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CHARACTERISTIC-FREE TEST IDEALS

FELIPE PEREZ AND REBECCA R. G.

ABSTRACT. Tight closure test ideals have been central to the classification of
singularities in rings of characteristic p > 0, and via reduction to characteristic
p > 0, in equal characteristic 0 as well. Their properties and applications have
been described by Schwede and Tucker [Progress in commutative algebra 2,
Walter de Gruyter, Berlin, 2012]. In this paper, we extend the notion of a
test ideal to arbitrary closure operations, particularly those coming from big
Cohen-Macaulay modules and algebras, and prove that it shares key properties
of tight closure test ideals. Our main results show how these test ideals can be
used to give a characteristic-free classification of singularities, including a few
specific results on the mixed characteristic case. We also compute examples of
these test ideals.

1. INTRODUCTION

The test ideal originated in the study of tight closure [HH90]. Since then, it
has been used to define a classification of singularities in rings of characteristic
p > 0 [HH90,[HHI4[HHSK9], which aligns well with the classification of singularities
in equal characteristic 0 [Smi00,[Har(01]. The general idea is that the larger the
test ideal, the closer the ring is to being regular, and the smaller the test ideal,
the singular the ring is. The gap in the literature on test ideals is the mixed
characteristic case. Recent work of Ma and Schwede [MS18al[MSI8b] has begun to
fill in this gap, from the perspective of test ideals of pairs. However, most existing
results are heavily dependent on the characteristic of the ring, and it is not always
known whether corresponding definitions actually agree. In this paper, we study a
generalization of the test ideal in a characteristic-free setting. We study test ideals
from the perspective of closure operations, mimicking the approach of Hochster
and Huneke [Hoc07] with regard to the tight closure test ideal but broadening our
definition to include test ideals coming from arbitrary closure operations.

We are motivated by work of the second named author on the connections be-
tween closure operations given by big Cohen-Macaulay modules and algebras, and
the singularities of the ring [R.G16D|[RG18], and encouraged by the fact that these
connections hold in all characteristics. More precisely, in [R.G16b], the second
named author proved that a ring is regular if and only if all closure operations sat-
isfying certain axioms (Dietz closures) act trivially on modules over the ring. Since
big Cohen-Macaulay modules give Dietz closures, we expect further connections
to hold between the singularities of the ring and the big Cohen-Macaulay module
closures over the ring, and we give some of those connections in this paper. In order
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to do this, we define and study the test ideals given by closures coming from big
Cohen-Macaulay modules and algebras. See Section [3] for details.

We prove that the test ideal of a module closure has multiple equivalent defini-
tions, which we use to get our main results connecting singularities to big Cohen-
Macaulay module test ideals.

Theorem 1.1. Let (R,m,k) be a local ring and E = Eg(k) the injective hull of
the residue field.

(1) Let cl be a residual closure operation. Then the test ideal To(R) = Ann0
(Proposition [3.9)).

(2) Letcl = clp be a module closure. If R is complete or B is finitely-presented,
then 7a(R) =3 tetiomp(p,r) / (B) (Theorem [312)).

In particular, the second result is similar to the result that the tight closure test

ideal
m(R) =) > $((cR)VP")

e>0 pcHomp (R/P° R)

for particular elements ¢ [HT04]. This perspective on the tight closure test ideal is
one of the major tools used to study it, as described in [ST12]. Our second definition
also coincides with the trace ideal of the module B, as studied in [Lam99.[Lin17].
By drawing this connection, we open the door for future results on test ideals using
the theory of trace ideals, and vice versa. In an upcoming paper with Neil Epstein
[ERG21], the second named author has generalized this to a duality between closure
operations and interior operations on finitely-generated and Artinian modules over
complete local rings.

One important consequence of these results is that when the ring is complete
and cl is a big Cohen-Macaulay module closure, 7¢;(R) is nonzero (Corollary B10)).

We also define a finitistic test ideal of an arbitrary closure operation and discuss
cases where it is equal to the (big) test ideal of the same closure operation. In the
Gorenstein case, the test ideal of an algebra closure is the whole ring if and only if
the corresponding finitistic test ideal is also the whole ring (Proposition BI0]).

One advantage to working with test ideals of module closures is that, as a conse-
quence of Theorem [B.12] when the module is finitely-generated, we can compute its
test ideal in Macaulay2. This is in contrast to the tight closure test ideal, which is
difficult to compute in general. In Section Bl we compute examples of test ideals of
finitely-generated Cohen-Macaulay modules, and in some cases are able to compute
or approximate the “smallest” Cohen-Macaulay test ideal.

In summary, our results on the classification of singularities via test ideals are:

Theorem 1.2. Assume that R is a complete local domain.

(1) R is regular if and only if a1, (R) = R for all big Cohen-Macaulay R-
modules B (Corollary B.H).

(2) If R has characteristic p > 0, then R is weakly F-regular if and only if
the finitistic test ideal TglgB (R) = R for all big Cohen-Macaulay algebras B
(Corollary E23)).

(3) If Ty (R) = R for some big Cohen-Macaulay module B, then R is Cohen-
Macaulay (Corollary B]).

(4) If R is a Cohen-Macaulay ring with a canonical module w, R is Gorenstein
if and only if 7, (R) = R (Corollary B19]).
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(5) If B is a finitely-generated Cohen-Macaulay module, then V(71a,(R)) C
Sing(R) (Corollary ETT]).

(6) If R has finite Cohen-Macaulay type but is not regular, then 7o, (R) is m-
primary for all finitely-generated Cohen-Macaulay modules B (Proposition
Ia).

(7) If R has countable Cohen-Macaulay type but is not regular, then 7., (R)
may not be m-primary, even if B is a finitely-generated Cohen-Macaulay
module (Example [5.3]).

We apply our techniques to the case of mixed characteristic rings in Section
[l We propose a mixed characteristic closure operation that satisfies Dietz’s ax-
ioms (these guarantee that it acts like a big Cohen-Macaulay module closure-see
[Diel0R.G16Db] for details), and prove that its test ideal can be viewed in three
different ways similar to those we gave for module closures earlier. In addition to
demonstrating how our results can be used in mixed characteristic, this section
shows how our proof techniques can be applied to a broader group of closures than
module closures.

Throughout the paper, R will denote a commutative Noetherian ring, though
some of the R-algebras under consideration will not be Noetherian.

2. PRELIMINARIES

In this section we recall the concepts of closure operations and trace ideals. We
record their basic properties for later use and give the appropriate references for
their proofs.

2.1. Closure operations. Given a submodule N of a module M, we would like
to find a submodule of M containing N that also satisfies some desired properties.
This idea is encoded in the following familiar definition.

Definition 2.1. A closure operation cl on a ring R is a map, which to each pair
of modules N C M assigns a submodule N§; of M satisfying:

e (Extension) N C N§},

e (Idempotence) (N§})S, = N§i, and

e (Order-Preservation) N§; C NS, for R-modules N C N’ C M.

A particularly important family of closures are Dietz closures, originally defined
in [Diel0,Diel8]. A local domain has a Dietz closure if and only if it has a big
Cohen-Macaulay module [Diel0].

Definition 2.2. Let (R, m) be a local domain and N, M, and W be R-modules
with N C M. A closure operation cl is called a Dietz closure if it satisfies the
following extra axioms:
(1) (Functoriality) Let f : M — W be a homomorphism. Then f(N¢) C
FIN)§-
(2) (Semi-residuality) If N, = N, then O%[/N =0.
(3) (Faithfulness) The ideal m is closed in R.
(4) (Generalized Colon-Capturing) Let x1,...,zr+1 be a partial system of pa-
rameters for R, and let J = (z1,...,2x). Suppose that there exists a surjec-
tive homomorphism f: M — R/J and v € M such that f(v) = zp41 + J.
Then (Rv)$, Nker f C (Jv)$,.
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Note that these axioms are independent of each other, and an arbitrary closure
operation on any ring R can satisfy some subset of them.

Remark 2.3. The careful reader will note that the axioms, as expressed here, are
set in a more general setting than in [Diel(]. In [Diel(] the axioms were defined
only for complete rings, but this hypothesis was not needed. They were also defined
only for finitely-generated modules in [DielQ], but the definitions were later used
for arbitrary modules in [Diel§].

Associated to any R-module B we define a closure operation as follows.

Definition 2.4. Given an R-module B (not necessarily finitely-generated), we
define a closure operation clg on R by

ue NP ifforallbe B,b@ueIm(BN — B® M)
for any pair of R-modules N C M and w € M. This is called a module closure.

When B is an R-algebra, the previous definition can be simplified to u € NE}IB
if and only if

1@ueIm(Bo N — B® M).

Remark 2.5. We can extend this closure operation to families of modules in certain
circumstances. Let B = {B;}icr be a collection of R-modules. We define clg =
> clp,. This is not in general a closure operation (it is not necessarily idempotent),
but since the ring is Noetherian, it can be extended to one by iteration as in
[Eps12, Construction 3.1.5]. Alternatively, if the family is directed under generation
(see Definition 18], then clg does form a closure operation. In particular, if the
B; are R-algebras that form a directed family, then clg is a closure operation.

Definition 2.6 ([Hoc75]). Let (R, m) be a local ring. We say that an R-module B
(not necessarily finitely-generated) is a big Cohen-Macaulay R-module if mB # B
and every system of parameters on R is a regular sequence on B. Note that these
modules are sometimes referred to as balanced big Cohen-Macaulay R-modules (see
for example [Sha&1]).

Theorem 2.7 ([Diel0]). If B is a big Cohen-Macaulay module, then clg is a Dietz
closure.

