/2,

where C6(μ,Θ(0)) = (2 + μ−1)(μτ0/4)
1/2 + 2Θ(0).

We see that, for any x ∈ E3,

dist(x,X(r)) ≤ C5(μ,Θ(0))r
(
Ξ(r)1/2 + F1(r)

1/4
)
.

If x ∈ E ∩B(0, 9r/10) with

dist(x,X(r)) > C5(μ,Θ(0))r
(
Ξ(r)1/2 + F1(r)

1/4
)
+ s

for some s ∈ (0, r/10), then E ∩B(x, s) ⊆ E1 ∪E2, thus

H2(E ∩B(x, s)) ≤ C6(μ,Θ(0))r2F1(r)
1/2.

But on the other hand, by Ahlfors-regular property of E, we have that

H2(E ∩B(x, s)) ≥ ξ−1
0 s2.

We get so that

s ≤ C6(μ,Θ(0))1/2 · ξ1/20 · rF1(r)
1/4.

Therefore, for x ∈ E ∩B(0, 9r/10),

dist(x,X(r)) ≤
(
C6(μ,Θ(0))1/2 · ξ1/20 + C5(μ,Θ(0))

)(
Ξ(r)1/2 + F1(r)

1/4
)
.

�

For any k ≥ 0, we take Rk = 2−kR0 and sk ∈ [Rk+1, Rk] such that

Ξ(sk) ≤
∫ Rk

Rk+1
Ξ(t)dt

Rk −Rk+1
≤ 2F1(Rk).

We put Xk = X(sk). Then for any j ≥ i ≥ 2, we have that

d0,1(Xi, Xj)

≤ C1(μ,Θ(0))

3

j−1∑
k=i

(
2F1(sk)

1/2 + F1(sk−1)
1/2

)
≤ C1(μ,Θ(0))

j−1∑
k=i−1

F1(Rk)
1/2

≤ C1(μ,Θ(0))

ln 2

j−1∑
k=i−1

∫ Rk−1

Rk

F1(t)
1/2

t
dt =

C1(μ,Θ(0))

ln 2

∫ Rj−1

Ri−2

F1(t)
1/2

t
dt.
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If the gauge function h satisfy that

(4.4)

∫ R0

0

F1(t)
1/2

t
dt < +∞,

then Xk converges to a cone X(0), and

d0,1(X(0), Xk) ≤
C1(μ,Θ(0))

ln 2

∫ Rk−2

0

F1(t)
1/2

t
dt.

Remark 4.12. If h(r) ≤ C(ln(A/r))−b, 0 < r ≤ R0, for some A > R0, C > 0 and
b > 3, then (4.4) holds.

Indeed,

h1(r) =

∫ r

0

h(2t)

t
dt ≤ C

b− 1

(
ln

(
A

r

))−b+1

,

and then Remark 3.17 implies that

F (r) ≤ C1

(
ln

(
A

r

))−b

+
C

b− 1

(
ln

(
A

r

))−b+1

≤ C2

(
ln

(
A

r

))−b+1

,

thus (4.4) holds.

Lemma 4.13. If (4.4) holds, then X(0) is a minimal cone.

Proof. By Lemma 3.8, for any r ∈ (0, r1)∩R, there exist sliding minimal cone Z(r)
such that d0,1(X(r), Z(r)) ≤ 4ε(r). But ε(r) → 0 as r → 0+, we get that

d0,1(Z(sk), X(0)) → 0.

Since Z(sk) is sliding minimal for any k, we get that X(0) is also sliding minimal.
�

For any r ∈ R ∩ (0, R0) with Ξ(r) ≤ μτ0, we assume Rk+1 ≤ r < Rk, by Lemma
4.7, we have that
(4.5)
d0,1(X(0), X(r)) ≤ d0,1(X(0), Xk+3) + d0,1(Xk+3, X(r))

≤ C1(μ,Θ(0))

ln 2

∫ Rk+1

0

F1(t)
1/2

t
dt

+
30r

sk+3
Θ(0, r)1/2F1(r)

1/2 + 20πμ−1/2
(
Ξ(sk+3)

1/2 + Ξ(r)1/2
)

≤ 10C1(μ,Θ(0))

(
Ξ(r)1/2 + F1(r)

1/2 +

∫ r

0

F1(t)
1/2

t
dt

)
.

Theorem 4.14. If (4.4) holds, and E is Ahlfors-regular, then E has unique blow-
up limit X(0) at 0, and there is a constant C = C10(μ,Θ, ξ0) such that

(4.6) d0,9r/10(E,X(0)) ≤ C

(
F1(r)

1/4 +

∫ r

0

F (t)1/2

t
dt

)
, 0 < r < R0,
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where 0 < R0 < (1 − τ )r1 satisfying that F (R0) ≤ μτ0/4 and ε̄(R0) ≤ 10−4. In
particular,

• if h(r) ≤ Ch(ln(A/r))−b for some A,Ch > 0, b > 3 and 0 < r ≤ R0 < A,
then

d0,r(E,X(0)) ≤ C ′(ln(A1/r))
−(b−3)/4, 0 < r ≤ 9R0/10, A1 ≤ 10A/9;

• if h(r) ≤ Chr
α1 for some Ch, α1 > 0, and 0 < r ≤ r0, 0 < r0 ≤ min{1, R0},

then

d0,r(E,X(0)) ≤ C(r/r0)
β, 0 < r ≤ 9r0/10, 0 < β < α1,

where

C ≤ C11(μ, λ0, α1, β, Ch, ξ0,Θ(0))
(
F (r0)

1/4 + r
α1/4
0

)
.

Proof. From (4.5) and Lemma 4.9, we get that, for any x ∈ X(0) ∩ Br where
r ∈ R ∩ (0, R0) such that Ξ(r) ≤ μτ0,

dist(x,E) ≤ C7(μ, ξ0,Θ(0))r

(
Ξ(r)1/2 + F1(r)

1/4 +

∫ r

0

F1(t)
1/2

t
dt

)
.

Similarly to the proof of Lemma 4.9, we still consider

I(a, b) =
{
t ∈ [a, b]

∣∣∣Ξ(t) ≤ F1(r)
2/3

}
, 0 ≤ a ≤ b ≤ r,

we have that I(a, b) �= ∅ whenever b − a > rF1(r)
1/3. We let {si}m+1

0 ⊆ [0, r] be a
sequence such that

0 = s0 < s1 < · · · < sm < sm+1 = r, si ∈ I(0, r),

and

si+1 − si ≤ 2rF1(r)
1/3.

For any r ∈ (0, R0), we assume that si ≤ r < si+1, x ∈ X(0) ∩ ∂Br.

(4.7)

dist(x,E) ≤
∣∣∣∣x− si

|x|x
∣∣∣∣+ dist

(
si
|x|x,E

)
≤ C8(μ, ξ0,Θ(0))r

(
F1(r)

1/4 +

∫ r

0

F1(t)
1/2

t
dt

)
From (4.5) and Lemma 4.11, we have that, for any x ∈ X(0) ∩ B(0, 9r/10) where
r ∈ R ∩ (0, R0) such that Ξ(r) ≤ μτ0,

dist(x,X(0)) ≤ C9(μ, ξ0,Θ(0))

(
Ξ(r)1/2 + F1(r)

1/4 +

∫ r

0

F1(t)
1/2

t
dt

)
.

Similarly to the proof of (4.7), we can get that

(4.8) dist(x,X(0)) ≤ C10(μ, ξ0,Θ(0))

(
F1(r)

1/4 +

∫ r

0

F1(t)
1/2

t
dt

)
.

We get, from (4.7) and (4.8), that (4.6) holds.
If h(r) ≤ Ch(ln(A/r))−b for some A,Ch > 0 and b > 3 and 0 < r ≤ R0 < A,

then

h1(r) =

∫ r

0

h(2t)

t
dt ≤ Ch

b− 1

(
ln

(
A

r

))−b+1

,
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and by Remark 3.17 we have that

F (r) ≤ C ′′
(
ln

A

r

)−b+1

where

C ′′ ≤ C(R0, λ, b)

(
ln

A

r

)−1

+
C1

b− 1
≤ C(R0, λ, b)

(
ln

A

R0

)−1

+
C1

b− 1

is bounded, thus ∫ r

0

F1(t)
1/2

t
dt ≤ C ′′′

(
ln

A

r

)(−b+3)/2

Hence we get that

d0,9r/10(E,X(0))≤C10(μ, ξ0,Θ(0))

(
F1(r)

1/4+

∫ r

0

F1(t)
1/2

t
dt

)
≤C ′

(
ln

A

r

)− b−3
4

.

If h(r) ≤ Chr
α1 for some Ch, α1 > 0 and 0 < r ≤ r0, then

h1(r) =

∫ r

0

h(2t)

t
dt ≤ Ch

α1
(2r)α1 .

We see, from the proof of Corollary 3.16, that

f(r) ≤ (f(r0) + C2(α1, β, λ0)Chr
α1
0 ) (r/r0)

β, ∀0 < β < α1,

thus
F1(r) = f(r) + 16h1(r) ≤ (f(r0) + C ′

2(α1, β, λ0)Chr
α1
0 )(r/r0)

β.

Then

d0,9r/10(E,X(0)) ≤ C10(μ, ξ0,Θ(0))

(
F1(r)

1/4 +

∫ r

0

F1(t)
1/2

t
dt

)
≤ C(r/r0)

β/4,

where
C ≤ C ′

10(μ, ξ0,Θ(0))(F (r0)
1/4 + C ′′

2 (α1, β, λ0, Ch)r
1/4
0 ).

