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FINITE QUASI-QUANTUM GROUPS OF RANK TWO

HUA-LIN HUANG, GONGXIANG LIU, YUPING YANG, AND YU YE

Abstract. This is a contribution to the structure theory of finite pointed
quasi-quantum groups. We classify all finite-dimensional connected graded
pointed Majid algebras of rank two which are not twist equivalent to ordinary
pointed Hopf algebras.

1. Introduction

The theory of finite tensor categories [19] has aroused much interest in recent
years. Among which, a proper classification theory is highly welcome and certainly
is very challenging. As the general classification problem seems still far out of reach,
it is necessary to narrow the scope and focus first on some interesting classes. In
this respect, fusion and multi-fusion categories, that is, semisimple finite tensor and
multi-tensor categories, are first investigated in depth, see [18, 36] and references
therein. To move on, Etingof and Gelaki proposed in their pioneering work [15] to
classify finite pointed tensor categories which are nonsemisimple. By pointed it is
meant that the simple objects are invertible. There are multifold reasons for this
restriction: firstly, this kind of reduction is standard and powerful in representation
theory; secondly, this class of tensor categories are essentially concrete, i.e., they
admit quasi-fiber functors and they can be realized as the module categories of
finite-dimensional elementary quasi-Hopf algebras by the Tannakian formalism [19];
thirdly, this theory is a natural generalization of the deep and beautiful theory of
elementary (or equivalently, finite-dimensional pointed) Hopf algebras, see [1, 4, 5,
21, 24].

In [15, 16], Etingof and Gelaki obtained a series of classification results about
graded elementary quasi-Hopf algebras over cyclic groups of prime order; in [17,20],
they studied graded elementary quasi-Hopf algebras over general cyclic groups and
their liftings. One main achievement of this series of works is a complete classi-
fication of elementary quasi-Hopf algebras of rank 1. More importantly, a novel
method of constructing genuine quasi-Hopf algebras from known pointed Hopf al-
gebras is invented. Along the same vein, Angiono classified in [6] finite-dimensional
elementary quasi-Hopf algebras over cyclic groups whose orders have no small prime
divisors. On the other hand, our previous works [25–27] introduce many useful ideas
and tools from the representation theory of finite-dimensional algebras into the the-
ory of pointed tensor categories and quasi-quantum groups (including quasi-Hopf
algebras and their duals in accordance with the philosophy of Drinfeld’s theory of
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quantum groups [11, 12]). In particular, a quiver framework is set up and a gen-
eral method of constructing quasi-quantum groups and pointed tensor categories
via projective representations of finite groups and quiver representation theory is
provided.

However, except for some sporadic examples [16], so far all finite quasi-quantum
groups obtained in the literature are either over cyclic groups or of rank 1 (in fact,
mostly both). An obvious reason, to the authors, is that a uniform expression
of 3-cocycles over non-cyclic groups was not available. This prevents us from a
desired control of the associators of quasi-quantum groups. With the explicit unified
formulas of 3-cocycles on general finite abelian groups recently offered in [28, 29],
now it seems possible to pursuit the classification of finite quasi-quantum groups
and finite pointed tensor categories in a much greater scope. As a crucial step
to move forward, we should first tackle the classification of finite quasi-quantum
groups of rank 2 as clearly suggested by the successful development strategy of the
classification theory of finite-dimensional pointed Hopf algebras, see [22, 23]. This
is the main aim of the present paper.

Let H =
⊕

n≥0 Hn be a graded elementary quasi-Hopf algebra and the rank of

H is defined to be dimH1

dimH0
(since H1 is free over H0, it is an integer). The novel idea

of [15, 16, 20] is that, if H0 is the group algebra of a cyclic group G = Zn, then H

can be embedded into a bigger quasi-Hopf algebra H̃ which is twist equivalent to a
graded elementary Hopf algebra H ′ with H ′

0 = kG where G = Zn with n = n2. The
crux of this fact is essentially due to group cohomology. More precisely, if Φ is a
3-cocycle on G, then its pull-back π∗(Φ) along the canonical projection π : G → G
vanishes, i.e., a 3-coboundary. In this situation, we say that Φ is resolvable. In
order to tackle the classification problem of rank 2 finite quasi-quantum groups,
naturally we need to extend the aforementioned results on a cyclic group to the
direct product of two cyclic groups. The first key observation of the present paper
is that any 3-cocycle on the direct product Zm×Zn of two cyclic groups is resolvable,
as anticipated in [15]. This relies heavily on our previous work of linear braided
Gr-categories [28].

Theorem A (See Propositions 3.3 and 3.5). Let G = Zm × Zn = 〈g1〉 × 〈g2〉,
G = Zm × Zn = 〈g1〉 × 〈g2〉 with m = m2, n = n2 and let π be the canonical
epimorphism

π : G → G, g1 �→ g1, g2 �→ g2.

Then the pull back π∗(Φ) is a 3-coboundary on G for each 3-cocycle Φ on G.

The resolvability of the 3-cocycles on Zm × Zn motivates us to pursuit a similar
connection between a graded quasi-Hopf algebra H with H0 = k(Zm × Zn) and an
appropriate Hopf algebra H ′. The second key observation of the present paper is
that an explicit connection can be built by overcoming two difficulties, explained
below, which are relatively mild in the case of cyclic groups [6, 15–17, 20]. In
accordance with our previous works [25–27], we always work on the dual situation.
For this, let M =

⊕
i≥0 Mi be a connected coradically graded pointed Majid algebra

of rank 2 (see Definition 2.6 for the definition of rank) then M0 is a group Majid
algebra (kG,Φ) with G = Zm × Zn by Lemma 2.9 (note that cyclic group is a
special case). Similar to the case of pointed Hopf algebras, we may factorize M as
R#kG by a quasi-version of the bosonization procedure. Here R is the coinvariant
subalgebra of M with respect to the natural coaction of kG. The first difficulty is
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the generation problem, that is, whether R is generated in degree 1. In fact, this
problem is a generalization of the well-known Andruskiewitsch-Schneider conjecture
for finite-dimensional pointed Hopf algebras. The second difficulty is to determine a
suitable resolution π : G → G such that R becomes a Nichols algebra in the twisted

Yetter-Drinfeld category G
GYDπ∗(Φ). Fortunately, we overcome these two difficulties

well:

Theorem B (See Proposition 4.1 and Lemma 4.3). Let M be a finite-dimensional
connected coradically graded pointed Majid algebra of rank 2. Then

(1) The coinvariant subalgebra R ∼= B(R1) is a rank 2 Nichols algebra in
G

G
YDΦ.

(2) The Nichols algebra B(R1) can be realized as a rank 2 Nichols algebra in
G
GYDπ∗(Φ).

As G
GYDπ∗(Φ) is tensor equivalent to G

GYD by Theorem A, Theorem B will facil-
itate applications to Majid algebras the theory of finite-dimensional pointed Hopf
algebras. In other words, we get the following diagram:

M = R#kG Original Majid algebra

�
M = R#kG Bigger Majid algebra

�
∃ J

H = (R#kG)J Ordinary Hopf algebra

In order to take full advantage of the theory of finite-dimensional pointed Hopf
algebras, in particular Heckenberger’s well-known classification result of finite-
dimensional rank 2 Nichols algebras [22,23] for the present purpose, we still need to
answer the following question: For which finite-dimensional pointed Hopf algebra
of rank 2, can one reverse the above diagram to get a pointed Majid algebra? Our
third key observation is that this question can be reduced to solving some elemen-
tary congruence equations, see (5.11). We show that such congruence equations
have at most one solution and we give a simple criterion to determine when they
do. Therefore, we complete the above one-way diagram into to a circuit in below.

M = R#kG Original Majid algebra M = BJ−1

#kG

�

�
Eq. (5.11) soluble

M = R#kG Bigger Majid algebra HJ−1

= BJ−1

#kG

�
∃ J

�

H = (R#kG)J Ordinary Hopf algebra H = B#kG

This diagram finally leads to the desired classification of finite quasi-quantum
groups of rank 2 (see Definition 5.12 for the definition of a Nichols algebra of Majid
type):
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Theorem C (See Theorem 5.14). Keep the previous assumptions and notations.

(1) Let B(V ) ∈ G
GYD be a Nichols algebra of Majid type. Then there exists a

2-cochain J on G such that M(V,G) := B(V )J#kG/(gm
1 − 1, gn

2 − 1) =
B(V )J#kG is a finite-dimensional connected coradically graded pointed
Majid algebra of rank 2.

(2) Let M be a finite-dimensional connected coradically graded pointed Majid
algebra of rank 2. Then M is isomorphic to some M(V,G) associated to an
appropriate Nichols algebra B(V ) ∈ G

GYD of Majid type as in (1).

Based on this, we can present the Majid algebra M(V,G) by explicit generators
and relations with a help of Heckenberger’s classification of finite-dimensional rank
2 Nichols algebras, see Proposition 6.5. Some more explicit classification results
of typical type over the direct product of any two cyclic groups Zm × Zn and a
complete list over an arbitrary cyclic group Zn can thus be obtained, see Theorems
7.2 and 8.3.

The paper is organized as follows. Some necessary concepts, notations and facts
are collected in Section 2. In particular, Nichols algebras in twisted Yetter-Drinfeld
categories G

G
YDΦ are introduced. Section 3 is devoted to the resolvability of an arbi-

trary 3-cocycle Φ on Zm×Zn. The result of this section is one of several key ingredi-
ents of our classification procedure. The generation problem for finite-dimensional
pointed Majid algebras of rank 2 is established in Section 4. Our classification pro-
cedure and the main result are given in Section 5. Sections 6, 7, and 8 are designed
to give explicit classification results based on the previous sections. There is also
an appendix of the list of full binary trees used in Sections 6–8.

Throughout of this paper, k is an algebraically closed field with characteristic
zero and all vector spaces, linear mappings, (co)algebras and unadorned tensor
product ⊗ are over k.

2. Preliminaries

This section is devoted to some preliminary concepts, notations and facts.

2.1. Majid algebras. The concept of Majid algebras is dual to that of quasi-Hopf
algebras [12], and can be given as follows.

Definition 2.1. A Majid algebra is a coalgebra (H,Δ, ε) equipped with a compati-
ble quasi-algebra structure and a quasi-antipode. Namely, there exist two coalgebra
homomorphisms

M: H ⊗H −→ H, a⊗ b �→ ab, μ : k −→ H, λ �→ λ1H ,

a convolution-invertible map Φ: H⊗3 −→ k called associator, a coalgebra antimor-
phism S : H −→ H and two functionals α, β : H −→ k such that for all a, b, c, d ∈ H
the following equalities hold:

a1(b1c1)Φ(a2, b2, c2) = Φ(a1, b1, c1)(a2b2)c2,(2.1)

1Ha = a = a1H ,(2.2)

Φ(a1, b1, c1d1)Φ(a2b2, c2, d2) = Φ(b1, c1, d1)Φ(a1, b2c2, d2)Φ(a2, b3, c3),(2.3)

Φ(a, 1H , b) = ε(a)ε(b).(2.4)

S(a1)α(a2)a3 = α(a)1H , a1β(a2)S(a3) = β(a)1H ,(2.5)

Φ(a1,S(a3), a5)β(a2)α(a4) = Φ−1(S(a1), a3,S(a5))α(a2)β(a4) = ε(a).(2.6)
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Throughout we use the Sweedler sigma notation Δ(a) = a1 ⊗ a2 for the coproduct
and a1 ⊗ a2 ⊗ · · · ⊗ an+1 for the result of the n-iterated application of Δ on a.

Example 2.2. Let G be a group and Φ a normalized 3-cocycle on G. It is well
known that the group algebra kG is a Hopf algebra with Δ(g) = g⊗ g, S(g) = g−1

and ε(g) = 1 for any g ∈ G. By extending Φ linearly, then Φ: (kG)⊗3 → k becomes
a convolution-invertible map. Define two linear functions α, β : kG → k just by
α(g) := ε(g) and β(g) := 1

Φ(g,g−1,g) for any g ∈ G. It is not hard to see that kG

together with these Φ, α and β becomes a Majid algebra. In the following, this
resulting Majid algebra is denoted by (kG,Φ).

A Majid algebra H is said to be pointed, if the underlying coalgebra is so. Given
a pointed Majid algebra (H,Δ, ε,M, μ,Φ,S, α, β), let {Hn}n≥0 be its coradical
filtration, and

grH = H0 ⊕H1/H0 ⊕H2/H1 ⊕ · · ·
the corresponding coradically graded coalgebra. Then naturally grH inherits from
H a graded Majid algebra structure. The corresponding graded associator grΦ
satisfies grΦ(ā, b̄, c̄) = 0 for all homogeneous ā, b̄, c̄ ∈ grH unless they all lie in H0.
Similar condition holds for grα and grβ. In particular, H0 is a Majid subalgebra
and it turns out to be the Majid algebra (kG, grΦ) for G = G(H), the set of
group-like elements of H. We call a pointed Majid algebra H coradically graded if
H ∼= grH as Majid algebras. One can also see [25] for more details on pointed
Majid algebras.

Definition 2.3. Let (H,Δ, ε,M, μ,Φ,S, α, β) be a Majid algebra. A convolution-
invertible linear map

J : H ⊗H → k

is called a twisting (or gauge transformation) on H if

J(h, 1) = ε(h) = J(1, h)

for all h ∈ H.

Now let H be a Majid algebra together with a twisting J . Then one can con-
struct a new Majid algebra HJ . By definition, HJ = H as a coalgebra and the
multiplication “ ◦ ” on HJ is given by

(2.7) a ◦ b := J(a1, b1)a2b2J
−1(a3, b3)

for all a, b ∈ H. The associator ΦJ and the quasi-antipode (SJ , αJ , βJ) are given
as:

ΦJ (a, b, c) = J(b1, c1)J(a1, b2c2)Φ(a2, b3, c3)J
−1(a3b4, c4)J

−1(a4, b5),

SJ = S, αJ(a) = J−1(S(a1), a3)α(a2), βJ(a) = J(a1,S(a3))β(a2)
for all a, b, c ∈ H.

Definition 2.4. Two Majid algebras H1 and H2 are called twist equivalent if there
is a twisting J on H1 such that we have a Majid algebra isomorphism

HJ
1
∼= H2.

Denote H1 ∼ H2 if H1 is twist equivalent to H2. We call a Majid algebra H genuine
if it is not twist equivalent to a Hopf algebra.
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Remark 2.5. It is well-known that two finite-dimensional quasi-Hopf algebras are
twist equivalent if and only if their representation categories of finite dimensional
modules are tensor equivalent (see for example [14, Theorem 6.1]). Through the
dual method, we know that two finite-dimensional Majid algebras are twisted equiv-
alent if and only if they have equivalent tensor categories of comodules.

2.2. Quiver setting for pointed Majid algebras and ranks. A quiver is a
quadruple Q = (Q0, Q1, s, t), where Q0 is the set of vertices, Q1 is the set of arrows,
and s, t : Q1 −→ Q0 are two maps assigning respectively the source and the target
for each arrow. A path of length l ≥ 1 in the quiver Q is a finitely ordered sequence
of l arrows al · · · a1 such that s(ai+1) = t(ai) for 1 ≤ i ≤ l − 1. By convention a
vertex is called a trivial path of length 0.

For a quiver Q, the associated path coalgebra kQ is the k-space spanned by the
set of paths with counit and comultiplication maps defined by ε(g) = 1, Δ(g) = g⊗g
for each g ∈ Q0, and for each nontrivial path p = an · · · a1, ε(p) = 0,

Δ(an · · · a1) = p⊗ s(a1) +
n−1∑
i=1

an · · · ai+1 ⊗ ai · · · a1 + t(an)⊗ p .

The length of paths provides a natural gradation to the path coalgebra. Let Qn

denote the set of paths of length n in Q, then kQ =
⊕

n≥0 kQn and Δ(kQn) ⊆⊕
n=i+j kQi ⊗ kQj . Clearly kQ is pointed with the set of group-likes G(kQ) = Q0,

and has the following coradical filtration

kQ0 ⊆ kQ0 ⊕ kQ1 ⊆ kQ0 ⊕ kQ1 ⊕ kQ2 ⊆ · · · .