Lemma 2.8 ([R.G16b, Lemma 3.2]). Let R be any ring and B any R-module (not
necessarily finitely-generated). Then clp satisfies the first two azioms of a Dietz
closure, i.e., clg is functorial and semi-residual.

Remark 2.9. Note that when M = Rand N =1 = (f1,..., fn) C R is an ideal
we have u € IgB if and only if uB C IB. That is, the closure of an ideal is the
collection of all elements that multiply B into I B, or equivalently

197 = (IB :g B).
Alternatively, we can write I gB as the set of elements u of R for which the equation
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has a solution (X7i,...,X,) in B¥" for every b € B. Or in the case that B is an
R-algebra, it is enough to check that

U1B:le1++ann

has a solution.
We will sometimes write I°'8 when R is clear from context.

The following examples show that familiar ideals and closure operations are
particular examples of module closures.

Example 2.10. Suppose that B = R/.J, then we have that I¢'® = [ + J.

Example 2.11. If B = Ry for some f € R, then for an ideal ] C R, u € I if
uRy C IRy or equivalently u € (I : f*).

Example 2.12. If R is a domain of characteristic p > 0 and B = R'/?" for some
e > 0, then for an ideal I C R, u € I3 if uRY?" C IRY?" or equivalently
uP’ e 1P°],

If instead B = RYP™ | then for an ideal I C R, uw € I¢5 if uR'Y/?™ C JRY/P™
which in turn is equivalent to uRY?" C TR'/?" for some e > 0, that is u?* € P’
for some e > 0. This is known as Frobenius Closure.

Example 2.13. Suppose that R is an integral domain. The plus closure of N in M,
denoted N A‘Z, is the module closure clg+, where R™ is the absolute integral closure of
R [HH92![Smi94l[Hoc07] (for the extension to modules, see [Eps12, Remark 7.0.6]).

For reference, we list some properties of closure operations and refer the reader to
[R.G16b| Lemma 3.1], [Diel(, Lemma 1.2}, and [Diel8, Lemma 1.3] for the proofs.

Proposition 2.14. Let R be a ring possessing a closure operation cl. In the fol-
lowing, N and N' are R-submodules of the R-module M, T is a set, and N; C M;
fori €T are R-modules.

(a) Suppose that cl satisfies the functoriality aziom and the semi-residuality
aviom. Let N' C N C M and w € M. Then u € NSy if and only if
u+N' € (N/N') -

(b) Suppose that cl satisfies the functoriality aziom, T is any set, N = @, 7 Ny,
and M = @iEI Mi- Then NX} = @'LGI(Nl)%lL

(c) LetT be any set. If N; C M fqr alli € Z, .then (Niez Nl)j\i[ C Niez (Nl)(]:&[

(d) Let T be any set. If N; € M is cl-closed in M for all i € T, then ();cz N;
is cl-closed in M.

(&) If Ni, N3 C M, then (N1 + Na)y = (N)5h + (N2)§)5h-

(f) Suppose that cl satisfies the functoriality aziom. Let N C N’ C M. Then
Ncl C Ncl

N =g

(g) Suppose that R is a domain, cl satisfies the functoriality axiom, O‘j% =0,
and M is a torsion-free finitely-generated R-module. Then 05, = 0.

(h) Suppose that (R,m) is local and cl satisfies the functoriality aziom, the
semi-residuality axiom, and the faithfulness axiom. Then, for M a finitely-
generated R-module, and N C M, Nf\/l[ CN+mM.
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When the closure operation satisfies the functoriality and semi-residuality ax-
ioms, the elements of the ring multiplying the closure inside the original module
can be seen as an annihilator. More precisely:

Lemma 2.15. Let cl be a closure operation that is functorial and semi-residual.
Then for any R-module M and any R-submodule N of M, we have that (N ‘R N]CVI[)

= Anng (O%[/N). In particular, this holds for module closures.

Proof. Tt is enough to prove that (N : NI‘{/I[) = (O : 03\14/]\,). Now part (a) of Propo-
sition 214l implies N§} /N = 0%, /N from where the result is clear. O

Proposition 2.16] gives information about the behavior of module closures under
ring extension.

Proposition 2.16. Let B, N and M be R-modules, such that N C M. If R — S
is a ring morphism, then

Im(S @r NP = S@p M) CTm(S @ N — S ®r M)gesn”.

Proof. Suppose that x € ]\TJCV][B7 then we have that
b@xeIm(Br N - BRr M),
for all b € B. Tensoring with S we get
bs®@x e Im(BRrS®r N > BRrS®r M),
for all b € B and all s € S. But we can rewrite the previous expression as

s @s@reIlm(BorS®s S®r N = BRrS®sS®r M),

forall b€ B and all 5,8’ € S. Thus (s®z) € Im(S®r N — S Qg M);];i’j\f O

Corollary 2.17. Let B be an R-module and clp the associated module closure. For
any ideal I in R and any prime ideal P,
I Rp C (IRp) 3.
Similarly, if R is a local Ting and R is its completion at the mazimal ideal, then
clg P N Clren
IPR C (IR) P
Definition 2.18 ([Lam99]). Recall that a module B is said to generate a module

D if some direct sum of copies of B maps onto D.

The generation property enables us to compare the closures given by B and D.
Before we give the precise result we need a lemma.

. cl
Legnma 2.19. Let R be a local ring. If M and N are R modules, then OHQLIR(MVN)

Proof. Let ¢ € O?{l(]ﬁnR(M N) then for every m € M we have that m ® ¢ = 0 in
M @z Homp (M, N). By means of the natural map M ® Homg (M, N) — N, given
by m ® ¢ — ¢(m), we have that ¢(m) = 0 for all m € M, which implies ¢ = 0.

The result follows. O

Proposition [2.20]is the result of a conversation with Yongwei Yao, and gives one
case where we have containment of module closures.
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Proposition 2.20. Let B and D be finitely-generated R-modules, where R is com-
plete and local. Then clp C clp, i.e. NX/IIB C NJCV}D for all R-modules N C M, if
and only if B generates D.

Proof. If B generates D (see Definition 2I]]), then clg C clp by [R.G16bl Propo-
sition 3.6]. For the reverse direction, assume clg C clp.

Let by,..., b, be a generating set for B and E be the injective hull of the residue
field of R. We have a map

h:Homg(D, E) — B®" @ Hompg(D, E)

given by h(f) = (b1 @ ... ®b,) ® f. The kernel of this map is the set of elements
f of Hompg(D, E) such that b; ® f =0 for all 1 <4 < r, which is equal to the set

of f € Homg(D, E) such that b® f = 0 for all b € B. This is equal to Oﬁ(’me(D B)
: cl cl .

Hence, by our assumption, OHme(D)E) C OHme(D,E), but the latter is 0 by the

preceding lemma. This implies that h is injective.

Since h is injective, its Matlis dual
hY : Homg(B®" @ Hompg(D, E), E) — Hom(Hompg (D, E), E)

is surjective. The map h" takes a map ¢ : B®" @ Homg(D,E) — E to ¢oh :
Hompg(D, E) — E. By Hom-tensor adjointness, we have

Hompg(B®" ® Homg(D, E), E) = Homp(B®", Homg(Homg (D, E), E)).

Under this isomorphism, a map v : B®" — Homg(Homg(D, E), E) is sent to the
map ¢ : B ® Homp (D, E) — E sending

(c1,..se) @ f = (dlers o en)) ()
Put together, this gives us a surjective map
Hom(B®", Homg(Homg(D, E), E))) — Homg(Homg(D, F), E))

that sends ¢ : B®" — Hompg(Homg(D, E),FE) to ¢ o h : Homg(D,E) — E.
Combining earlier information, ¢ o h = 9(by,...,b,).
Since R is complete and D is finitely-generated, D = Hompg(Homg(D, F), E),
and therefore the map
Hom(B®", D) — D

given by (¢ : B®" — D) 5 9(by @ ... ® b,.) is surjective. Hence for every d € D,
there is a map B®" — D whose image contains d. Therefore, B generates D. [

Theorem [2:21] characterizes regular rings in terms of the behaviour of Dietz
closures. This result describes an important connection between the behavior of
big Cohen-Macaulay module closure operations and the singularities of the ring.

Theorem 2.21 (|[R.G16bl Theorem 2]). Suppose that (R, m) is a local domain that
has at least one Dietz closure (in particular R may be any complete local domain).
Then R is regular if and only if all Dietz closures on R are trivial on submodules
of finitely-generated R-modules.

Note that this result holds regardless of the characteristic of R, as by [HH92,
And18], we know that big Cohen-Macaulay algebras (and in particular big Cohen-
Macaulay modules) exist over complete local domains of any characteristic.
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In fact, the proof of this statement in [R.G16b|] uses the fact that big Cohen-
Macaulay modules over regular rings are faithfully flat [HH92], and we get the
following corollary to Theorem 2:21] and its proof in [R.GI16b]:

Corollary 2.22. Suppose that (R, m) is a local domain with a big Cohen-Macaulay
module B (in particular, R may be any complete local domain). Then R is reqular if
and only if all big Cohen-Macaulay module closures on R are trivial (on submodules
of all R-modules).

Remark 2.23. Let (R, m, k) be a Cohen-Macaulay local domain of dimension d. If
R is approximately Gorenstein (for example if dim(R) # 1), then for all n > d, the
R-modules syz" (k) induce Dietz closures that are trivial if and only if R is regular
[R.G16D]. So when R is not regular, syz™(k) gives an example of a nontrivial Dietz
closure on R.

We also have the following:

Lemma 2.24. Let R be a local domain with a big Cohen-Macaulay R-module B
such that clg is trivial on ideals of R. Then R is Cohen-Macaulay.

