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HYPERBOLIC DISTANCE VERSUS QUASIHYPERBOLIC

DISTANCE IN PLANE DOMAINS

DAVID A. HERRON AND JEFF LINDQUIST

Dedicated to David Minda, for decades of interesting discussions.

Abstract. We examine Euclidean plane domains with their hyperbolic or
quasihyperbolic distance. We prove that the associated metric spaces are qua-
sisymmetrically equivalent if and only if they are bi-Lipschitz equivalent. On
the other hand, for Gromov hyperbolic domains, the two corresponding Gro-
mov boundaries are always quasisymmetrically equivalent. Surprisingly, for
any finitely connected hyperbolic domain, these two metric spaces are always

quasiisometrically equivalent. We construct examples where the spaces are not
quasiisometrically equivalent.

1. Introduction

Throughout this section Ω denotes a hyperbolic plane domain: Ω ⊂ C is open
and connected and C\Ω contains at least two points. Each such Ω carries a unique
maximal constant curvature -1 conformal metric λ ds = λΩ ds usually referred to
as the Poincaré hyperbolic metric on Ω. The length distance h = hΩ induced
by λ ds is called hyperbolic distance in Ω. There is also a quasihyperbolic metric
δ−1ds = δ−1

Ω ds on Ω, whose length distance k = kΩ is called quasihyperbolic distance
in Ω; here δ(z) = δΩ(z) := dist(z, ∂Ω) is the Euclidean distance from z to the
boundary of Ω. See §2.C for more details.

This work continues that begun in [BH20], [Her21a], [Her21b] where we elucidate
the geometric similarities and metric differences between the metric spaces (Ω, h)
and (Ω, k). Our first result, Theorem A below, characterizes when the metric
spaces (Ω, h) and (Ω, k) are quasisymmetrically equivalent. Theorem B reveals that,
when these spaces are Gromov hyperbolic, their Gromov boundaries are always
quasisymmetrically equivalent.

To set the stage, we begin with some preliminary observations. A straightfor-
ward, albeit non-trivial, argument reveals that the metric spaces (Ω, h) and (Ω, k)
are isometric if and only if Ω is an open half-plane and the isometry is the restric-
tion of a Möbius transformation. Furthermore, these metric spaces are bi-Lipschitz
equivalent if and only if the identity map is bi-Lipschitz; see §2.C.3.

It is well-known that the identity map (Ω, k)
id−→ (Ω, h) enjoys the following

properties:

• The map id is a 2-Lipschitz 1-quasiconformal homeomorphism.
• For any simply connected Ω, id is 2-bi-Lipschitz.1
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• In general, id is bi-Lipschitz if and only if Ĉ \ Ω is uniformly perfect.2

The last item above is due to Beardon and Pommerenke; see [BP78] and §2.C.3.
Our interest is in general (non-simply connected) hyperbolic plane domains Ω

where there may be no simple metric control on id−1. For example, given any
sequences (hn)

∞
1 and (kn)

∞
1 of positive numbers with say 1 ≥ hn → 0 and 2 ≤

kn → ∞, there are sequences (an)
∞
1 , (bn)

∞
1 of points in the punctured unit disk

D� := D \ {0} with hyperbolic and quasihyperbolic distances h�(an, bn) = hn and
k�(an, bn) = kn. See [BH20, Ex. 2.7].

The following striking rigidity theorem contains our first main result. (See §2.A
for mapping definitions.) This says that the metric spaces (Ω, k) and (Ω, h) are
either “quite similar” (i.e., bi-Lipschitz equivalent) or “quite different” (i.e., not
quasisymmetrically equivalent).

Theorem A. For any hyperbolic plane domain Ω, the following are quantitatively
equivalent.

(A.1) The metric spaces (Ω, k) and (Ω, h) are quasisymmetrically equivalent.
(A.2) The metric spaces (Ω, k) and (Ω, h) are bi-Lipschitz equivalent.
(A.3) The identity map (Ω, k) → (Ω, h) is bi-Lipschitz.

(A.4) Ĉ \ Ω is uniformly perfect.

Again, Beardon and Pommerenke [BP78] established the equivalence of (A.3)
and (A.4).

Recently, the first author and Buckley [BH20, Theorem B] demonstrated that
(Ω, k) and (Ω, h) are simultaneously Gromov hyperbolic or not, and we call Ω
Gromov hyperbolic in the former case. Our next result stands in stark contrast to
Theorem A. Even when (Ω, k) and (Ω, h) are not quasisymmetrically equivalent,
the large scale geometry is the same in both spaces—at least when they are Gromov
hyperbolic. This further enhances [BH20, Theorem A] where we proved that these
metric spaces have the same quasi-geodesic curves.

Theorem B. For any Gromov hyperbolic plane domain Ω, the canonical conformal
gauges on the Gromov boundaries ∂G(Ω, k) and ∂G(Ω, h) are naturally quasisym-
metrically equivalent.

If (Ω, h) and (Ω, k) are quasiisometrically3 equivalent, the above Gromov bound-
ary equivalence is known and given via a power quasisymmetry; see [BS00, The-
orem 6.5(2)]. Whereas our proof of Theorem A is surprisingly simple, the proof
of Theorem B employs significant machinery as explained in the first paragraph of
§3.B.

Again, when Ĉ \Ω is uniformly perfect, (Ω, k) and (Ω, h) are bi-Lipschitz equiv-
alent. A natural conjecture is that this uniform perfectness might be a necessary
condition for (Ω, k) and (Ω, h) to be quasiisometrically equivalent. However, our
next result reveals that this is not the case.

Theorem C. For any finitely connected hyperbolic plane domain Ω, the metric
spaces (Ω, k) and (Ω, h) are quasiisometrically equivalent.

The above is just an easy to state special case of our more general Theorem 3.9
which provides a large class of plane domains whose hyperbolizations and quasihy-
perbolizations are quasiisometrically equivalent. This raises the natural question

2The bi-Lipschitz and uniformly perfectness constants depend only on each other.
3Our quasiisometries are sometimes called rough bi-Lipschitz maps.
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of whether the conclusion of Theorem C could be true in general, and we answer
this below. Note that a quasiisometry can have an arbitrarily large additive rough
constant and this obstacle must be overcome.

Theorem D. There are uniform (hence Gromov) hyperbolic plane domains Ω with
the property that any quasisymmetric equivalence between ∂G(Ω, k) and ∂G(Ω, h),
e.g., that given by Theorem B, is not via a power quasisymmetry. In particular,
(Ω, k) and (Ω, h) are not quasiisometrically equivalent.

Domains that satisfy Theorem D include any Ω := C \ {an}∞0 , where, a0 := 0,
and (an)

∞
1 is a strictly decreasing sequence in (−∞, 0) with an+1/an → +∞ as

n → +∞
Section 2 contains the usual definitions and terminology; especially, see §2.C.1

and §2.C.2 for details about the hyperbolic and quasihyperbolic metrics. We prove
Theorems A, B, C, D in §§3.A, 3.B, 3.C, 3.D respectively.

2. Preliminaries

We work in the Euclidean plane, and on the Riemann sphere, which we identify,
respectively, with the complex number field C and its one-point extension Ĉ :=
C ∪ {∞}. Everywhere Ω is a domain4 (i.e., an open connected set) and ∂Ω and

∂̂Ω denote the boundary of Ω with respect to the plane and sphere (respectively).

Always, Ω is a hyperbolic domain, i.e., Ĉ \ Ω contains at least three points.

We write Â and ∂̂A for the closure and boundary of a set A in Ĉ whereas Ā and
∂A are the Euclidean closure and boundry of A.

We write C = C(D, . . . ) to indicate a constant C that depends only on the
data D, . . . . In some cases we write K1 � K2 to indicate that K1 ≤ C K2 for
some computable constant C that depends only on the relevant data, and K1 � K2

means K1 � K2 � K1.
The Euclidean line segment joining two points a, b is [a, b], and (a, b) = [a, b] \

{a, b}. The open and closed Euclidean disks, and the circle, centered at the point
a ∈ C and of radius r > 0, are denoted by D(a; r) and D[a; r] and S1(a; r) respec-
tively, and D := D(0; 1) is the unit disk. We also define

C� := C \ {0} , Cab := C \ {a, b} , D� := D \ {0} , D� := C \ D̄ ;

the definition of Cab is for distinct points a, b in C.
The quantity δ(z) = δΩ(z) := dist(z, ∂Ω) is the Euclidean distance from z ∈ C

to the boundary of Ω, and 1/δ is the scaling factor (aka, metric-density) for the
so-called quasihyperbolic metric δ−1ds on Ω ⊂ C; see §2.C.1. We use the notation

D(z) = DΩ(z) := D
(
z; δ(z)

)
= D

(
z; δΩ(z)

)
for the maximal Euclidean disk in Ω centered at a point z ∈ Ω, and then

B(z) = BΩ(z) := ∂D(z) ∩ ∂Ω = S1
(
z; δ(z)

)
∩ ∂Ω

is the set of all nearest boundary points for z.

4Our interest is in non-simply connected domains Ω primarily with Ĉ\Ω non-uniformly perfect.
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The chordal and spherical distances on Ĉ are χ and σ, respectively. Thus

χ(z, w) :=

⎧⎪⎪⎨
⎪⎪⎩

2|z − w|√
1 + |z|2

√
1 + |w|2

if z, w ∈ C

2√
1 + |z|2

if z ∈ C, w = ∞

and σ is the length distance associated with χ,5 χ = 2 sin(σ/2), and χ ≤ σ ≤
(π/2)χ. Calculations are easier with χ, but σ is a geodesic distance whereas χ is
not geodesic.

Each of the metric spaces (Ω, |·|), (Ω, χ), (Ω, σ) has an associated length distance,
although the latter two are equal. We write l = lΩ for the intrinsic (aka, inner)
Euclidean length distance and lσ = lΩσ

for the intrinsic chordal length distance
(which equals the intrinsic spherical length distance), and then (Ω, l) and (Ω, lσ)
are the corresponding length spaces. See for example [Her10].

It is convenient to let χ(z) and σ(z) denote the chordal and spherical distances

from z to ∂̂Ω. Again, χ(z) ≤ σ(z) ≤ (π/2)χ(z), and we note that

σ(z) := distσ(z, ∂̂Ω) = distlσ
(
z, ∂(Ω, lσ)

)
where ∂(Ω, lσ) is the metric boundary of (Ω, lσ).

2.A. Maps, paths, and geodesics. An embedding X
f−→ Y between two metric

spaces is a quasisymmetry if there is a homeomorphism η : [0,∞) → [0,∞) (called
a distortion function) such that for all triples x, y, z ∈ X,

|x− y| ≤ t|x− z| =⇒ |fx− fy| ≤ η(t)|fx− fz| ;
when this holds, we say that f is η-QS. These mappings were studied by Tukia and
Väisälä in [TV80]; see also [Hei01].

The bi-Lipschitz maps form an important subclass of the quasisymmetric maps;

X
f−→ Y is bi-Lipschitz if and only if there is a constant L such that for all x, y ∈ X,

L−1|x− y| ≤ |fx− fy| ≤ L|x− y|,
and when this holds we say that f is L-bi-Lipschitz; such an f is η-QS with η(t) :=
Lt.

More generally, a map X
f−→ Y is an (L,C)-quasiisometry if L ≥ 1, C ≥ 0 and

for all x, y ∈ X,

L−1|x− y| − C ≤ |fx− fy| ≤ L|x− y|+ C.

These are often called rough bi-Lipschitz maps, and there seems to be no universal
agreement regarding this terminology; some authors use the adjective quasiisometry
to mean what we have called bi-Lipschitz, and then a rough quasiisometry satisfies
our definition of quasiisometry. A (1, 0)-quasiisometry is simply an isometry (onto
its range), and a (1, C)-quasiisometry is called a C-rough isometry.

Two metric spaces X,Y are isometrically equivalent (or BL, QS, QC equivalent,
respectively) if and only if there is a bijection X → Y that is an isometry (or BL,
QS, or QC).

Also, X,Y are quasiisometrically equivalent if and only if there is a quasiisome-
try f : X → Y with the property that f(X) is cobounded in Y (i.e., the Hausdorff

5Identifying Ĉ with the unit sphere in R3 we see that σ(u, v) is the angle between u, v.



582 DAVID A. HERRON AND JEFF LINDQUIST

distance between f(X) and Y is finite). More precisely: X,Y are (L,C)-QI equiv-
alent if there is an (L,C)-quasiisometry f : X → Y and for each y ∈ Y there is an
x ∈ X with |y− f(x)| ≤ C. An alternative way to describe this is to say that there
are quasiisometries in both directions that are rough inverses of each other.

2.1. Example. Suppose X ⊂ Y and for each y ∈ Y there is an xy ∈ X with
|xy − y| ≤ C. The maps

X
id
↪→ Y

f−→ X , where f(y) :=

{
y if y ∈ X

xy if y /∈ X
,

are both rough isometric equivalences: the “identity” inclusion is a (1, C)-QI equiv-
alence and f is a (1, 2C)-QI equivalence.

Our metric spaces will always be the domain Ω, either in C or in Ĉ, with either
Euclidean distance, chordal distance, spherical distance, an associated length dis-
tance, an associated quasihyperbolic distance, or an associated hyperbolic distance.

A path in X is a continuous map R ⊃ I
γ−→ X where I = Iγ is an interval (called

the parameter interval for γ) that may be closed or open or neither and finite or
infinite. The trajectory of such a path γ is |γ| := γ(I) which we call a curve. When
I is closed and I = R, ∂γ := γ(∂I) denotes the set of endpoints of γ which consists
of one or two points depending on whether or not I is compact. For example, if
Iγ = [0, 1] ⊂ R, then ∂γ = {γ(0), γ(1)}.

We call γ a compact path if its parameter interval I is compact (which we often
assume to be [0, 1]). We call γ a rectifiable path if its length �(γ) is finite, and then
we may assume that γ is parameterized with respect to arclength in which case the
parameter interval for γ is [0, �(γ)]. We note that arclength parameterizations are
a priori 1-Lipschitz continuous.