Thus kQ is coradically graded. The path coalgebras of quivers can be presented as
cotensor coalgebras, so they are cofree in the category of pointed coalgebras and
enjoy a universal mapping property.

A quiver Q is said to be a Hopf quiver if the corresponding path coalgebra
kQ admits a graded Hopf algebra structure. Hopf quivers can be determined by
ramification data of groups. Let G be a group and denote its set of conjugacy
classes by C. A ramification datum R of the group G is a formal sum

∑
C∈C RCC

of conjugacy classes with coefficients in N = {0, 1, 2, · · · }. The corresponding Hopf
quiver Q = Q(G,R) is defined as follows: the set of vertices Q0 is G, and for each
x ∈ G and c ∈ C, there are RC arrows going from x to cx. It is clear by definition
that Q(G,R) is connected if and only if the set {c ∈ C|C ∈ C with RC �= 0}
generates the group G. For a given Hopf quiver Q, the set of graded Hopf structures
on kQ is in one-to-one correspondence with the set of kQ0-Hopf bimodule structures
on kQ1.

It is shown in [25, Theorem 3.1] that the path coalgebra kQ admits a graded
Majid algebra structure if and only if the quiver Q is a Hopf quiver. Moreover,
for a given Hopf quiver Q = Q(G,R), if we fix a Majid algebra structure on
kQ0 = (kG,Φ) with quasi-antipode (S, α, β), then the set of graded Majid algebra
structures on kQ with kQ0 = (kG,Φ,S, α, β) is in one-to-one correspondence with
the set of (kG,Φ)-Majid bimodule structures on kQ1. Thanks to the Gabriel type
theorem given in [25, Theorem 3.4], for an arbitrary pointed Majid algebra H, its
graded version grH can be realized uniquely as a large Majid subalgebra of some
graded Majid algebra structure on a Hopf quiver. By “large” it is meant that the
Majid subalgebra contains the set of vertices and arrows of the Hopf quiver. We
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denote this unique quiver by Q(H) and call it the Gabriel quiver of H. Therefore,
in principle all pointed Majid algebras are able to be constructed on Hopf quivers.

Definition 2.6. Let H be a pointed Majid algebra, Q(H) be its Gabriel quiver
and R =

∑
C∈C RCC be the ramification datum of Q(H). The rank of H is defined

to be the natural number
∑

C∈C RC |C| where |C| is the cardinality of C. We say
that H is connected if Q(H) is connected as a graph.

Remark 2.7. Recall that in case H is a pointed Hopf algebra, then its coradical is a
group algebra kG and one can consider its coradically graded version grH =

⊕
i Hi.

As a basic fact, H1 is a free H0 = kG-module. Usually, the rank of H is defined
to be the rank of H1 regarding as a free H0-module. It is not hard to see that this
rank is equal to the dimension of the space spanned by all skew primitive elements
with source 1 in H1, that is, PG,1 = {x ∈ H1|Δ(x) = g ⊗ x + x ⊗ 1, g ∈ G}. In
this respect, Definition 2.6 may be seen as a generalization from the case of Hopf
algebras to that of Majid algebras.

Example 2.8. Pointed Majid algebras of rank one were studied in [27]. Note that
its dual version appeared in [6,20]. We recall them here in detail as they shed much
light on the working philosophy of the present paper.

Consider the following Hopf quiver Q(Zn, g):

1

g����
����

����
����

���

gn−1

������������������� g· · · ��· · ·gn−1 ��

Now let 0 ≤ s ≤ n − 1 be a natural number, q an n2-th primitive root of unity
and q := qn. Let pli denote the path in Q(Zn, g) starting from gi with length l. So
p0i = gi. Let Φs be the 3-cocycle on Zn defined by

(2.8) Φs(g
i, gj , gk) = qsi[

j+k
n ], 0 ≤ i, j, k ≤ n− 1.

Here [x] stands for the integral part of x. For any h ∈ k, define lh = 1+h+· · ·+hl−1

and l!h = 1h · · · lh. The Gaussian binomial coefficient is defined by
(
l+m
l

)
h

:=
(l+m)!h
l!hm!h

. Let (a, b) denote the greatest common divisor of the two natural numbers
a, b.

Now we are ready to define the rank 1 pointed Majid algebra M(n, s, q). As a
coalgebra,

M(n, s, q) =
⊕

i< n2

(n2,s)

kQ(Zn, g)i.

The associator, the multiplication, the functions α, β and the antipode are given as
follows:

Φ(pli, p
m
j , ptk) = δl+m+t,0Φs(g

i, gj , gk),(2.9)

pli · pmj = q−sjlq−sjlqs(i+l′)[m+j−(m+j)′]/n
(
l+m
l

)
q−sq−sp

l+m
i+j ,(2.10)

α(pli) = δl,01, β(pli) = δl,0
1

Φs(gi,gn−i,gi) ,(2.11)

S(gi) = gn−i, S(p10) = q−sp1n−1,(2.12)

for 0 ≤ l,m, t < n2

(n2,s) and 0 ≤ i, j, k ≤ n − 1, where δa,b is the Kronecker delta,

namely it is equal to 1 if a = b and 0 otherwise, and l′ means the remainder of l
divided by n.
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We have the following basic observation.

Lemma 2.9. Let H be a connected pointed Majid algebra of rank 2 and Q(H) =
Q(G,R) be its Gabriel quiver, then G is an abelian group which can be generated
by one or two elements.

Proof. Let 1 denote the unit element of G. By definition, we know that in Q(H)
there are exactly two arrows going out from 1. We denote the ending vertices of
these two arrows by g and h respectively. As the graph is connected, it follows that
G can be generated by g and h. If g and h live in different conjugacy classes, then
the definition of Hopf quivers implies that the conjugacy class containing g (resp.
h) is just g (resp. h). So both g and h lie in the center of G and thus G is abelian.
If g, h live in the same conjugacy class, then again by the definition of Hopf quivers
we have

ghg−1 = g, or ghg−1 = h.

This implies that g = h or gh = hg. In either case G is abelian. �
2.3. Yetter-Drinfeld modules over (kG,Φ). The definition of Yetter-Drinfeld
modules over a general Majid algebra seems cumbersome. However, its formulation
becomes much simpler when this Majid algebra is (kG,Φ) with G an abelian group.
This special case already suffices for our purpose.

Assume that V is a left kG-comodule with comodule structure map δL : V →
kG ⊗ V . Define gV := {v ∈ V |δL(v) = g ⊗ v} and thus V =

⊕
g∈G

gV. For the
3-cocycle Φ on G and any g ∈ G, define

(2.13) Φ̃g : G×G → k∗, (e, f) �→ Φ(g, e, f)Φ(e, f, g)

Φ(e, g, f)
.

Direct computation shows that

Φ̃g ∈ Z2(G, k∗).

In [9, Definition 3.1], the authors already introduced the definition a Yetter-Drinfeld
for a Majid algebra. For our purpose, we only need the following easier case.

Definition 2.10. A left kG-comodule V is a left-left Yetter-Drinfeld module over
(kG,Φ) if each gV is a projective G-representation with respect to the 2-cocycle

Φ̃g, namely the G-action � on gV satisfies

(2.14) e � (f � v) = Φ̃g(e, f)(ef) � v, ∀e, f ∈ G, v ∈ gV.

The category of all left-left Yetter-Drinfeld modules is denoted by G
GYDΦ. Sim-

ilarly, one can define left-right, right-left and right-right Yetter-Drinfeld modules
over (kG,Φ). As the familiar Hopf case, G

GYDΦ is a braided tensor category. More

precisely, for any M,N ∈ G
GYDΦ, the structure maps of M ⊗ N as a left-left

Yetter-Drinfeld module are given by

(2.15) δL(mg ⊗ nh) := gh⊗mg ⊗ nh, x � (mg ⊗ nh) := Φ̃x(g, h)x � mg ⊗ x � nh

for all x, g, h ∈ G and mg ∈ gM, nh ∈ hN . The associativity constraint a and the

braiding c of G
GYDΦ are given respectively by

a((ue ⊗ vf )⊗ wg) = Φ(e, f, g)−1ue ⊗ (vf ⊗ wg)(2.16)

c(ue ⊗ vf ) = e � vf ⊗ ue(2.17)

for all e, f, g ∈ G, ue ∈ eU, vf ∈ fV , wg ∈ gW and U, V,W ∈ G
GYDΦ.
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Remark 2.11. A left-left Yetter-Drinfeld module V over (kG,Φ) is called diagonal
if every projective G-representation gV is a direct sum of 1-dimensional projective
representations. We point out that unlike the Hopf case, here the condition of G
being abelian can NOT guarantee that every V is diagonal. It turns out that all
V ∈ G

GYDΦ are diagonal if and only if Φ is an abelian cocycle, see [13] and [34]. We
will show in Section 3 that all 3-cocycles on Zm × Zn are abelian.

2.4. Hopf algebras in braided tensor categories. Let C = (C,⊗,1, a, l, r, c) be
a braided tensor category, where 1 is the unit object, a (l, or r) is the associativity
(left, or right unit) constraint and c is the braiding. An associative algebra in C is
an object A of C endowed with a multiplication morphism m : A⊗ A −→ A and a
unit morphism u : 1 −→ A such that

m ◦ (m⊗ id) = m ◦ (id⊗m) ◦ aA,A,A, m ◦ (id⊗u) = rA, m ◦ (u⊗ id) = lA.

If (A,mA, uA) and (B,mB, uB) are two algebras in C, then one can define a natural
morphism mA⊗B : (A⊗ B)⊗ (A⊗B) −→ A⊗B by

mA⊗B=(mA⊗mB)◦aA⊗A,B,B◦(a−1
A,A,B⊗id)◦(id⊗cB,A⊗id)◦(aA,B,A⊗id)◦a−1

A⊗B,A,B

such that (A⊗ B,mA⊗B, uA ⊗ eB) is again an algebra in C. The resulting algebra
is called the braided tensor product of A and B.

Dually, a coassociative coalgebra in C is an object C of C endowed with a co-
multiplication morphism Δ: C −→ C ⊗C and a counit morphism ε : C −→ 1 such
that

aC,C,C ◦ (Δ⊗ id) ◦Δ = (id⊗Δ) ◦Δ, r−1
C = (id⊗ε) ◦Δ, l−1

C = (ε⊗ id) ◦Δ.

If (C,ΔC , εC) and (D,ΔD, εD) are coalgebras in C, then one can define a suitable
morphism ΔC⊗D : C⊗D −→ (C⊗D)⊗ (C ⊗D) to get the braided tensor product
coalgebra (C ⊗D,ΔC⊗D, εC ⊗ εD) in C.

Endowed with braided tensor products, one may naturally define Hopf algebras
in braided tensor categories. A sextuplet (H,m, u,Δ, ε, S) is a Hopf algebra in C if
(H,m, u) is an algebra in C, (H,Δ, ε) is a coalgebra in C and Δ: H −→ H⊗H and
ε : H −→ 1 are algebra maps in C, and S : H −→ H is a morphism, to be called
the antipode, subject to

(2.18) m ◦ (S ⊗ id) ◦Δ = u ◦ ε = m ◦ (id⊗S) ◦Δ.

As the usual case, we can define ideals of algebras, coideals of coalgebras, Hopf
ideals of Hopf algebras, and the corresponding quotient structures in braided tensor
categories. We do not include further details. For our purpose, we only record some
more facts on the duals of finite-dimensional Hopf algebras in the braided tensor
category G

GYDΦ. Let H be such a Hopf algebra. Then its left dual ∗H and right

dual H∗ are again Hopf algebras in G
GYDΦ in a natural manner, and in addition,

∗(H∗) ∼= (∗H)∗ ∼= H. For more details on algebras and Hopf algebras in braided
tensor categories, the reader is referred to [33].

2.5. Nichols algebras in G
GYDΦ. In simple terms, Nichols algebras are the ana-

logue of the usual symmetric algebras in more general braided tensor categories.
They can be defined by various equivalent ways, see [2, 4]. Here we adopt the
defining method in terms of the universal property.
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Let V be a nonzero object in G
GYDΦ. By TΦ(V ) we denote the tensor algebra in

G
GYDΦ generated freely by V. It is clear that TΦ(V ) is isomorphic to

⊕
n≥0 V

⊗−→n as

a linear space, where V ⊗−→n means

(· · · ((︸ ︷︷ ︸
n−1

V ⊗ V )⊗ V ) · · · ⊗ V ).

This induces a natural N-graded structure on TΦ(V ). Define a comultiplication on
TΦ(V ) by Δ(X) = X ⊗ 1+ 1⊗X, ∀X ∈ V, a counit by ε(X) = 0, and an antipode
by S(X) = −X. It is routine to verify that these provide an N-graded Hopf algebra
structure on TΦ(V ) in the braided tensor category G

GYDΦ.

Definition 2.12. The Nichols algebra B(V ) of V is defined to be the quotient
Hopf algebra TΦ(V )/I in G

GYDΦ, where I is the unique maximal graded Hopf ideal
generated by homogeneous elements of degree greater than or equal to 2.

Let J be a 2-cochain on G, i.e., a function J : G×G −→ k∗ such that J(g, 1) =
1 = J(1, g) for all g ∈ G. Then clearly the group Majid algebras (kG,Φ) and
(kG,Φ∂(J)) are twist equivalent with twisting offered by extending J bilinearly. It
is well known that their associated Yetter-Drinfeld categories G

GYDΦ and G
GYDΦ∂(J)

are tensor equivalent [10]. More precisely, the tensor functor (FJ , ϕ0, ϕ2) :
G
GYDΦ

−→ G
GYDΦ∂(J) is given by

FJ (U) = UJ , ϕ0 = id, ϕ2 : V
J ⊗W J −→ (V ⊗W )J , X ⊗ Y �→ J(x, y)X ⊗ Y,

where UJ as a G-comodule is the same as U, but with a new G-action obtained by
twisting that on U via J as follows

(2.19) g �J X =
J(g, x)

J(x, g)
g � X, ∀g ∈ G, X ∈ xU.

Naturally, this tensor equivalence maps algebras in G
GYDΦ to algebras in G

GYDΦ∂(J).
In particular, the Nichols algebra B(V ) is mapped to B(V )J which is again a
Nichols algebra in G

GYDΦ∂(J) (see the proof of Lemma 2.13 below). Note that the
multiplication of the latter, denoted by “◦”, is given by

(2.20) X ◦ Y = J(x, y)XY, ∀X ∈ xV , Y ∈ yV .

In addition, we get the following obvious but useful observation:

Lemma 2.13. We have B(V )J ∼= B(V J ) as Nichols algebras in G
GYDΦ∂(J).

Proof. By definition, we only need to show that B(V )J is actually a Nichols algebra

in G
GYDΦ∂(J). In fact, by definition B(V ) = TΦ(V )/I where I is the maximal Hopf

ideal generated by homogeneous elements of degree ≥ 2. By Equation (2.20),
we know every ideal in TΦ(V ) was mapped, under the functor (FJ , ϕ0, ϕ2), to
an ideal in TΦ∂(J)(V ) since up to a nonzero scalar the multiplications of the two

elements are indeed the same. Since the functor (FJ , ϕ0, ϕ2) does not change the
comultiplication, we know it maps a Hopf ideal of TΦ(V ) to that of TΦ∂(J)(V ).

As (FJ , ϕ0, ϕ2) is an equivalence, it maps the maximal Hopf ideal generated by
homogeneous elements of degree ≥ 2 in TΦ(V ) to the maximal Hopf ideal generated
by homogeneous elements of degree ≥ 2 in TΦ∂(J)(V ). Therefore, B(V )J is a

Nichols algebra in G
GYDΦ∂(J). �
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2.6. Bosonization for pointed Majid algebras. The theory of bosonization for
general Majid algebra was studied in [9] and in a broader context in [33] in terms of
braided diagrams. For our purpose, it is enough to focus on the situation of graded
pointed Majid algebras. For the sake of completeness and later applications, we
record in the following some explicit concepts, notations and results without proof.

In the rest of the paper, we always assume that

M =
⊕
i∈N

Mi

is a connected coradically graded pointed Majid algebra with unit 1. So M0 =
(kG,Φ) for some group G together with a 3-cocycle Φ on G. Let π : M → M0 be
the canonical projection. Then M is a kG-bicomodule naturally through

δL := (π ⊗ id)Δ, δR := (id⊗π)Δ.