�

5. Parameterization of well approximate sets

Recall that a cone in R3 is called of type P if it is a plane; a cone is called of
type Y if it is the union of three half planes with common boundary line and that
make 120◦ angles along the boundary line; a cone of type T if it is the cone over
the union of the edges of a regular tetrahedron.

Theorem 5.1. Let E ⊆ Ω0 be a set with 0 ∈ E. Suppose that there exist C > 0,
r0 > 0, β > 0 and 0 < η ≤ 1 such that, for any x ∈ E ∩ B(0, r0) and 0 < r ≤ 2r0,
we can find cone Zx,r through x such that

dx,r(E,Zx,r) ≤ Crβ,

where Zx,r is a minimal cone in R3 of type P or Y when x /∈ ∂Ω0 and 0 < r <
η dist(x, ∂Ω0), and otherwise, Zx,r is a sliding minimal cone of type P+ or Y+ in
Ω0 with sliding boundary ∂Ω0 centered at some point in ∂Ω0. Then there exist
a radius r1 ∈ (0, r0/2), a sliding minimal cone Z centered at 0 and a mapping
Φ : Ω0 ∩ B(0, r1) → Ω0, which is a C1,β-diffeomorphism between its domain and
image, such that Φ(0) = 0, Φ(∂Ω0 ∩B(0, 2r1)) ⊆ ∂Ω0, ‖Φ− id ‖∞ ≤ 10−2r1 and

E ∩B(0, r1) = Φ(Z) ∩B(0, r1).
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Proof. Let σ : R3 → R3 be given by σ(x1, x2, x3) = (x1, x2,−x3). By setting
E1 = E ∪ σ(E), we have that, for any x ∈ E1 ∩ B(0, r0) and 0 < r ≤ 2r0,
there exist minimal cone Z(x, r) in R

3 centered at x of type P or Y such that
Z(σ(x), r) = σ(Z(x, r)) and

dx,r(E,Z(x, r)) ≤ Crβ.

By Theorem 4.1 in [9], there exist r1 ∈ (0, r0), τ ∈ (0, 1), a cone Z centered at 0 of
type P or Y, and a mapping Φ1 : B(0, 3r1/2) → B(0, 2r1) such that

σ(Z) = Z, σ ◦ Φ1 = Φ1 ◦ σ, ‖Φ1 − id ‖ ≤ r0τ,

C1|x− y|1+τ ≤ |Φ(x)− Φ(y)| ≤ C−1
1 |x− y|1/(1+τ),

E1 ∩B(0, r1) ⊆ Φ1(Z ∩B(0, 3r1/2)) ⊆ E1 ∩B(0, 2r1).

Using the same argument as in Section 10 in [3], we get that Φ1 is of class
C1,β. �

6. Approximation of E by cones away from the boundary

In this section, we let Ω ⊆ R3 be a closed set. Let E ∈ SAM(Ω, ∂Ω, h) be a
sliding almost minimal set, x0 ∈ E \ ∂Ω. Then E ∩B(x, r) is almost minimal with
gauge function h for any 0 < r < dist(x0, ∂Ω). We put

F (x, r) = Θ(x, r)−Θ(x) + 8h1(r).

We see from Theorem 2.3 that F (x, r) ≥ 0 and F (x, ·) is nondecreasing for 0 < r <
dist(x0, L).

Theorem 6.1. If
∫ R0

0
r−1F (x, r)1/3dr < ∞ for some R0 > 0, then E has unique

blow-up limit T at x. Moreover there is a constant C > 0 and a radius ρ0 = ρ0(x) >
0 such that

dx,r(E, T ) ≤ C

∫ 200r

0

F (x, t)1/3

t
dt, 0 < r ≤ ρ0.

In particular, if the gauge function h satisfies that

h(t) ≤ Cht
α1 for some α1 > 0 and 0 < t ≤ R0,

then there exists β0 > 0 such that, for any 0 < β < β0,

dx,r(E, T ) ≤ C(α1, β) (F (x, ρ0) + Chρ
α1
0 )1/3 (r/ρ0)

β/3.

Proof. By Theorem 16.1 in [4], we get that E is a locally C0,α2 -equivalent to a two
dimensional minimal cone for some 0 < α2 < 1. Let 
 be the radius defines as in
(3.2). We take ρ0 = 10−3 min{R0, dist(x0, ∂Ω), 
}. By Theorem 11.4 in [5], there
is a constant C > 0 and cone Zr for each 0 < r < ρ0 such that

dx,r(E,Zr) ≤ CF (x, 110r)1/3.

We put ρk = 2−kρ0, and Zk = Zρk
. Then

dx,1(Zk, Zk+1) = dx,ρk+1
(Zk, Zk+1) ≤ dx,ρk+1

(Zk, E) + dx,ρk+1
(E,Zk+1)

≤ CF (x, 110ρk+1)
1/3 + 2CF (x, 110ρk)

1/3.
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For any 1 ≤ i < j, we have that

dx,1(Zi, Zj) ≤ 2C

j−1∑
k=i

F (x, 110ρk)
1/3 + C

j∑
k=i+1

F (x, 110ρk)
1/3

≤ 3C

j∑
k=i

F (x, 110ρk)
1/3

≤ 3C

ln 2

∫ ρi−1

ρj

F (x, 110t)1/3

t
dt.

Let Z0 be the limit of {Zk}∞k=1. Then we have that

dx,1(Z0, Zi) ≤
3C

ln 2

∫ ρi−1

0

F (x, 110t)1/3

t
dt.

For any 0 < r < ρ0, we assume that ρk+1 ≤ r < ρk, then

dx,1(Zr, Z0) ≤ dx,ρk+1
(Zr, Zk+1) + dx,1(Zk+1, Z0)

≤ dx,1(Zk+1, Z0) + dx,ρk+1
(Zr, E) + dx,ρk+1

(E,Zk+1)

≤ dx,1(Zk+1, Z0) +
r

ρk+1
dx,r(Zr, E) + dx,ρk+1

(E,Zk+1)

≤ 3CF (x, 110r)1/3 +
3C

ln 2

∫ ρk

0

F (x, 110t)1/3

t
dt.

Hence

(6.1) dx,r(E,Z0) ≤ dx,r(E,Zr) + dx,r(Zr, Z0) ≤
10C

ln 2

∫ 200r

0

F (x, t)1/3

t
dt

and T = τ x(Z0) is the only blow up limit of E at x, which is a minimal cone.
By Theorem 4.5 in [5], we have that

ΘE(x, r) ≤
(
1

2
− α0

)
H1(E ∩ ∂B(x, r))

r
+ 2α0ΘE(x) + 4h(r),

where we take α0 the constant α in Theorem 4.5 in [5]. For our convenient,
we denote u(r) = H2(E ∩ B(x, r)) and f(r) = ΘE(x, r) − ΘE(x), then we have
H1(E ∩ ∂B(x, r)) ≤ u′(r) and

f(r) + ΘE(x) ≤
(
1

2
− α0

)
u′(r)

r
+ 2α0ΘE(x) + 4h(r)

=

(
1

2
− α0

)
(2f(r) + rf ′(r) + 2ΘE(x)) + 2α0ΘE(x) + 4h(r),

thus

rf ′(r) ≥ 4α0

1− 2α0
f(r)− 8

1− 2α0
h(r),

and (
r−

4α0
1−2α0 f(r)

)′
≥ − 8

1− 2α0
r−

1+2α0
1−2α0 h(r).

We take β0 = min{4α0/(1− 2α0), α1}. Then for any 0 < β < β0, we have that

f(r) ≤ (r/ρ0)
4α0

1−2α0 f(ρ0) +
8

1− 2α0
r

4α0
1−2α0

∫ ρ0

r

t−
1+2α0
1−2α0 h(t)dt

≤ (r/ρ0)
4α0

1−2α0 f(ρ0) + C ′
1(α1, β, α0)ρ

α1
0 · (r/ρ0)β.
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We get so that

F (x, r) ≤ C(α1, β, α0)(F (x, ρ0) + Chρ
α1
0 )(r/ρ0)

β,

combine this with (6.1), we get the conclusion. �

7. Parameterization of sliding almost minimal sets

Let n, d ≤ n and k be nonnegative integers, α ∈ (0, 1). By a d-dimensional
submanifold of class Ck,α of Rn we mean a subset M of Rn satisfying that for each
x ∈ M there exist s neighborhood U of x in R

n, a mapping Φ : U → R
n which is a

diffeomorphism of class Ck,α between its domain and image, and a d dimensional
vector subspace Z of Rn such that

Φ(M ∩ U) = Z ∩ Φ(U).

In Section 4, we get the estimation dx,r(E,Z) ≤ Crβ for x ∈ E ∩ ∂Ω and
0 < r < r(x), where Ω is a half space, E is locally sliding almost minimal at x, and
r(x) > 0 depends on x. In Section 6, we get the estimation dx,r(E,Z) ≤ Crβ for
x ∈ E \ ∂Ω and 0 < r < r(x).

In this section, we assume that Ω ⊆ R3 is a closed set whose boundary ∂Ω is a
2-dimensional submanifold of class C1,α for some α ∈ (0, 1), and suppose that Ω has
tangent cone a half space at any point in ∂Ω. We will show that Ω is locally C1,α

diffeomorphic to a half space at any point x0 ∈ ∂Ω, see Lemma 7.1, and after the
diffeomorphism Ψ, Ψ(E) become a locally sliding almost set at 0, see Lemma 7.2,
so we can apply the results in Section 4 to see that the estimation dx,r(E,Z) ≤ Crβ

for x ∈ E ∩ ∂Ω and 0 < r < r(x) is still valid, see Theorem 7.4. But the problem is
that r(x) depends on x. In fact, we need a uniform control of radius r(x) to apply
the Reifenberg’s parameterization theorem, Theorem 5.1, to get our main result
Theorem 1.2, and that will be done in Lemma 7.9 and Lemma 7.10.