When ∂γ = {a, b}, we write γ : a � b (in Ω) to indicate that γ is a path (in
Ω) with initial point a and terminal point b; this notation implies an orientation:
a precedes b on γ.

When α : a � b and β : b � c are paths that join a to b and b to c respectively,
α � β denotes the concatenation of α and β; so α � β : a � c. Of course, |α � β| =
|α| ∪ |β|. Also, the reverse of γ is the path γ−1 defined by γ−1(t) := γ(1− t) (when
Iγ = [0, 1]) and going from γ(1) to γ(0). Of course, |γ−1| = |γ|.

An arc α is an injective compact path. Every arc is taken to be ordered from
its initial point to its terminal point. Given points a, b ∈ |α|, there are unique
u, v ∈ I with α(u) = a, α(v) = b and we write α[a, b] := α|[u,v]. Every compact
path contains an arc with the same endpoints; see [Väi94].

A path I
γ−→ X into a metric space X is a geodesic if γ is an isometry (for all

s, t ∈ I, |γ(s)− γ(t)| = |s− t|) and a K-quasi-geodesic if γ is K-bi-Lipschitz,6

for all s, t ∈ I , K−1|s− t| ≤ |γ(s)− γ(t)| ≤ K|s− t|.
A characteristic property of geodesics is that the length of each subpath equals
the distance between its endpoints. There is a corresponding description for quasi-

geodesics: I
γ−→ X is an L-chordarc path if it is rectifiable and

for all s, t ∈ I , �(γ|[s,t]) ≤ L |γ(s)− γ(t)|.

6One can also consider rough-quasi-geodesics where γ is a quasiisometry; we do not do so.
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If we ignore parameterizations, then the class of all quasi-geodesics (in some metric
space) is exactly the same as the class of all chordarc paths. More precisely, a K-
quasi-geodesic is a K2-chordarc path, and if we parameterize an L-chordarc path
with respect to arclength, then we get an L-quasi-geodesic.

In this paper we study the metric spaces (Ω, h) or (Ω, k) where Ω is a hyper-
bolic plane domain and h and k are the hyperbolic and quasihyperbolic distances in
Ω. The geodesics and quasi-geodesics in (Ω, h) are called hyperbolic geodesics and
hyperbolic quasi-geodesics, and similarly in (Ω, k) we attach the adjective quasihy-
perbolic.

2.B. Annuli and uniformly perfect sets. Given c ∈ C and 0 < r < R < +∞,
A := { z ∈ C | r < |z − c| < R } is an Euclidean annulus with center c(A) := c and
conformal modulus mod(A) := log(R/r); if r = 0 or R = ∞, A is a degenerate

annulus and mod(A) := +∞. We call S1(A) := S1(c;
√
rR) the conformal center

circle of A; A is symmetric about this circle.7 The inner and outer boundary circles
of A are, respectively,

∂inA := S1(c; r) and ∂outA := S1(c;R) .

A point z is inside (outside) A if and only if z ∈ Ain := B[c; r] (z ∈ Aout :=
C \ B(c;R)); that is, z is inside (or outside) A if and only if z is inside ∂inA (or
outside ∂outA).

It is convenient to introduce the notation

A=A(c; d,m) :=
{
z∈C : d e−m <

∣∣ z − c| < dem
}

and A[c; d,m] :=A(c; d,m) .

Then S1(A) = S1(c; d), ∂inA = S1(c; d e−m), and ∂outA = S1(c; d em); here c = c(A),
d > 0,m > 0.

An annulus A′ is a subannulus of A, denoted by A′ ⊂a A, provided

A′ ⊂ A and Ain ⊂ A′
in and Aout ⊂ A′

out .

Two annuli are concentric if they have a common center, and A′ is a concentric
subannulus of A, denoted by A′ ⊂c A, provided c(A′) = c(A) and A′ is a subannulus
of A.

An annulus A separates E if A ⊂ Ĉ \E and both components of Ĉ \A contains
points of E; thus when A separates { a, b }, one of a or b lies inside A and the other
lies outside A, and if A does not meet nor separate { a, b }, then a and b are on
the same side of A. Evidently, if A′ is a subannulus of A, then A′ separates the
boundary circles of A.

We define

A(m) := {A | A is an Euclidean annulus with mod(A) > m } ,

AΩ := {A | A is an Euclidean annulus in Ω with c(A) ∈ C \ Ω } ,

A1
Ω := {A ∈ AΩ | ∂A ∩ ∂Ω = ∅ } ,

A2
Ω := {A ∈ AΩ | ∂inA ∩ ∂Ω = ∅ = ∂outA ∩ ∂Ω } ,

AΩ(m) := AΩ ∩A(m) , and As
Ω(m) := As

Ω ∩A(m) for s ∈ { 1, 2 } .

The requirement c(A) ∈ C \ Ω means that A separates (C \ Ω) ∪ {∞ }.

7Reflection across S1(A) maps A to itself interchanging its boundary circles.
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Following Pommerenke [Pom79], we say that E ⊂ Ĉ is M -uniformly perfect if
and only if E is closed, E contains the point at infinity, and

(2.2) sup
A∈AC\E

mod(A) ≤ M .

Pommerenke [Pom84] established a number of equivalent conditions. Heinonen
[Hei01] has a general metric space definition for uniform perfectness that is similar
to, but different from, Pommerenke’s definition; see the Appendix. See also [Sug01]
and [HLM89].

2.C. Conformal metrics. A continuous function X
ρ−→ (0,∞) on a rectifiably

connected metric space X induces a length distance dρ on X defined by

dρ(a, b) := inf
γ:a�b

�ρ(γ) where �ρ(γ) :=

∫
γ

ρ ds

and where the infimum is taken over all rectifiable paths γ : a � b inX. We describe
this by calling ρ ds = ρ(x)|dx| a conformal metric on X. Below we consider the
hyperbolic and quasihyperbolic metrics defined on plane domains.

We call γ a ρ-geodesic if dρ(a, b) = �ρ(γ); these need not be unique. We often
write [a, b]ρ to indicate a ρ-geodesic with endpoints a, b, but one must be careful
with this notation since these geodesics need not be unique. When z is a fixed point
on a given geodesic [a, b]ρ, we write [a, z]ρ to mean the subarc of the given geodesic
from a to z.

We note that the ratio ρ ds/σ ds of two conformal metrics is a well-defined posi-
tive function. We write ρ ≤ C σ to indicate that this metric ratio is bounded above
by C.

When ρ ds is a conformal metric on Ω, we let Ωρ := (Ω, dρ). The following is
surely folklore, but we briefly outline a proof which employs standard techniques.

2.3. Lemma. Let ρ ds and τ ds be conformal metrics on some plane domain Ω.
Then the identity map

Ωρ
id−→ Ωτ is conformal, i.e., it is metrically 1-QC.

Also, if Ωρ
f−→ Ωτ is η-QS, then f induces a map Ω

f−→ Ω which is η(1)-QC.

Proof. The metric spaces (Ω, |·|), (Ω, l), (Ω, dρ), (Ω, dτ ) are all homeomorphic, and
even locally bi-Lipschitz. Indeed, given a ∈ Ω and 0 < ε < ρ(a)/2, there is an
r0 ∈ (0, δ(a)) such that

(2.4) z ∈ D[a; r0] =⇒
(
ρ(a)− ε

)
|z − a| ≤ dρ(z, a) ≤

(
ρ(a) + ε

)
|z − a| .

Using this we deduce that for all small ε > 0 and all r ∈ (0, r0) (where r0 ∈ (0, δ(a))
is chosen as above “for both dρ and dτ”),

L(r) := sup
dρ(z,a)≤r

dτ (z, a) ≤
τ (a) + ε

ρ(a)− ε
· r

and

l(r) := inf
dρ(z,a)≥r

dτ (z, a) ≥
τ (a)− ε

ρ(a) + ε
· r
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whence

lim sup
r→0+

L(r)

l(r)
≤ τ (a) + ε

τ (a)− ε
· ρ(a) + ε

ρ(a)− ε
→ 1 as ε → 0+ .

Suppose Ωρ
f−→ Ωτ is η-QS, a ∈ Ω, and ε > 0. Since f is a homeomorphism, for

all r ∈ (0, δ(a))

Lf (r) := sup
|z−a|≤r

|f(z)− f(a)| = max
|z−a|=r

|f(z)− f(a)|

and

lf (r) := inf
|z−a|≥r

|f(z)− f(a)| = min
|z−a|=r

|f(z)− f(a)| .

Below we write z′ := f(z), a′ := f(a), etc.
As above, pick r0 ∈ (0, δ(a)) and s0 ∈ (0, δ(a′)) so that (2.4) holds for dρ and its

analog holds for dτ and w ∈ D[a′; s0]. Then take r1 ∈ (0, r0] so that f
(
D[a; r1]

)
⊂

D(a′; s0). Then for all r ∈ (0, r1) and all z, w ∈ S1(a; r),

|z′ − a′|
|w′ − a′| ≤

τ (a′) + ε

τ (a′)− ε
· dτ (z

′, a′)

dτ (w′, a′)
≤ τ (a′) + ε

τ (a′)− ε
· η

(
dτ (z

′, a′)

dτ (w′, a′)

)

≤ τ (a′) + ε

τ (a′)− ε
· η

(
ρ(a) + ε

ρ(a)− ε

)
;

here the inner inequality holds by quasisymmetry and the two outer inequalities fol-
low from repeated applications of (2.4). Selecting such z, w that attain Lf (r), lf(r)
respectively yields

Lf (r)

lf (r)
=

|z′ − a′|
|w′ − a′| ≤

τ (a′) + ε

τ (a′)− ε
· η

(
ρ(a) + ε

ρ(a)− ε

)

and so letting r → 0+, then ε → 0+, we deduce that, with respect to Euclidean
distance, f is indeed η(1)-QC. �

The careful reader recognizes that in the above, we employ the metric (aka,
linear) dilatation for quasiconformal maps, not the geometric dilatation, whereas
in Fact 2.11 below K is the geometric dilatation.

2.C.1. Quasihyperbolic metrics. The quasihyperbolic metric δ−1ds is defined for any
proper subdomain Ω � C; here δ = δΩ is the Euclidean distance to the boundary of
Ω. This metric can be defined in very general metric spaces and has proven useful
in many areas of geometric analysis. See [BHK01] and [HRS20].

For domains Ω � Ĉ, we also consider the chordal quasihyperbolic metric χ−1dŝ
and the spherical quasihyperbolic metric σ−1dŝ where dŝ denotes the chordal (or
spherical) arclength “differential”. (Recall the paragraph immediately preceding
§2.A.) The latter was employed in [BHK01, Chapter 7].

The Euclidean, chordal, and spherical quasihyperbolic distances k = kΩ, kχ =
k(Ω,χ) and kσ = k(Ω,σ) in Ω are the length distances induced by the Euclidean
quasihyperbolic, chordal quasihyperbolic, and spherical quasihyperbolic metrics
δ−1 ds, χ−1 ds and σ−1ds on Ω; here Ω � C in the former setting whereas Ω � Ĉ

in the latter two. These are geodesic distances.
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The Euclidean length space (Ω, l) and spherical length space (Ω, lσ) also carry
quasihyperbolic metrics, but: quasihyperbolic distance in (Ω, l) is Euclidean quasi-
hyperbolic distance and quasihyperbolic distance in (Ω, lσ) is spherical quasihyper-
bolic distance.

We remind the reader of the following basic estimates for quasihyperbolic dis-
tance, first established by Gehring and Palka [GP76, 2.1]: For all a, b ∈ Ω,

k(a, b) ≥ log

(
1 +

l(a, b)

δ(a) ∧ δ(b)

)
≥ log

(
1 +

|a− b|
δ(a) ∧ δ(b)

)
≥

∣∣∣∣log δ(a)

δ(b)

∣∣∣∣ ;(2.5a)

where l(a, b) is the (intrinsic) length distance between a and b. The first inequality
above is a special case of the more general (and easily proven) inequality

�k(γ) ≥ log
(
1 +

�(γ)

dist(|γ|, ∂Ω)
)

(2.5b)

which holds for any rectifiable path γ in Ω. See also [BHK01, (2.3),(2.4)]. There
are analogous inequalities for kχ and kσ where we replace all the Euclidean metric
quantities by the appropriate chordal or spherical metric quantities.

It is well known that the holomorphic covering C
exp−−→ C� pulls back the quasi-

hyperbolic metric δ−1
� ds on C� to the Euclidean metric on C, which in turn reveals

that (C�, k�) is (isometric to) the Euclidean cylinder S1 × R1 with its Euclidean
length distance inherited from its standard embedding into R3; here k� := kC�

. See
[MO86]. In particular, quasihyperbolic geodesics in C� are logarithmic spirals and
for all a, b ∈ C�,

k�(a, b) =
∣∣Log(b/a)∣∣ = ∣∣log |b/a|+ iArg(b/a)

∣∣
and thus

∣∣log |b|
|a|

∣∣ ∨ ∣∣Arg
( b
a

)∣∣ ≤ k�(a, b) ≤
∣∣log |b|

|a|
∣∣+ ∣∣Arg

( b
a

)∣∣ ≤ ∣∣log |b|
|a|

∣∣+ π

2

|a− b|
|a| ∧ |b| .

(2.6)

Note the special cases of the above that arise when |a| = |b| or Arg(b/a) = 0.
Often, (2.6) provides good estimates for quasihyperbolic distances as described

next.

2.7. Fact. Suppose A = {r < |z − c| < R} ⊂ Ω with c ∈ C \ Ω and R/r > 4.
Let δ−1

∗ ds and k∗ denote the quasihyperbolic metric and distance in the punctured
plane C \ {c}. Then in {2r < |z − c| < R/2}, 1

2δ∗ ≤ δ ≤ δ∗ and k∗ ≤ k ≤ 2k∗.