Thus there is a G-bigrading on M, that is,

M =
⊕

g,h∈G

gMh,

where gMh = {m ∈ M | δL(m) = g ⊗ m, δR(m) = m ⊗ h}. We only deal with
homogeneous elements with respect to this G-bigrading unless stated otherwise.
For example, whenever we write Δ(X) = X1 ⊗ X2, all X,X1, X2 are assumed
homogeneous. For the convenience of the exposition, we make a convention: given
any capital X ∈ gMh, use its lowercase x to denote gh−1.

Define the subalgebra of M consisting of coinvariants as

R := {m ∈ M | δR(m) = m⊗ 1}.
Clearly 1 ∈ R and R inherits from M a left G-coaction, i.e., R =

⊕
g∈G

gR. There
is also a (kG,Φ)-action on R given by

(2.21) f � X :=
Φ(fx, f−1, f)

Φ(f, f−1, f)
(f ·X) · f−1

for all f, x ∈ G and X ∈ xR. Here · is the multiplication in M. Then (R, δL,�) is
a left-left Yetter-Drinfeld module over (kG,Φ).

Moreover, there are several natural operations on R inherited from M as follows:

M : R⊗ R → R, (X,Y ) �→ XY := X · Y ;

u : k → R, λ �→ λ1;

ΔR : R → R⊗ R, X �→ Φ(x1, x2, x
−1
2 )X1 · x−1

2 ⊗X2;

εR : R → k, εR := ε|R;
SR : R → R, X �→ 1

Φ(x,x−1,x)x · S(X).

Then it is routine to verify that (R,M, u,ΔR, εR,SR) is a Hopf algebra in G
GYDΦ.

Conversely, let H be a Hopf algebra in G
GYDΦ. Since H is a left G-comodule,

there is a G-grading on H:

H =
⊕
x∈G

xH,

where xH = {X ∈ H|δL(X) = x ⊗ X}. As before, we only need to deal with G-
homogeneous elements. As a convention, homogeneous elements in H are denoted
by capital letters, say X,Y, Z, . . . , and the associated degrees are denoted by their
lower cases, say x, y, z, . . . .
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For our purpose, we also assume that H is N-graded with H0 = k. If X ∈ Hn,
then we say that X has length n. Moreover, we assume that both gradings are
compatible in the sense that

H =
⊕
g∈G

gH =
⊕
g∈G

⊕
n∈N

gHn.

For example, the Hopf algebra R in G
GYDΦ considered above satisfies these as-

sumptions as R =
⊕

i∈N
Ri is coradically graded. For any X ∈ H, we write its

comultiplication as

ΔH(X) = X(1) ⊗X(2).

The following results are [31, Propositions 3.3, 3.4] and we cite them without proofs.

Proposition 2.14. Keep the assumptions on H as above. Define on H ⊗ kG a
product by

(2.22) (X ⊗ g)(Y ⊗ h) =
Φ(xg, y, h)Φ(x, y, g)

Φ(x, g, y)Φ(xy, g, h)
X(g � Y )⊗ gh,

and a coproduct by

(2.23) Δ(X ⊗ g) = Φ(x(1), x(2), g)
−1(X(1) ⊗ x(2)g)⊗ (X(2) ⊗ g).

Then H ⊗ kG becomes a graded Majid algebra with a quasi-antipode (S, α, β) given
by

S(X ⊗ g) = Φ(g−1,g,g−1)
Φ(x−1g−1,xg,g−1)Φ(x,g,g−1) (1⊗ x−1g−1)(SH(X)⊗ 1),(2.24)

α(1⊗ g) = 1, α(X ⊗ g) = 0,(2.25)

β(1⊗ g) = Φ(g, g−1, g)−1, β(X ⊗ g) = 0,(2.26)

here g, h ∈ G and X,Y are homogeneous elements of length ≥ 1.

In the following, by H#kG we denote the resulting Majid algebra defined on
H ⊗ kG.

Proposition 2.15. Let M and R be as before, and R#kG be the Majid algebra as
defined in the previous proposition. Then the map

F : R#kG → M, X ⊗ g �→ Xg

is an isomorphism of Majid algebras.

2.7. Generators of abelian groups. For applications in Section 5, we also need
to recall some elementary results given in [30] about generators of abelian groups.
Given two generators g, h of Zm × Zn = 〈g1, g2|gm1 = gn2 = 1, g1g2 = g2g1〉 with
m|n, we know that there are integers a, b, c, d such that g = ga1g

b
2, h = gc1g

d
2 and g, h

generate Zm×Zn. The question is that can we simplify the expressions of g and h?
That is, up to an automorphism of Zm ×Zn, deduce the integers a, b, c, d as simple
as possible. To this end, we call two generators h1, h2 of Zm × Zn are standard if
there is an automorphism σ ∈ Aut(Zm × Zn) satisfying σ(g1) = h1, σ(g2) = h2.

The following two lemmas, which are [30, Corollary 4.3] and [30, Proposition
4.1] respectively, answer the above question.
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Lemma 2.16. Let g, h be two generators of Zm ×Zn with m|n. Assume the order
of h is n, then there are standard generators g1, g2 of Zm × Zn such that

g = g1g
a
2 , h = g2

for some 0 ≤ a < m.

Lemma 2.17. Assume that g and h generate the abelian group Zm×Zn with m|n,
then there are integers m1,m2, n1, n2, a, b such that

(i) m = m1n1, n = m2n2, m1|m2, n1|n2, (m2, n2) = 1;
(ii) 0 ≤ a < n2, 0 ≤ b < m2 and

g = g2h1h
a
2 , h = g1g

b
2h2,

where g1, g2 (resp. h1, h2) are standard generators of Zm1
×Zm2

(resp. Zn1
×Zn2

).

3. 3-Cocycles on Zm × Zn and their resolutions

The aim of this section is to show that every 3-cocycle Φ on Zm × Zn is abelian
in the sense of [13] and can be “resolved” in a bigger abelian group G, namely there
exists a group epimorphism π : G → Zm × Zn such that the pull-back π∗(Φ) is a
coboundary on G.

3.1. Abelian cocycles. The original definition of abelian cocycles was given in
[13]. For our purpose, we prefer the following equivalent form via twisted quantum
doubles appeared in [34]. So first we need to recall the definition of twisted quantum
doubles [10]. The twisted quantum double Dω(G) of G with respect to the 3-
cocycle ω on G is the semisimple quasi-Hopf algebra with underlying vector space
(kG)∗ ⊗ kG in which multiplication, comultiplication Δ, associator φ, counit ε,
antipode S, α and β are given by

(e(g)⊗ x)(e(h)⊗ y) = θg(x, y)δgx,he(g)⊗ xy,

Δ(e(g)⊗ x) =
∑
hk=g

γx(h, k)e(h)⊗ x⊗ e(k)⊗ x,

φ =
∑

g,h,k∈G

ω(g, h, k)−1e(g)⊗ 1⊗ e(h)⊗ 1⊗ e(k)⊗ 1,

S(e(g)⊗ x) = θg−1(x, x−1)−1γx(g, g
−1)−1e(x−1g−1x)⊗ x−1,

ε(e(g)⊗ x) = δg,1, α = 1, β =
∑
g∈G

ω(g, g−1, g)e(g)⊗ 1,

where {e(g)|g ∈ G} is the dual basis of {g|g ∈ G}, δg,1 is the Kronecker delta,
gx = x−1gx, and

θg(x, y) =
ω(g, x, y)ω(x, y, (xy)−1gxy)

ω(x, x−1gx, y)
,

γg(x, y) =
ω(x, y, g)ω(g, g−1xg, g−1yg)

ω(x, g, g−1yg)

for any x, y, g ∈ G. It is well known that M is a left Dω(G)-module if and only if
M is a left-left Yetter-Drinfeld module over (kG, ω) as defined in Subsection 2.3.

Now we are ready to present the definition.

Definition 3.1. A 3-cocycle ω on G is called abelian if Dω(G) is a commutative
algebra.
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3.2. 3-Cocycles. Let G := Zm × Zn and g1 (resp. g2) be a generator of Zm (resp.
Zn). For any natural numbers 0 ≤ a < m, 0 ≤ b < (m,n), 0 ≤ d < n, define a map

Φa,b,d : G×G×G → k∗

by setting

(3.1) Φa,b,d(g
i
1g

j
2, g

s
1g

t
2, g

k
1g

l
2) = ζ

a[ k+s
m ]i

m ζ
b[ k+s

m ]j
n ζ

d[ t+l
n ]j

n .

Lemma 3.2 ([28, Proposition 3.9]). The set {Φa,b,d|0 ≤ a < m, 0 ≤ b < (m,n), 0 ≤
d < n} is a complete set of representatives of the normalized 3-cocycles on Zm×Zn.

With this, it is not hard to find that

Proposition 3.3. The 3-cocycles Φa,b,d are abelian.

Proof. By (3.1) it is clear that

Φa,b,d(x, y, z) = Φa,b,d(x, z, y)

for all x, y, z ∈ G. It follows that

θg(x, y) =
Φa,b,d(g, x, y)Φa,b,d(x, y, g)

Φa,b,d(x, g, y)
= Φa,b,d(g, x, y) = Φa,b,d(g, y, x) = θg(y, x)

for all g, x, y ∈ G, which implies that DΦa,b,d(G) is commutative. �

Corollary 3.4. All Yetter-Drinfeld modules over (kG,Φa,b,d) are diagonal.

3.3. Resolutions. One of our key observations is that any 3-cocycle Φ on G can
be “resolved” in a suitable bigger abelian group G. More precisely, we may take
G = Zm × Zn = 〈g1〉 × 〈g2〉 with m = m2, n = n2 and the canonical epimorphism

π : G → G, g1 �→ g1, g2 �→ g2.

By pulling back the 3-cocycles on G along π one gets 3-cocycles on G. Therefore,
for any a, b, d, the map

π∗(Φa,b,d) : G×G×G → k∗, (g, h, z) �→ Φa,b,d(π(g), π(h), π(z)), ∀g, h, z ∈ G

becomes a 3-cocycle on G. The observation is that π∗(Φa,b,d) is indeed a cobound-
ary. In fact, consider the following map

(3.2) Ja,b,d : G×G → k∗; (gx1
1 gx2

2 , gy1

1 gy2

2 ) �→ ζ
ax1(y1−y′

1)
m ζ

bx2(y1−y′
1)

mn ζ
dx2(y2−y′′

2 )
n ,

where y′1 is the remainder of y1 divided by m (resp. y′′2 is the remainder of y2
divided by n). Here we require that ζm

m = ζn
mn = ζm and ζn

n = ζm
mn = ζn. Of course,

this requirement can be easily satisfied. For example, just take ζt = e
2πi
t for t ∈ N.

Thus, we have

Proposition 3.5. The differential of Ja,b,d is equal to π∗(Φa,b,d), that is, ∂(Ja,b,d) =
π∗(Φa,b,d).
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Proof. Indeed, by direct computation

∂(Ja,b,d)(g
i1
1 gi22 , gj11 gj22 , gk1

1 gk2
2 )

=
J(gj11 gj22 , gk1

1 gk2
2 )J(gi11 gi22 , gj1+k1

1 gj2+k2

2 )

J(gi1+j1
1 gi2+j2

2 , gk1
1 gk2

2 )J(gi11 gi22 , gj11 gj22 )

=
ζ
aj1(k1−k′

1)
m ζ

bj2(k1−k′
1)

mn ζ
dj2(k2−k′′

2 )
n ζ

ai1((j1+k1)−(j1+k1)
′)

m

ζ
a(i1+j1)(k1−k′

1)
m ζ

b(i2+j2)(k1−k′
1)

mn ζ
d(i2+j2)(k2−k′′

2 )
n

× ζ
bi2((j1+k1)−(j1+k1)

′)
mn ζ

di2((j2+k2)−(j2+k2)
′′)

n

ζ
ai1(j1−j′1)
m ζ

bi2(j1−j′1)
mn ζ

di2(j2−j′′2 )
n

=
ζ
ai1((j1+k1)−(j1+k1)

′)
m ζ

bi2((j1+k1)−(j1+k1)
′)

mn ζ
di2((j2+k2)−(j2+k2)

′′)
n

ζ
ai1(j1+k1−j′1−k′

1)
m ζ

bi2(j1+k1−j′1−k′
1)

mn ζ
di2(j2+k2−j′′2 −k′′

2 )
n

= ζ
ai′1[

j′1+k′
1

m ]
m ζ

bi′′2 [
j′1+k′

1
m ]

n ζ
di′′2 [

j′′2 +k′′
2

n ]
n

= π∗(Φa,b,d)(g
i1
1 gi22 , gj11 gj22 , gk1

1 gk2
2 ).

�

4. Generation in degree one

Throughout this section, M is a finite-dimensional connected coradically graded
pointed Majid algebra of rank 2. The aim of this section is to prove that M is
generated by M0 and M1. Recall that, as before,

M0 = (kG,Φ)

and we can assume that

G = Zm × Zn = 〈g1〉 × 〈g2〉
with m|n by Lemma 2.9, and

Φ = Φa,b,d

for some 0 ≤ a, b ≤ m − 1, 0 ≤ d ≤ n − 1 by Lemma 3.2. Thanks to Proposition
2.15, we have

M = R#kG.

Note that R =
⊕

i∈N
Ri is also coradically graded. The main result of this section

can be stated as follows:

Proposition 4.1. In G

G
YDΦ, we have

R ∼= B(R1).

The proof of this proposition is divided into three steps and each of them appears
as a subsection.

4.1. The Zl-grading of B(V ). In this subsection, G stands for an arbitrary finite
abelian group and Φ a 3-cocycle on G. Let V be a diagonal Yetter-Drinfeld module

in G
GYDΦ with dimension l. Let V =

⊕l
i=1 kXi be a decomposition of V into the

direct sum of 1-dimensional Yetter-Drinfeld modules. Let Zl be the free abelian
group of rank l and ei(1 ≤ i ≤ l) be the canonical generators of Zl.

Lemma 4.2. There is a Zl-grading on the Nichols algebra B(V ) ∈ G
GYDΦ by

setting degXi = ei.
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Proof. Obviously, there is a Zl-grading on the tensor algebra TΦ(V ) ∈ G
GYDΦ by

assigning degXi = ei. Let I = ⊕i≥i0Ii be the maximal graded Hopf ideal generated
by homogeneous elements of degree greater than or equal to 2. To prove that B(V )
is Zl-graded, it amounts to prove that I is Zl-graded. This will be done by induction
on the N-degree.

First let X ∈ I be a homogenous element with minimal degree i0. Since Δ(X) ∈
T (V )⊗ I + I ⊗ T (V ), X must be a primitive element, i.e., Δ(X) = X ⊗ 1 + 1⊗X.
Suppose X = X1 + X2 + · · · + Xn, where Xi is Zl-homogenous, and Xi and Xj

have different Zl-degrees if i �= j. Write Δ(Xi) = Xi ⊗ 1+ 1⊗Xi + (Xi)1 ⊗ (Xi)2.
Then we have

∑n
i=1(X

i)1 ⊗ (Xi)2 = 0. This forces (Xi)1 ⊗ (Xi)2 = 0 for each

1 ≤ i ≤ l since Δ preserves the Zl-degrees. So, each Xi is a primitive element and
hence must be contained in I by the maximality of I. Therefore, Ii0 is Zl-graded.