Proof. The closure clp captures colons, so for all partial systems of parameters
Z1,...,Tkp+1 on R, we must have

(x1,...,2k) : Thg1 C (xl,...,xk)%B = (z1,...,Tk).

Hence R is Cohen-Macaulay. O
2.2. Trace ideals and modules.

Definition 2.25. Let R be aring and A, B R-modules. The trace of A with respect

to B is defined as
trp(A)= > #(B),
¢:B—A
where the sum runs over all R-linear maps from B to A.
That is, the trace of a module A with respect to another module B is the
submodule generated by the images of all possible maps from B to A.
Remark 2.26.

(1) B generates A if and only if trg(A) = A. One example where B generates
A is when there is a surjective map from B to A, or if B = R.
(2) When A = R, this is also referred to as the trace ideal, trp(R) [Lam99].

We collect some basic properties of the trace in the next proposition.

Proposition 2.27 (C.f. [Linl7 c.f. Proposition 2.8]). Let R be a ring, and A, B, C
R-modules. The following hold:

(1) We have

trg(A) = Im(Homp(B,A) @ B — A),
where the map is given by ¢ @ b ¢(b).
(2) The behavior with respect to direct sums is given by
trpec(A) = trp (A) + tro(A).
(3) More generally, if {B;}icr is an arbitrary family of R-modules, then
trg,., 5.(A) =) _trp,(A).

el
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(7)

Proof.
(2)

treac(A)

3)

F. PEREZ AND REBECCA R.G.

For tensor products, we have
trpec(A) C trp(A) Ntra(A).

Furthermore, if B generates Hompg(C, A) or C generates Homp(B, A),
then the equality holds.
If B generates C then

tI‘B(A) D) trc(A).
tra(R) = R if and only if A generates all R-modules. If R is a local ring
then tr4(R) = R if and only if A has a free summand [LinlT, Proposition
2.8, Part iii] and [CR90), Lemma 3.45].
trBoHomp(B,4)(A) = trp(A). Furthermore, when A = R and B is reflexive
we also have tTpgHomx(B,R)(R) = t'Homp(B,R) (R)-

(1) This is clear from the definition.
From the definition we see that

(b,c) | ¢ € Homr(B & C,A),be B,ce C)

1(b) + ¢2(c) | ¢1 € Homp (B, A), ¢p3 € Hompg(C, A),b € B,c € C)
1(0) | ¢1 € Homp(B, A),b € B) + (¢2(c) | ¢2 € Hompg(C, A),c € C)
B(A) + tra(A).

We proceed as in the previous case

= (¢
= (¢
= (¢
=tr

trg, ., B, (A) = (0((bi)icr) | ¢ € Homp (©ic1Bi, A) b € Bi,bi =0

(4)

for all but finitely many 1)

= (Z bi(bi) | ¢; € Homp (Bi, A) ,b; € Bi,bi =0

i€l

for all but finitely many z)

= Z (¢i(bi) | ¢i € Homp(B;, A),b; € By,)

i€l
= Z trp, (A)

which is what we wanted.

Note that for any ¢ € Homg(B®C, A) and ¢ € C, we have a map ¢(—®c) :
B — A sending b — ¢(b® ¢). Hence ¢(b® c¢) € trg(A) for all b € B.
Similarly, ¢(b® ¢) € tro(R) and the result follows.

To get the equality, assume that B generates Hompg(C, A). Then for a €
trp(A) Ntro(A) there exists ¢ : C' — A such that ¢(c) = a for some ¢ € C.
Now as B generates Hompg(C, A), there exists a map ¥ : B — Hompg(C, A)
and an element b € B such that ¥(b) = ¢. Consider the map B® C — A
given by y ® z — ¥(y)(z). This map is well defined and b ® ¢ — a. The
result follows. The case where C' generates Homp (B, A) works the same
way.

This follows from the fact that every element a in tro(A) can be obtained
via a map C — A and an element ¢ € C. This element ¢ will be in the



CHARACTERISTIC-FREE TEST IDEALS 763

image of some map B — (', and so its image a in A can be obtained via
the composition B — C — A. Hence a € trg(A).

(6) Follows as in the references, where the hypothesis that A is finitely-generated
used by Lindo is not needed.

(7) By part (4) we have that trpgHom(B,4)(A) C trp(A). On the other hand
we have the map B ® Homp(B,A) — A given by b ® ¢ — ¢(b). This
implies trpgHomy(B,4)(4) 2 Im(B ® Homp(B,A) — A) = trp(A). The
last assertion is trivial after noting that B = Homg(Hompg(B, R),R). O

The result below relates traces of modules in an exact sequence.

Proposition 2.28. Let 0 — B % C — D — 0 be a short exact sequence of
R-modules, and A any other R-module. If J = Anng(Exty(D, A)), then

JtI‘B(A) + tI‘D(A) - trc(A).

Proof. By Proposition 227] part (5) we have that trp(A) C trg(A). Let a €
trp(A). Then there exist ¢ € Hompg(B, A) and b € B such that ¢(b) = a. From
the exact sequence

Homp(C, A) — Homp(B, A) — Exth(D, A),

we can conclude that for any r € Anng(Extg(D, A)), r¢ € Im(Hompg(C, A) N
Hompg(B, A)), say r¢ = &(¢) = ¢ o a. This implies that ra = r¢(b) = (¢ o a)(b).
Setting ¢ = a(b), we have ra = ¢(c). The result follows. O

3. TEST IDEALS AND TRACE IDEALS

In this section we define the test ideal of an arbitrary closure operation, give
some of its basic properties, and prove that the test ideal of a module closure is a
trace ideal.

Definition 3.1. Let R be a ring and cl be a closure operation on R-modules. The
big test ideal of R associated to cl is defined as

TCI(R): m (NNIC\/II),

NCM

where the intersection runs over any (not necessarily finitely-generated) R-modules
N, M. In the case that cl is generated from a R-module B, (resp. a family B) that
is c] = clp we also denote this ideal by 75(R) (resp. T3(R)). We sometimes refer
to the big test ideal as the test ideal.

Similarly, we define the finitistic test ideal of R associated to cl as

T#(R)= ] (N:N§p).
NCM
M/N f.g.

In the case where cl = clp for some R-module B, we denote this ideal by ng(R).
Note that the big test ideal is always contained in the finitistic test ideal.
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When cl is tight closure, these definitions agree with the tight closure test ideal
as given in [HH90, Definition 8.22]. As an immediate consequence of Definition [3.1]
we get:

Corollary 3.2. Let cl be a closure operation. Then, the test ideal 71(R) is equal
to R if and only if for every inclusion of R-modules N C M, we have N5, = N.

Similarly, Tglg(R) = R if and only if for every inclusion of R-modules N C M,
with M /N finitely-generated, we have NX}[ =N.

Lemma 3.3. Let cl be a closure that is functorial and semi-residual. Then

Ta(R) = ﬂ Annp (0'13&[) .
M an R-module

Additionally,
9(R) = ﬂ Anng (05)) -
M a f.g. R-module

Proof. Lemma implies that for any R-modules N C M, (N:N§) =
Anng (O%/N), and so

Ta(R) = ﬂ Anng (05\2) )
M an R-module

The second result follows as the intersection will be over all M/N finitely-generated.
|

Remark 3.4. The finitistic test ideal could be taken as the intersection over all R-
modules N C M where M is finitely-generated. If cl is functorial and semi-residual,
then by the proof of Lemma [3.3] this is equal to

ﬂ Anng (0%[) ,

M a f.g. R-module

and so it is equal to our definition of the finitistic test ideal. In particular, this
holds for module closures.

Corollary 3.5. If R is a regular local Ting, and cl is a Dietz closure on R, then
Té[iq(R) = R. In this case, if cl = clg for some big Cohen-Macaulay module B, then
Ta(R) = R as well. In fact, if R is a complete local domain, R is regular if and
only if Tg(R) = R for all big Cohen-Macaulay modules B.

Proof. The first claim follows from the definition of a test ideal, Theorem 22T and
Lemma[3.3F if R is regular and cl is a Dietz closure, cl is trivial on finitely-generated
R-modules, so Télg(R) = R. By Corollary 222 R is regular if and only if clg is
trivial for all big Cohen-Macaulay modules B. The result follows from Corollary

0.2 (]

Corollary 3.6. Let R be a local domain with a big Cohen-Macaulay module B such
that T3(R) = R (or Tég(R) = R). Then R is Cohen-Macaulay.

Proof. By Corollary B.2] clp is trivial on ideals of R. Hence R is Cohen-Macaulay
by Lemma O
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Note that if R is Cohen-Macaulay, then 7zr(R) = R, so the converse holds.
It follows from the definition that 7o (R) C 72(R), leading to the following

cl
question that is still open in most cases for the tight closure test ideal.

Question 3.7. Do the big test ideal and the finitistic test ideal coincide? More
specifically, what are the conditions needed on a ring R or on a closure operation
cl so that 7(R) = 7.5(R)?

The following result answers this question in one special case. We will be able
to say more once we prove Proposition B0 our first result giving an alternate
definition of the test ideal.

Proposition 3.8. Let B be a directed family of flat R-algebras, or a single flat
R-module B. Then m5(R) = 7Y(R).

Proof. Let cl = clp, and clfg denote the closure given by:
u € Ny/® if for some N C My C M, My/N finitely-generated, u € N§j. .