Another consequence of (2.6) is the following description for the two ‘ends’ of
(C�, k�). We include this trivial observation as motivation for later results; see
Lemma 3.12 and Proposition 3.13

2.8. Lemma. Let r ∈ (0,+∞). Define Δ�,Δ
� ⊂ C�by

Δ� := D[0; r] \ {0} and Δ� := C \ D(0; r) .

Then both (Δ�, k�) and (Δ�, k�) are π-roughly isometrically equivalent to the infinite
ray

(
[0,+∞), |·|

)
.
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Proof. It is easy to see that the map (Δ�, k�)
ϕ−→

(
[0,+∞), |·|

)
, ϕ(z) := log(|z|/r), is

a surjective (1, π)-QI equivalence; also, here ϑ(s) := re−s is an isometric embedding
from

(
[0,+∞), |·|

)
into (Δ�, k�) with

ϑ
(
[0,+∞)

)
= (0, r] ⊂ Δ� ⊂ Nk�

[
(0, r];π

]
.

For (Δ�, k�), we use the fact that z �→ z−1 is an isometric automorphism of (C�, k�).
�

As the chordal and spherical distances are bi-Lipschitz equivalent, and σ is the
length distance associated with χ (on Ĉ), it follows that the chordal and spherical
quasihyperbolic metrics (and their associated distances) are bi-Lipschitz equivalent
with kσ ≤ kχ ≤ π

2 kσ.
It is useful to know that Euclidean and spherical quasihyperbolic distances are

bi-Lipschitz equivalent. Note, however, that the distortion constant depends on the
location of the origin. Essentially, this is because a general Möbius transformation
is not a chordal nor spherical isometry, just bi-Lipschitz. One can establish this
by using appropriate estimates between δ and χ as in [BHX08, Lemma 3.10] or
alternatively appeal to [BHX08, Theorem 4.12]; the interested reader should also
peruse [BB03].

2.9. Fact. Let Ω � C be a domain. Then (Ω, k), (Ω, kχ), and (Ω, kσ) are all bi-
Lipschitz equivalent. In particular, 1

4k ≤ kχ ≤ 8(1+D)4k whereD := dist(0,C\Ω).8

An important property of hyperbolic distance is its conformal invariance. While
this does not hold for quasihyperbolic distance, it is Möbius quasi-invariant in the
following sense; see [GP76, Lemma 2.4, Corollary 2.5].

2.10. Fact. Let Ĉ
T−→ Ĉ be a Möbius transformation. Suppose Ω � C and Ω′ :=

T (Ω) ⊂ C. Then (Ω, k)
T−→ (Ω′, k′) is 2-bilipschitz, where k′ := kΩ′ .

In [GO79, Theorem 3], Gehring and Osgood proved the following, which says
that quasiconformal homeomorphisms are rough quasihyperbolic quasiisometries
and conformal maps are even quasihyperbolically bi-Lipschitz.

2.11. Fact. For each K ≥ 1 there is a constant C = C(K) such that for any K-QC
homeomorphism f : Ω → Ω′ between two proper plane domains,

∀ a, b ∈ Ω , k′
(
f(a), f(b)

)
≤ Cmax{k(a, b), k(a, b)p}

where p := K−1. In particular, a conformal map between Ω and Ω′ induces a
bi-Lipschitz equivalence between (Ω, k) and (Ω′, k′).

2.C.2. Hyperbolic metrics. Every hyperbolic domain in Ĉ carries a unique metric,
λ ds = λΩ ds, which enjoys the property that its pullback p∗[λ ds], with respect to
any holomorphic universal covering projection p : D → Ω, is the hyperbolic metric
λD(ζ)|dζ| = 2(1 − |ζ|2)−1|dζ| on D. Another description is that λ ds is the unique
maximal (or unique complete) metric on Ω that has constant Gaussian curvature
−1. In terms of such a covering p, the metric-density λ = λΩ of the Poincaré
hyperbolic metric λΩ ds can be determined from

λ(z) = λΩ(z) = λΩ(p(ζ)) = 2(1− |ζ|2)−1|p′(ζ)|−1,

8One should view the constant D as depending on diamχ Ω. By examining the distances
between 0 and 1 in D(0;R) (or in C \ {R}) (as R → +∞) we see that this bi-Lipschitz constant
really does depend on D.
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the above being valid for points z ∈ Ω∩C whereas one must use local coordinates in
any neighborhood of the point at infinity if Ω ⊂ C. (Alternatively, one can use the

chordal hyperbolic metric-density λ̂ and then the hyperbolic metric is λ̂ d̂s where

d̂s denotes the chordal (or spherical) arclength “differential”.)
For example, the hyperbolic metric λ∗ds on the punctured unit disk D∗ := D\{0}

can be obtained by using the universal covering z = exp(w) from the left-half-plane
onto D∗ and we find that

λ∗(z)|dz| =
|dz|

|z|
∣∣log |z|∣∣ .

The hyperbolic distance h = hΩ is the length distance hΩ := dλ induced by the
hyperbolic metric λ ds on Ω. This is a geodesic distance: for any points a, b in Ω,
there is an h-geodesic [a, b]h joining a, b in Ω. These geodesics need not be unique,
but they enjoy the property that

h(a, b) = �h([a, b]h).

Here we are writing �h in lieu of �λ.
Except for a short list of special cases, the actual calculation of any given hy-

perbolic metric is notoriously difficult; computing hyperbolic distances and deter-
mining hyperbolic geodesics is even harder. Indeed, one can find a number of
papers analyzing the behavior of the hyperbolic metric in a twice punctured plane.
Typically one is left with estimates obtained by using domain monotonicity and
considering ‘nice’ sub-domains and super-domains in which one can calculate, or at
least estimate, the metric.

The standard technique for estimating the hyperbolic metric and hyperbolic
distance is via domain monotonicity, a consequence of Schwarz’s Lemma. That is,
if Ωin ⊂ Ω ⊂ Ωout, then in Ωin, λinds ≥ λ ds ≥ λoutds and hin ≥ h ≥ hout.

Notice that the largest hyperbolic plane regions are twice punctured planes.
We write λab ds and hab for the hyperbolic metric and hyperbolic distance in the
twice punctured plane Cab. The standard twice punctured plane is C01 and its
hyperbolic metric has been extensively studied by numerous researchers including
[Hem79], [Min87], [SV01], [SV05]. We mention only the following.

2.12. Fact. For all z ∈ C01, λ01(z) ≥ λ01(−|z|) ≥
(
|z|[k +

∣∣log |z|∣∣])−1
, with

equality at z if and only if z = −1. Here k :=
(
λ01(−1)

)−1
= Γ4(1/4)/

(
4π2

)
=

4.3768796 . . . .

Fact 2.12 was first proved by Lehto, Virtanen and Väisälä (see [LVV59]); later
proofs were given by Agard [Aga68], Jenkins [Jen81], and Minda [Min87].

For future reference we record the following well-known estimates for hyperbolic
distance in D�, in D�, and in C01. Since we know the hyperbolic metrics in D�

and D�, it is easy to check the first two estimates. The estimates for h01 are
straightforward consequences of Fact 2.12 above.

2.13. Facts.

(a) For any a, b ∈ D�, h�(a, b) ≤
∣∣∣log log(1/|a|)

log(1/|b|)

∣∣∣+ π

log 2
.

(b) For any a, b ∈ D�, h�(a, b) ≤
∣∣∣log log |a|

log |b|

∣∣∣+ π

log 2
.
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(c) For all a, b ∈ C01:

1 ≤ |a| ≤ |b| =⇒ h01(a, b) ≥ h01(−|a|,−|b|) ≥ log
k+ log |b|
k+ log |a|

and

|a| ≤ |b| ≤ 1 =⇒ h01(a, b) ≥ h01(−|a|,−|b|) ≥ log
k+ log(1/|a|)
k+ log(1/|b|) .

2.C.3. The Beardon-Pommerenke function bp. We desire upper and lower estimates
for the hyperbolic metric in terms of the quasihyperbolic metric. These metrics are
2-bi-Lipschitz equivalent for simply connected hyperbolic plane regions; this is false
for any domain with an isolated boundary point (such as the punctured unit disk).
The hyperbolic and quasihyperbolic metrics are bi-Lipschitz equivalent precisely
when Ĉ \ Ω is uniformly perfect (see [BP78], [Pom79], [Pom84]). Beardon and
Pommerenke corroborated this latter assertion as an application of their elegant
result [BP78, Theorem 1] which says:

For any hyperbolic region Ω in C and for all z ∈ Ω,

(BP)
1

δ(z)
(
k+ bp(z)

) ≤ λ(z) ≤ π/2

δ(z) bp(z)
.

Here the domain function Ω
bp−→ R, introduced by Beardon and Pommerenke, is

defined via

bp(z) = bpΩ(z) := inf
ζ∈B(z)

ξ∈(C\Ω)\{ζ}

∣∣∣∣log
∣∣∣ζ − z

ζ − ξ

∣∣∣
∣∣∣∣ ;

note that the infimum is restricted to nearest boundary points ζ ∈ B(z) = ∂Ω ∩
∂D(z) for z, that is, ζ ∈ ∂Ω with δ(z) = |z − ζ|.

The definition of bp is motivated by examining the standard lower bound for
the hyperbolic metric on a twice punctured plane. The (BP) inequalities follow
via domain monotonicity: the upper bound for λ(z) holds because z lies on the
conformal center of a certain annulus in Ω, and the lower bound holds because Ω
lies in a certain twice punctured plane.

A geometric interpretation for bp(z) is seen by defining bp(z, ζ), for z ∈ Ω and
ζ ∈ B(z), as

bp(z, ζ) := inf
ξ∈(C\Ω)\{ζ}

∣∣∣∣log
∣∣∣ζ − z

ζ − ξ

∣∣∣
∣∣∣∣ . (Thus, bp(z) = inf

ζ∈B(z)
bp(z, ζ)).

Then 2bp(z, ζ) is the conformal modulus of the maximal Euclidean annulus that
is contained in Ω and symmetric with respect to the circle S1(ζ; δ(z)). It follows
that 2bp(z) is the minimum of these numbers; so, 2bp(z) is the smallest of these
maximal moduli.

Thus we see that whenever bp(z) > 0, there is an annulus

BP(z) := A(ζ; δ(z), bp(z)) ∈ A1
Ω (so, BP(z) ⊂ Ω and ∂BP(z) ∩ ∂Ω = ∅)

associated with z; here ζ ∈ B(z) is any nearest boundary point for z that realizes
bp(z), and

∀ ξ ∈ ∂BP(z) ∩ ∂Ω , bp(z) = bp(z, ζ) =

∣∣∣∣log
∣∣∣ζ − z

ζ − ξ

∣∣∣
∣∣∣∣.
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We call BP(z) a Beardon-Pommerenke annulus (or briefly, a BP annulus) associated
with the point z; it needn’t be unique.

Typically, the Beardon-Pommerenke inequalities (BP) are employed to give lower
estimates for hyperbolic distance, but they can also provide useful upper estimates.

2.14. Example. Let 0 < a < b with log(b/a) > 2. Put Ω := C \ {0,−a,−b}. Then

h(a, b) ≤ 4 + π log
(1
2
log

b

a

)
.

Proof. Let s :=
√
ab. Evidently, for x ∈ [a, b], δ(x) = x and

bp(x) =
∣∣log x

a

∣∣ ∧ ∣∣log b

x

∣∣ .
Thus by (BP)

h(ae, s) ≤ π

2

∫ s

ae

dx

x log(x/a)
=

π

2
log log

( b
a

)1/2

and similarly, h(s, b/e) ≤ π
2 log log(b/a)1/2. Hence

h(a, b) ≤ 2k(a, ae) + h(ae, b/e) + 2k(b/e, b) ≤ 4 + π log
(1
2
log

b

a

)
as claimed. �

In [BH20, Proposition 3.3] we established especially useful estimates for bp; these
say that in any annulus in A2

Ω(8 log 2), the domain function bp decays ‘linearly’ as
we move away from the center circle. The assumption that both boundary circles
of the annulus meet ∂Ω is crucial for obtaining the upper bounds; when only one
boundary circle has a boundary point, bp can actually increase when we move away
from the center circle towards the boundary circle that does not meet ∂Ω. Here is
a summary.

2.15. Fact. Let A(o; d, r) ∈ A2
Ω(8 log 2), so r > log 16. For |t| � r and all z ∈

S1(o; det), bp(z) � r − |t|. More precisely, for |t| ≤ r − log 16 and z ∈ S1(o; det),

1

2

(
r − |t|

)
≤ bp(z) ≤ 2

(
r − |t|

)
.

In the above, z ∈ A[o; d, r − log 16] and t := log(|z − o|/d). In particular:

(a) In A[o; d, r − log 16], bp ≤ 2r = mod(A), and on S1(A) = S1(o; d), bp ≥ 1
2r.

(b) On both boundary circles S1(o; 16±1de∓r), 2 log 2 ≤ bp ≤ 8 log 2.
(c) For log 16 < q < r we have the strict inequalities

bp >
1

2
q in A(o; d, r − q) and bp < 2 q in A(o; d, r − log 16) \ A[o; d, r − q].

(d) We also have estimates for bp in annuli A = A(o; d, r) ∈ A1
Ω, as long as we

move towards the boundary circle that has a boundary point.
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2.C.4. The ABC property. A path R ⊃ I
γ−→ Ω has the arcs bounce or cross property

with parameters μ > 0 and ν > 0, abbreviated as the (μ, ν)-ABC property, if and
only if for each compact subpath α of γ and for each annulus A := A(o; d, ν) ∈ AΩ

such that S1(A) ⊃ ∂α, we have |α| ⊂ A(o; d, μ).
The ABC property implies that the path can cross a moderate size annulus at

most once, so if the path enters deep into an annulus, it either stays there or it
crosses (once) and never returns. In particular, if the path goes near an “isolated
island or archipelago” of Ωc ∪ {∞}, then it stays near it. There are various precise
statements of this phenomenon given in [BH20, Lemma 3.7].