Then suppose that Ik := ⊕i0≤i≤kIi is Zl-graded. We shall prove that Ik+1 =
⊕i0≤i≤k+1Ii is also Zl-graded. LetX ∈ Ik+1 andX = X1+X2+· · ·+Xn, with each
Xi being Zl-homogenous and Xi and Xj having different Zl-degrees if i �= j. Write
Δ(Xi) = Xi⊗1+1⊗Xi+(Xi)1⊗(Xi)2. Since Δ(X) = X⊗1+1⊗X+(X)1⊗(X)2,
where (X)1 ⊗ (X)2 ∈ T (V )⊗ Ik + Ik ⊗ T (V ), i.e.,

∑
(Xi)1 ⊗ (Xi)2 ∈ T (V )⊗ Ik +

Ik ⊗ T (V ). According to the inductive assumption, T (V ) ⊗ Ik + Ik ⊗ T (V ) is a
Zl-graded space. So each (Xi)1 ⊗ (Xi)2 ∈ T (V ) ⊗ Ik + Ik ⊗ T (V ) as Δ preserves
Zl-degrees. If there was an Xi /∈ Ik+1, then I + 〈Xi〉 is a Hopf ideal properly
containing I, which contradicts to the maximality of I. It follows that Xi ∈ Ik+1

for all 1 ≤ i ≤ n and hence Ik+1 is also Zl-graded by the assumption on X. We
complete the proof of the lemma. �

Now return to our Majid algebra M. Since it is assumed of rank 2, dimR1 = 2.
By Corollary 3.4, R1 is a diagonal Yetter-Drinfeld module over (kG,Φ). Therefore,
we may write

R1 = V1 ⊕ V2 = kX1 ⊕ kX2

as the direct sum of two 1-dimensional Yetter-Drinfeld modules. As in Section 3,
consider a bigger abelian group G = Zm × Zn = 〈g1〉 × 〈g2〉 with m = m2, n = n2

and the canonical epimorphism:

π : kG → kG, g1 �→ g1, g2 �→ g2.

Observe that π has a section

ι : kG → kG, gi1g
j
2 �→ gi1g

j
2

which is not a group morphism. Let δL and � be the comodule and module structure
maps of R ∈ G

G
YDΦ. Define

ρL : R1 → kG⊗ R1, ρL = (ι⊗ id)δL

�: kG⊗ R1 → R1, g � Z = π(g) � Z

for all g ∈ G and Z ∈ R1. Through this way, R1 ∈ G
GYDπ∗(Φ) and this can be

verified by direct computation:

e � (f � Z) = π(e) � (π(f) � Z)

= Φ̃z(π(e), π(f))(π(e)π(f)) � Z

= π̃∗(Φ)ι(z)(e, f)ef � Z
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for all e, f ∈ G and δL(Z) = z ⊗ Z for Z ∈ R1. We denote this new Yetter-

Drinfeld module by R̃1 in order to distinguish from the original one R1 ∈ G

G
YDΦ.

From these, we have two essentially identical Nichols algebras B(R1) ∈ G

G
YDΦ and

B(R̃1) ∈ G
GYDπ∗(Φ) which however live in different environment.

Lemma 4.3. There is a linear isomorphism F : B(R1) −→ B(R̃1) which preserves
the product and coproduct of these two algebras.

Proof. Let F : TΦ(R1) → Tπ∗(Φ)(R̃1) be the multiplicative linear map which pre-
serves R1, i.e., F |R1

= idR1
. It is easy to show that F also preserves the comultipli-

cation of TΦ(R1) and Tπ∗(Φ)(R̃1). Note that F induces a one to one correspondence

between the set of Z2-graded Hopf ideals of TΦ(R1) and that of Tπ∗(Φ)(R̃1). By
Lemma 4.2, we know that the maximal Hopf ideals generated by homogeneous el-

ements of degree ≥ 2 in TΦ(R1) and in Tπ∗(Φ)(R̃1) are Z2-graded. It is obvious

that F maps the maximal Hopf ideal of TΦ(R1) to that of Tπ∗(Φ)(R̃1). Therefore, F

induces a linear isomorphism from B(R1) to B(R̃1), which preserves multiplication
and comultiplication. �

Remark 4.4. Via this isomorphism, we also view B(R1) as a Nichols algebra in
G
GYDπ∗(Φ). In particular, B(R1) is a Yetter-Drinfeld module over (kG, π∗(Φ)).

4.2. Twisted version of ordinary Nichols algebras. Again, first suppose G is
an arbitrary finite abelian group. Let V be a diagonal Yetter-Drinfeld module in
G
GYD and let V =

⊕N
i=1 kXi be a decomposition of V into 1-dimensional Yetter-

Drinfeld modules. We use δL and � to denote the comodule and module structure
maps of V . Then there are gi ∈ G and qij ∈ k∗ such that δL(Xi) = gi ⊗ Xi and
gi � Xj = qijXj . Let J be a 2-cochain on G and let Φ denote its differential ∂(J).
Recall that B(V )J is defined in Subsection 2.5 and we have B(V )J ∼= B(V J ) as

Nichols algebras in G
GYD∂(J).

Now assume that B(V ) ∈ G
GYD is finite-dimensional, then B(V ) = T (V )/I

where I is the Hopf ideal of T (V ) generated by the polynomials listed in [7, Theorem
3.1]. In the following, let S denote the set of these polynomials. Preserve the
notations of Subsection 2.5. Define a map Ψ : TΦ(V

J ) → T (V ) by

(4.1) Ψ((· · · ((Y1 ◦ Y2) ◦ Y3) · · ·Yn)) =
n−1∏
i=1

J(Y1 · · ·Yi, Yi+1)Y1Y2 · · ·Yn

for all Yi ∈ {X1, X2, . . . , XN}. It is easy to see that Ψ is an isomorphism of linear
spaces.

Lemma 4.5. The set Ψ−1(S) is a minimal set of defining relations of B(V )J .

Proof. We claim that

(4.2) Ψ(E ◦ F ) = J(e, f)Ψ(E)Ψ(F )

for any homogeneous E,F ∈ TΦ(V
J ). We prove this by induction on the length of

F.
If the length of F is 1, i.e., F ∈ {X1, X2, . . . , XN}, then (4.2) is just a special

case of (4.1). Next assume (4.2) holds for all F of length < n. If F is of length n,
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then we can write F = F ′Xi for some 1 ≤ i ≤ N. And we have

Ψ(E ◦ F ) = Ψ((E ◦ (F ′ ◦Xi))

= Φ−1(e, f ′, xi)Ψ((E ◦ F ′) ◦Xi)

= Φ−1(e, f ′, xi)J(ef
′, xi)Ψ(E ◦ F ′)Ψ(Xi)

= Φ−1(e, f ′, xi)J(ef
′, xi)J(e, f

′)Ψ(E)Ψ(F ′)Ψ(Xi)

= Φ−1(e, f ′, xi)J(ef
′, xi)J(e, f

′)J−1(f ′, xi)Ψ(E)Ψ(F ′ ◦Xi)

= J(e, f)Ψ(E)Ψ(F ).

Now with (4.2), it is clear that TΦ(V
J) is exactly T (V )J . Let I ′ be the ideal

generated by Ψ−1(S), then one can easily show that Ψ induces an isomorphism
Ψ : TΦ(V

J)/I ′ → B(V ) such that

(4.3) Ψ(E ◦ F ) = J(e, f)Ψ(E)Ψ(F )

for any homogeneous E,F ∈ TΦ(V
J )/I. So TΦ(V

J)/I ′ is actually B(V )J . By

Lemma 2.13, we see that TΦ(V
J)/I ′ is a Nichols algebra in G

GYDΦ. The minimality
of Ψ−1(S) follows from that of S. �

Lemma 4.6. Let Z be a polynomial in S, then we have B(V J ⊕ kΨ−1(Z)) ∼=
B(V ⊕ kZ)J .

Proof. It suffices to prove that (V ⊕ kZ)J ∼= V J ⊕ kΨ−1(Z) as objects in G
GYDΦ.

But this is clear. �

The following lemma is a summary of the important results in [7, Section 4],
which is also crucial for the present paper.

Lemma 4.7. Let B(V ) ∈ G
GYD be a finite-dimensional Nichols algebra of diagonal

type. Suppose that Z is a polynomial in S and U = V ⊕ kZ, then B(U) is infinite-
dimensional.

Proof. If Z is of the form (3.2) or (3.5-3.29) listed in [7, Theorem 3.1], then from
the proofs of [7, Proposition 4.1] and [7, Lemmas 4.2–4.12], we know that the root
systems of B(U) is not in the Heckenberger’s list of classification of finite arithmetic
root systems. Hence B(U) must be infinite-dimensional.

If Z is of the form (3.1) or (3.3-3.4) listed in [7, Theorem 3.1], then from the
proof of [7, Theorem 4.13] we know that the subalgebra of B(U) generated by Z
is infinite-dimensional. Therefore B(U) is also infinite-dimensional. �

In the rest of this subsection, we return to the case of M, i.e., G = Zm ×Zn and
Φ = Φa,b,d, J = Ja,b,d. The following result is a generalization of [7, Theorem 4.13]
to pointed Majid algebras.

Proposition 4.8. Let R = ⊕i≥0Ri be a finite-dimensional graded (not necessarily

coradically graded) Hopf algebra in G

G
YDΦ such that R0 = k1 and dimk R1 = 2. If

R is generated by R1, then R = B(R1).

Proof. Let I be an ideal of TΦ(R1) such that R = TΦ(R1)/I. Clearly, we have a
surjective Hopf map

θ : R � B(R1).

By Lemma 4.3, B(R1) is also a Nichols algebra in G
GYDπ∗(Φ) for G = Zm × Zn.

By Proposition 3.5, π∗(Φ) = ∂J . Therefore, B(R1)
J−1

∈ G
GYD is a usual Nichols
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algebra. Now assume that θ is not an isomorphism, then there should be some
polynomials in Ψ−1(S), which are not contained in I by Lemma 4.5. Suppose that
Ψ−1(Z) is one of those with minimal length. From the proof of Lemma 4.2, we
know that Ψ−1(Z) must be a primitive element in R. Let U = R1⊕ kΨ−1(Z), then
by the preceding assumption there is an embedding of linear spaces B(U) → R.

We already know that B(R1)
J−1

is a finite-dimensional Nichols algebra in G
GYD.

By Lemma 2.13, there exists R′
1 ∈ G

GYD such that R1 = R′J
1 . By Lemma 4.6,

we have B(R′
1 ⊕ Z)J = B(R1 ⊕ kΨ−1(Z)) = B(U). Note that B(R′

1 ⊕ Z)J is
infinite-dimensional due to Lemma 4.7. Hence B(U) is infinite-dimensional, which
contradicts to the assumption that R is finite-dimensional. Thus θ is an isomor-
phism and R is the Nichols algebra B(R1). �
4.3. Dual Hopf algebras and the proof of Proposition 4.1. For any Hopf
algebra H in the category of (twisted) Yetter-Drinfeld modules, we use P (H) to
denote the set of primitive elements of H, that is, P (H) = {X ∈ H|Δ(X) =
1⊗X +X ⊗ 1}. The following lemma is a generalization of [3, Lemma 5.5].

Lemma 4.9. Let R = ⊕i≥0Ri be a graded Hopf algebra in G

G
YDΦ with R0 = k1

and P (R) = R1. Then R∗ = ⊕i≥0R
∗
i (resp. ∗R = ⊕i≥0

∗Ri) is generated by R∗
1

(resp. ∗R1).

Proof. Let

m
−→s
R∗ = mR∗ ◦ (mR∗ ⊗ idR∗) ◦ · · · ◦ (mR∗ ⊗ idR∗ · · · ⊗ idR∗︸ ︷︷ ︸

s−1

)

and
Δ

−→s = (· · · (Δ⊗ idR) · · · idR︸ ︷︷ ︸
s−1

) ◦ · · · ◦ (ΔR ⊗ idR) ◦ΔR.

For f1, f2, · · · , fs ∈ R∗
1 and X ∈ Rs, we have

m
−−→
s−1
R∗ (· · · (f1 ⊗ f2) · · · fs)(X) = (· · · (f1 ⊗ f2) · · · fs)(Δ

−−→
s−1
R (X))

= (· · · (f1 ⊗ f2) · · · fs)(π
−→s ◦Δ

−−→
s−1
R (X)),

where π
−→s = (· · · (π ⊗ π) · · ·π︸ ︷︷ ︸

s

) and π : R → R1 is the canonical projection. Hence

as linear maps, m
−−→
s−1
R∗ are dual to π

−→s ◦ Δ
−−→
s−1. So for all s ≥ 2, Γs = π

−→s ◦ Δ
−−→
s−1 :

Rs → R
−→s
1 is injective if and only if m

−−→
s−1
R∗ : R∗(1)

−→s → R∗
s is surjective.

Therefore, to prove the claim it is enough to show that P (R) = R1 if and only
if Γs is injective for all s ≥ 2. On the one hand, assume that the Γs are injective.
If X ∈ Rs is a primitive element for some s ≥ 2, then Γs(X) = 0 by definition, and
hence X = 0. So it follows that P (R) = R1.

On the other hand, assume that P (R) = R1. We will use induction to prove
that each Γs is injective for all s ≥ 2. If s = 2, for an X ∈ R2 we have Δ(X) =

X ⊗ 1 + 1 ⊗ X + X1 ⊗ X2 where X1, X2 ∈ R1 since Δ(RN ) ⊂
⊕N

i=0 RN−i ⊗ Ri.
So Γ2(X) = 0 implies X1 ⊗X2 = 0, hence Δ(X) = 1 ⊗X +X ⊗ 1 is a primitive
element. But P (R) = R1, so X = 0. Denote

As,t(V )=(· · · (a−1
V

−→s ,V,V
⊗idV ) · · · idV︸ ︷︷ ︸

t−2

)◦(· · · (a−1

V
−→s ,V

−→
2 ,V

⊗idV ) · · · idV︸ ︷︷ ︸
t−3

) · · ·◦a−1

V
−→s ,V

−−→
t−1,V

.
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Thus we have

Γs+1 = Al,s−1(R1) ◦ (Γl ⊗ Γs−l) ◦Δ

for 1 ≤ l ≤ s. If Γs+1(X) = 0 for X ∈ Rs+1, then we have (Γl ⊗ Γs−l) ◦Δ(X) = 0
since Al,s−1(R1) is an isomorphism. Write Δ(X) = X⊗1+1⊗X+X1⊗X2+Y1⊗Y2,
here X1 ∈ Rl, X2 ∈ Rs−l, Y1 ⊗ Y2 /∈ Rl ⊗Rs−l. Note that (Γl ⊗ Γs−l)(Y1 ⊗ Y2) = 0
by definition. So we have (Γl ⊗ Γs−l)(X1 ⊗ X2) = 0 since Γs+1(X) = 0, which
implies X1 ⊗ X2 = 0 since Γl are injective for l < s + 1 by induction. Since l is
arbitrary, we have Δ(X) ∈ Rs+1 ⊗ R0 ⊕ R0 ⊗ Rs+1. Hence X must be primitive,
which implies X = 0. �

Proof of Proposition 4.1. By assumption, R0 = k1 and P (R) = R1 has dimension
2. According to Lemma 4.9, R∗ = ⊕i≥0R∗

i is generated by R∗
1. By Proposition 4.8,

R∗ = B(R∗
1). So we have P (R∗) = R∗

1, and
∗(R∗) = R is generated by R1 according

to Lemma 4.9 again. Hence R is also a Nichols algebra again by Proposition 4.8.
Thus, R = B(R1). �

Corollary 4.10. Let H be a finite-dimensional pointed Majid algebras of rank 2,
then H is generated by group-like and skew-primitive elements.

Proof. It is clear that H is generated by group-like and skew-primitive elements
if and only if gr(H) is. So we may assume that H is coradically graded. Let

H0 = kG, then the coinvariant subalgebra R is a graded Hopf algebra in G

G
YDΦ.

By Proposition 4.1, R is generated by primitives. This clearly leads to the claim. �

5. Classification procedure and the main result

In this section, a theoretical procedure to classify graded connected pointed
Majid algebras of rank 2 is provided. The procedure is applied to get our main
classification result, that is, Theorem 5.14.