Let E ⊆ Ω be a closed set such that E ∈ SAM(Ω, ∂Ω, h) and ∂Ω ⊆ E, x0 ∈ ∂Ω.
We always assume that the gauge function h satisfies that

(7.1)

∫ R0

0

1

r

(∫ r

0

h(2t)

t
dt

)1/2

dr < +∞

and

(7.2)

∫ R0

0

r−1+ λ
1−λ

(∫ R0

r

t−1− 2λ
1−λh(2t)dt

)1/2

dr < +∞,

for some R0 > 0, where λ is the same constant as in Theorem 3.15. It is easy to
see that if h(t) ≤ Ctα1 for some α1 > 0, C > 0 and 0 < t ≤ R0, then (7.1) and
(7.2) hold. For our convenient, we still put λ0 = λ/(1− λ), and put

h2(ρ) =

∫ ρ

0

1

r

(∫ r

0

h(2t)

t
dt

)1/2

dr,

h3(ρ) =

∫ ρ

0

r−1+λ0

(∫ R0

r

t−1−2λ0h(2t)dt

)1/2

dr.

We see, from Proposition 4.1 in [6], that E is Ahlfors-regular in B(x0, R0), i.e.
there exist δ1 > 0 and ξ1 ≥ 1 such that for any x ∈ E ∩ B(x0, R0), if 0 < r < δ1
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and B(x, r) ⊆ B(x0, R0), we have that

ξ−1
1 r2 ≤ H2(E ∩B(x, r)) ≤ ξ1r

2.

We see from Theorem 3.10 in [9] that there only there kinds of possibility for the
blow-up limits of E at x0, they are the plane Tan(∂Ω, x0), cones of type P+ union
Tan(∂Ω, x0), and cones of type Y+ union Tan(∂Ω, x0). By Proposition 29.53 in [6],
we get so that

ΘE(x0) = π,
3π

2
, or

7π

4
.

If ΘE(x0) = π, then there is a neighborhood U0 of x0 in R3 such that E ∩ U0 =
∂Ω ∩ U0, see Lemma 5.2 in [9]. In the next content of this section, we put ourself
in the case ΘE(x0) = 3π/2 or 7π/4.

By Theorem 4.14 and Theorem 1.15 in [5], we see that, for any x ∈ E, there is
unique blow-up limit of E at x, which coincide with the tangent cone Tan(E, x).

Lemma 7.1. For any R0 > 0, there exist r0 = r0(x0) > 0 and a mapping Ψ =
Ψx0

: B(0, r0) → R3, which is a diffeomorphism of class C1,α from B(0, r0) to
Ψ(B(0, r0)), such that

Ψ(0) = x0,Ψ(Ω0 ∩Br0) ⊆ Ω ∩B(x0, R0),Ψ(L0 ∩Br0) ⊆ ∂Ω ∩B(x0, R0),

and that DΨ(0) is a rotation satisfying that

DΨ(0)(Ω0) = Tan(Ω, x0) and DΨ(0)(L0) = Tan(∂Ω, x0).

Proof. By definition, there exist open sets U, V ⊆ R3 and a diffeomorphism Φ :
U → V of class C1,α such that x0 ∈ U , 0 = Φ(x0) ∈ V and

Φ(U ∩ ∂Ω) = Z ∩ V,

where Z is a plane through 0. Indeed, we have that

Z = DΦ(x0) Tan(∂Ω, x0)

and

Φ(U ∩ Ω) = V ∩DΦ(x0) Tan(Ω, x0).

We will denote by A the linear mapping given by A(v) = DΦ(x0)
−1v, and assume

that A(V ) = B(0, r) is a ball. Let Φ1 be a rotation such that Φ1(Tan(∂Ω, x0)) = L0

and Φ1(Tan(Ω, x0)) = Ω0. Then we get that Φ1 ◦A ◦Φ is also C1,α mapping which
is a diffeomorphism between U and B(0, r),

D(Φ1 ◦A ◦ Φ)(x0) Tan(Ω, x0) = Φ1(Tan(Ω, x0)) = Ω0,

D(Φ1 ◦A ◦ Φ)(x0) Tan(∂Ω, x0) = Φ1(Tan(∂Ω, x0)) = L0,

and

Φ1 ◦A ◦ Φ(U ∩ ∂Ω) = Φ1 ◦A(Z ∩ V ) = L0 ∩B(0, r),

Φ1 ◦A ◦ Φ(U ∩ ∂Ω) = Φ1 ◦A(V ∩DΦ(x0) Tan(Ω, x0)) = Ω0 ∩B(0, r).

We now take r0 = r and Ψ = (Φ1 ◦A ◦ Φ)−1|B(0,r) to get the result. �

Let U ⊆ Rn be an open set. For any mapping Ψ : U → Rn of class C1,α, we will
denote by CΨ the constant CΨ=sup {‖DΨ(x)−Dψ(y)‖/|x− y|α : x, y ∈ U, x �= y}.
Then we have that

Ψ(x)−Ψ(y) =

〈
x− y,

∫ 1

0

DΨ(y + t(x− y))dt

〉
,
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and thus

(7.3) |Ψ(x)−Ψ(y)−DΨ(y)(x−y)| ≤ |x−y|
∫ 1

0

CΨ(t|x−y|)αdt ≤ CΨ

α+ 1
|x−y|1+α.

For any 0 < ρ ≤ r0, we set Uρ = Ψ(Bρ), Mρ = Ψ−1(E ∩ Uρ) and

(7.4) Λ(ρ) = max
{
Lip

(
ΨBρ

)
,Lip

(
Ψ−1

Uρ

)}
.

Then

‖DΨ(0)‖ − ‖DΨ(x)−DΨ(0)‖ ≤ ‖DΨ(x)‖ ≤ ‖DΨ(0)‖+ ‖DΨ(x)−DΨ(0)‖,
thus 1− CΨρ

α ≤ ‖DΨ(x)‖ ≤ 1 + CΨρ
α for x ∈ Bρ, and we have that

(7.5) Λ(ρ) ≤ 1/(1− CΨρ
α) whenever CΨρ

α < 1.

Lemma 7.2. For any 1 < ρ ≤ min{r0, C−1/α
Ψ }, Mρ is local almost minimal in Bρ

at 0 with gauge function H satisfying that

H(2r) ≤ 4Λ(r)2h(2Λ(r)r) + 4ξ1CΨΛ(ρ)r
α for 0 < r < (1− CΨρ

α)δ1.

Proof. For any open set U ⊆ R
3, M ≥ 1, δ > 0 and ε > 0, we let GSAQ(U,M, δ, ε)

be the collection of generalized sliding Almgren quasiminimal sets which is defined
in Definition 2.3 in [6]. We see that

diam(Uρ) ≤ 2ρLip
(
Ψ|Bρ

)
≤ 2ρΛ(ρ)

and

E ∩ Uρ ∈ GSAQ(Uρ, 1, diam(Uρ), h(2 diam(Uρ))),

By Proposition 2.8 in [6], we have that

Mρ ∈ GSAQ
(
Bρ,Λ(ρ)

4, 2ρ,Λ(ρ)4h (2ρΛ(ρ))
)

By Proposition 4.1 in [6], we get that Mρ is Ahlfors-regular in Bρ. Indeed, we can
get a little more, that is, for any x ∈ Mρ with 0 < rΛ(ρ) < δ1 and B(x, r) ⊆ B(0, ρ),
we have that

(7.6) (ξ1Λ(ρ))
−1

r2 ≤ H2(Mρ ∩B(x, r)) ≤ (ξ1Λ(ρ)) r
2.

Let {ϕt}0≤t≤1 be any sliding deformation of Mρ in Br. Then{
Ψ ◦ ϕt ◦Ψ−1

}
0≤t≤1

is a sliding deformation of E in Ur. Hence we get that

(7.7) H2(E ∩ Ur) ≤ H2(Ψ ◦ ϕ1 ◦Ψ−1(E ∩ Ur)) + h(2 diam(Ur))
2 diam(Ur)

2

For any 2-rectifiable set A ⊆ Bρ, by Theorem 3.2.22 in [10], we have that

ap J2(Ψ|A)(x) =
∥∥∧2

(
DΨ(x)|Tan(A,x)

)∥∥
and

H2(Ψ(A ∩Br)) =

∫
A∩Br

ap J2(Ψ|A)(x)dH2(x)

By (7.5), we get that∫
A∩Br

(1− CΨ|x|α)2dH2 ≤ H2(Ψ(A ∩Br)) ≤
∫
A∩Br

(1 + CΨ|x|α)2dH2.
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Thus, by taking A = Mρ, we have that Mr = Mρ ∩Br, Ψ(Mr) = E ∩ Ur and

H2(Ψ(Mr)) ≥ (1− CΨρ
α)2H2(Mr);

by taking A = ϕ1(Mρ), we have that

H2(Ψ(ϕ1(Mρ) ∩Br)) ≤ (1 + CΨr
α)2H2(ϕ1(Mρ) ∩Br).

Combine these two equations with (7.7) and (7.6), we get that

H2(ϕ1(Mρ) ∩Br) ≥ (1 + CΨr
α)−2H2(Ψ(ϕ1(Mρ) ∩Br))

≥ (1 + CΨr
α)−2

(
H2(E ∩ Ur)− h(4rΛ(r))(2rΛ(r))2

)
≥

(
1− CΨρ

α

1 + CΨrα

)2

H2(Mr)−
(

2rΛ(r)

1 + CΨrα

)2

h(4rΛ(r))

≥ H2(Mr)−H(2r)r2.