We utilize the following; see [BH20, Lemma 3.7(a), Prop. 3.8].

2.16. Facts.

(a) Suppose R ⊃ I
γ−→ Ω has the ABC property with parameters μ ≥ ν > 0. If

A(o; d, ν) ∈ AΩ, then γ crosses A(o; d, μ) at most once.
(b) Quasihyperbolic geodesics have the (π, log 2)-ABC property,
(c) Hyperbolic geodesics have the (3k, 5/2)-ABC property.

2.D. Gromov hyperbolicity and uniformity. Thanks to the ground-breaking
work in [BHK01], we know that Gromov hyperbolicity and uniformity are intimately
connected.

Roughly speaking, a metric space is uniform when points in it can be joined by
paths which are not “too long” and which “move away” from the region’s boundary.
More precisely, Ω ⊂ C is C-uniform (for some constant C ≥ 1) provided each pair
of points can be joined by a C-uniform arc. Here a rectifiable arc γ : a � b is a
C-uniform arc if and only if it is both a C-quasiconvex arc and a double C-cone
arc; these conditions mean, respectively, that

�(γ) ≤ C|a− b|(2.17a)

and

∀ z ∈ |γ| , �(γ[z, a]) ∧ �(γ[z, b]) ≤ Cδ(z) .(2.17b)

Martio and Sarvas introduced the notion of a uniform domain in [MS79], and
this has proven to be invaluable in geometric function theory and especially for
the “analysis in metric spaces” program. A simply connected proper subdomain
of the plane is uniform if and only if it is a quasidisk. Each uniform domain has
the Sobolev extension property, and the BMO extension property characterizes
uniformity. See [Geh82] and the many references therein, especially [Jon81,Jon80].

A geodesic metric space X is Gromov hyperbolic if there exists a constant θ ≥ 0
such that every geodesic triangle is θ-thin, meaning that each point on any edge of
the triangle is at distance at most θ from the other two edges. See [BHK01, Chapter
3], [BH99], [BBI01], or [Väi05] and the many references in these.

The Gromov boundary ∂GX of a Gromov hyperbolic space X is the set of equiv-
alence classes of geodesic rays, where two rays are equivalent if and only if their
Hausdorff distance is finite. One can also use quasi-geodesic rays, or, Gromov se-
quences. There is no canonical preferred distance on the Gromov boundary. How-
ever, for each ε ∈ (0, ε0] (usually ε0 = ε0(θ) := 1∧ (1/5θ)) there is a so-called visual
distance dε = dε,o on ∂GX that satisfies

1

2
exp

(
−ε(ξ|η)o

)
≤ dε(ξ, η) ≤ exp

(
−ε(ξ|η)o

)
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for all ξ, η ∈ ∂GX, where (ξ|η)o is the usual Gromov product and o ∈ X a fixed
base point. Standard estimates then give

C−1 exp
(
−ε dist(o, (ξ, η)

))
≤ dε(ξ, η) ≤ C exp

(
−ε dist(o, (ξ, η)

))
where (ξ, η) is any geodesic line in X with endpoints ξ, η ∈ ∂GX.

The conformal gauge on ∂GX is the maximal collection of all distance func-
tions on ∂GX that are quasisymmetrically equivalent to some (hence all) visual
distance(s).

3. Proofs of theorems

3.A. Proof of Theorem A. We employ the following technical fact about “fat”
annuli.

3.1. Lemma. Suppose m := 1
2 mod(A) > 1 for some annulus A ⊂ Ω with center in

C \ Ω and ∂A ∩ ∂Ω = ∅. Then there are points a, b, c ∈ A with:

1

2
(m− 1) ≤ k ≤ m− 1 , for k ∈ {k(a, b), k(c, b)},(3.1a)

and

h(a, b) ≥ log
(
1 +

m− 1

2(k+ 1)

)
, whereas h(c, b) ≤ 1.1.(3.1b)

Proof. By similarity invariance we may assume A = {z : e−m < |z| < em} and
either −e−m ∈ ∂Ω or −em ∈ ∂Ω; here m > 1. Assume −e−m ∈ ∂Ω and define

a := e1−m , b :=
√
a , c := 1.

We demonstrate that these points possess the asserted properties.
Thanks to Fact 2.7 we know that k� ≤ k ≤ 2k� in A. Since

2 k�(a, b) = 2 log
|b|
|a| = log

1

|a| = m− 1 = 2 k�(c, b),

the inequalities in (3.1a) follow.
Since Ω ⊂ C \ {0,−e−m}, an appeal to Fact 2.13(c) provides the estimate

h(a, b) ≥ h−e−m0(a, b) = h01(−ema,−emb)

≥ log
k+ log(emb)

k+ log(ema)
= log

(
1 +

m− 1

2(k+ 1)

)
.

Employing (BP) we deduce that

h(c, b) ≤
∫
[b,c]

λ ds ≤ π

2

∫
[b,c]

ds

δ bp

=
π

2

∫ c

b

dt

t(m+ log t)
=

π

2
log

2m

m+ 1
< 1.1.

When −em ∈ ∂Ω we take a := em−1, b :=
√
a, c := 1 and argue similarly. �

3.2. Proof of Theorem A. Thanks to the work [BP78] of Beardon and Pommerenke,
it suffices to explain why (A.1) implies (2.2), but perhaps it is illuminating to see
why (A.2) implies (2.2); these implications are both quantitative.
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With this in mind, suppose (Ω, h)
f−→ (Ω, k) is K-bi-Lipschitz. Let A ∈ AΩ, and

let α be the simple loop in Ω whose trajectory is the center circle |α| = S1(A).
Using hyperbolic distance in A ⊂ Ω, we deduce that

�h(α) ≤ 2π2/mod(A).

Since f ◦ α is an essential loop in Ω, we obtain

2π ≤ �k(f ◦ α) ≤ K �h(α) ≤ 2Kπ2/mod(A)

and thus mod(A) ≤ πK.

Now suppose (Ω, h)
f−→ (Ω, k) is η-QS. Thanks to Lemma 2.3 we know that

Ω
f−→ Ω is K-QC where K = K(η(1)) depends only on the value η(1). Let C =

C(K) = C(η(1)) be the constant from Fact 2.11. We establish (2.2) with the upper
bound

M := max{4C + 2, 2 + 4(k+ 1) exp
(
1.1

(
η−1(1/2C2)

)−1
)
}.

Let A ∈ AΩ. By enlarging A if necessary, we may assume that ∂A∩∂Ω = ∅, and
also thatm := 1

2 mod(A) > 2C+1. Let a, b, c be the points in A given by Lemma 3.1

and let a′, b′, c′ be their f images. Since k(a, b) ≥ 1
2 (m− 1) ≥ 1, Fact 2.11 tells us

that

k(a′, b′) ≤ C k(a, b).

The same fact, now applied to f−1, tells us that

C max{k′(c′, b′), k′(c′, b′)p} ≥ k(c, b) ≥ 1

2
(m− 1) ≥ C,

so k′(c′, b′) ≥ 1 whence k(c, b) ≤ C k′(c′, b′). Therefore

k′(a′, b′) ≤ C k(a, b) ≤ 2C k(c, b) ≤ 2C2k′(c′, b′)

and thus by quasisymmetry

1

2C2
≤ k′(′c′, b′)

k′(a′, b′)
≤ η

( h(c, b)

h(a, b)

)
≤ η

(
1.1

(
log(1 +

m− 1

2(k+ 1)

)−1
)

which gives the asserted estimate 2m ≤ M . �

3.B. Proof of Theorem B. It seems plausible, especially in light of Proposi-
tion 3.4(g) below (and its quasihyperbolic analog), that one could give a direct
proof of Theorem B. The authors are unable to do so; instead, we base our proof
on the following hyperbolic analog of [BHK01, Theorem 3.6]. Note that it depends
heavily on [BHK01, Theorems 1.11, 1.12, and Prop. 7.12] and these in turn depend
on the Bonk-Heinonen-Koskela uniformization theory. Our proof also utilizes the
fact [BH20, Theorem A] that hyperbolic and quasihyperbolic quasi-geodesics are
the same curves; in particular, in uniform domains hyperbolic geodesics are uniform
arcs [Her21b, Remarks 4.3].

3.3. Theorem. Let Ω be a hyperbolic domain in Ĉ. Suppose (Ω, lσ) is uniform.
Then the canonical conformal gauge on ∂G(Ω, h) is naturally quasisymmetrically
equivalent to the conformal gauge on ∂(Ω, lσ) determined by lσ.

9

9Recall that here lσ denotes the intrinsic length distance in (Ω, σ).
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The above is quantitative, but the constants are somewhat murky!
Bonk, Heinonen, and Koskela established a similar result [BHK01, Theorem 3.6]

for abstract uniform metric spaces but using quasihyperbolic distance in lieu of
hyperbolic distance. We closely follow their proof, but there are significant modifi-
cations that we detail.

In particular, we utilize the following information; much of this is either a direct
consequence of work in [BHK01], or follows by similar reasoning, the latter being
especially true whenever only upper estimates for quasihyperbolic distance are em-
ployed (because always, h ≤ 2k). See especially [BHK01, Chapters 2 and 3]. We
sketch the ideas.

Below, and later, when (Ω, h) is Gromov hyperbolic (in which case (Ω, k) is also
Gromov hyperbolic), we write hε = hε,o and kε = kε,o for the standard visual dis-
tances on ∂G(Ω, h) and ∂G(Ω, k) repectively; here, as in §2.D, the visual parameter
ε ∈ (0, ε0] and o ∈ Ω is a fixed base point.

3.4.Proposition. Let Ω be a hyperbolic domain in Ĉ with (Ω, lσ) A-uniform. There
are constants θ,B,C (that depend only on the “data”) such that the following hold.

(a) The metric space (Ω, h) is Gromov θ-hyperbolic.
(b) There is o ∈ Ω with σ(o) = maxΩ σ and 2 ≤ diam(Ω, lσ)/σ(o) ≤ 2A, so
diam(Ω, lσ) ≤ 2πA.

(c) Each pair of distinct points in (Ω, lσ) can be joined by a hyperbolic geodesic
that is a B-uniform arc in (Ω, lσ); when one or both points lie in ∂(Ω, lσ), we get a
hyperbolic geodesic ray or line respectively.
(d) There is a natural bijection between ∂G(Ω, h) and ∂(Ω, lσ) given by [γ] �→ γ(∞)
where [γ] ∈ ∂G(Ω, h) is the equivalence class of a hyperbolic geodesic ray γ that has
the endpoint γ(∞) ∈ ∂(Ω, lσ). Therefore, we use the same notation for points in
∂G(Ω, h) or ∂(Ω, lσ).
(e) Given ζ ∈ ∂(Ω, lσ) and a hyperbolic geodesic ray [o, ζ)h in Ω, each ξ ∈ ∂(Ω, lσ)
has an associated point x = x(ξ) ∈ [o, ζ)h with

h
(
x, (ξ, ζ)h

)
≤ C

and

h(o, x)− C ≤ h
(
o, (ξ, ζ)h

)
≤ h(o, x) + C.

In fact, if γ is the σ-arclength parametrization for [o, ζ]h, starting at γ(0) = ζ, then
we can take

x :=

{
γ
(
lσ(ξ, ζ)

)
when lσ(ξ, ζ) ≤ 1

2 lσ(o, ζ)

o otherwise.

(f) Given ζ, ξ ∈ ∂(Ω, lσ) and x = x(ξ) ∈ [o, ζ)h as above, we have

C−1e−εh(x,o) ≤ hε(ζ, ξ) ≤ Ce−εh(x,o).

Proof. There is no harm in rotating the sphere Ĉ, so we can assume that Ω ⊂
C. To see (a), we start with the fact (see [BHK01, Theorem 3.6]) that (Ω, kσ)
is θ-hyperbolic with θ = θ(A), so by Fact 2.9 (Ω, k) is θ-hyperbolic with θ =
θ(A, dist(0,C\Ω)). Then [BH20, Theorem B] tells us that (Ω, h) is also θ-hyperbolic
with θ = θ(A, dist(0,C \ Ω)).



HYPERBOLIC VERSUS QUASIHYPERBOLIC DISTANCE 595

Part (b) is elementary. For (c), we note that by [BH20, Theorem A], geodesic
segments in (Ω, h) are quasi-geodesics in (Ω, k) (with an absolute constant) and
hence by Fact 2.9 are also quasi-geodesics in (Ω, kσ) now with a constant that
depends on dist(0,C \ Ω). Finally, [Her21b, Theorem 4.1] affirms that these arcs
are B-uniform with B = B(A, d). The assertions about geodesic rays and lines
that end at boundary points follow in standard ways as explained in [BHK01,
Proposition 3.12].

Item (e) can be established exactly as done in [BHK01, Lemma 3.14] for quasi-
hyperbolic distance. Evidently, (f) follows from (e) and the standard estimates for
visual distances given at the end of §2.D.

Item (d) follows mostly as in [BHK01, Proposition 3.12] with one major modifi-
cation. It is routine to see that each hyperbolic geodesic ray in Ω has an endpoint
in ∂(Ω, lσ), that rays with the same endpoint are equivalent, and that each bound-
ary point is the endpoint of such a ray. It remains to show that equivalent rays
have the same endpoint. Suppose α and β are hyperbolic geodesic rays in Ω with
ξ := α(∞), η := β(∞) ∈ ∂(Ω, lσ), and ξ = η. We claim that disthH(|α|, |β|) = +∞
(so α and β are not equivalent).

This is not difficult to check when ξ and η correspond to10 different points in

∂̂Ω = ∂(Ω, σ), but requires additional effort if these two length boundary points
are attached to the same spherical boundary point, which we assume is the origin
0. Since we are “near” the origin, we can work with Euclidean quantities in place
of spherical.

As in [BHK01, Proposition 3.12], since ξ = η, there is a quasihyperbolic geodesic
line γ = (ξ, η)k in Ω. Let Λ := �(γ) and let zo be the Euclidean arclength midpoint
of γ. Then

|zo| ≥ δ(zo) ≥
Λ

2B
.