5.1. General setup. In this section, we always assume thatM is a finite-dimension-
al connected coradically graded pointed Majid algebra of rank 2. Keep the notations
of Section 4. Recall that, M0 = (kG,Φ) where G = Zm × Zn = 〈g1〉 × 〈g2〉 with
m|n and Φ = Φa,b,d for some 0 ≤ a, b ≤ m − 1, 0 ≤ c ≤ n − 1. By the bosonization
procedure, we have M = R#kG and dimR1 = 2 since M is assumed of rank 2. By
Corollary 3.4, R1 is a diagonal Yetter-Drinfeld module over (kG,Φ) . Therefore,
we may write

R1 = V1 ⊕ V2 = kX1 ⊕ kX2

as a direct sum of two 1-dimensional Yetter-Drinfeld modules. As in Subsection 3.3,
we consider the bigger abelian groupG = Zm×Zn = 〈g1〉×〈g2〉 withm = m2, n = n2

and the canonical epimorphism

π : kG → kG, g1 �→ g1, g2 �→ g2

with a typical section

ι : kG → kG, gi1g
j
2 �→ gi1g

j
2.
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5.2. From Majid algebras to Hopf algebras. It was shown in Subsection 2.6
that the coinvariant subalgebra R of M is a Hopf algebra in G

G
YDΦ. Moreover,

R = B(R1) ∈ G

G
YDΦ by Proposition 4.1. Thanks to Lemma 4.3, R is also a Hopf

algebra in G
GYDπ∗(Φ) by extending the following Yetter-Drinfeld module structure

on R1 to R:

ρL : R1 → kG⊗ R1, ρL = (ι⊗ id)δL(5.1)

�: kG⊗ R1 → R1, g � X = π(g) � X(5.2)

for all g ∈ G and X ∈ R1.
The following observation is contained implicitly in the proof of Proposition 4.1.

As it is the crux of our classification procedure, we include an explicit proof here.

Proposition 5.1. The Majid bosonization

M := R#kG

as defined in Subsection 2.6 is twist equivalent to an ordinary connected pointed
Hopf algebra.

Proof. Note that the associator of M is provided by π∗(Φa,b,d) for some 0 ≤ a, b <
m, 0 ≤ d < n. Then by Proposition 3.5, there exists a 2-cochain J on G such that

π∗(Φa,b,d) = ∂J . Clearly, MJ−1

is an ordinary Hopf algebra, see Subsection 2.1.

Finally, the connectedness of M implies that of MJ−1

. �

Example 5.2, though of rank 1, provides an explanation of the previous propo-
sition.

Example 5.2. Take M(n, 1, q) as given in Example 2.8. Recall that

Φ(gi, gj , gk) = qi[
j+k

n ].

In this case, the coinvariant subalgebra R = k[X]/(Xn) with n = n2, and R1 = kX.
Then by equations (2.10) and (2.21), we have

(5.3) gi � X = (qq)iX.

Let Zn = 〈g〉 and π : Zn → Zn, g �→ g. This Zn-action extends to a Zn-action �
according to (5.2). More precisely,

gi � X =

{
q(qq)i

′
X n � i,

X n | i.

Now R becomes a Hopf algebra in Zn

Zn
YDπ∗(Φ) and we get the Majid algebra R#kZn

by the bosonization. Note that the associator of R#kZn is π∗(Φ), which is exactly
the differential of the following 2-cochain

J : kZn ⊗ kZn → k, (gi, gj) �→ qi(j−j′).

Therefore, the associator of (R#kZn)
J−1

is trivial by Subsection 2.1, and thus

(R#kZn)
J−1

is an ordinary Hopf algebra.

Remark 5.3. Let R be a Hopf algebra in G
GYDΦ. Note that the bosonization R#kG

is an ordinary Hopf algebra if and only if each gR is a linear representation of G.
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As a matter of fact, in the above example the Zn-action on R in (R#kZn)
J−1

is
given by

gi �J X =

{
q−1qi+(−i)′(qq)i

′
X n � i

qiX n | i.
From this, we always have

gi �J (gj �J X) = gi+j �J X.

That is, we turn the projective representation into the usual linear representation.

That is, (R#kZn)
J−1

is a usual Hopf algebra, which in fact is the familiar Taft
algebra Tn.

So far, we have achieved the one-way road map given in Figure I.

M = R#kG Original Majid algebra

�
M = R#kG Bigger Majid algebra

�
∃ J

H = (R#kG)J Ordinary Hopf algebra

Figure I

This offers us a possible chance to take advantage of the successful theory of
finite-dimensional pointed Hopf algebras to Majid algebras. Of course, our next
task is to get a “return ticket” from ordinary pointed Hopf algebras to genuine
pointed Majid algebras.

5.3. From Hopf algebras to Majid algebras. Although R is a “twisted” version
of a Nichols algebra, it is completely not clear yet when a “twisted” version of a
Nichols algebra is indeed the coinvariant subalgebra of a genuine Majid algebra.
The aim of this subsection is to find an answer to this question.

According to Figure I, take B = B(V ) a finite-dimensional diagonal Nichols
algebra of rank 2 as classified in [22]. Fix a decomposition

V = kX1 ⊕ kX2

as a direct sum of 1-dimensional Yetter-Drinfeld modules. Find two square integers
m = m2, n = n2 with m | n and the abelian group G = Zm×Zn = 〈g1〉× 〈g2〉 such
that B is a Nichols algebra in G

GYD. Take J = Ja,b,d as given in (3.2) and consider

(B#kG)J = BJ#kG,

where (BJ , ρL,�) is regarded as a Nichols algebra in G
GYD∂(J). As before, let

G = Zm × Zn = 〈g1〉 × 〈g2〉. Let Φ = Φa,b,d as given in (3.1) which is a 3-cocycle
on G. Keep the notations of Subsection 5.2. What we need to do is to reverse the
first step of the procedure in Subsection 5.2, that is, find

(5.4) δL : BJ → kG⊗ BJ , � : kG⊗ BJ → BJ ,
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such that (BJ , δL, �) is a Nichols algebra in G

G
YDΦ and the restrictions of ρL, � to

V are just (ι⊗id)δL, π(−)� respectively, i.e., ρL|V = (ι⊗id)δL|V , � |V = π(−)�|V .
If this is the case, we call (BJ , ρL,�) the induced Nichols algebra of (BJ , δL, �).

Lemma 5.4. The aforementioned δL and � exist if and only if both gm
1 and gn

2 lie
in the center of BJ#kG.

Proof. For brevity and for the consistence of the notations, denote the Majid al-
gebra (B#kG)J by HJ . Let I be the right ideal of HJ generated by gm

1 − 1 and
gn
2 − 1. That is,

I = (gm
1 − 1)HJ + (gn

2 − 1)HJ .

It is not hard to find that

(5.5) dimHJ − dim I = dim(BJ ⊗ kG).

Claim. BJ is a Nichols algebra in G

G
YDΦ such that its induced Nichols algebra is

BJ in G
GYD∂(J) if and only if I is a Majid ideal.

Proof of the claim. “⇐” Assume that I is a Majid ideal, so HJ/I = BJ ⊗ kG is a

Majid algebra. This implies BJ is a Nichols algebra in G

G
YDΦ. Simple computation

shows that the induced Nichols algebra of this BJ is exactly (BJ , ρL,�).
“⇒” By assumption, BJ#kG is a Majid algebra and we have a canonical epi-

morphism

F : HJ = BJ ⊗ kG → BJ#kG, x⊗ g �→ x⊗ π(g).

It is easy to see that I ⊆ Ker(F ). By (5.5), I = Ker(F ), hence a Majid ideal.

Now get back to the proof of the lemma. Obviously I is a coideal. Therefore, I
is a Majid ideal if and only if it is an ideal. Hence to prove the lemma, it amounts
to show that I is an ideal if and only if both gm

1 and gn
2 lie in the center of BJ#kG.

Clearly, if both gm
1 and gn

2 lie in the center then I is an ideal. Conversely, assume
that I is an ideal. Then X1 ◦ (gm

1 − 1) ∈ I, where ◦ denotes the multiplication of
HJ . Since we always have

X1 ◦ gm
1 = αgm

1 ◦X1

for some 0 �= α ∈ k. Therefore,

X1 ◦ (gm
1 − 1) = αgm

1 ◦X1 −X1 = α(gm
1 − 1)X1 + (α− 1)X1.

So (α− 1)X1 ∈ I, this forces that α = 1, that is, gm
1 commutes with X1. Similarly,

gm
1 commutes with X2. Thus gm

1 lies in the center. By the same method one can
show that gn

2 also belongs to the center. �

Example 5.5. Let Tn = Tn2 be the Taft algebra of dimension n4. By definition,
Tn is generated by two elements x, g subject to

xn2

= 0, gn2

= 1, gx = ζnxg.

Its comultiplication is given as

Δ(x) = g ⊗ x+ x⊗ 1, Δ(g) = g ⊗ g.
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Consider the right ideal I generated by gn − 1. That is,

I = (gn − 1)Tn.

It is not hard to see that I is a coideal but is not an ideal. Define a twisting J in
the following way

J(gi1xj1 , gi2xj2) =

{
0 if j1 > 0 or j2 > 0,

ζ
i1(i2−i′2)
n if j1 = j2 = 0.

Consider the twisted Majid algebra T J
n and we denote the new product by ◦. In

this algebra, we have

(gn − 1) ◦ x = J((gn − 1)′, x′)(gn − 1)′′x′′J−1((gn − 1)′′′, x′′′)

= J((gn − 1), g)x+ J(gn, g)(gn − 1)x+ J(gn, g)xJ−1((gn − 1), 1)

= (gn − 1)x;

x ◦ (gn − 1) = J(x′, (gn − 1)′)x′′(gn − 1)′′J−1(x′′′, (gn − 1)′′′)

= J(g, (gn − 1))x+ J(g, gn)x(gn − 1) + J(g, gn)xJ−1(1, (gn − 1))

= (ζn
n − 1)x+ ζn

nx(g
n − 1)x

= −x+ ζn
nxg

n

= (gn − 1)x.

So we have (gn − 1) ◦ x = x ◦ (gn − 1) in T J
n . This implies the right ideal I

generated by gn − 1 is a Majid ideal in T J
n , hence the quotient T J

n /I is a Majid
algebra. It is not hard to verify that

T J
n /I

∼= M(n, 1, q),

where the latter was considered in Example 5.2. Using the same method, the
readers can realize all M(n, s, q) constructed in Example 2.8 as the quotients of
twisted Taft algebras. �

Remark 5.6. It seems that there is a closed relationship between Lemma 5.4 and
some results in particular Theorem 3.8 in [8], which gave the conditions for the
existence of a de-equivariantization for coradically graded Hopf algebras in a general
setting. And our Example 5.5 is included in this paper [8] too.

Now we give a criteria to determine when both gm
1 and gn

2 lie in the center of
BJ#kG. At first, we set several parameters. Assume that

σL(Xi) = hi ⊗Xi

hi �Xj = qijXj

for 1 ≤ i, j ≤ 2, hi ∈ G and qij ∈ k∗, where σL (resp. �) is the comodule (resp.
module) structure map of B(V ) ∈ G

GYD. So there are αi, βi ∈ N such that

h1 = gα1
1 gα2

2 , h2 = gβ1

1 gβ2

2 .
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Since we always assume that h1, h2 generate the group G, there are si, ti ∈ N such
that

g1 = hs1
1 hs2

2 , g2 = ht1
1 ht2

2 .

With these preparations, we have

Proposition 5.7. Both gm
1 and gn

2 lie in the center of BJ#kG if and only if a, b, d
satisfy the equations

ζaα1m
m ζbα2m

mn = qms1
11 qms2

21

ζaβ1m
m ζbβ2m

mn = qms1
12 qms2

22

ζdα2n
n = qnt1

11 qnt2
21

ζdβ2n
n = qnt1

12 qnt2
22 .

(5.6)

Proof. This is a consequence of direct computations. Indeed,

gm
1 ◦X1 = J(gm

1 , g
α1
1 gα2

2 )gm
1 X1 = ζ

am(α1−α′
1)

m gm
1 X1 = qms1

11 qms2
21 X1g

m
1

and
X1 ◦ gm

1 = J(gα1
1 gα2

2 , gm
1 )X1g

m
1 = ζaα1m

m ζbα2m
mn X1g

m
1 .

So gm
1 ◦X1 = X1 ◦ gm

1 if and only if

ζaα1m
m ζbα2m

mn = qms1
11 qms2

21 .

Similarly, gm
1 ◦X2 = X2 ◦ gm

1 if and only if

ζaβ1m
m ζbβ2m

mn = qms1
12 qms2

22 ;

and gn
2 ◦X1 = X1 ◦ gn

2 if and only if

ζdα2n
n = qnt1

11 qnt2
21 ;

and gn
2 ◦X2 = X2 ◦ gn

2 if and only if

ζdβ2n
n = qnt1

12 qnt2
22 .

�

Definition 5.8. Equations (5.6) are called soluble if there exist integers 0 ≤ a, b <
m, 0 ≤ d < n such that (5.6) hold.

Now we can add a return road map to Figure I and complete the circuit as
follows:

M = R#kG Original Majid algebra M = BJ−1

#kG

�

�
Eq. (5.6) soluble

M = R#kG Bigger Majid algebra HJ−1

= BJ−1

#kG

�
∃ J

�

H = (R#kG)J Ordinary Hopf algebra H = B#kG

Figure II
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5.4. Solutions of equations (5.6). In this subsection, we will show that equations
(5.6) have at most one solution and give a criterion to determine when equations
(5.6) do have a solution.

Keep the notations of Subsection 5.3. Call B(V ) a connected rank 2 Nichols
algebra in G

GYD if the ordinary pointed Hopf algebra B(V )#kG is connected. As
before, let V = kX1 ⊕ kX2 be the direct sum of 1-dimensional Yetter-Drinfeld
modules. Therefore, there exist hi ∈ G and qij ∈ k∗ such that

σL(Xi) = hi ⊗Xi, hi �Xj = qijXj

for 1 ≤ i, j ≤ 2, where σL and � are structure maps of V ∈ G
GYD.

Assume that h1 = gα1
1 gα2

2 , h2 = gβ1

1 gβ2

2 for some αi, βi ∈ N. As h1 and h2

generate G (due to the connectedness of B(V )#kG), there exist 0 ≤ s1, t1 <
m, 0 ≤ s2, t2 < n such that g1 = hs1

1 hs2
2 , g2 = ht1

1 ht2
2 . Therefore, we have

(5.7)

(
α1 β1

α2 β2

)(
s1 t1
s2 t2

)
≡

(
1 (mod m) 0 (mod m)
0 (mod n) 1 (mod n)

)
.

Note that

g1 �X1 = ζx11
m X1, g1 �X2 = ζx12

m X2, g2 �X1 = ζx21
n X1, g2 �X2 = ζx22

n X2

for some 0 ≤ x11, x12 < m, 0 ≤ x21, x22 < n. Hence we have

q11 = ζx11α1
m ζx21α2

n ,

q12 = ζx12α1
m ζx22α2

n ,

q21 = ζx11β1
m ζx21β2

n ,

q22 = ζx12β1
m ζx22β2

n .

(5.8)

Now equations (5.6) read as

ζaα1m
m ζbα2m

mn = ζmx11(α1s1+β1s2)
m ζmx21(α2s1+β2s2)

n

ζaβ1m
m ζbβ2m

mn = ζmx12(α1s1+β1s2)
m ζmx22(α2s1+β2s2)

n

ζdα2n
n = ζnx11(α1t1+β1t2)

m ζnx21(α2t1+β2t2)
n

ζdβ2n
n = ζnx12(α1t1+β1t2)

m ζnx22(α2t1+β2t2)
n .

(5.9)

By (5.7), equations (5.9) can be simplified as

ζaα1m
m ζbα2m

mn = ζmx11
m

ζaβ1m
m ζbβ2m

mn = ζmx12
m

ζdα2n
n = ζnx21

n

ζdβ2n
n = ζnx22

n .

(5.10)

which clearly are equivalent to following congruence equations

aα1
n
m

+ bα2 ≡ x11
n
m

(mod n)

aβ1
n
m

+ bβ2 ≡ x12
n
m

(mod n)

dα2 ≡ x21 (mod n)

dβ2 ≡ x22 (mod n).

(5.11)
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Using (5.7) again, by multiplying the first (resp. second) congruence equation
by s1 (resp. s2) and take the sum of them, we have

(5.12) a = (x11s1 + x12s2)
′.

Similarly, we have

b = (
n
m
(x11t1 + x12t2))

′, d = (t1x21 + t2x22)
′′,

here as before, x′ is the remainder of x divided by m (resp. x′′ is the remainder of
x divided by n).

In summary, we have

Proposition 5.9. If Equations (5.6) have one solution, then this solution must be
the following form:

(5.13) a = (x11s1 + x12s2)
′, b = (

n
m
(x11t1 + x12t2))

′, d = (t1x21 + t2x22)
′′.