�

Lemma 7.3. Let E1 ⊆ Ω0 be a 2-rectifiable set, x ∈ E1, X a cone centered at 0,
Φ : R3 → R3 a diffeomorphism of class C1,α. Then there exist C > 0 such that, for
any r > 0 and ρ > 0 with B(Φ(x), ρ) ⊆ Φ(B(x, r)),

dΦ(x),ρ (Φ(E1),Φ(x) +DΦ(x)X) ≤ (Crα + ‖DΦ(x)‖dx,r(E1, x+X))
r

ρ
.

Proof. Since Φ is of class C1,α, by (7.3), we have that

|Φ(y)− Φ(x)−DΦ(x)(y − x)| ≤ CΦ

α+ 1
|x− y|1+α,

by putting C1 = CΦ/(α+ 1), we get that

dist(Φ(y),Φ(x) +DΦ(x)X) ≤ C1|y − x|1+α for y ∈ x+X.

For any z ∈ E1 ∩Br and y ∈ x+X, we have that

|Φ(z)− Φ(y)| ≤ |Φ(z)− Φ(y)−DΦ(x)(z − y)|+ ‖DΦ(x)‖ · |z − y|
≤ ‖DΦ(x)‖ · |z − y|+ C1|z − x|1+α + C1|y − x|1+α,

thus

dist(Φ(z),Φ(x+X)) ≤ ‖DΦ(x)‖rdx,r(E1, x+X) + 2C1r
1+α,

hence

(7.8) dist(Φ(z),Φ(x) +DΦ(x)X) ≤ ‖DΦ(x)‖rdx,r(E1, x+X) + 3C1r
1+α.

For any z ∈ X ∩Br, Φ(x) +DΦ(x)z ∈ Φ(x) +DΦ(x)X, and
(7.9)

dist(Φ(x) +DΦ(x)z,Φ(E1)) = inf{|Φ(y)− Φ(x)−DΦ(x)z| : y ∈ E1}
≤ inf{C1r

1+α + ‖DΦ(x)‖ · |y − x− z| : y ∈ E1}
≤ ‖DΦ(x)‖rdx,r(x+X,E1) + C1r

1+α.

We get from (7.8) and (7.9) that

dΦ(x),ρ(Φ(E1),Φ(x) +DΦ(x)X) ≤ r

ρ
(3C1r

α + ‖DΦ(x)‖ · dx,r(E1, x+X))

�
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Theorem 7.4. Let Ω, E ⊆ Ω, x0 ∈ ∂Ω and h be the same as in the beginning of
this section. Then there is a unique blow-up limit X of E at x0; moreover, if the
gauge function h satisfy that

(7.10) h(t) ≤ Cht
α1 for some Ch > 0, α1 > 0 and 0 < t < t0,

then there exists ρ0 > 0 such that, for any 0 < β < min{α, α1, 2λ0},

dx0,ρ(E, x0 +X) ≤ C(ρ/ρ0)
β/4, 0 < ρ ≤ 9ρ0/20,

where C is a constant satisfying that

C ≤ C20(μ, λ0, α, α1, β, ξ1)(FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 )1/4,

and FE(x0, r) = r−2H2(E ∩B(x0, r))−ΘE(x0) + 16h1(r).

Proof. We take R0 > 0 such that R0 < (1 − τ )r1 and ε̄(R0) ≤ 10−4, let Ψ, r0 be
the same as in Lemma 7.1. Let r ∈ (0, r0) be such that CΨr

α ≤ 1/2 and 2r ≤ R0.
Then Λ(r) ≤ 2, see (7.4) and (7.5). By Lemma 7.2, we have that Mr is local almost
minimal at 0 with gauge function H satisfying that

(7.11) H(t) ≤ 16h(2t) + Crt
α, 0 < t < r,

where Cr ∈ (0, 23−αξ1CΨ) is a constant.
We put fMr

(ρ) = ΘMr
(0, ρ) − ΘMr

(0), 0 < ρ ≤ r. From (3.33) and (3.37), we
get that

fMr
(ρ) ≤

(
r−2λ0fMr

(r)
)
ρ2λ0 + 8(1 + λ0)ρ

2λ0

∫ r

ρ

t−1−2λ0H(2t)dt

≤
(
r−2λ0fMr

(r)
)
ρ2λ0 + 27+2λ0(1 + λ0)ρ

2λ0

∫ 2r

2ρ

h(2t)

t1+2λ0
dt

+ 2α+3(1 + λ0)Cr · C1(α, β, λ0)r
α · (ρ/r)β,

where C1(α, β, λ0) is the constant in (3.37).
We get from (7.11) that

H1(ρ) =

∫ ρ

0

H(2s)

s
ds ≤ 16h1(2ρ) +

Cr

α
(2ρ)α,

by setting F1(ρ) = fMr
(ρ) + 16H1(ρ), we have that

F1(ρ) ≤ C12(λ0, α, β, r)(ρ/r)
β + 28h1(2ρ) + 24+αCrα

−1ρα

+ 27+2λ0(1 + λ0)ρ
2λ0

∫ 2r

2ρ

h(2t)

t1+2λ0
dt,

where

C12(λ0, α, β, r) ≤ fMr
(r) + 2α+3(1 + λ0)CrC1(α, β, λ0)r

α.

Hence∫ t

0

F1(ρ)
1/2

ρ
dρ ≤ C12(λ0, α, β, r)

1/2(β/2)(t/r)β + 16h2(2t) + C13(α, r)t
α/2

+ 24+λ0(1 + λ0)
1/2

∫ t

0

ρ−1+λ0

(∫ 2r

2ρ

h(2s)

s1+2λ0
ds

)1/2

dρ,
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where C13(α, r) ≤ 23+α/2α−3/2C
1/2
r , thus∫ t

0

F1(ρ)
1/2

ρ
dρ < +∞, for 0 < t ≤ r.

We now apply Theorem 4.14, there is a unique blow-up limit T of Mr at 0, thus
there is a unique blow-up limit X of E at x0.

For any R ∈ (0, R0), we put

fE(x0, R) = R−2H2(E ∩B(x0, R))−ΘE(x0)

and

FE(x0, R) = fE(x0, R) + 16h1(R),

where h1(r) =
∫ r

0
t−1h(2t)dt. From (7.7) and B(x0, ρ/Λ(ρ)) ⊆ Uρ ⊆ B(x0, ρΛ(ρ)),

we see that

(1−CΨρ
α)2(fMr

(ρ)+ΘE(x0)) ≤ ρ−2H2(E∩Uρ) ≤ (1+CΨρ
α)2(fMr

(ρ)+ΘE(x0)),

since Λ(ρ) ≤ 1/(1− CΨρ
α), we get so that

fMr
(ρ) ≤ (1− CΨρ

α)−4fE(x0, ρΛ(ρ)) + 4ΘE(x0)CΨρ
α,

and

fMr
(ρ) ≥ (1− C2

Ψρ
2α)2fE(x0, ρ/Λ(ρ)) + 2ΘE(x0)C

2
Ψρ

2α.

Since ρ < r, CΨr
α ≤ 1/2, h1 ≥ 0, ΘE(x0) ≤ 7π/4 and Λ(r) ≤ 2, we get that

fMr
(ρ) ≤ (1−CΨρ

α)−4FE(x, ρΛ(ρ))+4ΘE(x0)CΨρ
α ≤ 16FE(x, 2ρ)+(7π/2)(ρ/r)α,

and

C12(λ0, α, β, r) ≤ 16FE(x0, 2r) + 9ξ1 · 2α+2(1 + λ0)C1(α, β, λ0) + 2ΘE(x0).

If h satisfy (7.10), we take 0 < ρ0 ≤ min
{
r, t0, r0(x0), R0/2, (2CΨ)

−1/α, 1
}
such

that

(7.12) FE(x0, 2ρ0) ≤ 10−2μτ0, h1(2ρ) ≤ 10−2μτ0 and (ρ0/r)
α ≤ 10−2μτ0,

then

h1(ρ) ≤
Ch

α1
(2ρ)α1 , H1(ρ) ≤

24+2α1Ch

α1
ρα1 +

2αCr

α
ρα, 0 < ρ ≤ ρ0,

and

(7.13) F1(ρ) ≤ C13(λ0, α, β, ρ0, Ch)(ρ/ρ0)
β + 28+α1α−1

1 Chρ
α1 + C14(α, ξ1, CΨ)ρ

α,

where C13(λ0, α1, β, ρ0, Ch) and C14(α, ξ1, CΨ) are constant satisfying that

C13(λ0, α1, β, ρ0, Ch) ≤ C12(λ0, α, ρ0) + 27+4α1(1 + λ0)C1(α1, β, λ0)Chρ
α1
0

and

C14(α, ξ1, CΨ) ≤ 28+αα−1ξ1CΨ.

We get so that (7.13) can be rewrite as

F1(ρ) ≤ C15(λ0, α, α1, β, ξ1)(FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 )(ρ/ρ0)

β/4.

By Theorem 4.14, we have that

d0,9ρ/10(Mr, T ) ≤ C16(μ, ξ0)

(
F1(ρ)

1/4 +

∫ ρ

0

F1(t)
1/2

t
dt

)
≤ C17(μ, λ0, α, α1, β, ξ1)GE(x0, ρ0)(ρ/ρ0)

β/4,
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where

GE(x0, ρ0) = (FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 )1/4.