Put L := min{Λ/10B, �(α), �(β)}. Pick sa < so < sb so that zo = γ(so) and and so
the quasihyperbolic subrays γa(s) := γ(sa − s), γb(s) := γ(sb + s) (for s ∈ [0,+∞))
of γ both have length

�(γa) = L = �(γb).

By trimming the initial parts of α, β (if necessary), we may assume they both have
length L. Let a := γ(sa), b := γ(sb) be the initial points of γa, γb respectively.

Note that γa, γb are quasihyperbolic subrays of γ with γa(∞) = ξ, γb(∞) = η.
As γ is also a hyperbolic quasi-geodesic line in Ω (by [BH20, Theorem A]) and
α(∞) = γa(∞), β(∞) = γb(∞), there is a finite constant H such that

∀ s ≥ 0 , h
(
α(s), γa(s)

)
≤ H and h

(
β(s), γb(s)

)
≤ H.

Since ξ = η, there is “plenty” of ∂Ω “near” the origin. In particular, it is not hard
to check that bp ≤ log 10 on |γa| ∪ |γb|, so by (BP) λ ds and δ−1ds are bi-Lipschitz
on |γa| ∪ |γb|. It follows that for all s > |sa| ∨ |sb|,

�h(γ[−s, sa]) � �k(γ[−s, sa]) = k
(
γ(−s), a

)

10The identity map (Ω, lσ)
id−→ (Ω, σ) is 1-Lipschitz, so has a 1-Lipschitz extension to a map

(Ω, lσ)
ι−→ (Ω̂, σ) and the ι image of ∂(Ω, lσ) is precisely the set of rectifiably accessible boundary

points of (Ω, σ); see [Her10, Prop. 3.22].)
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and

�h(γ[sb, s]) � �k(γ[sb, s]) = k
(
γ(s), b

)
,

so �h(γ[−s, s]) � k(γ(−s), a) + k(γ(s), b). Finally, for all sufficiently large s > 0,

h
(
α(s), β(s)

)
≥ h

(
γ(−s), γ(s)

)
− h

(
α(s), γ(−s)

)
− h

(
β(s), γ(s)

)
≥ h

(
γ(−s), γ(s)

)
− 2H � �h(γ[−s, s])− 2H

� k
(
γ(−s), a

)
+ k

(
γ(s), b

)
− 2H → +∞ (as s → ∞).

Thus α and β are indeed non-equivalent hyperbolic geodesic rays :-) �

We require the following technical information. The upshot of this is that, given
two length boundary points, we can always find spherical boundary points at a
distance comparable to the length distance between the two given length boundary
points. Here ι is as described in footnote 10. Also, we employ the ABC property
for hyperbolic geodesics; see §2.C.4.

3.5. Lemma. Let c := e−(μ+ν) where μ, ν are ABC parameters for hyperbolic dis-
tance.11 Let Ω ⊂ Ĉ be a hyperbolic domain. Suppose ξ, η are distinct points in
∂(Ω, lσ). Assume there is a hyperbolic geodesic line γ := (ξ, η)h that is also a B-
uniform arc in (Ω, lσ). Let z0 be the σ-arclength midpoint of γ. Put ξ0 := ι(ξ), η0 :=
ι(η), and r0 := χ(z0, η0). Then

either χ(ξ0, η0) ≥ r0 , or ∂̂Ω ∩
{
z ∈ Ĉ

∣∣∣ cr0 ≤ χ(z, η0) ≤ r0

}
= ∅.(3.5a)

Thus there exists a point ξ1 ∈ ∂̂Ω such that χ(ξ1, η0) � lσ(ξ, η); more precisely,

c

πB
lσ(ξ, η) ≤ χ(ξ1, η0) ≤

B

2
lσ(ξ, η).(3.5b)

Proof. We will see, after some normalization, that (3.5a) follows directly from the
ABC property and then (3.5b) is an easy consequence of uniformity. To verify

(3.5a), assume χ(ξ0, η0) < cr0. By rotating Ĉ if necessary, we may assume that
η0 = 0 ∈ C.

Note that

f(t) :=
t√

4− t2
has f(χ(z, 0)) = |z|,

so f is increasing on [0, 2); also,

f−1(s) =
2s√
1 + s2

.

Thus f(r0) = f(χ(z0, η0)) = |z0| and for any r ∈ (0, r0),

A := {z | r < χ(z, η0) < r0} = {z | f(r) < |z| < f(r0)} .
We set r := f−1(c|z0|), so: f(r) = c|z0|, A = {c|z0| < |z| < |z0|}, and mod(A) =

μ+ ν. Also, note that

r = f−1(c|z0|) =
2c|z0|√

1 + (c|z0|)2
>

2c|z0|√
1 + |z0|2

= cr0 > χ(ξ0, η0) = f−1(|ξ0|) .

11We take μ := 3k and ν := 5/2; then μ > ν and c is an absolute constant.
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So |ξ0| < c|z0|. This gives A∩∂Ω = ∅, as we explain below, and then (3.5a) follows.
To this end, notice that as |ξ0| < c|z0|, there is a subarc α of γ with z0 ∈ |α|

and ∂α ⊂ S1(0; e−μ|z0|). Since μ > ν, A(0; e−μ|z0|, ν) ⊂ A. If A ⊂ Ω were true,
then by employing the fact that γ enjoys the (μ, ν)-ABC property (see §2.C.4) we
could assert that |α| ⊂ A(0; e−μ, μ) = A; but, z0 ∈ |α| and z0 /∈ A. Therefore,
A ∩ ∂Ω = ∅, so (3.5a) holds.

Now we establish (3.5b). As γ is a B-uniform arc in (Ω, lσ),

lσ(ξ, η) ≤ �σ(γ) ≤ Blσ(ξ, η).

Also,

r0 = χ(z0, η0) ≤ �σ(γ[z0, η]) =
1

2
�σ(γ) ≤

B

2
lσ(ξ, η)

and

r0 ≥ χ(z0) ≥
2

π
σ(z0) ≥

2

πB
�σ(γ[z0, η]) ≥

1

πB
lσ(ξ, η).

Thus if χ(ξ0, η0) ≥ r0, then

1

πB
lσ(ξ, η) ≤ r0 ≤ χ(ξ0, η0) ≤ σ(ξ0, η0) ≤ lσ(ξ, η)

and (3.5b) holds with ξ1 := ξ0. Suppose χ(ξ0, η0) < r0. Then by (3.5a) there is a

point ξ1 ∈ ∂̂Ω with

c

πB
lσ(ξ, η) ≤ cr0 ≤ χ(ξ1, η0) ≤ r0 ≤ B

2
lσ(ξ, η)

as asserted in (3.5b). �

Armed with the notation and results from Proposition 3.4 and Lemma 3.5, we
now establish Theorem 3.3.

3.6. Proof of Theorem 3.3. We may assume Ω ⊂ C. Then (Ω, kσ)
id−→ (Ω, k) is bi-

Lipschitz as explained in Fact 2.9. Let c := e−(μ+ν) be the constant in Lemma 3.5.
As in [BHK01, Theorem 3.6], we show that the bijection ∂(Ω, lσ) → ∂G(Ω, h)

(given in Proposition 3.4(d)) is a quasisymmetry; here we assume hε is a standard
visual distance on ∂G(Ω, h) as in §2.D with visual parameter ε ∈ (0, ε0] and o ∈ Ω
is a fixed base point as given in Proposition 3.4(b).

Let ζ, η, ξ be points in ∂(Ω, lσ) and put t := lσ(ζ, ξ)/lσ(ζ, η). When t ≥ 1, we
can copy the Bonk-Heinonen-Koskela argument as it only uses upper estimates for
quasihyperbolic distances.12 Thus we may, and do, assume that t < 1.

Let x = x(ξ), y = y(η) be the points on the hyperbolic geodesic ray [o, ζ)h that
are given by Proposition 3.4(e) and associated with ξ, η respectively. Since t < 1,
we have ζ < x ≤ y ≤ o where the geodesic is ordered from ζ to o. Then from
Proposition 3.4(f) we find that

hε(ζ, ξ)

hε(ζ, η)
≤ C e−εh(x,y) ≤ C.

12Here we use the fact that h ≤ 2k ≤ 8kσ .
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It follows that for any fixed t0 ∈ (0, 1),

∀ t ∈ [t0, 1) ,
hε(ζ, ξ)

hε(ζ, η)
≤ C

t0
t.

To finish the proof, we demonstrate that for all 0 < t < t0 := c/πB2, h(x, y) ≥ H(t)
where H(t) → +∞ as t → 0+. This then gives

hε(ζ, ξ)

hε(ζ, η)
≤ Ce−εH(t) → 0 as t → 0+

which in turn confirms that the bijection ∂(Ω, lσ) → ∂G(Ω, h) is indeed quasisym-
metric.

Before immersing ourselves in the details, we explain the idea. Whenever one
knows three distinct boundary points, one has a standard lower bound for hy-
perbolic distance given by looking at the appropriate thrice punctured sphere;
Fact 2.13(c) is handy for estimating hyperbolic distance in such a domain. A

difficulty here is that we have points in ∂(Ω, lσ) whereas we need points in ∂̂Ω. To
overcome this, we appeal to Lemma 3.5.

With this in mind, let ζ0 := ι(ζ), ξ0 := ι(ξ), η0 := ι(η); see footnote 10. By

Lemma 3.5 there are points ξ1, η1 ∈ ∂̂Ω with ξ1 = η1 (when t < t0) and such that

c

πB
lσ(ξ, ζ) ≤ χ(ξ1, ζ0) ≤

B

2
lσ(ξ, ζ)(3.7a)

and

c

πB
lσ(η, ζ) ≤ χ(η1, ζ0) ≤

B

2
lσ(η, ζ).(3.7b)

Let x′ := T (x), y′ := T (y) denote the images of x, y (respectively) under the Möbius
transformation T that maps ζ0, ξ1, η1 to 0, 1,∞ respectively; so

T (z) := [z, ζ0, η1, ξ1] =
(z − ζ0)(η1 − ξ1)

(z − η1)(ζ0 − ξ1)
.

Since Ω ⊂ Ω0 := Ĉ \ {ζ0, ξ1, η1}, writing h0 := hΩ0
, we now have

h(x, y) ≥ h0(x, y) = h01(x
′, y′) ≥ h01(−|x′|,−|y′|) .

To complete the proof, we demonstrate below that

as t → 0+ , |x′| � 1 and |y′| � 1

t

which, in conjunction with Fact 2.13(c), provides the desired estimate.

First we show that 1 � |x′| = |x, ζ0, η1, ξ1| =
χ(x, ζ0)χ(η1, ξ1)

χ(x, η1)χ(ζ0, ξ1)
. We claim that

4

πB2
χ(ξ1, ζ0) ≤ χ(x, ζ0) ≤

πB

c
χ(ξ1, ζ0) , so

χ(x, ζ0)

χ(ζ0, ξ1)
≤ πB

c
.

To see this, we use the definition of x := γ
(
lσ(ξ, ζ)

)
along with (3.7a) to obtain

χ(x, ζ0) ≤ σ(x, ζ0) ≤ �σ(γ[x, ζ]) = lσ(ξ, ζ) ≤
πB

c
χ(ξ1, ζ0);
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and also, as ζ0 ∈ ∂̂Ω and γ is B-uniform in (Ω, lσ),

π

2
χ(x, ζ0) ≥ σ(x, ζ0) ≥ σ(x) ≥ B−1�σ(γ[x, ζ]) = B−1lσ(ξ, ζ) ≥

2

B2
χ(ξ1, ζ0).

Next, continuing to use the inequalities (3.7) we deduce that

χ(ξ1, η1) ≤ χ(ζ0, ξ1) + χ(ζ0, η1)

≤ B

2

(
lσ(ζ, ξ) + lσ(ζ, η)

)
=

B

2
(1 + t)lσ(ζ, η) ≤ B lσ(ζ, η)

and, when t ≤ t0 = c/πB2,

χ(ξ1, η1) ≥ χ(ζ0, η1)− χ(ζ0, ξ1) ≥
c

πB
lσ(ζ, η)−

B

2
lσ(ζ, ξ)

=
( c

πB
− B

2
t
)
lσ(ζ, η) ≥

c

2πB
lσ(ζ, η).

From the above inequalities we see that, when t ≤ t0,
c

2πB
lσ(ζ, η) ≤ χ(ξ1, η1) ≤ B lσ(ζ, η).

Replacing ξ1 with x and repeating the argument directly above, we check that
when t ≤ t1 := c/2πB,

c

2πB
lσ(ζ, η) ≤ χ(x, η1) ≤ B lσ(ζ, η).

Combining the above we now find that when t ≤ t0 < t1,

χ(ξ1, η1)

χ(x, η1)
≤ B lσ(ζ, η)

(c/2πB)lσ(ζ, η)
=

2π

c
B2.

Finally,

|x′| = χ(x, ζ0)χ(η1, ξ1)

χ(x, η1)χ(ζ0, ξ1)
≤ πB

c

2π

c
B2 =

2π2

c2
B3.