Remark 5.10. It is possible that equations (5.6) have no solution. In fact, take
α1 = 1, α2 = 1, β1 = 0, β2 = 1, x21 = 0, x22 = 1 for example, then the last two
equations in (5.11) clearly have no solution.

The last problem is to determine when equations (5.6) do have a solution. This
is settled as follows.

Proposition 5.11. Keep the above notations. Equations (5.6) have a solution if
and only if

(5.14) x22α2 − x21β2 ≡ 0 (mod n).

Proof. “⇐” It is enough to show that (5.13) is exactly a solution of (5.11). Consider
the last two equations in (5.11), we have

dα2 − x21 ≡ (t1x21 + t2x22)α2 − x21 (mod n)

≡ (1− β2t2)x21 + t2x22α2 − x21 (mod n)

≡ t2(x22α2 − x21β2) (mod n)

≡ 0 (mod n),

and

dβ2 − x22 ≡ (t1x21 + t2x22)β2 − x22 (mod n)

≡ t1x21β2 + (1− α2t1)x22 − x22 (mod n)

≡ t1(−x22α2 + x21β2) (mod n)

≡ 0 (mod n).

Therefore, the last two equations of (5.11) are satisfied. Next we consider the first
two equations of (5.11). To show this, we need the following claim.

Claim. We always have

(5.15)

(
s1 t1
s2 t2

)(
α1 β1

α2 β2

)
≡

(
1 (mod m) 0 (mod m)
0 (mod m) 1 (mod m)

)
.

Proof of this claim: Note that the reason for equation (5.7) fulfilled is that if g1 =
gs1g

t
2, g2 = gx1g

y
2 then s ≡ 1 (mod m), t ≡ 0 (mod n), x ≡ 0 (mod m), y ≡ 1 (mod n).

So, to show (5.15) it is enough to show that

h1 = hs
1h

t
2, h2 = hx

1h
y
2
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will imply that s ≡ 1 (mod m), t ≡ 0 (mod m), x ≡ 0 (mod m), y ≡ 1 (mod m).
We only consider the case h1 = hs

1h
t
2 since the other one is similar. Clearly, it is

equivalent to showing that if hs
1h

t
2 = 1 then m|s and m|t. We use Lemma 2.17

to prove this. Here we use notations of Lemma 2.17 freely. In order to not cause
confusion, we point out that our h1 (resp. h2) is just the element g (resp. h) of
Lemma 2.17. Therefore by Lemma 2.17, gsht = 1 implies that

m1|t, m2|(s+ tb), n1|s, n2|(sa+ t).

From m1|t, m2|(s+ tb) and m1|m2, it follows that m1|s. Using n1|s and (m1, n1) =
1, we have m = m1n1|s. Similarly, one can show that m1n1|t.

We return to the proof of this proposition. Now, we have

aα1
n
m

+ bα2 − x11
n
m

≡ (x11s1 + x12s2)α1
n
m

+ (x11t1 + x12t2)α2
n
m

− x11
n
m

(mod n)

≡ n
m
[x11(s1α1 + t1α2) + x12(s2α1 + t2α2)− x11] (mod n)

≡ n
m
[x11 − x11] (mod n)

≡ 0 (mod n),

where in the third “≡” we use equation (5.15). The second equation of (5.11) can
be verified similarly:

aβ1
n
m

+ bβ2 − x12
n
m

≡ (x11s1 + x12s2)β1
n
m

+ (x11t1 + x12t2)β2
n
m

− x12
n
m

(mod n)

≡ n
m
[x11(s1β1 + t1β2) + x12(s2β1 + t2β2)− x12] (mod n)

≡ n
m
[x12 − x12] (mod n)

≡ 0 (mod n).

“⇒” By the proof of the sufficiency, we know that

t1(−x22α2 + x21β2) ≡ 0 ≡ t2(x22α2 − x21β2) (mod n).

Therefore,

x22α2 − x21β2 ≡ (α2t1 + β2t2)(x22α2 − x21β2) (mod n)

≡ α2t1(−x22α2 + x21β2) + β2t2(x22α2 − x21β2) (mod n)

≡ 0 (mod n).

�

5.5. Main result. Keep the notations of Subsections 5.3 and 5.4.

Definition 5.12. A finite-dimensional rank 2 connected Nichols algebra B(V ) ∈
G
GYD is said to be of Majid type if equation (5.14) is fulfilled.

Now let B(V ) ∈ G
GYD be a Nichols algebra of Majid type and we may choose 3

natural numbers a, b, d in the form of (5.13). By Figure II, we get a Majid algebra

M(V,G) := B(V )Ja,b,d#kG/(gm
1 − 1, gn

2 − 1) = B(V )Ja,b,d#kG.



FINITE QUASI-QUANTUM GROUPS OF RANK TWO 663

Definition 5.13. The Majid algebra M(V,G) is called the associated Majid algebra
of the Nichols algebra B(V ) ∈ G

GYD of Majid type. In addition, if one of a, b, d is
not zero, then we call M(V,G) the associated genuine Majid algebra of B(V ).

Now, our main result can be stated as follows.

Theorem 5.14. Keep all the previous assumptions and notations.

(1) M(V,G) is a finite-dimensional connected coradically graded pointed Majid
algebra of rank 2;

(2) Let M be a finite-dimensional connected coradically graded pointed Majid
algebra of rank 2. Then M is isomorphic to some M(V,G) associated to an
appropriate Nichols algebra B(V ) ∈ G

GYD of Majid type. Moreover, M is
genuine if and only if M(V,G) is genuine.

Proof. The statement (1) is clear since B(V ) is finite-dimensional. The statement
(2) is a direct consequence of Figure II and Proposition 5.11. �

6. Presentation of M(V,G)

The main aim of this section is to provide an explicit presentation of M(V,G),
or equivalently, of B(V )Ja,b,d . In principle, the idea is simple: first we recall the
classification results about rank 2 Nichols algebras given by Heckenberger [22, 23],
then we carry out the twisting process.

6.1. Generalized Dynkin diagrams and full binary trees. Let E = {ei|1 ≤
i ≤ d} be a canonical basis of Zd, and χ be a bicharacter of Zd. The numbers
qij = χ(ei, ej) are called the structure constants of χ with respect to E.

Definition 6.1. The generalized Dynkin diagram of the pair (χ,E) is a nondirected
graph Dχ,E with the following properties:

(1) There is a bijective map φ from I = {1, 2, . . . , d} to the set of vertices of
Dχ,E .

(2) For all 1 ≤ i ≤ d, the vertex φ(i) is labelled by qii.
(3) For all 1 ≤ i, j ≤ d, the number nij of edges between φ(i) and φ(j) is either

0 or 1. If i = j or qijqji = 1 then nij = 0, otherwise nij = 1 and the edge
is labelled by qijqji.

Obviously a generalized Dynkin diagram is completely determined by the matrix
(qij)d×d, which also arises naturally in the context of Yetter-Drinfeld modules and

Nichols algebras. Recall that for a diagonal Yetter-Drinfeld module V ∈ G
GYDΦ,

there exists a basis {Xi} of V such that

(6.1) δL(Xi) = gi ⊗Xi, gi � Xj = qijXj

for some gi ∈ G and qij ∈ k∗. Hence we obtain a matrix (qij) and the correspond-
ing generalized Dynkin diagram D(qij). We also call D(qij) the generalized Dynkin
diagram of V or B(V ).

Suppose V ∈ G
GYD and let J be a 2-cochain on G. Recall that B(V )J is a Nichols

algebra in G
GYD∂(J) by Lemma 2.13. It is natural to observe that

Lemma 6.2. B(V ) and B(V )J share the same generalized Dynkin diagram.

Proof. By easy computation using (2.19). �
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To describe the structure of rank 2 Nichols algebras of diagonal type, we need
the notion of full binary trees (see [22] and Appendix A). A binary tree T is a tree
such that each node has at most two children. T is called full if each node of T has
exactly zero or two children. Let r(T ) denote the root of the binary tree T . We use
N0(T ) and N2(T ) to present the set of nodes of T which have zero and two children
respectively, and N(T ) = N0(T ) ∪ N2(T ). Let {L,R} be a set of two abstract
elements and define N2(T ) = N2(T ) ∪ {L,R}, N(T ) = N(T ) ∪ {L,R}. We use aL
and aR to denote the left and right child of a ∈ N2(T ). For b ∈ N(T ) \ {r(T )}, let
bP denote its parent.

Definition 6.3. Let T be a binary tree and a ∈ N(T ). A node b ∈ N2(T ) is called
the left godfather of a, denoted by b = aL, if one of the following conditions holds:

(1) a = r(T ) and b = L;
(2) a is the right children of b;
(3) a is the left child of c and b is the left godfather of c.

In a similar manner one defines the right godfather aR of a. Moreover, we can
define a function l : N(T ) → N inductively by

l(a) =

{
l(aR) + 1 if aRL = a,
1 otherwise.

6.2. Classification of rank 2 Nichols algebras. Let V be a diagonal Yetter-
Drinfeld module of dimension 2 over an abelian group G. Let {X1, X2} be a basis
of V such that (6.1) holds for certain gi ∈ G and qij ∈ k∗ for 1 ≤ i, j ≤ 2.
Choose a basis E = {e1, e2} of Z2. Then there exist a unique group homomorphism
ϕ : Z2 → G and a unique bicharacter χ : Z2 × Z2 → k∗ satisfying

(6.2) ϕ(ei) = gi, χ(ei, ej) = qij (1 ≤ i, j ≤ 2).

Clearly, the generalized Dynkin diagram of V is the same as Dχ,E .
Let T (V ) be the tensor algebra of V , then T (V ) admits a Z2-grading by extending

(6.3) degXi = ei, 1 ≤ i ≤ 2.

For brevity, here and below we write |X| = deg(X) for the Z2-homogenous X ∈
T (V ).

Define a map τ : N(T ) → T (V ) as follows:

(1) τ (R) = X1, τ (L) = X2;
(2) if a ∈ N(T ), then τ (a) = τ (aR)τ (aL)− χ(|τ (aR)|, |τ (aL)|)τ (aL)τ (aR).
For a ∈ N(T ), let

Pa = χ−1(|τ (a)|, |τ (a)|).
From now on, for convenience we will write χ(a, b) instead of χ(|τ (a)|, |τ (a)|) for
all a, b ∈ N(T ). For a ∈ N(T ), define

λ(a) =

⎧⎨⎩
0 if a /∈ N(T ),
χ−1(L,R)− χ(R,L) if a = r(T ),
χ−1(aL, aR)− χ(aR, aL) + λ(aP ) otherwise.

Furthermore, for any b ∈ N(T ) with bL ∈ N(T ), set

μ(b) =

{
λ(b) if b = bLR,
λ(b)μ(bR) otherwise.
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In the following, by Rn we denote the set of primitive n-th roots of unity and set
R =

⋃
n≥2 Rn. With these notations, we can state Heckenberger’s classification

result as follows.

Theorem 6.4 ([22, Theorem 7.1] and [23, Theorem 7]). The set of finite-dimension-
al rank 2 Nichols algebras B(V ) are in one-to-one correspondence with the set of
pairs (D, T ) appeared in the same horizontal line of Table 6.1, where D is a gener-
alized Dynkin diagram with all parameters taken in R and T is a full binary tree.
Moreover, the Nichols algebra B(V ) associated with (D, T ) is the quotient of the
tensor algebra T (V ) by the ideal generated by the following set

{τ (a) | a ∈ N0(T )} ∪ {τ (a)ordPa | a ∈ N2(T ), 2 ≤ ordPa ≤ ∞}∪

{τ (b)τ (cL)−χ(b, cL)τ (cL)τ (b)− μ(b)

(l(b) + 1)!Pc

τ (c)l(b)+1 | b∈N2(T ), c = bL ∈ N2(T )}.

(6.4)

6.3. The presentation of B(V )J . In this subsection, the notations of Section 5
are used freely. Especially, we take

G = Zm × Zn = 〈g1〉 × 〈g2〉, G = Zm × Zn = 〈g1〉 × 〈g2〉
with m = m2, n = n2. Moreover, let V = kX1 ⊕ kX2 be the direct sum of 1-
dimensional Yetter-Drinfeld modules of (kG, π∗(Φ)). Therefore, there exist hi ∈ G
and qij ∈ k∗ such that

(6.5) δL(Xi) = hi ⊗Xi, hi � Xj = qijXj

for all 1 ≤ i, j ≤ 2.

Consider the tensor algebra Tπ∗(Φ)(V ) in G
GYDπ∗(Φ). The G-comodule struc-

ture of V induces a G-grading on Tπ∗(Φ)(V ). For any homogenous element X ∈
Tπ∗(Φ)(V ), let δ(X) denote its G-degree, that is δL(X) = δ(X)⊗X. Note that δ(X)
is also denoted simply by x in Sections 4 and 5. We introduce this new notation
mainly for the awkward situation when there is no sense of lowercase, for example,
a long expression.

According to Figure II of Section 5, any finite-dimensional rank 2 Nichols alge-

bras in G
GYDπ∗(Φ) can be realized as the twist B(V )J of a rank 2 Nichols algebra

B(V ) in G
GYD. Recall that, the product of B(V )J is denoted by ◦ and by definition

X ◦ Y = J(x, y)XY

for all homogeneous elements X,Y ∈ B(V ).
Define a map τ∗ : N(T ) → Tπ∗(Φ)(V ), a twisted version of τ , as follows:

(1) τ∗(R) = X1, τ
∗(L) = X2;

(2) for a ∈ N(T ), define

τ∗(a) =
τ∗(aR) ◦ τ∗(aL)
Ja,b,d(aR, aL)

− χ(aR, aL)
τ∗(aL) ◦ τ∗(aR)
Ja,b,d(aL, aR)

,

where for conciseness Ja,b,d(a
R, aL) stands for Ja,b,d(δ(τ

∗(aR)), δ(τ∗(aL))).
Now the structure of B(V )J can be described explicitly in the following propo-

sition.
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Table 6.1. Nichols algebras of rank 2 with finite root systems

Dynkin diagrams Fixed parameters Binary trees

1 � �

q r q, r ∈ k∗ T1

2 � �

q q−1 q q ∈ k∗ \ {1} T1

3 � �

q q−1 −1
� �

−1 q −1 q ∈ k∗ \ {−1, 1} T2, T2

4 � �

q q−2 q2 q ∈ k∗ \ {−1, 1} T3

5 � �

q q−2 −1 q ∈ k∗ \ {−1, 1},
q /∈ R4

T3

6 � �

ζ q−1 q ζ ∈ R3,

q ∈ k∗ \ {1, ζ, ζ2}
T3

7 � �

ζ −ζ −1 ζ ∈ R3 T3

8 � �

−ζ−2
−ζ3 −ζ2

� �

−ζ−2
ζ−1 −1

� �

−ζ3 ζ −1 ζ ∈ R12 T4, T5, T7

9 � �

−ζ2 ζ −ζ2

� �

−ζ2 ζ3 −1
� �

−ζ−1
−ζ3 −1 ζ ∈ R12 T4, T5, T7

10 � �

−ζ ζ−2 ζ3

� �

ζ3 ζ−1 −1
� �

−ζ2 ζ −1 ζ ∈ R9 T6, T9, T14

11 � �

q q−3 q3 q ∈ k∗ \ {−1, 1},
q /∈ R3

T8

12 � �

ζ2 ζ ζ−1

� �

ζ2 −ζ−1−1
� �

ζ −ζ −1 ζ ∈ R8 T8, T8, T8

13 � �

ζ6 −ζ−1ζ−4

� �

ζ6 ζ ζ−1

� �

−ζ−4
ζ5 −1

� �

ζ ζ−5 −1 ζ ∈ R24 T10, T13,

T17, T21

14 � �

ζ ζ2 −1
� �

−ζ−2
ζ−2 −1 ζ ∈ R5 T11, T16

15 � �

ζ ζ−3 −1
� �

−ζ−2
ζ3 −1 ζ ∈ R20 T11, T16

16 � �

−ζ−ζ−3 ζ5

� �

ζ3 −ζ4−ζ−4

� �

ζ5 −ζ−2−1
� �

ζ3 −ζ2 −1 ζ ∈ R15 T12, T15,

T18, T20

17 � �

−ζ−−ζ−3−1
� �

−ζ−2
−ζ3 −1 ζ ∈ R7 T19, T22
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Proposition 6.5. Suppose that B(V ) is a finite-dimensional rank 2 Nichols algebra

in G
GYD associated with the pair (D, T ). Then B(V )J ∈ G

GYDΦ with Φ = ∂(J) is

isomorphic to the algebra TΦ(V )/I ∈ G
GYDΦ where the ideal I is generated by

{τ∗(a) | a ∈ N0(T )} ∪ {τ∗(a)
−−−−→
ord Pa | a ∈ N2(T ), 2 ≤ ord Pa ≤ ∞}∪

{τ
∗(b)τ∗(cL)

Ja,b,d(b, cL)
− χ(b, cL)

τ∗(cL)τ∗(b)

Ja,b,d(cL, b)
− μ(b)

(l(b) + 1)!Pc

∏l(b)
i=1 Ja,b,d(c

i, c)
τ∗(c)

−−−−→
l(b)+1

| b ∈ N2(T ), c = bL ∈ N2(T )}.

