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EQUI-LIPSCHITZ MINIMIZING TRAJECTORIES FOR NON

COERCIVE, DISCONTINUOUS, NON CONVEX BOLZA

CONTROLLED-LINEAR OPTIMAL CONTROL PROBLEMS

CARLO MARICONDA

Abstract. This article deals with the Lipschitz regularity of the “approxi-
mate” minimizers for the Bolza type control functional of the form

Jt(y, u) :=

∫ T

t
Λ(s, y(s), u(s)) ds+ g(y(T ))

among the pairs (y, u) satisfying a prescribed initial condition y(t) = x, where
the state y is absolutely continuous, the control u is summable and the dy-
namic is controlled-linear of the form y′ = b(y)u. For b ≡ 1 the above becomes
a problem of the calculus of variations. The Lagrangian Λ(s, y, u) is assumed
to be either convex in the variable u on every half-line from the origin (radial
convexity in u), or partial differentiable in the control variable and satisfies
a local Lipschitz regularity on the time variable, named Condition (S). It is
allowed to be extended valued, discontinuous in y or in u, and non convex in
u. We assume a very mild growth condition, actually a violation of the Du
Bois-Reymond–Erdmann equation for high values of the control, that is ful-
filled if the Lagrangian is coercive as well as in some almost linear cases. The

main result states that, given any admissible pair (y, u), there exists a more
convenient admissible pair (y, u) for Jt where u is bounded, y is Lipschitz, with
bounds and ranks that are uniform with respect to t, x in the compact subsets
of [0, T [×R

n. The result is new even in the superlinear case. As a consequence,
there are minimizing sequences that are formed by pairs of equi-Lipschitz tra-
jectories and equi-bounded controls. A new existence and regularity result
follows without assuming any kind of Lipschitzianity in the state variable.
We deduce, without any need of growth conditions, the nonoccurrence of the
Lavrentiev phenomenon for a wide class of Lagrangians containing those that
satisfy Condition (S), are bounded on bounded sets “well” inside the effective
domain and are radially convex in the control variable. The methods are based
on a reparametrization technique and do not involve the Maximum Principle.
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1. Introduction

The main object of the article concerns the existence of “nice” pairs of approxi-
mate solutions to an optimal control problem. For the sake of clarity, we motivate
the core of the paper by means of the basic problem of the calculus of variations.

The classical problem of the calculus of variations consists of minimizing an
integral functional

min I(y) :=

∫ T

t

Λ(s, y(s), y′(s)) ds, y ∈ W 1,1([t, T ];Rn),

y(t) = x ∈ R
n, y(T ) = yT ∈ R

n,

where Λ is a positive, Lebesgue–Borel Lagrangian. The main ingredients in order
to obtain the existence of a solution are summarized in Tonelli’s theorem:

• Lower semicontinuity of Λ(s, y, u) with respect to (y, u);
• Convexity of Λ(s, y, u) with respect to u;
• Superlinearity of Λ(s, y, u) with respect to u:

∀(s, y, u) ∈ [t, T ] × R
n × R

n Λ(s, y, u) ≥ Φ(|u|),

where Φ : [0,+∞[→ [0,+∞[ and lim
r→+∞

Φ(r)

r
= +∞.

When a minimizer of I exists, a first step towards regularity is looking at its Lip-
schitzianity. When Λ is autonomous, superlinearity alone suffices to ensure the
Lipschitz continuity of the minimizers (see [2, 24, 25]). Weaker growth conditions
were considered in the last decades, requiring a specific behavior of the Hamilton-
ian H(s, y, u, p) := p · u − Λ(s, y, u) associated with Λ(s, y, u), as p belongs to the
convex subdifferential of u �→ Λ(s, y, u) and |u| → +∞. The essential idea of us-
ing such indirect growth conditions for the purposes of existence and regularity is
due to F. Clarke, who introduced Condition (H) in his seminal paper [21] of 1993
for Lagrangians possibly nonautonomous, extended valued, with state and velocity
constraints. Few years later, with different methods, A. Cellina and his school be-
gan working around a growth condition (G), formulated first in [18] for continuous
Lagrangians of the form Λ(s, y, u) = f(y) + g(u) with g ∈ C1(R) and, in 2003
[16, 17] for autonomous and continuous Lagrangians. The growth conditions (H)
and (G) will be thoroughly examined below. At this stage we just mention here
that if Λ is bounded on bounded sets then superlinearity implies Condition (G)
and, in the real valued case, the validity of Condition (G) implies that of Condition
(H); Conditions (G) and (H) are satisfied by some Lagrangians with almost linear

growth, e.g., Λ(u) = |u| −
√
|u| satisfies (G) as well as (H), and some Lagrangians

of the form Λ(s, y, u) = h(s, y)
√

1 + |u|2–in particular Λ(u) =
√

1 + |u|2–satisfy
(H), but not (G). In the real valued autonomous case these weak growth conditions
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alone (with no need of convexity or continuity assumptions), instead of superlin-
earity, ensure the Lipschitz regularity of minimizers, as shown by P. Bettiol and C.
Mariconda in [8].