It remains to explain why
1

t
� |y′| = χ(y, ζ0)χ(η1, ξ1)

χ(y, η1)χ(ζ0, ξ1)
. From above, we already

know that

c

πB2

1

t
=

(c/2πB)lσ(ζ, η)

(B/2)lσ(ξ, ζ)
≤ χ(η1, ξ1)

χ(ζ0, ξ1)
≤ B lσ(ζ, η)

(c/πB)lσ(ξ, ζ)
=

πB2

c

1

t

when t ≤ t0. Thus it suffices to demonstrate that χ(y, ζ0) � χ(y, η1). There are
two cases depending on whether or not y = o. When y = o we find that

1

πA
≤ χ(y, ζ0)

χ(y, η1)
≤ πA ;

the diligent reader can confirm this with the help of Proposition 3.4(b). We assume
y = o, or equivalently, lσ(ζ, η) ≤ 1

2 lσ(η, o). Here y = γ
(
lσ(η, ζ)

)
, so

χ(y, ζ0)≤ lσ(y, ζ)≤�σ(γ[y, ζ])= lσ(η, ζ) and χ(y, η1)≤χ(y, ζ0)+χ(η1, ζ0)≤2lσ(η, ζ)

and then by uniformity

χ(y, ζ0) ∧ χ(y, η1) ≥ χ(y) ≥ 2

π
σ(y) ≥ 2

πB
lσ(η, ζ)
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whence

1

πB
≤ χ(y, ζ0)

χ(y, η1)
≤ π

2
B.

�

3.8. Proof of Theorem B. Since Euclidean translations are isometries of both (Ω, h)
and (Ω, k), there is no harm in assuming that the origin lies in ∂Ω. In this setting,
(Ω, k) and (Ω, kσ) are bi-Lipschitz equivalent with an absolute constant. It now
follows that (Ω, h), (Ω, k) and (Ω, kσ) are all Gromov hyperbolic (or not, but we
assume the former).

It is well known (see [Gol69, Theorem 1, p.211] or [Tsu75, Theorem IX.22])

that Ω is conformally equivalent to a horizontal slit domain Ω′ � Ĉ; thus ∞ ∈ Ω′

and each boundary component of Ω′ is either a point or a compact horizontal line
segment. One can show that (Ω′, l′σ) is C-LLC2 with C := π/σ′(∞). Therefore by
[BHK01, Prop.7.12], (Ω′, lσ) is uniform.

We are now positioned to apply Theorem 3.3 and its quasihyperbolic analog
[BHK01, Theorem 3.6]. These two results provide the first two QS equivalences ∼=
below:

∂G(Ω, h) ≡ ∂G(Ω
′, h′) ∼= ∂(Ω, lσ) ∼= ∂G(Ω

′, k′σ)
∼= ∂G(Ω, k);

the isometric equivalence ≡ holds because conformal maps are hyperbolic isome-
tries, and the last QS equivalence ∼= holds because (Ω′, k′σ) and (Ω, k) are bi-
Lipschitz equivalent thanks to Fact 2.11. �

3.C. Proof of Theorem C. Below, in §3.C.3, we establish the following general
result; this provides a large class of plane domains whose hyperbolizations and
quasihyperbolizations are quasiisometrically equivalent. In particular, each finitely
connected domain belongs to this class, thus corroborating Theorem C. However,
this class also includes many infinitely connected domains such as C\Z or C� \{ 1

n |
n ∈ N}.

3.9. Theorem. Let Π ⊂ Ω ⊂ Ĉ be as described in §3.C.1 with (3.10) holding. In
addition, suppose that

Ĉ \ ΩΔ = (Ĉ \ Ω) ∪Δ is M -uniformly perfect.

Then (ΩΠ, hΠ) and (ΩΠ, kΠ) are (L, 6π)-quasiisometrically equivalent where L =
L(M).

3.C.1. Notation and key assumptions. Let Π ⊂ Ω ⊂ Ĉ and put ΩΠ := Ω \ Π. Here

Ω can be C or even Ĉ, but we assume that Π is closed in Ω, that ΩΠ ⊂ C, and that
ΩΠ is hyperbolic; in particular, the point at infinity belongs to Ω if and only if it
belongs to Π. For convenience, we set Π� := Π \ {∞}.

We assume that for each p ∈ Π there is an associated rp > 0 with the properties
described below. For p = ∞, we set

Δp := D[p; rp] and Δ�
p := Δp \ {p} ,

and we assume that

2rp ≤ δ(p) (so D(p; 2rp) ⊂ Ω)(3.10a)
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and that for points p = q in Π�,

2(rp + rq) ≤ |p− q| (so D(p; 2rp) ∩ D(q; 2rq) = ∅).(3.10b)

To handle finitely connected domains, e.g., D� or C01, we must allow ∞ ∈ Π in
which case we further assume that

Ĉ \ Ω ⊂ D[0; 14r∞] and that Δp ⊂ D[0; 1
4r∞] for each p ∈ Π� .(3.10c)

When ∞ ∈ Π, we set

Δ∞ := Ĉ \ D(0; r∞) and Δ�
∞ := Δ∞ \ {∞} .

Next, define

Δ :=
⋃
p∈Π

Δp and ΩΔ := Ω \Δ .

In the above, δ = δΩ is the Euclidean distance to ∂Ω which is infinite if Ω ⊃ C.
The hypotheses above ensure that Π is discrete in Ω, so ΩΠ is a domain. Similarly,

Δ is closed in Ω and ΩΔ is a domain. We use the subscripts Π and Δ to denote
quantities associated with ΩΠ and ΩΔ. For example, hΠ = hΩΠ

and kΠ = kΩΠ
are

the hyperbolic and quasihyperbolic distances in ΩΠ (respectively), and especially
bpΠ = bpΩΠ

.

3.C.2. Quasiisometric equivalence of punctured disks. Here we present some tech-
nical details that allow us to streamline our proof of Theorem 3.9 and focus on
the underlying ideas. Roughly, we show that whenever Δ∗ is a punctured disk in
a hyperbolic plane domain Ω (with the puncture a point of Ĉ \ Ω), (Δ∗, h) and
(Δ∗, k) are quasiisometrically equivalent.

We use the following numerical result whose proof is left for the diligent reader.

(3.11) ∀ K > 0, L > 0, x > 0, y ≥ L :
K + x

K + y
≥ L

K + L

x

y
.

We require a result similar to Lemma 2.8 but for punctured disks in arbitrary
domains; here there are separate cases for finite versus infinite punctures. Since Eu-
clidean similarity transformations are quasihyperbolic isometries, we can normalize
as in the following.

3.12. Lemma. Suppose D ⊂ Ω ⊂ C with 1 ∈ C\Ω. Let Ω∗ := Ω\{0} and k∗ := kΩ∗ .
For each r ∈ (0, 1

2 ], (Δ∗, k∗) is π-roughly isometrically equivalent to the infinite ray(
[0,+∞), |·|

)
, where Δ∗ := D[0; r] \ {0}.

Next, suppose 0 ∈ Ĉ \ Ω ⊂ D̄. Let Ω∗ := Ω \ {∞} and k∗ := kΩ∗ . For each R ≥
2, (Δ∗, k∗) is (2, π)-quasiisometrically equivalent to the infinite ray

(
[0,+∞), |·|

)
,

where Δ∗ := C \ D(0;R).

Proof. In {0 < |z| < 1
2} ⊃ Δ∗, δ∗(z) = |z| = δ�(z), so the identity map

(Ω∗, k∗) ⊃ ({0 < |z| < 1/2}, k∗) id−→ ({0 < |z| < 1/2}, k�) ⊂ (C�, k�)

is an isometric equivalence and thus Lemma 2.8 gives the first assertion. The
second assertion holds because z �→ z−1 is quasihyperbolically 2-bi-Lipschitz, as
per Fact 2.10. Alternatively, it is not hard to check that for |z| ≥ 2, 1

2 |z| ≤ δ∗(z) ≤
|z| = δ�(z). �
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We conclude this subsubsection with a technical result that we employ in our
proof of Theorem 3.9. As above there are separate cases for finite versus infinite
punctures.

3.13. Proposition. Suppose D ⊂ Ω ⊂ C with 1 ∈ C \ Ω. Assume Ω∗ := Ω \ {0} is
hyperbolic and let h∗ := hΩ∗ , k∗ := kΩ∗ . For each r ∈ (0, 12 ], (Δ∗, h∗) is C1-roughly
isometrically equivalent to (Δ∗, k∗), where Δ∗ := D[0; r] \ {0} and C1 := π/ log 2
≤ 5.

Next, suppose 1 ∈ Ĉ \Ω ⊂ D̄. Assume Ω∗ := Ω \ {∞} is hyperbolic and let h∗ :=
hΩ∗ , k∗ := kΩ∗ . For each R ≥ 4, (Δ∗, h∗) is (2, 2π)-quasiisometrically equivalent to
(Δ∗, k∗), where Δ∗ := C \ D(0;R).

Proof. First, suppose D ⊂ Ω ⊂ C with 1 ∈ C \Ω and Ω∗ = Ω \ {0} hyperbolic. Fix
r ∈ (0, 12 ] and let Δ∗ := D[0; r] \ {0}. As in Lemma 3.12,(

[0,+∞), |·|
) ϑ−→ (Δ∗, k∗) ⊂ (Ω∗, k∗) , ϑ(s) := re−s

is an isometric embedding and a π-rough isometric equivalence.
We show that the map

(Δ∗, h∗)
ψ−→

(
[0,+∞), |·|

)
given by ψ(z) := log

log(1/|z|)
log(1/r)

is a surjective rough isometric equivalence. The inclusions Δ∗ ⊂ D� ⊂ Ω∗ ⊂ C01

tell us that

in D� , h� ≥ h∗ ≥ h01 (here h� = hD�
and h01 = hC01

) .

Employing the estimates in Facts 2.13 we deduce that for all 0 < |a| ≤ |b| ≤ 1
2 :

h∗(a, b) ≤ h�(a, b) ≤ log
log(1/|a|)
log(1/|b|) +

π

log 2

and

h∗(a, b) ≥ h01(a, b) ≥ log
k+ log(1/|a|)
k+ log(1/|b|) ≥ log

(
log 2

k+ log

log(1/|a|)
log(1/|b|)

)
;

here (3.11) provides the last inequality. Thus for all a, b ∈ Δ∗,

h∗(a, b)−
π

log 2
≤ |ψ(a)− ψ(b)| ≤ h∗(a, b) + log

(
1 +

k

log 2

)
and so ψ is indeed a surjective (1, C1)-QI equivalence.

It is now not difficult to confirm that the map

(Ω∗, h∗) ⊃ (Δ∗, h∗)
Φ:=ϑ◦ψ−−−−−→ (Δ∗, k∗) ⊂ (Ω∗, k∗) ,

Φ(z) := ϑ
(
ψ(z)

)
= re−ψ(z) =

r log(1/r)

log(1/|z|)
is a C1-rough isometric equivalence.

Next, we examine an infinite puncture. Suppose 1 ∈ Ĉ\Ω ⊂ D̄ with Ω∗ = Ω\{∞}
hyperbolic. Fix R ≥ 4 and let Δ∗ := C \ D(0;R). Here we cannot argue as in the
second part of the proof of Lemma 3.12 because we do not know whether the origin
lies in Ω or in C \ Ω. Also, unlike the first part above, where we had the three
boundary points 0, 1,∞, here we only know two boundary points. Nonetheless,
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both (Δ∗, h∗) and (Δ∗, k∗) are QI equivalent to the infinite ray
(
[0,+∞), |·|

)
as we

now corroborate.
Put R1 := R + 1, Δ1 := Ĉ \ D(1;R1), and Δ∗

1 := Δ1 \ {∞}. One can appeal to
Lemma 3.12 with Δ∗

1, but a direct approach yields better estimates. It is not hard
to check that for |z − 1| ≥ 4,

1
2 |z − 1| ≤ δ∗(z) ≤ |z − 1| .

Arguing as in the alternative proof for the second assertion in Lemma 3.12, we
deduce that the map

(
[0,+∞), |·|

) ϑ−→ (Δ∗, k∗) given by ϑ(s) := 1−R1e
s

satisfies

s, t ∈ [0,+∞) =⇒ |s− t| ≤ k∗
(
ϑ(s), ϑ(t)

)
≤ 2|s− t|

with

ϑ
(
[0,+∞)

)
= (−∞,−R] ⊂ Δ∗ ⊂ Nk∗

[
(−∞,−R]; 2π

]
.

It follows that ϑ is a (2, 2π)-QI equivalence.

Pick any ξ ∈ Ĉ \Ω with |ξ − 1| = maxζ∈Ĉ\Ω |ζ − 1|;13 so |ξ| ≤ 1, 0 < |ξ − 1| ≤ 2,

and Ĉ \ Ω ⊂ D[1; |ξ − 1|].
Let Δ′ := T (Δ∗

1), Ω
′ := T (Ω∗), and h′ := hΩ′ where (Ω∗, h∗)

T−→ (Ω′, h′) is the
isometric equivalence given by

T (z) :=
z − 1

ξ − 1
.

Since T
(
D[1; |ξ − 1|]

)
= D̄ and 1, ξ ∈ Ĉ \ Ω ⊂ D[1; |ξ − 1|], we find that

0, 1 ∈ Ĉ \ Ω′ ⊂ D̄ , whence D� := C \ D̄ ⊂ Ω′ ⊂ C01

and therefore in D�, h� := hD� ≥ h′ ≥ h01.
In particular, for all points a′, b′ ∈ Δ′ (with |b′| ≥ |a′| ≥ R2 := R1/|ξ − 1|) we

have

h′(a′, b′) ≤ h�(a′, b′) ≤ log
log |b′|
log |a′| +

π

log 2

and

h′(a′, b′) ≥ h01(a
′, b′) ≥ log

k+ log |b′|
k+ log |a′| ≥ log

(
L

k+ L

log |b′|
log |a′|

)
;

here L := logR2 ≥ log(5/2) > 0.9, (3.11) provides the last inequality, and we have
used Fact 2.13(c). Thus for all a′, b′ ∈ Δ′,

h′(a′, b′)− π

log 2
≤ |ψ(a′)− ψ(b′)| ≤ h′(a′, b′) + log

(
1 +

k

L

)

13Note that |ξ − 1| ≥ 1
2
diam

(
Ĉ \ Ω

)
> 0 because Ω∗ is hyperbolic.
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where

(Δ′, h′)
ψ−→

(
[0,+∞), |·|

)
is given by ψ(w) := log

log |w|
L

and ψ is a surjective (1, C1)-QI equivalence.
Next, we employ Example 2.1 to demonstrate that (Δ∗, h∗) is roughly isometri-

cally equivalent to (Δ∗
1, h

∗) (and hence to (Δ′, h′)). We claim that for each z ∈ Δ∗

there is a z1 ∈ Δ∗
1 with h∗(z, z1) ≤ 1

2 .
Let z0 ∈ Δ∗. If z0 ∈ Δ∗

1, put z1 := z0; assume z0 /∈ Δ∗
1. Let z1 be the

radial projection, from the origin, of z0 onto ∂Δ∗
1. Note that |z0 − z1| ≤ 2. Also:

[z0, z1] ⊂ [(R/|z0|)z0, z1] and for each z ∈ [(R/|z0|)z0, z1], |z| ≥ R ≥ 4; so

λ�(z) =
1

|z| log |z| ≤
1

|z| ≤
1

R
≤ 1

4
.