(6.6)

Proof. Recall that B(V )J is identical to B(V ) as a linear space and its multipli-
cation is obtained by a twisting from that of the latter, i.e., E ◦F = J(e, f)EF for
any E,F ∈ B(V ).

Define a map Ψ : TΦ(V ) → T (V ) by

(6.7) Ψ((· · · ((Y1 ◦ Y2) ◦ Y3) · · ·Yn)) =
n−1∏
i=1

J(Y1 · · ·Yi, Yi+1)Y1Y2 · · ·Yn

for all Yi ∈ {X1, X2}. Evidently Ψ is an isomorphism of linear spaces. By the proof
of Lemma 4.5, we have

(6.8) Ψ(E ◦ F ) = J(e, f)Ψ(E)Ψ(F )

for any homogeneous E,F ∈ TΦ(V ).
By the definition of τ∗, one can easily show that Ψ(τ∗(a)) = τ (a) for any a ∈

N(T ). With this fact and (6.8), it is immediately that Ψ maps relations (6.6) to
relations (6.4), hence Ψ induces an isomorphism Ψ : TΦ(V )/I → B(V ) such that

(6.9) Ψ(E ◦ F ) = J(e, f)Ψ(E)Ψ(F )

for any E,F ∈ TΦ(V )/I. This completes the proof of the proposition. �
Remark 6.6. According to Table 6.1, all the finite-dimensional Nichols algebras of
rank 2 over G = Zm ×Zn can be listed now. Let V be a Yetter-Drinfeld module in
G
GYD with a basis {X1, X2} satisfying (6.5) and condition

qmi
ij = 1, mi = |hi|, 1 ≤ i, j ≤ 2, (C1).

Then B(V ) is finite-dimensional if and only if the corresponding Dynkin diagram
is some one listed in Table 6.2.
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Table 6.2. Finite-dimensional rank 2 Nichols algebras over Zm × Zn

Structure constants of Dynkin diagrams Binary tree

1. q12q21 = 1, q11 �= 1, q22 �= 1, (C1) T1,

2. q12q21 = q−1
11 , q11 = q22 �= 1, (C1) T1

3.
q12q21 = q−1

11 , q11 �= ±1, q22 = −1, (C1) T2

q12q21 �= −1, q11 = q22 = −1, (C1) T2

4. q12q21 = q−2
11 , q22 = q211, q11 �= ±1, (C1) T3

5. q12q21 = q−2
11 , q11 /∈ R4, q22 = −1, (C1) T3

6. q12q21 = q−1
22 , q11 ∈ R3, q22 /∈ R3, q22 �= 1, (C1) T3

7. q12q21 = −q11, q11 ∈ R3, q22 = −1, (C1) T3

8.
q12q21 = −ζ3, q11 = −ζ−2, q22 = −ζ2, ζ ∈ R12, (C1) T4

q12q21 = ζ−1, q11 = −ζ−2, q22 = −1, ζ ∈ R12, (C1) T5

q12q21 = ζ, q11 = −ζ3, q22 = −1, ζ ∈ R12, (C1) T7

9.
q12q21 = ζ, q11 = −ζ2, q22 = −ζ2, ζ ∈ R12, (C1) T4

q12q21 = ζ3, q11 = −ζ2, q22 = −1, ζ ∈ R12, (C1) T5

q12q21 = −ζ3, q11 = −ζ−1, q22 = −1, ζ ∈ R12, (C1) T7

10.
q12q21 = ζ−2, q11 = −ζ, q22 = ζ3, ζ ∈ R9, (C1) T6

q12q21 = ζ−1, q11 = ζ3, q22 = −1, ζ ∈ R9, (C1) T9

q12q21 = ζ, q11 = −ζ2, q22 = −1, ζ ∈ R9, (C1) T14

11. q12q21 = q−3
11 , q22 = q311, q11 �= ±1, q11 /∈ R3, (C1) T8

12.
q12q21 = ζ, q11 = ζ2, q22 = ζ−1, ζ ∈ R8, (C1) T8

q12q21 = −ζ−1, q11 = ζ2, q22 = −1, ζ ∈ R8, (C1) T8

q12q21 = ζ−1, q11 = ζ, q22 = −1, ζ ∈ R8, (C1) T8

13.

q12q21 = −ζ−1, q11 = ζ6, q22 = ζ−4, ζ ∈ R24, (C1) T10

q12q21 = ζ, q11 = ζ6, q22 = ζ−1, ζ ∈ R24, (C1) T13

q12q21 = ζ5, q11 = −ζ−4, q22 = −1, ζ ∈ R24, (C1) T17

q12q21 = ζ−5, q11 = ζ, q22 = −1, ζ ∈ R24, (C1) T21

14.
q12q21 = ζ2, q11 = ζ, q22 = −1, ζ ∈ R5, (C1) T11

q12q21 = ζ−2, q11 = −ζ−2, q22 = −1, ζ ∈ R5, (C1) T16

15.
q12q21 = ζ−3, q11 = ζ, q22 = −1, ζ ∈ R20, (C1) T11

q12q21 = ζ3, q11 = −ζ−2, q22 = −1, ζ ∈ R20, (C1) T16

16.

q12q21 = −ζ−3, q11 = −ζ, q22 = ζ5, ζ ∈ R15, (C1) T12

q12q21 = −ζ4, q11 = ζ3, q22 = −ζ−4, ζ ∈ R15, (C1) T15

q12q21 = −ζ−2, q11 = ζ5, q22 = −1, ζ ∈ R15, (C1) T18

q12q21 = −ζ2, q11 = ζ3, q22 = −1, ζ ∈ R15, (C1) T20

17.
q12q21 = −ζ−3, q11 = −ζ, q22 = −1, ζ ∈ R7, (C1) T19

q12q21 = −ζ3, q11 = −ζ−2, q22 = −1, ζ ∈ R7, (C1) T22
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7. Examples: The typical case

Keep the notations of Sections 5 and 6. We call a rank 2 graded pointed Majid
algebra M = M(V,G) over the group G = Zm × Zn = 〈g1〉 × 〈g2〉 typical if

(7.1) δL(X1) = g1 ⊗X1, δL(X2) = g2 ⊗X2.

By Figure I, we have the corresponding Nichols algebra B(V ) ∈ G
GYD in which

G = Zm × Zn and

(7.2) σL(X1) = g1 ⊗X1, σL(X2) = g2 ⊗X2.

In this case, we also call the Nichols algebra B(V ) ∈ G
GYD typical. As an explicit

example to explain our theoretical results obtained so far, the aim of the present
section is to classify typical rank 2 graded pointed Majid algebras. Moreover, we
will show that if m = n then M is always typical.

7.1. General case. A nice property of typical Nichols algebras B(V ) ∈ G
GYD is

that

(7.3)

(
α1 β1

α2 β2

)
=

(
1 0
0 1

)
and

(
s1 t1
s2 t2

)
=

(
1 0
0 1

)
.

Lemma 7.1. A typical Nichols algebra B(V ) ∈ G
GYD is of Majid type if and only

if

qn
21 = 1.

Proof. It is a direct consequence of Proposition 5.11 and (7.3). �

Let (qij)1≤i,j≤2 be numbers satisfying

qm11 = q12 = 1, qn
21 = qn22 = 1. (C2).

Then all the possible finite-dimensional typical rank 2 Nichols algebras of Majid
type in G

GYD can be given in Table 7.1.
On the other hand, take a Nichols algebra B(V ) in Table 7.1 and from which

we get a, b, d uniquely due to Proposition 5.9. As a matter of fact, in this case we
have

(7.4) a = x′
11, b = (

n
m
x12)

′, d = x′′
22

for q11 = ζx11
m , q12 = ζx12

m , q22 = ζx22
n . Then we get a Majid algebra

M(V,G) := B(V )Ja,b,d#kG/(gm
1 − 1, gn

2 − 1).

So, our result in this section can be stated as follows.

Theorem 7.2. Any connected graded rank 2 pointed Majid algebra of typical type
is isomorphic to

B(V )Ja,b,d#kG/(gm
1 − 1, gn

2 − 1)

for some B(V ) given in Table 7.1.
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Table 7.1. Typical f.d. rank 2 Nichols algebras of Majid type
over Zm × Zn

Structure constants of Dynkin diagrams Binary tree

1. q12q21 = 1, q11 �= 1, q22 �= 1, (C2) T1

2. q12q21 = q−1
11 , q11 = q22 �= 1, (C2) T1

3.
q12q21 = q−1

11 , q11 �= ±1, q22 = −1, (C2) T2

q12q21 �= −1, q11 = q22 = −1, (C2) T2

4. q12q21 = q−2
11 , q22 = q211, q11 �= ±1, (C2) T3

5. q12q21 = q−2
11 , q11 /∈ R4, q11 �= ±1, q22 = −1, (C2) T3

6. q12q21 = q−1
22 , q11 ∈ R3, q22 /∈ R3, q22 �= 1, (C2) T3

7. q12q21 = −q11, q11 ∈ R3, q22 = −1, (C2) T3

8.

q12q21 = −ζ3, q11 = −ζ−2, q22 = −ζ2, ζ ∈ R12, (C2) T4

q12q21 = ζ−1, q11 = −ζ−2, q22 = −1, ζ ∈ R12, (C2) T5

q12q21 = ζ, q11 = −ζ3, q22 = −1, ζ ∈ R12, (C2) T7

9.

q12q21 = ζ, q11 = −ζ2, q22 = −ζ2, ζ ∈ R12, (C2) T4

q12q21 = ζ3, q11 = −ζ2, q22 = −1, ζ ∈ R12, (C2) T5

q12q21 = −ζ3, q11 = −ζ−1, q22 = −1, ζ ∈ R12, (C2) T7

10.

q12q21 = ζ−2, q11 = −ζ, q22 = ζ3, ζ ∈ R9, (C2) T6

q12q21 = ζ−1, q11 = ζ3, q22 = −1, ζ ∈ R9, (C2) T9

q12q21 = ζ, q11 = −ζ2, q22 = −1, ζ ∈ R9, (C2) T14

11. q12q21 = q−3
11 , q22 = q311, q11 �= ±1, q11 /∈ R3, (C2) T8

12.

q12q21 = ζ, q11 = ζ2, q22 = ζ−1, ζ ∈ R8, (C2) T8

q12q21 = −ζ−1, q11 = ζ2, q22 = −1, ζ ∈ R8, (C2) T8

q12q21 = ζ−1, q11 = ζ, q22 = −1, ζ ∈ R8, (C2) T8

13.

q12q21 = −ζ−1, q11 = ζ6, q22 = ζ−4, ζ ∈ R24, (C2) T10

q12q21 = ζ, q11 = ζ6, q22 = ζ−1, ζ ∈ R24, (C2) T13

q12q21 = ζ5, q11 = −ζ−4, q22 = −1, ζ ∈ R24, (C2) T17

q12q21 = ζ−5, q11 = ζ, q22 = −1, ζ ∈ R24, (C2) T21

14.
q12q21 = ζ2, q11 = ζ, q22 = −1, ζ ∈ R5, (C2) T11

q12q21 = ζ−2, q11 = −ζ−2, q22 = −1, ζ ∈ R5, (C2) T16

15.
q12q21 = ζ−3, q11 = ζ, q22 = −1, ζ ∈ R20, (C2) T11

q12q21 = ζ3, q11 = −ζ−2, q22 = −1, ζ ∈ R20, (C2) T16

16.

q12q21 = −ζ−3, q11 = −ζ, q22 = ζ5, ζ ∈ R15, (C2) T12

q12q21 = −ζ4, q11 = ζ3, q22 = −ζ−4, ζ ∈ R15, (C2) T15

q12q21 = −ζ−2, q11 = ζ5, q22 = −1, ζ ∈ R15, (C2) T18

q12q21 = −ζ2, q11 = ζ3, q22 = −1, ζ ∈ R15, (C2) T20

17.
q12q21 = −ζ−3, q11 = −ζ, q22 = −1, ζ ∈ R7, (C2) T19

q12q21 = −ζ3, q11 = −ζ−2, q22 = −1, ζ ∈ R7, (C2) T22

7.2. m = n implies typical. It turns out that the condition m = n will always put
us in the typical situation. More precisely, we have
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Lemma 7.3. Let M be a rank 2 Majid algebra over Zm × Zn. If m = n, then M is
typical.

Proof. It suffices to show that any two generators of Zm × Zm must be typical. In
fact, let h1, h2 ∈ Zm × Zm and assume that h1, h2 generate Zm × Zm. Therefore,
hm
1 = hm

2 = 1 and thus h1, h2 can only generate elements of the form hs
1h

t
2 with

0 ≤ s < m, 0 ≤ t < m. On the other hand, such elements should exhaust the
whole Zm × Zm by assumption. This forces 〈h1〉 ∩ 〈h2〉 = {1} and so h1, h2 make a
set of typical generators. �
7.3. The case m = n = p with p prime. Furthermore, if m = n = p is a prime
number, then we will see that Table 7.1 shrinks enormously. For a better exposition
of the classification results, we present them by several separate cases, namely, by
p = 2, p = 3 and p > 3.

Before we start, we make a useful simplification of notations. Recall that

qij = ζ
xij

p2 , 1 ≤ i, j ≤ 2,

so it is possible to translate the equations of qij in Table 7.1 to some simpler ones
in xij .

Proposition 7.4. Suppose p = 2.

(1) Take a Nichols algebra B(V ) in Table 7.2. Then B(V )Ja,b,d is a Nichols

algebra in G

G
YDΦa,b,d and thus B(V )Ja,b,d#kG is a connected graded rank 2

pointed Majid algebra over G = Z2 × Z2.
(2) Any finite-dimensional connected graded rank 2 pointed Majid algebra over

Z2 × Z2 is isomorphic to B(V )Ja,b,d#kG for some B(V ) given in Table
7.2.

Table 7.2. Finite-dimensional rank 2 Nichols algebras over G
GYD

for G = Z4 × Z4

Structure constants of Dynkin diagrams Binary tree

1. x12 + x21 = 0 or 4, x11 �= 0, x22 �= 0, x21 ≡ 0 (mod 2) T1

2. x12 + x21 + x11 = 4 or 8, x11 = x22 �= 0, x21 ≡ 0 (mod 2) T1

3. x12 + x21 + x11 = 4 or 8, x11 �= 0, 2, x22 = 2,

x21 ≡ 0 (mod 2)

T2

4. x12 + x21 �= 0, 2, 4, 6, x11 = x22 = 2, x21 ≡ 0 (mod 2) T2

5. x12 + x21 + 2x11 = 4, 8 or 12, x11 �= 0, 2, x22 = 2,

x21 ≡ 0 (mod 2)

T3

6. x12 + x21 + 3x11 ≡ 0 (mod 4), x22 − 3x11 ≡ 0 (mod 4),

x11 �= 0, 2, x21 ≡ 0 (mod 2)

T8

Proof. Lemma 7.1 implies that all Nichols algebras B(V ) in Table 7.2 are of Majid
type, as x21 ≡ 0 (mod 2) in each case. Therefore B(V )Ja,b,d is a Nichols alge-

bra in G

G
YDΦa,b,d and we get a graded connected rank 2 pointed Majid algebra

B(V )Ja,b,d#kG. The statement (1) is proved.
To show (2), we just need to check the Nichols algebras given in Table 7.1 case

by case if m = n = p = 2 according to Theorem 7.2.
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(1) For case 1 of Table 7.1, the condition q12q21 = ζx12
4 ζx21

4 = 1 is equivalent to
x12 + x21 = 0 or 4 since 0 ≤ xij < 4. In addition, q11 �= 1 and q22 �= 1 amount to
x11 �= 0 and x22 �= 0.