We claim that clfg = cl. To see that clfg C cl, note that by part (f) of Proposition
214 for any N C My C M,
Njp, € Nip.
For the other inclusion, suppose that u € N¢,. Then there is some B € B such
that u € NX}B. Since B is a flat R-module, by [RG16a, Proposition I11.12], clp is
hereditary, i.e. for any N C My C M, NJCV}B N My = Nﬁ’g We have

U M= U (weom)=vrN| U Mo

NCMoCM NCMyCM NCMoCM

Moy/N fg. Mo /N fg. My/N fg.
Note that M/N is the union of its finitely-generated submodules, so M can be
written as the union of the My above. Hence the final step is equal to NX/IIB NnM =
NX/IIB. This implies that u € Nﬁ’g for some N C My C M with My/N finitely-
generated. Hence u € Nﬁfg.

Now we show that 73(R) = ég(R). The forward inclusion always holds. For
the reverse inclusion, suppose that v € T;g(R). We would like to show that for
arbitrary R-modules N C M, uN§, C N. Since N§, = Nf\yg, for every v € N¢b,
there is some N C My C M with My/N finitely-generated such that v € NX}IO.
Hence uv € N. This implies that u € 75(R), which gives us the result. O

Proposition 3.9. Let cl be a closure on a local ring (R, m, k) satisfying the first two
Dietz axioms, functoriality and semi-residuality, and E = Eg(k) be the injective
hull of the residue field k. Let 7o (R) denote the big test ideal associated to cl. Then
Ta(R) = Anng (0%). Additionally, Tglg(R) is the annihilator of
O%fg ={u € E| for some finitely-generated E' C E,u € 0%, }.
Proof. C.f. [HH90, Proposition 8.23]. By Lemma 33
TCI(R) = ﬂ AIlIlR (O?&I) .

M an R-module



766 F. PEREZ AND REBECCA R.G.

We now show that (,; Anng 0§, = Anng0%. That the first is contained in the
second is clear. For the other inclusion let u € R — {0} such that «0$ = 0, and
let M be an R-module such that u0$, # 0. Then there is some z € 0, C M
such that ux # 0 in M. Choose N C M maximal with respect to not containing
ux. Replace M by M/N and x by Z. By [Hoc07, Lecture of September 17|, every
finitely-generated submodule of M has finite length and ux spans its socle. Hence
uzx spans the socle of M, and so Rux = kux = k, and M is an essential extension
of this copy of k. Hence we can embed M in E, and so by part (f) of Proposition

214

u- 05, Cu-0% =0,

which contradicts our choice of . The result follows.
Now we show that Tff;(R) — Anng 05, We have

Té%(R): ﬂ Anng(05).
M f.g.

To see that this is contained in Annpg O%fg, notice that every element v € OCElfg is
contained in 0%, for some finitely-generated £’ C E. So an element u € R that kills
09}, for every finitely-generated R-module M will kill v. Hence chlg (R) C Anng O%fg.
For the reverse inclusion, let u € R — {0} such that uo%fg = 0, and let M be a
finitely-generated R-module such that u0$; # 0. The rest of the argument follows
as for the non-finitely-generated case, with the addition to the last line that since
M is finitely-generated, u0, C w05 = 0. O

Using this alternative description of the test ideal, we give an additional partial
answer to Question 37 This result is the module-closure version of Theorem 3.1
of [HH89] or the notes of October 22nd and 24th of [Hoc07].

Proposition 3.10. Let R be a Gorenstein local ring, and B any R-algebra or
finitely-generated R-module. Then TIJ;Q(R) = R if and only if T5(R) = R.

Proof. We always have 75(R) C T]fgg(R), so the reverse direction holds without the
Gorenstein assumption on R. For the forward statement, denote clg by cl, and
suppose that T]gg(R) = R. Then, I& = I for all ideals I of R.

Let z1,...,24 be a system of parameters on R, and I; = (2}, z%,...,2%). Since
R is Gorenstein local, we have Eg(k) = lim, R/I;, where the maps R/I; — R/I;1+1
are given by multiplication by y = x; - - - 4. Using the notation of [Hoc07, Lecture
of October 24th], let us denote the equivalence class of an element of R under the
composition R — R/I; — E by (u; I;). So (u; I;) = (uy”; Ii1,). Suppose that some
element v = (u;I;) € E is in 03. Let {b1,...,b,} be a set of generators for B if B
is a module, or {1} if B is an R-algebra. Then for 1 <i<n, b, ®v=0in B® E.
This holds if and only if for each i, there is some r; such that b; ® uy™+s = 0
in B® R/Iiyr,4s for all s > 0. Set r = max;{r;}. Identifying B ® R/I; with
B/I1,B, this implies that uy"b; € I;;,B for each i. But this is exactly equivalent
to uy” € (IH,,)%. Since by assumption (IHT)% = Iy, we have uy” € Iy, for
sufficiently large values of r. This implies that v = 0 in E. Hence OCE1 =0, and thus
B (R) = R. U

We can use the previous result to give a similar result for families.



CHARACTERISTIC-FREE TEST IDEALS 767

Corollary 3.11. Let R be a Gorenstein local ring and B a directed family of R-
algebras or a family of finitely-generated R-modules directed under generation. Then
fg(R) = R if and only if T3(R) = R.

Proof. Let cl = clg. The piece we need to prove is that if Tf‘lg(R) = R, then
Ta(R) = R. Suppose that Tf (R) = R. Let v € 04. Then there is some B € B such
that v € OCEIB. For every B € B, clg C clg. Since Tfl (R) = R, ng (R) = R. By
Proposition 310 this implies that 7., (R) = R. Hence by ProposmlonO%B =0,
which implies that v = 0. Therefore, 0% = 0, and so 7a(R) = R. |

The following theorem connects test ideals with trace ideals, and is the key
component of many of our results. This connects the idea of the test ideal with
representation theoretic ideas.

Theorem 3.12. Let R be local and cl = clg for some R-module B. If B is a
finitely presented R-module or R is complete then

Ta(R) = trp(R).
Proof. Let E = Er(k) be the injective hull of the residue field k£ of R. By Propo-
sition B9, 7¢1(R) = Anng(0%) = (0: 0%2); hence ¢ € 7(R) if and only if ¢- 0% = 0,
but
0% = () ker(E — B® E),
beB
where the map ' — B ® E corresponding to b € B is given by e — b ® e. Since F
is Artinian, there are elements by, ...,b, € B such that this is equal to
(| ker(E— B®E).
be{bi,.,bn}

We can rewrite this as ker(¢), where ¢ = (¢1,...,¢n) : E — (B ® E)®" sends
e~ (b1 ®eby®e,....b,Re).
First, suppose that ¢ € 7.(R), so that ¢ - 0% = cker(¢) = 0. Then
09 C Anng(c),

and by Matlis duality the map

% = Homp(Anng(c), ) — HomR(O%, E)
c

is surjective. But applying Hompg(_, E) to the exact sequence

0= ker(¢) > B2 (Bo B)®"

gives X
R
S Im(Homg(B® R, R) — R)’
where ith map Hom (B ® R, R) — R is given by ¢ @(b;). From the surjection
R/cR — Hom (0%, E) we can now conclude that

Hom (05, E) =

Z m(Hom (B ®R,R) = R).
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In the complete case, the denominator is contained in trg(R), so this implies
that ¢cR C trg(R). In the case that B is finitely presented, since Hom commutes
with flat base change, the last expression is equal to

<Zn: Im(Hompg(B, R) — R)) @ R.

i=1

It then follows by the faithful flatness of completion that

c €Y Im(Homg(B,R) = R) C trp(R).
i=1
For the reverse containment, suppose that ¢ € trg(R). Then there are b}, ...,0,
such that

c €Y Im(Homg(B,R) - R),
i=1
where the ith map Hompg(B,R) — R sends f — f(b}). We can enlarge the set
b1,...,by from the setup to include b},...,b/,. Then

c€ Y Im(Homgp(B,R) = R).
i=1
Hence we have a surjection
R

i Im(Hompg(B, R))’
Applying Homg(_, E), we get an injection

i E
Yo Im(Homg(B,R) = R)’
But the module on the left is 0. Hence ¢ € Anng 09, which is equal to 7 (R). O

R/cR —

Homp < — Homp(R/cR, F) = Anng c.

Remark 3.13. The second direction of the previous theorem works in greater gen-
erality; in particular it shows that for any local ring R (not necessarily complete)
and any R-module B (not necessarily finitely-generated) we have

tI"B(R) g TB(R).

Remark 3.14. The following example shows that when R is not complete and B is
not finitely presented the trace ideal may differ from the test ideal.

We start with [DS16, Example 4.5.1] which allows us to build a DVR V' whose
fraction field is F,(x, y). In this case V is a Noetherian, regular ring of dimension 1,
which is not F-finite. By [DS16, Lemma 2.4.2] this implies that Homy (V/P, V) =
0; hence we have try1/,(V) = 0. On the other hand, as V is a regular ring of
dimension one, it is a domain. Hence V'/? is torsion-free. Additionally, mV?/? #
VP so V/? is a Cohen-Macaulay module. This implies that v (V) =V #£0.
[Note: The paper as originally published has an error, which the authors corrected
in an erratum, but the example and the lemma we are using are correct.]

The following results use Theorem [3.12] to extend our knowledge of test ideals
and closure operations, and in particular give an important case when the test ideal
is nonzero. First we recall a definition:
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Definition 3.15 ([Hoc94]). Let R be a domain. An R-module B is solid if
Hompg(B, R) is nonzero.

Corollary 3.16. If R is local, cl = clg for some solid R-module B, and either
R is complete or B is finitely-generated, then we have 1 (R) # 0. Consequently,
7H9(R) # 0 as well.

In particular, if R is a complete local domain and B is a big Cohen-Macaulay

R-module, then Tp(R) # 0.

Proof. Assume that cl = clp for some solid R-module B. Since 74(R) = trp(R),
and there is a nonzero map B — R, 7(R) # 0.