In D� ⊂ Ω∗, λ� ≥ λ∗, and thus

h∗(z0, z1) ≤ h�(z0, z1) =

∫
[z0,z1]

λ� ds ≤ max
[z0,z1]

λ� · |z0 − z1| ≤
1

2
.

From Example 2.1, the map (Δ∗, h∗)
f−→ (Δ∗

1, h
∗), f(z) := z1 (with z1 as given in

the above claim), is a 1-rough isometric equivalence.
Finally, we now have

(Δ∗, h∗)
f−→ (Δ∗

1, h
∗)

T−→ (Δ′, h′)
ψ−→

(
[0,+∞), |·|

) ϑ−→ (Δ∗, k∗)

and a careful review of our estimates reveals that

Ψ := ψ ◦ T ◦ f , Ψ(z) = log
log |w1|
logR2

with w1 := T (z1) ,

is a rough isometric equivalence. Moreover, Φ := ϑ ◦Ψ is (2, 6)-QI with

Φ(Δ∗) = ϑ
(
[0,+∞)

)
= (−∞,−R] ⊂ Δ∗ ⊂ Nk∗

[
(−∞,−R]; 2π

]
,

and thus Φ provides the asserted QI equivalence between (Δ∗, h∗) and (Δ∗, k∗). �

3.14. Corollary. Let Π ⊂ Ω ⊂ Ĉ be as described in §3.C.1. Then for each p ∈ Π
there is an (L,C)-quasiisometric equivalence

(ΩΠ, hΠ) ⊃ (Δp, hp)
Φp−−→ (Δp, kp) ⊂ (ΩΠ, kΠ)

where hp and kp denote the distances hΠ and kΠ restricted to Δp (respectively).
We can take (L,C) = (1, π/ log 2) unless p = ∞ in which case (L,C) = (2, 2π).

Proof. First, assume p ∈ Π \ {∞}. Let Ωp := ΩΠ ∪ {p} and pick a point ξ ∈
∂Ωp nearest to p. Put T (z) := (z − p)/(ξ − p). Then Ω′ := T (Ωp) satisfies the
hypotheses of the first part of Proposition 3.13. Also, r′p := rp/|ξ − p| ≤ 1

2 , so
there is a π/ log 2-rough isometric equivalence Φ from (Δ′

∗, h
′) to (Δ′

∗, k
′), where

Δ′
∗ = D(0; r′p) \ {0} = T (Δp) ⊂ Ω′ (and h′, k′ are respectively the hyperbolic,

quasihyperbolic distances in Ω′
∗ = Ω′ \ {0} = T (ΩΠ)). It now follows that

Φp := T−1 ◦ Φ ◦ T , Φp(z) = p+ rp
ξ − p

|ξ − p|
log

(
rp/|ξ − p|

)
log

(
|z − p|/|ξ − p|

) ,
is a π/ log 2-rough isometric equivalence from (Δp, hp) to (Δp, kp).
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Next, assume p = ∞ ∈ Π. Put Ω∞ := ΩΠ ∪ {∞}. Pick a point ξ ∈ Ĉ \ Ω∞
with |ξ| = maxζ∈Ĉ\Ω∞

|ζ|. Let T (z) := z/ξ. Then Ω′ := T (Ω∞) satisfies the

hypotheses of the second part of Proposition 3.13. Also, R′ := r∞/|ξ| ≥ 4, so
there is a (2, 2π)-quasiisometric equivalence Φ from (Δ′∗, h′) to (Δ′∗, k′), where
Δ′∗ = C \ D(0;R′) = T (Δ�

∞) ⊂ Ω′ (and h′, k′ are respectively the hyperbolic,
quasihyperbolic distances in Ω′∗ = Ω′ \ {∞} = T (ΩΠ)). It now follows that

Φ∞ := T−1 ◦ Φ ◦ T , Φ∞(z) = ξΦ
(
z/ξ

)
,

is a (2, 2π)-quasiisometric equivalence from (Δ�
∞, h∞) to (Δ�

∞, k∞). �

3.C.3. Proof of Theorem 3.9. The reader is encouraged to review §3.C.1. In par-

ticular, note that Ĉ \ ΩΔ uniformly perfect tells us that each isolated point of ∂̂Ω
is a limit point of Π.

Define (ΩΠ, hΠ)
Φ−→ (ΩΠ, kΠ) by

Φ(z) :=

{
Φp(z) if z ∈ Δ�

p ,

z if z ∈ ΩΔ ;

here (Δ�
p, hΠ)

Φp−−→ (Δ�
p, kΠ) are the (2, 2π)-QI equivalences given by Corollary 3.14.

Below we demonstrate that the identity map (ΩΔ, hΠ) → (ΩΔ, kΠ) isK-bi-Lipschitz
with K = K(M). An elementary, albeit tedious, argument then reveals that Φ is
2π-roughly surjective and

∀ a, b ∈ ΩΠ ,
1

2
hΠ(a, b)− 6π ≤ kΠ

(
Φ(a),Φ(b)

)
≤ Kh(a, b) + 6π ;

so Φ is a (K, 6π)-quasiisometric equivalence; we assume K ≥ 2.
To begin, we demonstrate that each annulus A ∈ AΠ (so, A ⊂ ΩΠ and c(A) ∈

C \ ΩΠ) with S1(A) ∩ Δ = ∅ has modulus mod(A) ≤ 2M + log 4. Let A :=

{ z ∈ C | r < |z − c| < R } be such an annulus. Assume R/r > 4; so, 3
2r <

√
rR <

1
2R. Set

Πin := Π ∩Ain , Πout := Π ∩ (Aout ∪ {∞}) , Π�
out := Πout \ {∞} .

Define A′ := { z ∈ C | r′ < |z − c| < R′ } where

r′ :=

⎧⎪⎨
⎪⎩
r if Πin = ∅, or, Πin = {c} and Ain ∩ (C \ Ω) = ∅ ,
3
2r if Πin \ {c} = ∅ (i.e., c /∈ Πin = ∅ or {c} � Πin) ,√
rR if Πin = {c} and Ain ∩ (C \ Ω) = ∅ .

and

R′ :=

⎧⎪⎨
⎪⎩
R if Πout = ∅, or, Πout = {∞} and A ∩Δ∞ = ∅ ,
1
2R if Π∗

out = ∅ (i.e., {∞} = Πout = ∅) ,√
rR otherwise (i.e., Πout = {∞} and A ∩Δ∞ = ∅) .

We show below that when R′ =
√
rR, Aout∩(C\ΩΠ) = ∅. Since ΩΠ is hyperbolic,

Aout ∩ (C \ ΩΠ) = ∅ = Ain ∩ (C \ Ω) cannot both hold (as these would imply

Ĉ \ ΩΠ = {c,∞}). Thus r ≤ r′ < R′ ≤ R, A′ ⊂c A is a concentric subannulus of A,
and it is not difficult to check that log(R/r) ≤ 2 log(R′/r′) + log 4. We claim that

A′ ∩ Δ = ∅. Thus A′ ⊂ ΩΔ; since Ĉ \ ΩΔ is M -uniformly perfect, mod(A′) ≤ M
and mod(A) ≤ 2M + log 4 as asserted.



606 DAVID A. HERRON AND JEFF LINDQUIST

Now we check that A′ ∩Δ = ∅. Employing either (3.10a) if c ∈ ∂Ω or (3.10b) if
c ∈ Π� we find that

(3.15) ∀ p ∈ Π� \ {c} , 2rp ≤ |p− c| .

First we show that for all q ∈ Πin, Δq ⊂ D[c; r′]. Assume Πin = ∅. If c /∈ Πin,
then (3.15) provides the estimate rq ≤ 1

2r for q ∈ Πin, so Δq ⊂ D[c; 3
2r] as asserted.

A similar argument works for the case {c} � Πin. Assume {c} = Πin. Suppose
Ain ∩ (C \Ω) = ∅, and let ζ be a point in this set. By (3.10a), 2rc ≤ |c− ζ| ≤ r, so
Δc ⊂ D[c; r] as asserted. When Ain ∩ (C \Ω) = ∅, we have no estimates for rc, but

S1(A) ∩Δ = ∅ means that Δc ⊂ D[c;
√
rR].

Next we show that for all q ∈ Πout, Δq ∩ D(c;R′) = ∅. Assume Πout = ∅.
Suppose q ∈ Π�

out. If rq ≤ 1
2R, then |q − c| − rq ≥ 1

2R, and if rq ≥ 1
2R, then by

(3.15), |q − c| − rq ≥ rq ≥ 1
2R; thus, in both cases Δq ∩ D(c; 12R) = ∅. Also, if

∞ ∈ Π, then |c|+R ≤ |c|+ |q − c| ≤ 3
4r∞, so here Δ∞ ∩ D(c;R) = ∅.

It remains to examine the case Πout = {∞} and A ∩Δ∞ = ∅. Here we have no

estimates for r∞, but S1(A)∩Δ = ∅ means that Δ∞ ∩D[c;
√
rR] = ∅. Also, in this

setting we must have Aout∩(C\ΩΠ) = ∅. (If there were a point ζ ∈ Aout∩(C\ΩΠ),
then by (3.10c), R ≤ |ζ − c| ≤ |ζ| + |c| ≤ 1

2r∞, which would give A ⊂ D[0; 34r∞]
contradicting A ∩Δ∞ = ∅.)

We can use the above to verify that bpΠ ≤ M+2 in ΩΔ which tells us that λΠ ds
and δ−1

Π ds are (k+M + 2)-bi-Lipschitz equivalent in ΩΔ. However, if γ : a � b is
either a hyperbolic or a quasihyperbolic geodesic in ΩΠ with endpoints a, b ∈ ΩΔ,
then γ may leave ΩΔ. Nonetheless, the ABC property (see §2.C.4) ensures that γ
cannot enter too deep into Δ \ Π = ΩΠ \ ΩΔ. In particular, if γ enters some Δp,
then by Fact 2.16(a), |γ| ∩ D[p; e−6krp] = ∅ when p = ∞ and |γ| ⊂ D(0; e6kr∞)
when p = ∞.

Our final task is to corroborate that bpΠ � 1 in ΩΔ̃ := Ω\Δ̃ where Δ̃ :=
⋃

p∈Π Δ̃p

and

Δ̃p :=

{
D[p; e−6krp] if p ∈ Π� ,

Ĉ \ D(0; e6kr∞) if p = ∞ ∈ Π .

To this end, let a ∈ ΩΔ̃ and pick c ∈ ∂ΩΠ with

A := BPΠ(a) = A(c, d;m) =
{
de−m <

∣∣ z − c| < dem
}
= { r < | z − c| < R }∈AΠ

where d := δΠ(a) = |a−c| and bpΠ(a) = m = 1
2 log(R/r). Recall (3.15) and the no-

tation Πin,Πout. We assume S1(A) ∩Δ = ∅, so Υ :=
{
p ∈ Π

∣∣ S1(A) ∩Δp = ∅
}
=

∅.
We consider several cases. If p ∈ Υ ∩Πin \ {c}, then by (3.15)

|p− c| ≤ r and d ≤ |p− c|+ rp ≤ 3

2
|p− c| ,

so √
R/r =

d

r
≤ 3

2
whence

R

r
≤ 9

4
< 3 .

If p ∈ Υ ∩ Π�
out, then again by (3.15)

|p− c| ≥ R and d+ rp ≥ |p− c| , so d ≥ 1

2
|p− c|
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and therefore √
R/r =

R

d
≤ 2 and

R

r
≤ 4 .

Thus in these two easy cases we have bpΠ(a) =
1
2 mod(A) ≤ log 2.

It remains to deal with the case Υ ∩ {c,∞} = ∅; here S1(A) ∩ Δq = ∅ for
all q ∈ Π� \ {c}. Roughly speaking, we exhibit a concentric subannulus A′ ⊂c A
with modA′ � modA and S1(A′) ∩Δ = ∅. It then follows from earlier work that
modA � M .

Suppose c ∈ Υ. Then Υ = { c }, rc ≥ d, and R ≥ 2rc (because c is an isolated

point of ∂ΩΠ nearest to a, so ∂outA ∩ ∂ΩΠ = ∅). If R ≤ 2rce
m/2, then as a /∈ Δ̃p,

2rc ≥ Re−m/2 = dem/2 = |a− c|em/2 ≥ e−6krce
m/2

whence

bp(a) = m ≤ 12k+ log 4 .

Assume R ≥ 2rce
m/2. We claim that r′ := (2rc)

2/R ∈ [r, d]. Therefore

A′ := { z ∈ C | r′ < |z − c| < R } ⊂c A is a concentric subannulus of A

with S1(A′) = S1(c; 2rc). From (3.10), S1(A′) ∩Δ = ∅, so by earlier work,

bp(a) =
1

2
mod(A) = log

R

d
≤ log

R

r′
= mod(A′) ≤ 2M + log 4 .

To check the claim, note that

r =
d2

R
≤ r2c

R
≤ r′ =

(2rc)
2

R
≤ (Re−m/2)2

R
= Re−m = d .

Suppose ∞ ∈ Υ. Here Υ = {∞ }, 3
4r∞ ≤ d ≤ Cr∞ where C := e6k + 1

4 , and,

r ≤ 1
2r∞ (because ∂inA ∩ ∂ΩΠ = ∅). If r ≥ 1

2r∞e−m/2, then

1

2
r∞ ≤ rem/2 = de−m/2 ≤ Cr∞e−m/2

whence

bp(a) = m ≤ 12k+ 4 .