Applying Lemma 7.3 with Φ = Ψ, by setting X = DΨ(0)T , we get that for any
ρ ∈ (0, 9ρ0/10),

dx0,ρ/2(E, x0 +X) ≤ dx0,ρ/Λ(ρ)(E, x0 +DΨ(0)T )

≤ 6CΨρ
α + 2dx,ρ(Mr, T )

≤ 6CΨρ
α + C18(μ, λ0, α, α1, β, ξ1)GE(x0, ρ0)(ρ/ρ0)

β/4

≤ C19(μ, λ0, α, α1, β, ξ1)GE(x0, ρ0)(ρ/ρ0)
β/4.

�

Lemma 7.5. For any τ > 0 small enough, there exists ε2 = ε2(τ ) > 0 such that
the following hold: E is an sliding almost minimal set in Ω with sliding boundary
∂Ω and gauge function h, x0 ∈ E ∩ ∂Ω, Ψ is a mapping as in Lemma 7.1 and
CΨ is the constant as in (7.5), if r1 > 0 satisfy that CΨr

α
1 ≤ ε2, h(2r1) ≤ ε2 and

FE(x0, r1) ≤ ε2, then for any r ∈ (0, 9r1/10), we can find sliding minimal cone
Zx0,r in Tan(Ω, x0) with sliding boundary Tan(∂Ω, x0) such that

dist(x, Zx0,r) ≤ τr, x ∈ E ∩B(x0, (1− τ )r)

dist(x,E) ≤ τr, x ∈ Zx0,r ∩B(x0, (1− τ )r),

and for any ball B(x, t) ⊆ B(x0, (1− τ )r),

|H2(Zx0,r ∩B(x, t))−H2(E ∩B(x, t))| ≤ τr2.

Moreover, if E ⊇ ∂Ω, then Zx0,r ⊇ Tan(∂Ω, x0).

Proof. It is a consequence of Proposition 30.19 in [6]. �

Corollary 7.6. Let Ω, E ⊆ Ω, x0 ∈ ∂Ω, h and FE be the same as in Theorem 7.4.
Suppose that the gauge function h satisfying

h(t) ≤ Cht
α1 for some Ch > 0, α1 > 0 and 0 < t < t0.

Then there exists δ > 0 and constant C = C20(μ, λ0, α, α1, β, ξ1) > 0 for 0 < β <
min{α, α1, 2λ0} such that, whenever

0 < ρ0 ≤ min
{
r, t0, r0(x0), R0/2, (2CΨ)

−1/α, 1, (1− τ )r1

}
satisfying

FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 ≤ δ,

we have that, for 0 < ρ ≤ 9ρ0/20,

dx0,ρ(E, x0 +Tan(E, x0)) ≤ C(FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 )1/4(ρ/ρ0)

β/4.

Proof. By Theorem 7.4, there exist ρ0 > 0 such that

dx0,ρ(E, x0 +Tan(E, x0)) ≤ C(ρ/ρ0)
β/4, 0 < ρ ≤ 9ρ0/20,

where ρ0 > 0 is chosen to be as in Theorem 7.4.
By Lemma 7.5, there exists δ > 0 such that if FE(x0, 2ρ0) +CΨρ

α
0 +Chρ

α1
0 ≤ δ,

then (7.12) holds, and we get the result. �

Lemma 7.7. Let Ω, E and h be the same as in Theorem 7.4. We have that

E \ ∂Ω ∈ SAM(Ω, ∂Ω, h).
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Proof. We will put E1 = E \ ∂Ω for convenient. We first show that H2(E1∩∂Ω) =
0. Indeed, for any x ∈ E1 ∩ ∂Ω, ΘE(x) ≥ 3π/2. It follows from the fact that for
H2-a.e. x ∈ E, ΘE(x) = π that H2(E1 ∩ ∂Ω) = 0.

Let {ϕt}0≤t≤1 be any sliding deformation in some ball B = B(y, r). Since
E ⊇ ∂Ω and E ∈ SAM(Ω, ∂Ω, h), we have that

H2(E1) = H2(E \ ∂Ω) ≤ H2(ϕ1(E) \ ∂Ω) + 4h(2r)r2

= H2(ϕ1(E1) \ ∂Ω) + 4h(2r)r2

≤ H2(ϕ1(E1)) + 4h(2r)r2.

Thus E1 ∈ SAM(Ω, ∂Ω, h). �

Lemma 7.8. Let Ω, E, x0 and h be the same as in Theorem 7.4. For any ε > 0
small enough, there exists a ρ0 > 0 such that for any 0 < ρ < ρ0 and x ∈ E ∩
B(x0, ρ), there exists x1 ∈ B(x0, 5ρ) ∩ ∂Ω with x1 ∈ E \ ∂Ω such that

|x− x1| ≤ (1 + ε) dist(x, ∂Ω).

Proof. If ΘE(x0) = π, then there is an open ball B = B(x0, r) such that E ∩ B =
∂Ω ∩B, and we have nothing to prove.

We assume that ΘE(x0) = 3π/2 or 7π/4. We put E1 = E \ ∂Ω. Then x0 ∈ E1

and ΘE(x0) = π/2 or 3π/4, and by Lemma 7.7, we have that E1 ∈ SAM(Ω, ∂Ω, h).
By Lemma 7.5, for any ε ∈ (0, 10−3), there exists ρ0 ∈ (0, r0) such that, for any
0 < ρ < ρ0, we can find sliding minimal cone Zρ centered at x0 of type P+ or Y+

satisfying that

dx0,ρ(E1, Zρ) ≤ ε.

Let Ψ : B(0, r0) → R
3 be the mapping defined in Lemma 7.1, and let Λ be the

same as in (7.4). We put Uρ = Ψ(Bρ), A1 = Ψ−1(E1 ∩ Uρ0
). By Lemma 7.3, for

any 0 < r ≤ ρ/Λ(ρ), there exist sliding minimal cone Xr in Ω0 such that

d0,r(A1, Xr) ≤ (Cρα + ε)
ρ

r
.

Thus there exists ρ1 > 0 such that for any 0 < r ≤ ρ1, we can find sliding minimal
cone Xr of type P+ or Y+ such that

d0,r(A1, Xr) ≤ 2ε.

Using the same argument as in the proof Lemma 5.4 in [9], we get that there
exists ρ2 > 0 such that for any x ∈ A1 ∩ B(0, ρ) with 0 < ρ ≤ ρ2, we can find
a ∈ A1 ∩ L0 ∩B(0, 3ρ) such that

|PL0
(x)− a| ≤ 8ε|x− a|,

where we denote by PL0
the orthogonal projection from R3 to L0. Thus

|x− a| ≤ |x− PL0
(x)|+ |PL0

(x)− a| ≤ dist(x, L0) + 8ε|x− a|,

and we get that

dist(x,A1 ∩ L0 ∩B(0, 3ρ)) ≤ 1

1− 8ε
dist(x, L0 ∩B(0, 3ρ)).
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We take ρ3 = dist(x0,R
3 \ Uρ2

)/10. Then, for any 0 < ρ ≤ ρ3 and z ∈ E1 ∩
B(x0, ρ),

dist(z, E1 ∩ ∂Ω ∩B(x0, 5ρ)) ≤ Lip
(
Ψ|B(0,3ρ2)

)
dist(Ψ−1(z), A1 ∩ L0 ∩B(0, 3ρ))

≤ (1− 8ε)−1Λ(3ρ) dist(Ψ−1(z), A1 ∩ L0 ∩B(0, 3ρ))

≤ (1− 8ε)−1Λ(3ρ)2 dist(z, ∂Ω ∩B(x0, 5ρ)).

We assume ρ2 to be small enough such that (1− 8ε)−1Λ(3ρ2)
2 < 1 + 10ε, then

dist(z, E1 ∩ ∂Ω ∩B(x0, 5ρ)) ≤ (1 + 10ε) dist(z, ∂Ω ∩B(x0, 5ρ)).

�

Lemma 7.9. Let Ω, E, x0 and h be the same as in Theorem 7.4. Suppose that
ΘE(x0) = 3π/2. Then, by putting E1 = E \ ∂Ω, there exist a radius r > 0, a
number β > 0 and a constant C > 0 such that, for any x ∈ B(x0, r) ∩ E1 and
0 < ρ < 2r, we can find cone Zx,ρ such that

dx,ρ(E1, Zx,ρ) ≤ Cρβ,

where Zx,ρ = y + Tan(E1, y), y ∈ E1 ∩ B(x,Cρ), and y ∈ E1 ∩ ∂Ω ∩ B(x,Cρ) in
case ρ ≥ dist(x, ∂Ω)/10.

Proof. We see that E = E1∪∂Ω, and FE(x0, ρ) = FE1
(x, ρ)+F∂Ω(x0, ρ). By Corol-

lary 7.6, there exist δ > 0 and C > 0 such that whenever 0 < ρ0 ≤ min{1, t0, r0(x0)}
satisfying

FE1
(x0, 2ρ0) + CΨx0

ρα0 + Chρ
α1
0 ≤ δ.

we have that, for 0 < ρ ≤ 9ρ0/20,

dx0,ρ(E1, x0 +Tan(E1, x0)) ≤ Cδ1/4(ρ/ρ0)
β,

where 0 < β < min{α, α1, 2λ0, β0}/4. We take ρ1 ∈ (0, ρ0) such that

FE1
(x0, 2ρ) + CΨx0

ρα + Chρ
α1 ≤ min{δ/2, ε2(τ )}, ∀0 < ρ ≤ ρ1.

If x ∈ ∂Ω ∩ B(x0, ρ1/10), we take t = ρ1/2, then apply Lemma 7.5 with r =
|x− x0|+ t to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx,r ∩B(x, t)) + τr2,

thus

ΘE1
(x, t) ≤ 1

t2
H2(Zx,r ∩B(x, t)) + 4τ ≤ π

2
+ CΨx0

rα + 4τ,

and

FE1
(x, t) ≤ CΨx0

rα + 4τ + 16h1(t).