(2) For case 2 of Table 7.1, we have q12q21 = ζx12
4 ζx21

4 = q−1
11 = ζ−x11

4 , which is
the same as x12 + x21 + x11 = 4 or 8 since x11 �= 0 and 0 ≤ xij < 4. Moreover,
q11 = q22 �= 1 amounts to x11 = x22 �= 0.

(3) The first item of case 3 of Table 7.1. The condition q12q21 = ζx12
4 ζx21

4 =
q−1
11 = ζ−x11

4 amounts to x12 + x21 + x11 = 4 or 8, q11 �= ±1 to x11 �= 0, 2 and
q22 = −1 to x22 = 2.

(4) The second item of case 3 of Table 7.1. The condition q12q21 = ζx12+x21
4 �= ±1

is equivalent to x12 + x21 �= 0, 2, 4, 6. Besides, q11 = q22 = −1 amounts to x11 =
x22 = 2.

(5) Case 4 of Table 7.1. The equation q12q21 = q−2
11 amounts to x12+x21+2x11 ≡

0 (mod 4). As 0 ≤ xij < 4 and x11 �= 0, we have x12 + x21 + 2x11 = 4, 8, or 12. In
addition, q11 �= ±1 amounts to x11 �= 0, 2 and thus the relation q22 = q211 = −1 is
equivalent to x22 = 2.

(6) Case 11 of Table 7.1. Firstly, q12q21 = q−3
11 amounts to x12 + x21 + 3x11 ≡

0 (mod 4). Secondly, q22 = q311 amounts to x22 ≡ 3x11 (mod 4) and q11 �= ±1 to
x11 �= 0, 2.

Finally we show that all other cases of Table 7.1 will not occur. For case 5 of
Table 7.1, the conditions q11 /∈ R4 and q411 = 1 (as p=2) force q11 = −1, which
clearly contradicts another condition q11 �= −1 in the same case. For the remaining
cases, just notice that there are structure constants qij which are not 4-th root of
unity. �
Proposition 7.5. Suppose p = 3.

(1) Take a Nichols algebra B(V ) in Table 7.3. Then B(V )Ja,b,d is a Nichols

algebra in G

G
YDΦa,b,d and thus B(V )Ja,b,d#kG is a connected graded rank 2

pointed Majid algebra over G = Z3 × Z3.
(2) Any finite-dimensional connected graded rank 2 pointed Majid algebra over

Z3 × Z3 is isomorphic to B(V )Ja,b,d#kG for some B(V ) given in Table
7.3.

Table 7.3. Finite-dimensional rank 2 Nichols algebras over G
GYD

for G = Z9 × Z9

Structure constants of Dynkin diagrams Binary tree

1. x12 + x21 = 0 or 9, x11 �= 0, x22 �= 0, x21 ≡ 0 (mod 3) T1

2. x12 + x21 + x11 = 9 or 18, x11 = x22 �= 0, x21 ≡ 0 (mod 3) T1

3. x12 + x21 + 2x11 ≡ 0 (mod 9), x22 − 2x11 ≡ 0 (mod 9),

x11 �= 0, x21 ≡ 0 (mod 3)

T3

4. x12 + x21 + x22 ≡ 0 (mod 9), x11 = 3 or 6, x22 �= 0, 3, 6,

x21 ≡ 0 (mod 3)

T3

5. x12 + x21 + 3x11 ≡ 0 (mod 9), x22 − 3x11 ≡ 0 (mod 9),

x11 �= 0, 3, 6, x21 ≡ 0 (mod 3)

T8

Proof. It is similar to the proof of Proposition 7.4 and so we omit it. �
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Proposition 7.6. Suppose p > 3.

(1) Take a Nichols algebra B(V ) in Table 7.4. Then B(V )Ja,b,d is a Nichols

in G

G
YDΦa,b,d and thus B(V )Ja,b,d#kG is a connected graded rank 2 pointed

Majid algebra over G = Zp × Zp.
(2) Any finite-dimensional connected graded rank 2 pointed Majid algebra over

Zp × Zp is isomorphic to B(V )Ja,b,d#kG for some B(V ) given in Table
7.4.

Table 7.4. Finite-dimensional rank 2 Nichols algebras over G
GYD

for G = Zp2 × Zp2

Structure constants of Dynkin diagrams Binary tree

1. x12 + x21 = 0 or p2, x11 �= 0, x22 �= 0, x21 ≡ 0 (mod p) T1

2. x12 + x21 + x11 = p2 or 2p2, x11 = x22 �= 0, x21 ≡ 0 (mod p) T1

3. x12 + x21 + 2x11 ≡ 0 (mod p2),

x22 − 2x11 ≡ 0 (mod p2), x21 ≡ 0 (mod p)

T3

4. x12 + x21 + 3x11 ≡ 0 (mod p2),

x22 − 3x11 ≡ 0 (mod p2), x21 ≡ 0 (mod p)

T8

Proof. Similar to the proof of Proposition 7.4. �

8. Examples: Finite rank 2 quasi-quantum groups over Zn

This section is devoted to a complete list of finite-dimensional connected rank 2
pointed Majid algebras over an arbitrary cyclic group Zn. For the rest of the paper,
G = Zn and G = Zn with n = n2. As before, we start with the following lemma.

Lemma 8.1. Suppose h1, h2 ∈ Zn and h1, h2 generate Zn. Then there exists a
generator g of Zn such that h1 = gs, h2 = gt and (s, t) = 1.

Proof. Let g′ be a generator of Zn, then h1 = g′s, h2 = g′t for some 0 ≤ s, t < n.
Since h1, h2 generate Zn, so we have 〈h1, h2〉 = 〈g′(s,t)〉 = Zn. This implies that
((s, t), n) = 1, hence g = g′(s,t) is another generator. With this generator we have

h1 = g
s

(s,t) , h2 = g
t

(s,t) and ( s
(s,t) ,

t
(s,t) ) = 1. �

Again keep the notations of Sections 5 and 6. Let B(V ) be a finite-dimensional
rank 2 Nichols algebras in G

GYD with G = Zn = 〈g〉. By Lemma 8.1, we can assume
that

h1 = gs, h2 = gt with (s, t) = 1.

Furthermore, if we assume g �X1 = ζαnX1, g �X2 = ζβnX2 for some 0 ≤ α, β < n,
then we have

q11 = ζsαn , q12 = ζsβn ,

q21 = ζtαn , q22 = ζtβn .

So equations (5.6), or equivalently the congruence equations (5.11) are reduced to :

(8.1) ds ≡ α (mod n), dt ≡ β (mod n).

We remark that in this situation there is no the element g1 and a = b = 0, g2 = g.
Therefore, Proposition 5.11 implies that
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Lemma 8.2. The system of equations (8.1) is soluble if and only if

(8.2) αt ≡ βs (mod n).

Now the 2-cochain Ja,b,d with d = (t1α+ t2β)
′′ (where t1, t2 satisfy t1s+ t2t = 1)

is simplified as:

Ja,b,d = Jd : kZn ⊗ kZn → k, (gi, gj) �→ qdi(j−j′).

As B(V ) is always assumed to be finite-dimensional, hence

sα �≡ 0 �≡ tβ (mod n).

For simplicity, we mark the following conditions by (∗):
αt ≡ βs (mod n), sα �≡ 0 �≡ tβ (mod n). (∗)

Theorem 8.3.

(1) Take a Nichols algebra B(V ) in Table 8.1. Then B(V )Jd is a Nichols alge-

bra in G

G
YDΦd and thus B(V )Jd#kG is a connected graded rank 2 pointed

Majid algebra over G = Zn.
(2) Any finite-dimensional connected graded rank 2 pointed Majid algebra over

Zn is isomorphic to B(V )Jd#kG for some B(V ) given in Table 8.1.

Proof. The proof can be carried out in the same way as that of Proposition 7.4.
We just work on two typical examples, namely case 2 and the first item of case 8,
to explain our equations about structure constants in Table 8.1.

Case 2. Firstly, the equation q12q21 = ζsβn ζtαn = q−1
11 = ζ−sα

n is equivalent to
sβ + tα + sα ≡ 0 (mod n). Secondly, the condition q11 = q22 �= 1 amounts to
sα ≡ tβ �≡ 0 (mod n).

Case 8, item 1. According to Table 7.1, q11 = −ζ−2 is a 6-th primitive root of

unit, it follows that 6|n, and further that 6|n. Let ζ12 = ζ
n
12
n be a 12-th primitive root

of unit. Then ζ = ζk12 for some k such that (k, 12) = 1. Again by Table 7.1, q12q21 =

−ζ3, i.e. ζsβn ζtαn = ζ6+3k
12 = ζ

(6+3k)n
12

n , this amounts to sβ + tα ≡ (k+2)n
4 (mod n).

In addition, the equation q11 = −ζ−2 is equivalent to sα ≡ (3−k)n
6 (mod n) and

q22 = −ζ2 is equivalent to tβ ≡ (3+k)n
4 (mod n). �

Remark 8.4. We conclude the paper with several remarks.

(1) In Theorem 8.3, if n is a prime number and n > 2, then one can check Ta-
ble 8.1 case by case and conclude that there are no genuine rank 2 graded
pointed Majid algebras. This fact offers another explanation to a seemingly
mysterious (at least to the authors) result of Etingof and Gelaki [16, Theo-
rem 3.1], which states that elementary graded genuine quasi-Hopf algebras
over a cyclic group of prime( �= 2) order are of rank ≤ 1.

(2) Essentially the finite-dimensional graded pointed Majid algebras constructed
in Theorem 8.3 already appeared in the recent work of Angiono [6], only
in the dual version. Moreover, Angiono [6] determined their liftings if n is
coprime with 2, 3, 5, 7.

(3) The idea of the present paper should be useful in a much broader context.
In particular, the results of the rank 2 case may be extended to diagonal
Nichols algebras in G

GYDΦ of higher ranks in a similar working philosophy
of the theory of pointed Hopf algebras. This shall be dealt with in our
forthcoming work.
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Table 8.1. Finite-dimensional rank 2 Nichols algebras over G
GYD

for G = Zn

n Structure constants of Dynkin diagrams Binary tree

1. sβ + tα ≡ 0 (mod n), (∗) T1

2. sβ + tα ≡ −sα ≡ −tβ (mod n), (∗) T1

3. 2|n
sβ + tα+ sα ≡ 0, sα �≡ n

2
, tβ ≡ n

2
(mod n), (∗) T2

sβ + tα �≡ 0, n
2
, sα ≡ tβ ≡ n

2
(mod n) , (∗) T2

4. sβ + tα+ 2sα ≡ 0, 2sα ≡ tβ (mod n) , (∗) T3

5. 2|n sβ + tα+ 2sα ≡ 0, sα �≡ n
4
, n
2
, 3n

4
, tβ ≡ n

2
(mod n), (∗) T3

6. 3|n sβ + tα+ 2sα ≡ 0, 3sα ≡ 0, 3tβ �≡ 0 (mod n) , (∗) T3

7. 6|n sβ + tα+ 2sα ≡ 0, 3sα ≡ 0, tβ ≡ n
2

(mod n), (∗) T3

8. 6|n
sβ + tα ≡ (k+2)n

4
, sα ≡ (3−k)n

6
, tβ ≡ (3+k)n

4
(mod n), (k, 12) = 1, (∗) T4

sβ + tα ≡ kn
12

, sα ≡ (3+k)n
6

, tβ ≡ n
2

(mod n), (k, 12) = 1, (∗) T5

sβ + tα ≡ kn
12

, sα ≡ (2+k)n
4

, tβ ≡ n
2

(mod n), (k, 12) = 1, (∗) T7

9. 6|n
sβ + tα ≡ kn

12
, sα ≡ (3+k)n

6
≡ tβ (mod n), (k, 12) = 1, (∗) T4

sβ + tα ≡ kn
4
, sα ≡ (3+k)n

6
, tβ ≡ n

2
(mod n), (k, 12) = 1, (∗) T5

sβ + tα ≡ (2+k)n
4

, sα ≡ (6−k)n
12

, tβ ≡ n
2

(mod n), (k, 12) = 1, (∗) T7

10. 6|n
sβ + tα ≡ −2kn

9
, sα ≡ (9+2k)n

18
, tβ ≡ kn

3
(mod n), (k, 18) = 1, (∗) T6

sβ + tα ≡ −kn
9

, sα ≡ kn
3
, tβ ≡ n

2
(mod n), (k, 9) = 1, (∗) T9

sβ + tα ≡ kn
9
, sα ≡ (9+4k)n

18
, tβ ≡ n

2
(mod n), (k, 18) = 1 T14

11. sβ + tα+ 3sα ≡ 0, 3sα ≡ tβ, sα �≡ n
2
, n
3
, 2n

3
(mod n), (∗) T8

12. 4|n
sβ + tα ≡ kn

8
, sα ≡ kn

4
, tβ ≡ −kn

8
(mod n), (k, 8) = 1, (∗) T8

sβ + tα ≡ (4−k)n
8

, sα ≡ kn
4
, tβ ≡ n

2
(mod n), (k, 8) = 1, (∗) T8

sβ + tα ≡ (4+k)n
8

, sα ≡ kn
8
, tβ ≡ n

2
(mod n), (k, 8) = 1, (∗) T8

13. 12|n

sβ + tα ≡ (12−k)n
24

, sα ≡ kn
4
, tβ ≡ −kn

6
(mod n), (k, 24) = 1, (∗) T10

sβ + tα ≡ kn
24

, sα ≡ kn
4
, tβ ≡ −kn

24
(mod n), (k, 24) = 1, (∗) T13

sβ + tα ≡ 5kn
24

, sα ≡ (3−k)n
6

, tβ ≡ n
2

(mod n), (k, 24) = 1, (∗) T17

sβ + tα ≡ −5kn
24

, sα ≡ kn
24

, tβ ≡ n
2

(mod n), (k, 24) = 1, (∗) T21

14. 10|n
sβ + tα ≡ 2kn

5
, sα ≡ kn

5
, tβ ≡ n

2
(mod n), (k, 5) = 1, (∗) T11

sβ + tα ≡ −2kn
5

, sα ≡ (5−4k)n
10

, tβ ≡ n
2

(mod n), (k, 10) = 1, (∗) T16

15. 10|n
sβ + tα ≡ −3kn

20
, sα ≡ kn

20
, tβ ≡ n

2
(mod n), (k, 20) = 1, (∗) T11

sβ + tα ≡ 3kn
20

, sα ≡ (5−k)n
10

, tβ ≡ n
2

(mod n), (k, 20) = 1, (∗) T16

16. 30|n

sβ + tα ≡ (15+8k)n
30

, sα ≡ (15+2k)n
30

, tβ ≡ kn
3

(mod n), (k, 30) = 1, (∗) T12

sβ + tα ≡ (15−4k)n
30

, sα ≡ kn
5
, tβ ≡ (15−8k)n

30
(mod n), (k, 30) = 1, (∗) T15

sβ + tα ≡ (15−4k)n
30

, sα ≡ kn
3
, tβ ≡ n

2
(mod n), (k, 30) = 1, (∗) T18

sβ + tα ≡ (15+4k)n
30

, sα ≡ kn
5
, tβ ≡ n

2
(mod n), (k, 30) = 1, (∗) T20

17. 14|n
sβ + tα ≡ (7−6k)n

14
, sα ≡ (7+2k)n

14
, tβ ≡ n

2
(mod n), (k, 14) = 1, (∗) T19

sβ + tα ≡ (7+6k)n
14

, sα ≡ (7−4k)n
14

, tβ ≡ n
2

(mod n), (k, 14) = 1, (∗) T22
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Appendix A. Full binary trees
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