If R is a complete local domain, then B is solid [Hoc07, Lecture of September
7th], and the last statement follows. (]

Corollary 3.17. Let cl be a Dietz closure and R a complete local domain. Then
TH(R) # 0.
Proof. By |R.G16b], there is a big Cohen-Macaulay module B such that for all
finitely-generated R-modules N C M, N§; C NJC\/IIB .

Since B is solid over R, chigB(R) # 0. Since N§, C NJCVIIB for finitely-generated
R-modules N C M, 7/%(R) D 715(R), so 7.(R) is nonzero as well. O

Corollary 3.18. Let R be local, S an R-module, and either R is complete or S
is finitely-generated. Then 7s(R) = R if and only if S has a free summand, and
consequently, clg is trivial if and only if S has a free summand.

Proof. By part (6) of Proposition 27 trg(R) = R if and only if S has a free
summand. Additionally, by Theorem B.I2] 75(R) = trs(R), and by Corollary B3.2]
Ts(R) = R if and only if clg is trivial. O

When R is local and has a canonical module w, w has a free summand if and
only if R is Gorenstein, and hence tr,,(R) can be used to detect whether the ring is
Gorenstein [HHS19, Lemma 2.1]. We give a test ideal interpretation of this result.

Corollary 3.19. Let R be a reduced (or generically Gorenstein) Cohen-Macaulay
local ring with a canonical module w. Then R is Gorenstein if and only if 7,(R) =

R.

Proof. By [HHS19, Lemma 2.1], R is Gorenstein if and only if tr,(R) = R. The
result now follows from Theorem O

Corollary 3.20. Let A and B be R-modules satisfying the conditions of the theo-
rem. If cly and clg are the closure operations associated to A and B, then

TaeB(R) = TA(R) + 75(R).
Proof. This follows from the previous Theorem and Proposition 227 part (2). O

4. TEST IDEALS OF FAMILIES

We extend the concept of test ideal introduced in the previous setting to that of
families of modules. We can make this definition even when the family of modules
does not give an idempotent closure operation, which is one way to deal with the
question of how large the sum of the corresponding module closure operations can
be (discussed in [R.G16bl Section 9.2]). We will then discuss the test ideals of
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specific families of big Cohen-Macaulay modules and algebras and connect them to
the singularities of the ring.

Definition 4.1. Let B be a family of R-modules, not necessarily finitely-generated.
We define the test ideal associated to B as

8(R) := ﬂ 78(R).
BeB

We list an immediate set of properties.

Lemma 4.2. Let R be a commutative ring and B,C families of R-modules, then
(a) Tw(R) =R
(b) If (0) € B then 78(R) = 0, in particular TR—moa(R) = 0.
(c) If BCC, then 13(R) 2 1¢(R).
(d) TBuc(R )—TB(R)OTC(R>'
(e) TBnc(R) 2 78(R) + 1 (R).

Note that if B is a directed family of R-algebras or of R-modules directed under
generation, so that it defines a closure operation, then this definition of the test
ideal agrees with our prior definition:

Proposition 4.3. Suppose that B is a directed family of R-algebras, or of R-
modules directed under generation. Let cl be the closure operation associated to B.
Then 18(R) = 1a(R).

Proof. We have

Tcl(R) = ﬂ AIlIlR 0?&[
M an R-module

= mAnnR (Z 0§\lf>
M BeB

= m ﬂ AnnROg\ZB

M BeB

= ﬂ TB(R)
BeB
= 18(R). O

Corollary 4.4. Under the conditions of Theorem [B12 (i.e., R is complete local,
or R is local and every B € B is finitely-presented),

R)= () tra(R)
BeB

Corollary 4.5. Let R be a complete local domain. If S is a directed family of
R-algebras or a family of R-modules directed under generation (so that cls is a
closure operation), then cls is trivial if and only if for every S € S, S has a free
summand.

Proof. By Proposition 3] and Corollary [£.4]

Tcls(R) = ﬂ tl‘s(R

Ses
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We know that cls is trivial if and only if 7, = R. The right hand side is equal to
R if and only if trg(R) = R for all S € S, which holds if and only if each S has a
free summand (Lemma [Z27] part (6)).

Alternatively, this follows from Definition BTl and Corollary BI8 d

Ideally, we want to consider the test ideal coming from the family of all Cohen-
Macaulay modules, since a ring is regular if and only if the test ideals of these
modules are equal to the whole ring by Corollary The collection of Cohen-
Macaulay modules is not generally a set, so we work with the following family
instead:

Remark 4.6. Let R be any Cohen-Macaulay ring and consider the full subcategory
of Mod(R) consisting of big Cohen-Macaulay modules over R. For any set S the
module R is in this subcategory, hence there is an embedding of the category of
sets to the category of Cohen-Macaulay modules over R. The former is not a small
category, so the latter is not a small category either.

To avoid this complication we restrict to a single representative for each iso-
morphism class of Cohen-Macaulay modules and bound the size of the modules we
consider. To do this, let R be a local ring and Bas be a fixed infinite set. Let
CM (R) be the full subcategory of big Cohen-Macaulay R-modules that are quo-
tients of free R-modules R® with S C Bas. This is a small category, and therefore
we can consider the set of objects in this category. For the purposes of this paper,
it is enough for Bas to have countable order, and we denote the set of objects by
CM. Since isomorphic modules give the same closure operation, test ideal, and
trace ideal, studying C'M is sufficient for our purposes.

Definition 4.7. Let R be a complete local domain. We define the singular test
ideal to be
Tsing(R) = 1] 78(R),
BeCM
where CM is defined as in Remark

Proposition 4.8. Let (R, m,k) be a complete local domain, then R is regular if
and only if Teing(R) = R.

Proof. If R is regular, by Corollary B0 75(R) = R for all big Cohen-Macaulay
R-modules B. Hence Tginy(R) = R.

If 74ing(R) = R, then 75(R) = R for all countably-generated big Cohen-Macaulay
R-modules B. Hence for such B, clp is trivial on all submodules of all R-modules.
Let cl be a Dietz closure on finitely-generated R-modules. By Theorem 5.1 of
[R.G16D] there exists a countably-generated big Cohen-Macaulay R-module B such
that cl C clg on submodules of finitely-generated R-modules. Note that B is not
explicitly described as countably-generated in [R.G16b], but the process of con-
structing B using module modifications uses countably many steps, each adding a
finite number of generators. Hence cl is trivial on submodules of finitely-generated
R-modules. Since this holds for all Dietz closures cl, R is regular by Theorem

221 O

The following results connect the test ideals of big Cohen-Macaulay modules to
the singular locus of the ring, and are used to get more specific results on test ideals
of big Cohen-Macaulay modules over rings with finite Cohen-Macaulay type.
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Remark 4.9. In this paper, all finitely-generated Cohen-Macaulay R-modules are
assumed to be maximal, i.e. to have dimension equal to dim R.

Theorem 4.10. Let B be a finitely-generated Cohen-Macaulay module over a local
domain R. Then V(trg(R)) is contained in the singular locus of R.

Proof. Suppose otherwise, then there exists P € Spec(R) such that Rp is a regular
ring and trp(R) C P. After localizing at P this implies trp, (Rp) C PRp. Since
B is faithful over R, Bp is nonzero. It is also finitely-generated, so by Nakayama’s
lemma PBp # Bp. Now, Bp is a Cohen-Macaulay module over the regular local
ring Rp, hence faithfully flat over Rp [HH92, Pag. 77], a local ring, and hence
Tp(Rp) = Rp (Bp gives the trivial closure, so it gives the whole ring as the test
ideal). This implies that trp, (Rp) = Rp, a contradiction. O

This leads to a statement for test ideals.

Corollary 4.11. Let B be a finitely-generated Cohen-Macaulay module over a com-
plete local domain R. Then V(tp(R)) is contained in the singular locus of R.

Proof. This follows immediately from the previous result and Theorem O

Remark 4.12. We denote by MCM (R) the set of all finitely-generated (maximal)
Cohen-Macaulay modules over R. We will write just MCM if R is understood
from the context.

Definition 4.13. Let R be a local ring. R has finite Cohen-Macaulay type if R
has finitely many isomorphism classes of indecomposable finitely-generated Cohen-
Macaulay modules.

If R is a local ring of finite Cohen-Macaulay type, we know the following:

e (Auslander [LWI12, Theorem 7.12]) R has isolated singularities.

e If R is not regular then the top dimensional syzygy S of the residue field k is
a finitely-generated Cohen-Macaulay module for R with no free summand
[Dut89, Corollary 1.2]. Hence by Proposition part (6), trs(R) # R
and by Corollary BI8 75(R) # R.

Proposition 4.14. Suppose that (R,m) is a Cohen-Macaulay ring with finite
Cohen-Macaulay type. If R is not reqular then

m tras(R) = m.

MeMCM

Consequently
\/ TMCM(R) =m.

Proof. Let M be a finitely-generated Cohen-Macaulay module over R. Then by
Theorem LT0] since R has an isolated singularity, 1/tras(R) is either m-primary or
R. From the facts above there is at least one MCM module (say the top dimensional
syzygy) that gives an m-primary trace ideal. Since a finite intersection of m-primary
ideals is m-primary, the result follows. O

The following results connect the trace ideal, and hence the test ideal, to the
socle of the ring (the set of elements annihilated by the maximal ideal m). Rings
with nonzero socle are not reduced.
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Lemma 4.15. Let (R,m) be a local ring and B an R-module such that B/mB
is monzero (for example, B could be a nonzero finitely-generated module). Then
soc(R) C trp(R).