We get that FE1
(x, 2ρ) + CΨx

ρα + Chρ
α1 ≤ δ for 0 < ρ ≤ t/2. Thus

(7.14) dx,r(E1, x+Tan(E1, x)) ≤ Cδ1/4(r/t)β, 0 < r < 9t/20.

By Lemma 7.8, we assume that for any x ∈ E1 ∩ B(x0, ρ1/10), there exists
x1 ∈ E1 ∩B(x0, ρ1/2) ∩ ∂Ω such that

|x− x1| ≤ 2 dist(x, ∂Ω).

If x ∈ E1 ∩ B(x0, ρ1/10) \ ∂Ω, we take t = t(x) = 10−3 dist(x, ∂Ω), then apply
Lemma 7.5 with r = |x− x1|+ t to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx1,r ∩B(x, t)) + τr2,



LOCAL C1,β-REGULARITY 181

thus

ΘE1
(x, t) ≤ 1

t2
H2(Zx1,r ∩B(x, t)) + (1 + 2 · 103)2τ ≤ π/2 + (1 + 2 · 103)2τ,

and
F (x, t) ≤ (1 + 2 · 103)2τ + 8h1(t).

By Theorem 6.1, there is a constent C1 > 0 such that

(7.15) dx,r(E1, x+Tan(E1, x)) ≤ C1(r/t)
β, 0 < r < t.

Hence we get from (7.14) and (7.15) that

(7.16) dx,r(E1, x+Tan(E1, x)) ≤ C2(r/t0)
β , ∀x ∈ E1 ∩B(x0, ρ1/10), 0 < r < t0,

where

t0 =

{
ρ1/10, x ∈ ∂Ω,

10−3 dist(x, ∂Ω), x /∈ ∂Ω.

We take 0 < a < β/(1 + β). For any x ∈ B(x0, ρ1/10) \ ∂Ω, if r ≤ t
1/(1−a)
0 , then

we get from (7.16) that

(7.17) dx,r(E1, x+Tan(E1, x)) ≤ C2r
aβ ;

if t
1/(1−a)
0 < r < ρ1/5, then by (7.16), we have that

(7.18)

dx,r(E1, x1 +Tan(E1, x1)) ≤
|x− x1|+ r

r
dx1,|x−x1|+r(E1, x1 +Tan(E1, x1))

≤ C2

(
1 +

2 · 103t0
r

)(
r + 2 · 103t0

ρ1/10

)β

≤ C5(1 + C6r
−a)β+1rβ ≤ C7r

β−aβ−a.

From (7.17) and (7.18), we get so that, for any 0 < β1 < min{aβ, β−aβ−a} there
is a constant C8 > 0 such that for any x ∈ E1 ∩B(x0, ρ1/10) and 0 < ρ < ρ1/5, we
can find cone Zx,ρ such that

dx,ρ(E1, Zx,ρ) ≤ C8ρ
β1 ,

where Zx,ρ = y +Tan(E1, y), y ∈ E1 ∩B(x,C8ρ), and y ∈ E1 ∩ ∂Ω ∩B(x,C8ρ) in

case ρ ≥ t
1/(1−a)
0 . �

Lemma 7.10. Let Ω, E, x0 and h be the same as in Theorem 7.4. Suppose that
ΘE(x0) = 7π/4. Then, by putting E1 = E \ ∂Ω, there exist a radius r > 0, a
number β > 0 and a constant C > 0 such that, for any x ∈ B(x0, r) ∩ E1 and
0 < ρ < 2r, we can find a cone Zx,ρ such that

dx,ρ(E1, Zx,ρ) ≤ Cρβ,

where Zx,ρ = y +Tan(E1, y), y ∈ E1 ∩B(x0, Cρ), and y ∈ E1 ∩ ∂Ω ∩B(x0, Cρ) in
case ρ ≥ dist(x, ∂Ω)/10.

Proof. By Corollary 7.6, there exist δ > 0 and C > 0 such that whenever 0 < ρ0 ≤
min{1, t0, r0(x0)} satisfying

FE1
(x0, 2ρ0) + CΨx0

ρα0 + Chρ
α1
0 ≤ δ,

we have that, for 0 < ρ ≤ 9ρ0/20,

dx0,ρ(E1, x0 +Tan(E1, x0)) ≤ Cδ1/4(ρ/ρ0)
β,
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where 0 < β < min{α, α1, 2λ0}/4. We take ρ1 ∈ (0, ρ0) such that

FE1
(x0, 2ρ) + CΨx0

ρα + Chρ
α1 ≤ min{δ/2, ε2(τ )}, ∀0 < ρ ≤ ρ1.

If x ∈ ∂Ω ∩ B(x0, ρ1/10), we take t = |x − x0|/2, then apply Lemma 7.5 with
r = |x− x0|+ t to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx,r ∩B(x, t)) + τr2,

thus

ΘE1
(x, t) ≤ 1

t2
H2(Zx,r ∩B(x, t)) + 9τ ≤ π

2
+ CΨx0

rα + 9τ,

and

FE1
(x, t) ≤ CΨx0

rα + 9τ + 16h1(t).

We get that FE1
(x, 2ρ) + CΨx

ρα + Chρ
α1 ≤ δ for 0 < ρ ≤ t/2. Thus

(7.19) dx,r(E1, x+Tan(E1, x)) ≤ Cδ1/4(r/t)β, 0 < r < 9t/20.

By Lemma 7.8, we assume that for any x ∈ E1 ∩ B(x0, ρ1/10), there exists
x1 ∈ E1 ∩B(x0, ρ1/5) ∩ ∂Ω such that

(7.20) |x− x1| ≤ 2 dist(x, ∂Ω).

If x ∈ E1 ∩ B(x0, ρ1/10) \ ∂Ω, then ΘE1
(x) = π or 3π/2. We put t(x) =

dist(x, ∂Ω). If ΘE1
(x) = 3π/2, we take t = 10−3t(x), then apply Lemma 7.5 with

r = |x− x1|+ t to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx1,r ∩B(x, t)) + τr2,

thus

ΘE1
(x, t) ≤ 1

t2
H2(Zx1,r ∩B(x, t)) + (1 + 2 · 103)2τ ≤ 3π

2
+ (1 + 2 · 103)2τ.

and

FE1
(x, t) ≤ (1 + 2 · 103)2τ + 8h1(t).

By Theorem 6.1, we have that

(7.21) dx,ρ(E1, x+Tan(E1, x)) ≤ C1(ρ/t)
β, 0 < ρ < t.

We put EY = {x0}∪{x ∈ E\∂Ω : ΘE1
(x) = π}. If ΘE1

(x) = π and dist(x,EY ) ≤
10−2 dist(x, ∂Ω), we take x2 ∈ EY such that |x − x2| ≤ 2 dist(x,EY ) and t =
10−1 dist(x,EY ), then apply Lemma 7.24 in [4] with r = |x− x2|+ t to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx2,r ∩B(x, t)) + τr2,

thus

ΘE1
(x, t) ≤ 1

t2
H2(Zx2,r ∩B(x, t)) + 400τ ≤ π + 400τ,

and

FE1
(x, t) ≤ 4τ + 8h1(t).

By Theorem 6.1, we have that

(7.22) dx,ρ(E1, x+Tan(E1, x)) ≤ C2(ρ/t)
β, 0 < ρ < t.

If ΘE1
(x) = π and dist(x,EY ) > 10−2 dist(x, ∂Ω), we take t = 10−3 dist(x, ∂Ω),

then apply Lemma 7.5 with r = |x− x1|+ t to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx1,r ∩B(x, t)) + τr2,
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thus

ΘE1
(x, t) ≤ 1

t2
H2(Zx1,r ∩B(x, t)) + (1 + 2 · 103)2τ ≤ π + (1 + 2 · 103)2τ.

and

FE1
(x, t) ≤ (1 + 2 · 103)2τ + 8h1(t).

By Theorem 6.1, we have that

(7.23) dx,ρ(E1, x+Tan(E1, x)) ≤ C3(ρ/t)
β, 0 < ρ < t.

We get, from (7.19), (7.21), (7.22) and (7.23), so that

(7.24) dx,ρ(E1, x+Tan(E1, x)) ≤ C4(ρ/t0)
β, x ∈ E1 ∩B(x0, ρ1/10), 0 < ρ < t0,

where

t0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ1/2, x = x0,

|x− x0|/10, x ∈ ∂Ω \ {x0},
10−3 dist(x, ∂Ω), x /∈ ∂Ω,ΘE1

(x) = 3π/2

10−1 min{10−2 dist(x, ∂Ω), dist(x,EY )}, x /∈ ∂Ω,ΘE1
(x) = π.

Claim. EY ∩B(x0, ρ1/2) is a C
1 curve which is perpendicular to Tan(Ω, x0). Indeed,

by biHölder regularity at the boundary, we see that EY ∩ B(x0, ρ1/2) is a curve,
and by J. Taylor’s regularity theorem [13], we get that EY ∩B(x0, ρ1/2) is of class
C1.

By the claim, we can assume that, there is a constant η3 > 0 such that

(7.25) dist(x, ∂Ω) ≥ η3|x− x0|, ∀x ∈ EY ∩B(x0, ρ1/10).