Assume r ≤ 1
2r∞e−m/2. We claim that R′ := ( 12r∞)2/r ∈ [d, 4

9R]. Therefore

A′ := { z ∈ C | r < |z − c| < R′ } ⊂c A is a concentric subannulus of A

with S1(A′) = S1(c; 12r∞). From (3.10c), S1(A′) ∩Δ = ∅, so by earlier work,

bp(a) =
1

2
mod(A) = log

d

r
≤ log

R′

r
= mod(A′) ≤ 2M + log 4 .

To check the claim, note that

d = rem =
(rem/2)2

r
≤

( 12r∞)2

r
= R′ ≤

( 23d)
2

r
=

4rR

9r
=

4

9
R .
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Having established that bpΠ ≤ M ′ := max{2M + log 4, 12k+ 4} in ΩΔ̃, we now

know that λΠ ds and δ−1
Π ds are K-bi-Lipschitz equivalent in ΩΔ̃ with

K := K(M) = k+M ′.

As explained above, any hyperbolic or quasihyperbolic geodesic in ΩΠ with end-
points in ΩΔ lies in ΩΔ̃. Therefore the identity map (ΩΠ, hΠ) → (ΩΠ, kΠ) is K-bi-
Lipschitz. �

3.D. Proof of Theorem D. Here we concoct plane domains Ω that satisfy the
assertions of Theorem D. We require the following technical fact about quasisym-
metric maps; this must be folklore, but we do not know a reference.

3.16. Lemma. Let (an)
∞
0 be a strictly increasing sequence in R\{∞} with an+1/an

→ +∞ as n → +∞. Put A := { an | n ≥ 0 } ∪ {∞} ⊂ R̂. Then every QS homeo-
morphism f : A → A is “eventually the identity”; i.e., there is an N such that for
all n ≥ N , f(an) = an.

14

Proof. To start, note that as f is a homeomorphism, it is a bijection and f(∞) = ∞
(as ∞ is the only non-isolated point of A).

We exhibit p, q such that for all n ≥ 1, f(ap+n) = aq+n. Then f maps
{a0, a1, . . . , ap} bijectively onto {a0, a1, . . . , aq}. Hence p = q and our claim is
established.

We need only produce a p such that for all n ≥ p, f(an) < f(an+1) with f(an)
and f(an+1) adjacent (meaning that if f(an) = am, then f(an+1) = am+1). Indeed,
given such a p we simply let q be the unique integer with aq = f(ap).

Below we use the quasisymmetry of f to verify that there is an N such that for
all n ≥ N , f(an) < f(an+1). Let M be the unique integer with aM = f(aN ). Thus
for all n ≥ N , aM ≤ f(an) < f(an+1).

We claim that there are a finite number ofm≥M such that am/∈f
(
{ an | n≥N }

)
.

Indeed, if m is such, then am ∈ f
(
{a0, a1, . . . , aN−1}

)
, so, there are at most N such

m. Let � be the largest of all these m.
Thus there is a p > N such that aM ≤ f(ap−1) < a� < f(ap), but for all n ≥ p,

f(an) and f(an+1) are adjacent. This is the sought after p.
To produce N , assume f is η-QS. Pick τ ∈ (0, 1) so that t ∈ (0, τ ) =⇒ η(t) < 1

2 .
Since

χ(an+1,∞)

χ(an,∞)
≤ 2

1 + an
1 + an+1

→ 0 ,

there exists an N such that for all n ≥ N ,

t :=
χ(an+1,∞)

χ(an,∞)
< τ .

Then for such n,

χ(fan+1, f∞)

χ(fan, f∞)
≤ η(t) <

1

2

14Here we use the chordal distance from R̂ := R ∪ {∞}.
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whence

4

1 + f(an+1)
≤ 2χ(fan+1,∞) ≤ χ(fan,∞) ≤ 4

1 + f(an)

and therefore f(an) < f(an+1) as asserted. �

3.17. Proof of Theorem D. Let (an)
∞
1 be a strictly decreasing sequence in (−∞, 0)

with an+1/an → +∞ as n → +∞. Put a0 := 0, A := { an | n ≥ 0 }, and Ω := C\A.
We verify that the assertions of Theorem D hold for Ω.15

It is straightforward to check that Ω is a uniform domain; [Her84, Lemma 8.4]
provides a convenient criterion here.

We employ [BHK01, Lemma 3.14] and its hyperbolic counterpart Proposition
3.4(f),(g). To this end, note that the point o := 1 ∈ Ω has the property that

σ(1) = distσ(1, ∂̂Ω) = maxΩ σ = π/2. Also, [1,+∞) ⊂ R ⊂ Ĉ is both a hyperbolic
and a quasihyperbolic geodesic ray in Ω from 1 to the boundary point at infinity.

Let hε = hε,o and kε = kε,o denote the standard visual distances on ∂G(Ω, h)
and ∂G(Ω, k) repectively; as in §2.D, the visual parameter ε ∈ (0, ε0] and o = 1 ∈ Ω
is the fixed base point.

Thanks to [BHK01, Theorem 3.6] and Theorem 3.3, we know that both ∂G(Ω, k)

and ∂G(Ω, h) are naturally equivalent to ∂̂Ω = ∂Ω ∪ {∞} = A ∪ {∞}. We use
an to denote any of: an ∈ A ⊂ ∂Ω, the corresponding point in ∂G(Ω, k), or the
corresponding point in ∂G(Ω, h). We also let ζ denote the boundary point at infinity

in ∂̂Ω and the corresponding points in ∂G(Ω, k) and ∂G(Ω, h).
Given a boundary point ξ = an, we easily check that the associated point x ∈

[o, ζ) = [1,∞) given by [BHK01, Lemma 3.14] or Proposition 3.4(f) is x = xn :=
−an. Employing Proposition 3.4(g) (or its quasihyperbolic counterpart in [BHK01])
we deduce that for each distance function d ∈ {h, k},

C−1e−εd(xn,1) ≤ dε(an, ζ) ≤ Ce−εd(xn,1) ,

where C = C(ε). It follows that

kε(an+1, ζ)

kε(an, ζ)
≤ C2e−εk(xn,xn+1)

and that

hε(an+1, ζ)

hε(an, ζ)
≥ C−2e−εh(xn,xn+1) .

Note that

∀ n ≥ 1 , k(xn, xn+1) = log
xn+1

xn

and, arguing as in Example 2.14,

∀ n ≥ N , h(xn, xn+1) ≤ 4 + π log
(1
2
log

xn+1

xn

)
where N is chosen so that n ≥ N =⇒ log(xn+1/xn) > 2.

15The reader can check that there is no choice of rp > 0 such that the hypotheses in §3.C.1

hold for Π = A with Ω = C; the uniform perfectness of Ĉ \ ΩΔ always fails.
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Now suppose there were a power quasisymmetry ∂G(Ω, k)
f−→ ∂G(Ω, h); say, f is

η-QS with η(t) := H
(
tα ∨ t1/α

)
for some constants H > 0 and α ∈ (0, 1]. Then f

would induce a quasisymmetry of A∪{ζ} onto itself, and hence by Lemma 3.16 we
would know that f(ζ) = ζ and f(an) = an for all n ≥ N .

It would then follow that: for all n ≥ N ,

C−2e−εh(xn,xn+1) ≤ hε(an+1, ζ)

hε(an, ζ)
≤ η

(
kε(an+1, ζ)

kε(an, ζ)

)
≤ HC2αe−αεk(xn,xn+1)

or,

eε
(
αk(xn,xn+1)−h(xn,xn+1)

)
≤ HC1+2α ,

which in turn would imply that αk(xn, xn+1)−h(xn, xn+1) is bounded as n → +∞.
However, Ln := 1

2 log(xn+1/xn) → +∞ as n → +∞, and,

αk(xn, xn+1)− h(xn, xn+1 ≥ 2αLn − 4− π logLn

from which we deduce that αk(xn, xn+1)−h(xn, xn+1) is not bounded as n → +∞.
This contradiction means there cannot exist such a power quasisymmetry. �

Appendix A. Definitions of uniformly perfect

Heinonen [Hei01] has a general metric space definition for uniform perfectness
(which appears as item (A.1.(e) below) that is similar to, but different from, Pom-
merenke’s definition. The following shows that the Pommerenke and Heinonen
definitions are equivalent; this must be folklore, but we do not know a reference.
Recall that a ring domain is a topological annulus, and a ring domain D ⊂ Ĉ sep-
arates a set E ⊂ Ĉ if and only if D ⊂ Ĉ \E and both components of Ĉ \D contain
points of E.

A.1. Proposition. For any closed set E ⊂ Ĉ with ∞ ∈ E, the following are
quantitatively equivalent:

(a) E is M -uniformly perfect,

(b) bp ≤ M in Ω for each component Ω of Ĉ \ E,

(c) mod(A) ≤ M for any annulus A ⊂ Ĉ \ E that separates E,

(d) mod(D) ≤ M for any ring domain D ⊂ Ĉ \ E that separates E,

(e) R̂/r̂ ≤ M for any o ∈ E, R̂ > r̂ > 0 with Dχ(o; R̂) \ D̄χ[o; r̂] ⊂ Ĉ \E separating
E.

The constant M above will vary, but in each case it depends only on the other
constants.

Proof. It is easy to check that (a) and (c) are equivalent. Beardon and Pommerenke
[BP78] established the equivalence of (c) and (b), and Pommerenke [Pom79],[Pom84]
demonstrated that these are equivalent to (d) (along with several other variations).

That (e) is equivalent to the other conditions is surely well-known, yet does not
seem to be explicitly mentioned in the literature, so we outline an explanation for
this.

Suppose o ∈ E, R > r > 0, and D := Dχ(o;R) \ D̄χ[o; r] ⊂ Ĉ \ E separates E.
Then D is a ring domain, so if (d) holds, then

log
R

r
≤ log

R
√
4− r2

r
√
4−R2

= mod(D) ≤ M .
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Finally, suppose (e) holds with a constant M ≥ 2. To establish (a), we verify
that (2.2) holds with the constant 64M4. Let A = { r < |z − c| < R } ⊂ C \ E be
an annulus with c ∈ E ∩ C; thus A separates E. Assume R ≥ 2r. Roughly, we
exhibit a chordal subannulus Â ⊂a A and use R̂/r̂ ≤ M to bound R/r.

There are three cases depending on whether |c| ≥ R, |c| ≤ r, or r < |c| < R.
Assume |c| ≥ R. Here we verify that R/r ≤ 4M . Let

a :=
(
|c| − r

) c

|c| , b
:=

(
|c|+R

) c

|c| , r̂
:= χ(a, c) , R̂ := χ(b, c) .

Since |c|+R ≤ 2|c| and |c| − r ≥ 1
2 |c|,

1 + |b|2
1 + |a|2 =

1 +
(
|c|+R

)2
1 +

(
|c| − r

)2 ≤
1 +

(
2|c|

)2
1 +

(
|c|/2

)2 ≤ 16 .

Thus if r̂ ≥ R̂, then R/r ≤ 4; so we assume r̂ < R̂. Then

Â :=
{
r̂ < χ(z, c) < R̂

}
⊂a A

whence

M ≥ R̂

r̂
=

R

r

(
1 + |a|2
1 + |b|2

) 1
2

, so
R

r
≤ 4M .

Assume |c| ≤ r. Here, eventually, we deduce that R/r ≤ 8M2. Let

a :=
(
|c|+ r

) c

|c| , b
:=

(
|c| −R

) c

|c| , r̂
:= χ(a, 0) , R̂ := χ(b, 0) .

If r̂ ≥ R̂, then χ(b,∞) ≥ χ(a,∞), so again R/r ≤ 4. Suppose r̂ < R̂. Then

Â :=
{
r̂ < χ(z, c) < R̂

}
⊂a A , whence

R̂

r̂
≤ M .

We claim that

√
1 + |a|2 ≥

√
2M

2M − 1
and

√
1 + |b|2 ≤

√
2M ;

therefore M ≥ R̂
r̂ = |b|

|a|

(
1+|a|2
1+|b|2

) 1
2

, so

R/2

2r
≤ R− |c|

r + |c| =
|b|
|a| ≤

(
1 + |b|2
1 + |a|2

) 1
2

M ≤ M(2M − 1)

and hence R/r ≤ 8M2.
To corroborate the above claim, we utilize chordal subannuli that have |z| = 1 as

a boundary circle. If
√
2 ≤ r̂ = χ(a, 0), then |a| ≥ 1 so

√
1 + |a|2 ≥

√
2M/(2M−1).

Suppose r̂ <
√
2. Then {

r̂ < χ(z, 0) <
√
2
}
⊂a A
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so

M ≥
√
2

r̂
=

√
1 + |a|2√
2|a|

≤ 1 + |a|
2|a|

and therefore

√
1 + |a|2 ≥ 1 + |a|√

2
≥

√
2M

2M − 1
.

If
√
2 ≤ r̂∞ := χ(b,∞), then

√
1 + |b|2 ≤

√
2 ≤

√
2M . Suppose r̂∞ <

√
2. Then{

r̂∞ < χ(z, 0) <
√
2
}
⊂a A

so M ≥
√
2
r̂ =

√
1+|b|2√

2
.

Thus when |c| ≤ r or |c| ≥ R, R/r ≤ 8M2. Suppose r < |c| < R, and R ≥ 4r.

Then either |c| ≥
√
rR or |c| ≤

√
rR. In either case, we can apply the previous

arguments to the appropriate subannulus (either {r < |z − c| <
√
Rr} or {

√
Rr <

|z − c| < R}) to conclude that in all cases R/r ≤ 64M4. �
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spaces, Astérisque 270 (2001), viii+99. MR1829896

[BS00] M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct.
Anal. 10 (2000), no. 2, 266–306, DOI 10.1007/s000390050009. MR1771428
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