Proof. Since B # mB, B/mB is a nontrivial R/m-vector space, so we can find a
surjective morphism from B/mB to R/m. In particular we have a surjection B —
R/m. If x is an element of the socle of R, then there is a map from B — R/m — R
that first sends B onto R/m and then to R/(xm) = R via multiplication by z.
Some element of B maps to 1 in R/m, and this maps to z in R. From this we see
that soc(R) C trp(R). O

Corollary 4.16. Let R be a local ring and B an R-module such that B/mB is
nonzero. If B is finitely-presented or R is complete then soc(R) C t5(R).

Proof. This follows from Theorem and Lemma O

As a consequence of these results, when R is zero-dimensional, we can say exactly
what the singular test ideal is.

Theorem 4.17. Let (R,m) be an Artinian local ring. Then (\gceps tre(R) is
nonzero. In fact,
() tra(R) = soc(R) = Teing(R).
BeCM
Hence if m # 0, then (\geeon tra(R) # 0.

Proof. By Lemma [4.15] we know that for each B € CM, trg(R) 2 soc(R). Hence

ﬂ trp(R) 2 soc(R).
BeCM
For the other inclusion, note that since R is zero dimensional, &k = R/m is a
Cohen-Macaulay module. The image of any map from & to R lives in soc(R). So
tri(R) C soc(R). Hence

ﬂ trp(R) C tri(R) C soc(R).
BeCM
The second equality follows from Corollary .41 O

In the one-dimensional case, we prove that Tyropn(R) = traron (R) # 0 under
the hypothesis that R is analytically unramified (i.e., its completion is reduced).
We use several definitions from [LW12, Chapter 4].

Definition 4.18. Let R be a domain of dimension one (so R is Cohen-Macaulay),
let K be the fraction field of R, and let R be the integral closure of R in K. The
conductor ¢ = (R :g R) is the largest common ideal of R and R, and is nonzero.

If M is a finitely-generated Cohen-Macaulay R-module, then M is torsion-free.
We use RM to denote the R-submodule of K®@pgM generated by Im(M — K®rM).
This module is R-projective [LW12, Chapter 4].

Proposition 4.19. Let R be a local domain of dimension 1 (hence Cohen-Macaulay).
Then for any finitely-generated R-module M we have tra;(R) O (R : R). This im-
plies that traronr(R) 2 (R : R). If R is analytically unramified (in particular if R
is complete), then trar(R) and traron (R) # 0.
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Proof. Let M be a finitely-generated Cohen-Macaulay module over R. Then RM
is a projective module over the regular ring R. It follows that there is a surjective
R-linear map ¢ : RM — R. In particular, there exist 7; € R and m; € M such that
® (Z?Zl fjmj) = 1. Therefore for ¢ € (R : R), the map c- ¢ sends > (erim;) = ¢
and has image in R, so we conclude that (R : R) C try(R).

The statement that tryson (R) 2 (R : R) follows immediately.

For the last part of the result, note that if R is analytically unramified, then Ris
module-finite over R, which implies that (R : R) is nonzero [LW12, Chapter 4] O

We now discuss the test ideal given by the family of big Cohen-Macaulay R-
algebras. The following result of Hochster indicates that tight closure on finitely-
generated R-modules comes from big Cohen-Macaulay R-algebras. Our study of
the test ideal coming from the family of big Cohen-Macaulay algebras is motivated
by the view that big Cohen-Macaulay algebras are a useful tight closure replacement
in all characteristics.

Theorem 4.20 ([Hoc94, Theorem 11.1]). Let R be a complete local domain of
characteristic p > 0, and let N C M be finitely-generated R-modules. Then Njy;,
the tight closure of N in M, is equal to the set of elements u € M that are in N;}[B
for some big Cohen-Macaulay algebra B.

Definition 4.21. Let CM A be the subcategory of Cohen-Macaulay R-algebras
with basis elements obtained from Bas as described in Remark We define

Tema(R) = ﬂ T58(R).
BECM A

We can also define the finitistic version,

Té‘(JJWA: ﬂ Tég(R)~
BeCMA

The following result indicates why big Cohen-Macaulay algebra test ideals are a
good tight closure replacement.

Theorem 4.22. Let R be a complete local domain of characteristic p > 0. Then
ngV[A(R) as defined above is equal to the finitistic tight closure test ideal.

Proof. By Theorem [£.20], for finitely-generated R-modules N C M, NICVIIB C Ny, for
every big Cohen-Macaulay algebra B. Hence for each B € CM A, Tg;i (R) 2 7Y (R).
This implies that
N (R’ 27 (R).
BeCMA
For the other direction, note that for each finitely-generated R-module M, there
exist

Bl,M7"'7B’n1\/j,M cCMA

ClB

1
such that 03, C OLBI’M +...40,,™". Hence

n

clp; n *
ﬂAnnROM C Annpg 03,.
i=1
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This implies that

nm
CIB,.
m ﬂAnnROM bMC m Anng03,.
M f.g. i=1 M f.g.

But the left hand side contains

m m Anng 057 = m m Anng 05F = m Tég(R);

M t.g. BECMA BECMA M f.g. BeCMA
and the right hand side is equal to 7{9(R). Hence

N (R crl(R),
BeCMA

which gives us equality. O

This result only concerns the finitistic test ideal because it is unknown whether
tight closure and big Cohen-Macaulay algebras give the same closure operation on
all R-modules, or even the same big test ideal. We are still able to get the following
consequence:

Corollary 4.23. Let R be a complete local domain of characteristic p > 0. Then R
is weakly F-reqular (all finitely-generated R-modules are tightly closed) if and only
if Tég(R) = R for all big Cohen-Macaulay algebras B.

If R is a complete local domain of equal characteristic, Dietz and R.G. [Die07,
DR17] construct a directed family of big Cohen-Macaulay algebras, i.e., a family of
big Cohen-Macaulay R-algebras such that given big Cohen-Macaulay algebras B
and B’, there is a big Cohen-Macaulay algebra C' and R-algebra maps B, B’ — C
that give rise to the following commutative diagram, where the maps R — B and

R — B’ send 1+ 1:
B —— C

[

R —— B
In characteristic p > 0, this includes all big Cohen-Macaulay R-algebras; in equal
characteristic 0, this includes all big Cohen-Macaulay R-algebras that are ultra-
rings. In these cases, we use the closure operation given by the family of big
Cohen-Macaulay R-algebras to define the test ideal.

Definition 4.24. Let W be an infinite set with a non-principal ultrafilter WW. For
each w € W, take a ring A,,. The ultraproduct Ay of the A,, (with respect to W) is
the quotient (I, Ay)/Inun, where I,y is the ideal of elements (24, )wew of I, Ay,
where x,, = 0 for all w in some subset V' of W contained in W. Any such ring Ay
is called an ultraring.

For our purposes, we will be dealing with rings of equal characteristic 0 that are
ultraproducts of rings of characteristic p > 0, as in [DR17].

Theorem 4.25 ([Die07, Theorem 8.4]). Let R be a complete local domain of positive
characteristic. If B and B’ are big Cohen-Macaulay R-algebras, then there is an
R-algebra map B @ B' — C for some big Cohen-Macaulay algebra C.
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Theorem 4.26 ([DR17, Theorem 3.3]). Let R be a local domain of equal charac-
teristic zero, and B and B’ big Cohen-Macaulay R-algebras that are also ultrarings
(ultraproducts of char p approzimations Ry, of R). Then there is a big Cohen-
Macaulay R-algebra C and an R-algebra map B @ B’ — C.

In either case, we can define the test ideal of the directed family as in Defini-

tion .11

Corollary 4.27. Let R be a complete local domain of equal characteristic and let
B be either the set of all big Cohen-Macaulay R-algebras (if R has characteristic
p > 0) or the set of big Cohen-Macaulay R-algebras that are also ultrarings (if
R has equal characteristic 0), in both cases following the setup of Remark to
ensure we get a set. Then t(R) is equal to the test ideal of the closure clg.

5. EXAMPLES

In this section we compute test ideals and trace ideals. In these examples, we
compute Homp(B, R) for various Cohen-Macaulay modules B, and look at the
images of these maps in R. In the situation of Theorem [BI2] this gives us the test
ideal 75(R), and in general it gives us the trace ideal trp(R).

Example 5.1. Let R be a complete PID. Then for any family of R-modules F we
either have trz(R) = 0 or trz(R) = R. Indeed, if trx(R) # 0 then it is a principal
ideal I. Let I — R be an isomorphism. Composing this isomorphism with the
elements of Hompg(F, R), whose images add up to all of I, we have for each element
of R a map from F — R whose image includes that element. Hence trz(R) = R.

If R is also local and B is any big Cohen-Macaulay R-module, B is solid (i.e.
Hompg(B, R) # 0), so trg(R) = R. Hence Ty;,4(R) = R.

But this is not always true in the general one-dimensional case, as Example
shows.

Example 5.2. Let R = k[[t?, t*]] where k is a field. Let B = ((t*,t?), (¢3,t?)) C R%.
This is a finitely-generated Cohen-Macaulay R-module. There is no surjective map
B — R. Indeed, if there were then there would be a,b € R such that (at*+bt3, at3+
bt?) — 1. But note that if

e=at*(t*,1%) + b(t*, t*) = (at® + bt*, at* + bt*) € B
maps to x € R, we also have
t3(at* 4+ bt?, at® + bt?) = 3,
but
t3(at* + bt3, at® + bt?) = t*(at® + bt*, at* + bt?) = t?e s t22.
This implies that 22 = t3. However there is no element of R that satisfies this
equation.

Now consider the map B — R given by (¢, d) — d. The image of this map is the
ideal m = (¢2,#3). Hence we can conclude that

tI‘B(R) =m.