We fix 0 < β1 < β2 < β/(1+ β) such that β1 ≤ β2β/(1+ β). By (7.24), we have
that, for any x ∈ ∂Ω ∩B(x0, ρ1/10) \ {x0}, and any 0 < ρ < |x− x0|/10,

dx,ρ(E1, x+Tan(E1, x)) ≤ C4(10ρ/|x− x0|)β .
If 0 < ρ ≤ (|x− x0|/10)1/(1−β1), then

dx,ρ(E1, x+Tan(E1, x)) ≤ C4(10ρ/|x− x0|)β = C6ρ
β1β;

if (|x− x0|/10)1/(1−β1) < ρ ≤ ρ1/5, then

dx,ρ(E1, x0 +Tan(E1, x0)) ≤
|x− x0|+ ρ

ρ
dx0,|x−x0|+ρ(E1, x0 +Tan(E1, x0))

≤
(
1 + 10ρ−β1

)
C4

(
10ρ1−β1 + ρ

ρ1/2

)β

≤ C7ρ
β−β1−ββ1 .

Thus we get that, for any 0 < β3 ≤ min{ββ1, β−β1−ββ1)}, there is a constant C8

such that for any x ∈ ∂Ω ∩ B(x0, ρ1/10) and 0 < ρ ≤ ρ1/5 we can find cone Zx,ρ

satisfying that

(7.26) dx,ρ(E1, Zx,ρ) ≤ C8ρ
β3 .

If x ∈ E1 ∩ B(x0, ρ1/10) \ ∂Ω and ΘE1
(x) = 3π/2, then for any 0 < ρ ≤

(10−3η3|x− x0|)1/(1−β1), from (7.24) and (7.25), we get that

0 < ρ < 10−3η3|x− x0| ≤ t0

and

dx,ρ(E1, x+Tan(E1, x)) ≤ C4(10
3ρ/ dist(x, ∂Ω))β = C9ρ

β1β ;
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for any (10−3η3|x− x0|)1/(1−β1) < ρ ≤ ρ1/5, we have that

dx,ρ(E1, x0 +Tan(E1, x0)) ≤
|x− x0|+ ρ

ρ
dx0,|x−x0|+ρ(E1, x0 +Tan(E1, x0))

≤
(
1 + 103η−1

3 ρ−β1
)
C4

(
103η−1

3 ρ1−β1 + ρ

ρ1/2

)β

≤ C10ρ
β−β1−ββ1 .

Thus we get that, for any 0 < β4 ≤ min{ββ1, β−β1−ββ1)}, there is a constant C11

such that for any x ∈ E1∩B(x0, ρ1/10)\∂Ω with ΘE1
(x) = 3π/2, and 0 < ρ ≤ ρ1/5

we can find cone Zx,ρ satisfying that

(7.27) dx,ρ(E1, Zx,ρ) ≤ C11ρ
β4 .

If x ∈ E1∩B(x0, ρ1/10)\Ω, ΘE1
(x) = π and dist(x, ∂Ω) < 100 dist(x,EY ), then

t0 = 10−3 dist(x, ∂Ω).

From (7.24), we get that, for any 0 < ρ < 10−3 dist(x, ∂Ω)1/(1−β1),

(7.28) dx,ρ(E1, x+Tan(E1, x)) ≤ C4(10
3ρ/ dist(x, ∂Ω))β = 103β1βC4 · ρβ1β .

For any 10−3 dist(x, ∂Ω)1/(1−β1) ≤ ρ ≤ ρ1/5, we take C12 = 10−3 · 102/(1−β1), then
we see that 10−3 dist(x, ∂Ω)1/(1−β1) ≤ C12|x−x0|1/(1−β1). If ρ ≤ C12|x−x0|1/(1−β2),
we let x1 be the point chose in (7.20), then we have that |x− x1| ≤ 2 dist(x, ∂Ω) ≤
2(103ρ)1−β1 and

|x− x0| ≥ dist(x,EY ) ≥ 100 dist(x, ∂Ω) ≥ 50|x− x1|,

thus

|x1 − x0| ≥ |x− x0| − |x− x1| ≥ (1− 1/50)|x− x0| ≥
49

50
(C−1

12 ρ)1−β2 ,

From (7.24), we get that
(7.29)

dx,ρ(E1, x1 +Tan(E1, x1)) ≤
|x− x1|+ ρ

ρ
dx1,|x−x1|+ρ(E1, x1 +Tan(E1, x1))

≤
(
1 + 2 · 103−3β1ρ−β1

)
C4

(
2 · 103−3β1ρ1−β1 + ρ

|x0 − x1|/10

)β

≤ 101 · C4 · C1−β2

12 · (2 · 103−3β1 + ρβ1)1+βρββ2−ββ1−β1

≤ C13ρ
ββ2−ββ1−β1 .

If ρ > C12|x− x0|1/(1−β2), we have that
(7.30)

dx,ρ(E1, x0 +Tan(E1, x0)) ≤
|x− x0|+ ρ

ρ
dx0,|x−x0|+ρ(E1, x0 + Tan(E1, x0))

≤
(
1 + C−1+β2

12 ρ−β2

)
C4

(
C−1+β2

12 ρ1−β2 + ρ

ρ1/2

)β

= 2C4ρ
−1
1 (C−1+β2

12 + ρ)1+βρβ−β2−ββ2 ≤ C14ρ
β−β2−ββ2 .
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If x ∈ E1 ∩ B(x0, ρ1/10) \ ∂Ω, ΘE1
(x) = π and dist(x, ∂Ω) ≥ 100 dist(x,EY ),

then from (7.24), we have that for any 0 < ρ < 10−1 dist(x,EY )
1/(1−β1),

(7.31) dx,ρ(E1, x+Tan(E1, x)) ≤ C4(10ρ/ dist(x,EY ))
β ≤ 10ββ1 · C4 · ρβ1β.

For any 10−1 dist(x,EY )
1/(1−β1) ≤ ρ ≤ ρ1/5, we take y ∈ EY such that |x − y| ≤

2 dist(x,EY ). We put C16 = 10−1−2/(1−β1). We see that 10−1 dist(x,EY )
1/(1−β1) ≤

C16 dist(x, ∂Ω)
1/(1−β1). If ρ ≤ C16 dist(y, ∂Ω)

1/(1−β2), then |x−y| ≤ 2 dist(x,EY ) ≤
2(10ρ)1−β1 . From (7.24), we get that
(7.32)

dx,ρ(E1, y +Tan(E1, y)) ≤
|x− y|+ ρ

ρ
dy,|x−y|+ρ(E1, y +Tan(E1, y))

≤
(
1 + 2 · 101−β1ρ−β1

)
C4

(
2 · 101−β1ρ1−β1 + ρ

10−3 dist(y, ∂Ω)

)β

= 103βC4C
β(1−β1)
16

(
2 · 101−β1 + ρβ1

)1+β
ρβ(β2−β1)−β1

≤ C17ρ
ββ2−β1−ββ1 .

If ρ > C16 dist(y, ∂Ω)
1/(1−β2), we have that |x−x0| ≥ dist(x, ∂Ω) ≥ 100 dist(x,EY )

≥ 50|x− y|. Since y ∈ Ey, we see from (7.25) that

dist(y, ∂Ω) ≥ η3|y − x0| ≥ η3(|x− x0| − |x− y|) ≥ η3 ·
49

50
|x− x0|,

and |x− x0| ≤ 50
49η

−1
3 dist(y, ∂Ω) ≤ 2η−1

3 (C−1
16 ρ)1−β2 . We get from (7.24) that

(7.33)

dx,ρ(E1, x0 +Tan(E1, x0))

≤ |x− x0|+ ρ

ρ
dx0,|x−x0|+ρ(E1, x0 +Tan(E1, x0))

≤
(
1 + 2η−1

3 C−1+β2

16 ρ−β2

)
C4

(
2η−1

3 C−1+β2

16 ρ1−β2 + ρ

ρ1/2

)β

= 2C4ρ
−1
1 (2η−1

3 C−1+β2

16 + ρβ2)1+βρβ(1−β2)−β2

≤ C18ρ
β−β2−ββ2 .

We get, from (7.28), (7.29), (7.30), (7.31),(7.32) and (7.33), that for any 0 < β5 ≤
min{ββ1, ββ2 − β1 − ββ1, β − β2 − ββ2}, there is a constant C19 > 0 such that for
any x ∈ E1 ∩ B(x0, ρ1/10) \ ∂Ω with ΘE1

(x) = π and 0 < ρ ≤ ρ1/5, we can find
cone Zx,ρ such that

(7.34) dx,ρ(E1, Zx,ρ) ≤ C19ρ
β5 .

Hence we get, from (7.26), (7.27) and (7.34), there is a constant C20 > 0 and
C21 > 0 such that for any x ∈ E1 ∩ B(x0, ρ1/10) and 0 < ρ ≤ ρ1/5, we can find
cone Zx,ρ such that

dx,ρ(E1, Zx,ρ) ≤ C20ρ
β6 ,

where Zx,ρ = z + Tan(E1, z) for some z ∈ E1 ∩ B(x,C21ρ), and z ∈ E1 ∩ ∂Ω ∩
B(x,C21ρ) in case

ρ ≥ max{(10−3η3|x−x0|)1/(1−β1), 10−3 dist(x, ∂Ω)1/(1−β1), C16 dist(y, ∂Ω)
1/(1−β2)}.

�
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Corollary 7.11. Let Ω, E and h be the same as in Theorem 7.4. Let E1 = E \ ∂Ω
and x0 ∈ E1 ∩ ∂Ω. Then there exist a radius r > 0, a number β > 0 and a constant
C > 0 such that, for any x ∈ E1 ∩ B(x0, r) and 0 < ρ < 2r, we can find cone Zx,ρ

such that
dx,ρ(E1, Zx,ρ) ≤ Cρβ,

where Zx,ρ = y + Tan(E1, y), y ∈ E1 ∩ B(x,Cρ), and y ∈ E1 ∩ ∂Ω ∩ B(x,Cρ) in
case ρ ≥ dist(x, ∂Ω)/10.

Proof. It is follow from Lemma 7.9 and Lemma 7.10. �

Lemma 7.12. Let Ω, E, x0 and h be the same as in Corollary 7.11. Let Ψ :
B(0, r0) → R

3 be the mapping defined in Lemma 7.1. Let R > 0 be such that
Ψ(B(0, R)) ⊆ B(x0, r), where B(x0, r) is the ball considered as in Corollary 7.11.
By putting U = Ψ(B(0, R)), M1 = Ψ−1(E1 ∩ U), we have that there exist ρ3 > 0,
β > 0, and constant C > 0 such that for any z ∈ M1 ∩ B(0, ρ3) and 0 < t < 2ρ3,
we can find cone Z(z, t) through z such that

dz,t(M1, Z(z, t)) ≤ Ctβ,

where Z(z, t) is a minimal cone of type P or Y in case z ∈ M1 \ L0 and 0 < t <
dist(z, L0)/2; and in case t ≥ dist(z, L0)/2 or z ∈ L0, Z(z, t) is a sliding minimal
cone in Ω0 with sliding boundary L0, if Z(z, t) \ L0 �= ∅, we can be written as
Z(z, t) = L0 ∪ Z ′(z, t), Z ′(z, t) is a sliding minimal cone of type P+ or Y+.

Proof. For any x ∈ B(x0, r) ∩ E1 and 0 < ρ < 2r, we let Zx,ρ be the same cone
considered as in Corollary 7.11. We put Φ = Ψ−1|B(x0,r) for convenient. For any
y ∈ E1 ∩B(x0, r), and z ∈ E1 ∩B(x, ρ), we put X = Tan(E1, y), then

(7.35) dist(Φ(z),Φ(y +X)) ≤ Lip(Φ) dist(z, y +X) ≤ C Lip(Φ)ρ1+β.

Since
|Φ(z1)− Φ(z2)−DΦ(z2)(z1 − z2)| ≤ C1|z1 − z2|1+α,

we have that, for any z1 ∈ y +X,

(7.36) dist(Φ(z1),Φ(y) +DΦ(y)X) ≤ C1|z1 − y|1+α.

Hence, from (7.35) and (7.36), we have that
(7.37)
dist(Φ(z),Φ(y) +DΦ(y)X) ≤ C Lip(Φ)ρ1+β + C1(ρ+ Cρ+ Cρ1+β)1+α ≤ C2ρ

1+β.

For any v ∈ X, we see that Φ(y)+DΦ(y)v ∈ Φ(y)+DΦ(y)X, and we have that

dist(Φ(y) +DΦ(y)v,M1) ≤ dist(Φ(y) +DΦ(y)v,Φ(E1 ∩B(x, ρ)))

= inf{|Φ(z)− Φ(y)−DΦ(y)v| : z ∈ E1 ∩B(x, ρ)}
≤ inf{C1|z − y|1+α+Lip(Φ)|z − y − v| : z∈E1∩B(x, ρ)}
≤ C1(ρ+ Cρ)1+α + Lip(Φ) dist(y + v, E1).

Thus there exist C3 > 0 such that, for any v ∈ X with |y + v − x| ≤ ρ,

(7.38) dist(Φ(y) +DΦ(y)v,M1) ≤ C3ρ
1+β .

We take 0 < C5 < C4 < 1 small enough, for example C4 < (10 Lip(Φ))−1, then
for any C5ρ ≤ t ≤ C4ρ ≤ ρ/Lip(Φ)− C1(Cρ)1+α, we have that M1 ∩B(Φ(x), t) ⊆
Φ(E1 ∩B(x, ρ)) and

[Φ(y) +DΦ(y)X] ∩B(Φ(x), t) ⊆ {Φ(y) +DΦ(y)v : v ∈ X, y + v ∈ B(x, ρ)}.
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From (7.37) and (7.38), we get so that

dΦ(x),t(M1,Φ(y) +DΦ(y)X) ≤ C6ρ
β ≤ C7t

β ,

and
|Φ(x)− Φ(y)| ≤ Lip(Φ)|x− y| ≤ (Lip(Φ)CC−1

5 )t.

Hence
dΦ(x),t(M1,Φ(y) +DΦ(y)X) ≤ C7t

β, for any 0 < t < C4ρ1,

where ρ1 ∈ (0, 2r) satisfy that C1C
1+αρ1 ≤ Lip(Φ)−1 − C4.

We take ρ2 > 0 such that, for any x ∈ E1 ∩ Φ(B(x0, ρ2)) and 0 < ρ <
2ρ2, Zx,ρ can be expressed as Zx,ρ = y + Tan(E1, y) with y ∈ E1 ∩ U . Since
DΦ(y)X = DΦ(y) Tan(E1, y) = Tan(M1,Φ(y)) in case y ∈ E1 ∩ U , by putting
ρ3 = min{ρ2, C4ρ1/2, R}, we have that, for any z ∈ M1 ∩B(0, ρ3) and 0 < t < 2ρ3,
there exist cone Z ′(z, t) in Ω0 with sliding boundary L0 = ∂Ω0, such that

dx,t(M1, Z
′(z, t)) ≤ C7t

β .

For such cone Z ′(z, t), we have that Z ′(z, t) = w+Tan(M1, w), w ∈ M1, |w− z| ≤
C8t, and w ∈ L0∩B(z, C8t) in case t ≥ dist(z, L0)/2. Z

′(z, t) may not pass through
z, but the cone Z(z, t) = Z ′(z, t)− w + z pass through z, and

dx,t(M1, Z(z, t)) ≤ C7t
β + C8t ≤ C9t

β .

�
Proof of Theorem 1.2. Let M1 be the same as in Lemma 7.12, and let
M = Ψ−1(E ∩ U). Then by Lemma 7.12, we have that for any x ∈ M1 ∩ B(0, ρ3)
and 0 < r < 2ρ3, there exist cone Z(x, r) such that

dx,r(M1, Z(x, r)) ≤ Crβ,

where Z(x, r) is a minimal cone in R3 of type P or Y in case x �∈ L0 and t ≤
dist(x, L0)/2; and Z(x, r) is a sliding minimal cone in Ω0 with sliding boundary L0

of type P+ or Y+ in other case. We apply Theorem 5.1 to get that there exist ρ4 > 0,
a sliding minimal cone Z ′ centered at 0, and a mapping Φ1 : Ω0 ∩ B(0, ρ4) → Ω0,
which is a C1,β-diffeomorphism such that Φ1(0) = 0, Φ1(∂Ω0 ∩ B(0, ρ4)) ⊆ L0,
‖Φ− id ‖ ≤ 10−1ρ4 and

M1 ∩B(0, ρ4) = Φ(Z ′) ∩B(0, ρ4).

We take Z = Z ′ ∪ L0, then we get that

M ∩B(0, ρ4) = Φ(Z) ∩B(0, ρ4).

�

8. Existence of the plateau problem with sliding boundary

conditions

The Plateau Problem with sliding boundary conditions arise in [7], proposed
by Guy David. That is, given an initial set E0, and boundary Γ, to find the
minimizers among all competitors. The author of the paper [7] also gives the
sketch to the existence in Section 6, and later on in [6], he pave the way. We will
give an existence result in case the boundary is nice enough.

Let Ω ⊆ R
3 be a closed domain such that the boundary ∂Ω is a 2-dimensional

manifold of class C1,α for some α > 0. Let E0 ⊆ Ω be a closed set with E0 ⊇ ∂Ω.
We denote by C (E0) the collection of all competitors of E0.
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Theorem 8.1. If there is a bounded minimizing sequence of competitors, then there
exists E ∈ C (E0) such that

H2(E \ ∂Ω) = inf{H2(S \ ∂Ω) : S ∈ C (E0)}

Proof. We put

m0 = inf{H2(S \ ∂Ω) : S ∈ C (E0)}.
If m0 = +∞, we have nothing to do. We now assume that 0 ≤ m0 < +∞.

Let {Si} ⊆ C0 be a sequence of competitors bounded by B(0, R) such that

lim
i→∞

H2(Si \ ∂Ω) = m0.

Apply Lemme 5.2.6 in [11], we can fined a sequence of open sets {Ui} and a sequence
of competitors {Ei} ⊆ C (E0) of E0 bounded by B(0, R+ 1) such that

• Ui ⊆ Ui+1, ∪i≥1Ui = B(0, R+ 2) \ ∂Ω;
• Ei ∩ Ui ∈ QM(Ui,M, diam(Ui)) for constant M > 0;
• H2(Ei) ≤ H2(Si) + 2−i.

We assume that Ei converge locally to E∞ in B(0, R + 2), pass to subsequence if
necessary, then by Corollary 21.15 in [6], we get that E∞ is sliding minimal.

Since Ei ∩ Ui ∈ QM(Ui,M, diam(Ui)), by Lemma 3.3 in [4], we have that

H2(E∞ ∩ Ui) ≤ lim inf
k→∞

H2(Ek ∩ Ui) ≤ m0,

thus

H2(E∞ \ ∂Ω) ≤ m0.

By Theorem 1.2 and Theorem 1.15 in [5], we get that E∞ is local Lipschitz
neighborhood retract. We denote by ϕ a Lipschitz neighborhood retraction of E∞,
since Ei converges to E∞, we get that ϕ(Ek) ⊆ E∞ for k large enough. Thus ϕ(Ek)
are minimizers. �

Acknowledgments

The author acknowledges the perfect working conditions while working at both
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