Example 5.3. Let R = Eflabe] k[[x2, zy, y?]], where k is a field. By [Yos90,

(b2—ac)

Proposition 1.16] high syzygies (dim(R) or higher) K of the residue field k are
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Cohen-Macaulay modules if they are nonzero, and by Remark 2.23] cl = clg is non-
trivial. Hence 7k (R) # R. Using Macaulay2 we find that the free resolution for
the residue field has the form

R'* - R* -+ R— R/m =0,

where the map R* — R? is given by the matrix

—y* —axy 0 —y
Ty z2 =P 0

0 0 Ty z2

Hence K = syz,(k) is the R-submodule of R® generated by the columns of this
matrix. Let [ = (22,y?). Then rad(I) = m. We claim that 2y € I°'¥. Since I is an
ideal, I°'x = (IK : K). Hence it is enough to show that zyK C I'K. Multiplying
xy by each of the columns of the matrix above, we have

—y° —y? —zy
sy | oy | = a®? | =y | 2* |,
0 0 0
—ay —a2y? _yp
zy| 22 | = 3y =22 2y |,
0 0 0
0 0 _y2 2
ey | =y | = -2’ | ==y | ay | +y*| 0 [,
Ty x2y? 0 x?
—y? —y3 —zyY 0
zy| O = 0 =y | 2% | +22 | —? ],
z2 3y 0 Ty

which implies that zyK C IK. Hence I°« = m, and so I : I°'* = m. Therefore,
Tsing(R) g TK (R) Q m.

Example 5.4. By an alternate method, we can say exactly what 74,4(R) is in
this case. Let R = k[[z% zy,v%]] C k[[z,y]] = S, where k is a field. Then R
has exactly two indecomposable finitely-generated Cohen-Macaulay modules, R
and M = 2R+ yR C S. By a result of [HLR19], if B is a big Cohen-Macaulay
module over R, then either R or M splits from B. Since for any modules A and
N, clagn = cly Ncly, this means that cly, gives the largest big Cohen-Macaulay
module closure on R. So Tas(R) = Teing(R).
Since M 2 (2%, 2y) R = (2y,y*) R, Tsing(R) = Tas(R) must contain

m = (2%, zy,y*)R.
However, since R is not regular, 74nq(R) # R. Therefore, 74inq(R) = m.

The following example is of a ring with countable Cohen-Macaulay type whose
singular test ideal is not primary to the maximal ideal. This indicates that Propo-
sition [£.14] does not hold even for fairly nice rings with infinite Cohen-Macaulay

type.
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Example 5.5. Let R = k[[z,y,2]]/(z%y + 2°?), where k is a field of arbitrary
characteristic. This ring is known as the D, hypersurface singularity and as the
Whitney Umbrella. By [LW12, Proposition 14.19], this ring has countable Cohen-
Macaulay type and the isomorphism classes of indecomposable, non-free finitely-
generated Cohen-Macaulay modules are obtained as the cokernels of each of the
following matrices:

° M:coker( z2 y),
-z z

° N:coker(z Y
- =z

N—

z 0 axy 0
B 0 =z ¢t —ay
e Mj; = coker | 0 . 0 ,
-y oz 0 z
z 0 2y O
B 0 =z 9y -z
e N; =coker | ~ 0 s 0
9 zy O z

Let’s compute the corresponding test ideals. As the ring R is a complete local
domain, by Theorem [3.12] we only need to compute the trace ideal of R with respect
to these modules.

e M : A map ¢ from M to R is the same as a map from R? — R whose kernel
contains < (z,22%), (—y, z) >. That is, we must have that z¢(e1)+z2¢(ea) =
—yo(er) + z¢(e) = 0, or in an equivalent way, we want solutions for

G )=

with a,b € R. We first find the solutions in the fraction field and then
determine when they are in R. To do this, we row reduce this matrix by
multiplying the second row by 2 and then adding the z times the first row,

which gives us
z -2\ (a
G )6)-

This means that we need az = bx?. As we want a,b € R, this is equivalent
to saying a € 2% : z and b € z : 2%. Tt follows that 7y (R) = trps(R) = (2 :
2) + (2 : 2%). As both ideals are proper, try;(R) # R. Now, note that from
the equation 2z? = —z%y we have that (z2,y, 2) = try(R).

e N: A similar procedure implies 75 (R) = try(R) = (2 : ) + (z : 2), which
is equal to (zy, z) + (z,z) = (z, 2).

e M;: After transposing and row reducing we obtain the system

az —cx —dy’ =0,
bz +dz =0.
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Some possibilities that satisfy this equation are (found in Macaulay2 for
particular values of j, but easy to check that they are correct for any j):

a | b | c | d

x 0 z 0
(17 Ja| 0 [(=1)=

—z 0 Ty 0

0 x| —y/ Ty

Hence (z,47,2) C 7ar,(R). (In fact, computations in Macaulay2 confirm

that these choices generate all maps M; — R, so the two ideals are equal.)

e N;: As in the previous case, transposing and row reducing we obtain the

system
az —cx —dy’ =0,
bz 4+ dxy = 0.
In particular the following are solutions to this set of equations

a | b | c | d

T 0 z |0
v | —xy|] 0 |2
—z 0 zy |0

0 EAE

so (x,97,2) C 7n,; (R). (As with M;, Macaulay2 computations confirm that
they are actually equal.)
From this we can conclude that the intersection of 7p(R) over all finitely-
generated Cohen-Macaulay R-modules B is

(2%,y,2) N (2, 2) N (z,y7,2) N (x, 7, 2) = (2®, 2y, 2).

Notice that this is not primary to the maximal ideal, and so the singular test ideal,
which is contained in this ideal, is also not m-primary.

Even though we have only defined test ideals for domains, we can compute trace
ideals without this hypothesis. In the next example we compute the trace ideal of
a non-domain ring with respect to its finitely-generated Cohen-Macaulay modules.

Example 5.6. Let R = k[z,y, z]/(xz), where k is an algebraically closed field of
characteristic not equal to 2. We will use i to denote v/—1. In this case R has count-
ably infinite Cohen-Macaulay type, that is, up to isomorphism, there are countably
many indecomposable finitely-generated Cohen-Macaulay R-modules. By isomor-
phism with k[z,y, 2]/(2% + 2?) via

T — z—1x,
Y=y,
Z vz 4T,

we see that this is the same as the example in [LW12| Proposition 14.17]. Hence
the indecomposable finitely-generated Cohen-Macaulay R-modules are given as the
cokernels M; of ¢; : R? — R?, where

—J
o= )
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and the cokernels M} of ¢ : R? — R?, where

_(r ¥V
= %)
or as the cokernel, M of ¢ = (z) or M’ of ¢ = (2).

We claim that tra; (R) = try (R) = (2,97, 2) and that try(R) = trar(R) =
(z,2). A map from M; — R must send its natural generators to elements a,b
satisfying the relations

az =0,

—ay’ +br =0.
The first implies that a = fx for some f € R, and so x(b— fy’) = 0. This, in turn,
implies

b=fy +gz

for some g € R. This implies that a,b € (x,z,97). Now, choosing f =1 and g =0
gives the solution @ = z and b = y/. This implies that tras, (R) 2 (,%7). Similarly,
choosing f = 0 and g = 1 gives try, (R) 2 (2), hence try;, (R) = (2,2,%7). The
case of the Mj is similar.

However, try(R) = (z) and trp; (R) = (z).

This implies that

Nexs(R) = ()N (=) = (0),

B
where the intersection is taken over all finitely-generated indecomposable Cohen-
Macaulay R-modules.

Remark 5.7. Here Tpson (R) = 0. This supports the need for the domain hypothesis
in many of the results of this paper.

One more example of modules for which we can say something is the following

Example 5.8. Let R = k[z,v, 2]/(2?) localized at (x,y,2) and set

2n

M, = @kj[aj,y]

We make M,, an R-module via

(0 @
*=\o o)’

where ® is the n x n matrix

z y 0 0 0

0  y O 0

0 0 =z y 0
¢ =

0 0 00 - gy

0O 00 0 - =

By Proposition 3.4 of [LW12], M, is an indecomposable Cohen-Macaulay module
over R for all n > 2. We compute trps, (R). Let eq,...,es, be the obvious set of



CHARACTERISTIC-FREE TEST IDEALS 781

generators for M,. For any map v : M,, - R we have that ¢ is determined by
¥(e;). Notice that z has the following action on the e;:
0 i <mn,
ze; = { xeq t=n+1,
Y€i—n—1+ 26—y n <1< 2n.
We have a map ¢ : M,, — R sending
e — z,
entl T,
€n+2 Y,
e; — 0 for all other 1.

To see that this is an R-linear map, we check that the action of z is compatible
with the map. We have z¢(e,,+1) = zz and

V(zeny1) = Y(zer) = zifp(er) = z2.
Additionally, z¢(e,t2) = zy and

VY(zent2) = Y(yer + zez) = y(er) + xp(e2) = yz +0 = yz,

and 29(e1) = 22 = 0 = ¥(0) = ¢(zey). For 1 < i < n, (ze;) = ¥(0) = 0 = 29)(e;).
For i > n+ 2, ze; is in terms of e; for 1 < j < n, so 0 = z¢)(e;) = ¥(ze;).
The existence of this map shows that (z,y, z) C trys, (R) for n > 2. Hence

(z,y,2) C [ \trar, (R).

To see that these are in fact equal, suppose there is a map ¢ : M,, — R sending
e; — 1 for some 4. If i < n, we have

z = zi)(e;) = P(ze;) =0,

which is a contradiction. If ¢ = n 4 1, we have
z = zP(ei) = Y(ze;) = P(zer) = wip(er),
which is also a contradiction as z € (x)R. If i > n+ 1, we have
z=29(€;) = Y(Yen—i—1 + xen—;) = y¥(en—i—1) + 2¢(en—;),
which is a contradiction since z € (z,y)R. Hence 1 & trps, (R), which implies that
trar, (R) = (2,9, 2).

Remark 5.9. Given Proposition it is natural to ask whether 7p(R) C 75(R)
if and only if S generates T. Note that the “if” part follows from Proposition
2200 But as Example shows the other direction is false, even in the case of
finitely-generated Cohen-Macaulay modules.

Example 5.10. Let R = k[[z,y, z]]/(zy — 2z*) where k has characteristic 0 (or most
values of p are also fine). We can view R as a subring of S = ks, t]], via z — s?,
y +— t* and z — st. The indecomposable MCM’s of R are R, M = (s,t3) = (y, 2),
My = (s%,1?) = (y,2?), and M3 = (s3,t) = (z, z) [LWI12]. According to Macaulay2,

3
H = Hom(M;i, R) =Im (Z Zx> , and using the function homomorphism(Hy;,) for
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1 = 0,1, we see that the homomorphisms M — R are as follows: one of them is
given by s — y and t3 — 2z, and the other by s — 23 and 3 — z.

3
Similarly, Hom(M3, R) = Im (j Zy), and the homomorphisms send s3 — z,

t— z, or33»—>z3,t»—>y.

So tran, (R) = try,(R) = m. But M; and Mj are distinct indecomposable
Cohen-Macaulay R-modules, so neither generates the other. As M; and Mj are
finitely-generated R-modules, tras, (R) = 7ar,(R) for ¢ = 1,3, so My and M3 are
two R-modules that give the same test ideal, but neither one generates the other.

6. MIXED CHARACTERISTIC

Recently, André proved the existence of big Cohen-Macaulay algebras in mixed
characteristic [And18]. We take advantage of this result and of almost big Cohen-
Macaulay algebras as defined by Roberts [Robl0] and used by André to define a
closure operation in mixed characteristic, and to prove that the corresponding test
ideal can be written as a variant on a trace ideal, paralleling our results in previous
sections. This demonstrates that the arguments used in earlier sections can be
adapted to apply to closures that are variations on module closures.

Our closure is similar to dagger closure as defined by Hochster and Huneke
[HHOI]. The key difference is that we have replaced R*, the absolute integral
closure of R, with an arbitrary almost big Cohen-Macaulay algebra. We are also
using small powers of a particular element as our “test elements”, as is usual in
working with perfectoid algebras, rather than using arbitrary elements of small
order as in [HHO1].

In this section, let (R, m) be a complete local domain of dimension d > 0 and
mixed characteristic (0,p), T a p-torsion free algebra, and = € T a non-zero divisor
such that T contains a compatible system of p-power roots of m, i.e. a set of
elements {7'/?"},,>; such that (7'/7")P" = x/P""" for all m < n. We will denote
this system of p-power roots of w by w/P~

Definition 6.1 ([AndI8| Definition 4.1.1.3]). T is an almost (balanced) big Cohen-
Macaulay algebra with respect to w/P~ if T/mT is not almost 0 with respect to
71/P% (i.e., it is not the case that 7'/P"T/mT = 0 for all n > 0), and for every
system of parameters x1,...,zq on R,

7.‘.1/;0" ) (1‘1, ce ,.’L‘i) T Ti41

=0
(1[,'1,...,252')

forallm>0,0<i<d-—1.

André proved the existence of almost big Cohen-Macaulay algebras as a step on
the way to proving the existence of big Cohen-Macaulay algebras. The reason we
have included this “intermediate” step in our paper (rather than focusing solely
on big Cohen-Macaulay algebras) is that almost mathematics is central to major
results in mixed characteristic commutative algebra, and our techniques can be
applied to this case. This also connects our results to the recent work of [MS18a]
on a mixed characteristic version of a test ideal for pairs in regular rings, which is
defined using an almost big Cohen-Macaulay algebra.
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Definition 6.2. Let T be an almost big Cohen-Macaulay algebra over R. We
define a closure operation cl by u € N if for all n > 0,

P @ueIm(T @ N — T @r M).

Proposition 6.3. The closure cl defined above is a Dietz closure. Consequently,
Ta(R) = Anng OCEIR(k).

Proof. First, we show that cl gives a closure operation. Let N C M be R-modules.
It is clear that N C NICVII Additionally, if N C N’ C M, and u € NJCVII, then for all
n >0,

/P @uem(TON+T@M) CIm(ToN =T M).

Hence N§i C (N')S,. It remains to show that cl is idempotent. Suppose that
u € (NS, Then for all n > 0,

/P @ueIm(T @ Ny — T ® M).

So we can write 7/ @ u = > t; ® my;, with the m; € N]CVI[. Hence

/P @m; e Im(T QN — T ® M)
for all 7 and for all n’ > 0. This implies that for all n,n’ > 0,

AP @y e (T @ N — T @ M).

In particular, 7*/?"71/?" @ u € Im(T® N — T ® M) for all n > 0. Multiplying by
7=/ we get 7/ @u e Im(T @ N — T @ M) for all n > 0, so u € NS\

Next we prove that cl is functorial. Suppose that f : M — W is a map of
R-modules, and N C M. Let u € NX}[. Then 77" @ u € Im(T®N = T®M)
for all n > 0, i.e. /7" @ u = > t; ® n; with each n; € N. Applying 1 ® f, we
get /P @ f(u) = S t; @ f(n;). Since each f(n;) € f(N), we have 7'/7" @ f(u) €
(f(N))%,, as desired.

To prove semi-residuality, suppose that N$; = N. Let u € M such that 4 €
O‘;&[/N. Then 7'/P" @ 4 = 0 in T ® M/N, which by right exactness of tensor
products implies that 7'/?" ® w € In(T ® N — T ® M). Hence u € N, which
implies that « = 0. Hence ()(;&[/N =0.

For faithfulness, suppose that u € m‘j%. Then 7'/P"w € mT for all n > 0. If
u & m, then w is a unit, so this implies that 7!/?" € mT for all n > 0. But then
T/mT is almost zero, which is a contradiction.

For generalized colon-capturing, suppose f : M — R/I, where I = (x1,...,2%)
and x1,...,2k41 is part of a system of parameters for R, and let v € M such that
f(v) = Zg11. Let u € (Rv)S, NKer(f). Then

/P @ueIm(T® Rv— T ® M)
for all n > 0. So n¥/?" @ u = t,, ® v for some t,, € T. Hence
0=(@{d® f)(@/"" @u) = (i[d® f)(t, ®v) = t, @ f(v)
in T® R/I. So tpzs1 € IT. Hence /%" t, € IT for all n’ > 0. So

AP @y e In(IT® R — T @ M) = Im(T ® v — T ® M)
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for all n,n’ > 0. As in the proof of idempotence, this implies that 7'/?" @ u €
Im(T ® Iv — T ® M) for all n > 0. Therefore u € (Iv)$;, which completes the
proof of generalized colon-capturing.

As a corollary to Proposition B:9] since cl is residual, 7;(R) = Anng O%R(k)' |

Definition 6.4. Let cl be the closure from Definition We define
tra(R) =Y Y ¢@/"'T)=> Im(T* @/""T - R),
n>04p:T—R n>0
where T* = Hompg (T, R) and the map sends h ® z — h(x).
Theorem 6.5. Let R be a complete local domain and let cl be the closure defined

above. Then

Ta(R) = tra(R).

Proof. Let E = Er(k) be the injective hull of the residue field k of R. By Propo-
sition B9, 7¢1(R) = Anng(0%) = (0: 0%2); hence ¢ € 7(R) if and only if ¢- 0% = 0,
but
0% = () ker(E “ T & E),
n>0
where a,, is given by e — 7'/P" @ e. Since E is Artinian, there are elements
n1,...,n: > 0 such that this is equal to

(| ker(E T ®E).
ne{ny,...ns}
We can rewrite this as ker(¢), where ¢ = (¢1,...,¢:) : E — (B ® E)®" sends
e (/P Qe m /P @e, .. 7P @ e).
First, suppose ¢ € 7.(R), so that ¢- 0% = cker(¢) = 0. Then
09 C Anng(c),

and by Matlis duality the map
R
R= Homp(Anng(c), E) — Homp (0%, E)
c

is surjective. But applying Matlis duality to the exact sequence

0= ker(d) —» E 2 (T ® E)®

gives

R
Zne{nl,...,nt} Im(HomR(T7 R) — R) ’
where the maps Hompg(T,R) — R are given by 1 +— 9(x/?"") for each n €

{n1,...,m¢}}. From the surjection R/cR — Hompg (0%, E) we can now conclude
that

Hompz(05, E) =

cRC > Im(Homg(T,R) — R).
ne{ni,...,n¢}

This gives us the desired result.

For the reverse containment, suppose that ¢ € tre(R). Then there are n}, ..., n]

> 0 such that ¢ € Ene{n,w“,n,}lm(HomR(T, R) — R), where the ith map
Hompg(T,R) — R sends f — f(wl/p";’). We can enlarge the set ni,...,n; to
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: /! !
include n},...,n.. Thence
a surjection

ey Im(Homp(T, R) — R). Hence we have

ne{ny,..
R

Ene{nh...,nt} Im(HomR(T, R) — R) .

Applying Matlis duality, we get an injection

R/cR —

R
Homp ,E | =<Hompg(R/cR, E)=Anngc.
(Zne{nl,.“,nt} Im(HomR(Ta R) - R))
But the module on the left is 0%. Hence ¢ € Anng 0%, so ¢ € 7a(R). O
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