In the nonautonomous case, there are examples of Lagrangians that satisfy
Tonelli’s assumptions but whose minimizers are not Lipschitz. Several regular-
ity results appeared on the subject (see [22, 24, 33]), each requiring some extra
assumptions on the state or velocity variable, e.g., local Lipschitz conditions on
the state variable or Tonelli–Morrey type conditions, mostly motivated by the use
of the Weierstrass inequality or Clarke’s Maximum Principle. A Lipschitz regu-
larity result without additional smoothness or convexity requirements on the state
and velocity variables was obtained by P. Bettiol–C. Mariconda in [7, 8] under the
growth condition (H). The price to pay, with respect to Tonelli’s assumptions, is the
additional local Lipschitz condition (S) on the time variable, thoroughly examined
in § 3, requiring that s �→ Λ(s, y, u) is locally Lipschitz and that, for all (y, u),

(1.1) |DsΛ(s, y, u)| ≤ κΛ(s, y, u) + A|u| + γ(s) a.e. s ∈ [t, T ],

for some κ,A ≥ 0 and γ ∈ L1([t, T ]). Moreover, it turns out without need of any
growth condition, that Λ is somewhat radially convex on the velocity variable
along any given minimizer y∗, in the sense that, for a.e. s ∈ [t, T ], the map

0 < r �→ Λ(s, y∗(s), ry
′
∗(s))

has a nonempty subdifferential at r = 1, in the sense on convex analysis. The role
of radial convexity in Lipschitz regularity was prefigured in [21] by the fact that
the velocity constraint is a cone, and was first explicitly formulated for autonomous
Lagrangians by C. Mariconda and G. Treu in [31].

The celebrated example by J. M. Ball and V. J. Mizel in [4] of a nonautonomous
polynomial Lagrangian that is superlinear and convex in the velocity variable shows
that, the violation of Condition (S) may lead not only to minimizers that are not
Lipschitz, but even to the Lavrentiev phenomenon, i.e., the fact that

inf
y∈W 1,1([t,T ];Rn)
y(t)=x, y(T )=yT

I(y) < inf
y∈Lip([t,T ];Rn)
y(t)=x, y(T )=yT

I(y).

Condition (S) is not new and appeared in several results. It is sufficient for the valid-
ity of the Du Bois-Reymond–Erdmann equation (see [19] for smooth Lagrangians,
and [8] for a discussion in the general case) and, if one replaces in Tonelli’s assump-
tions the superlinearity condition with the slower growth (H), it plays an essential
role in establishing the Lipschitz continuity of minimizers in F. Clarke–R. Vinter’s
[24, Corollary 3]. Furthermore, F. Clarke proved in [21] that it provides the exis-
tence of a minimizer, which is actually Lipschitz. The Lavrentiev phenomenon has
been widely reconsidered in the 1980s, a long time after M. Lavrentiev and B. Manià
realized (see [29]) that such a pathology could occur. Here again, the autonomous
case stands on its own: G. Alberti–F. Serra Cassano proved in [1] that the Lavren-
tiev phenomenon never occurs if Λ(y, u) is just Borel, possibly extended valued;
we refer to [10], [11], [12] for more insights on Lavrentiev’s gap. More precisely
if y(·) is an admissible trajectory and s �→ Λ(y(s), y′(s)) ∈ L1([t, T ]), there is no
Lavrentiev gap at y, i.e., there is a sequence (yj)j of Lipschitz functions that share
the same boundary values with y, converging to y in W 1,1([t, T ]) and in energy, i.e.
lim

j→+∞
I(yj) = I(y). In the nonautonomous case some additional conditions have to
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be added. To the author’s knowledge, the criteria for the avoidance of the Lavren-
tiev phenomenon either follow trivially from the fact that minimizers exist and are
Lipschitz or, as in [28, 35, 37], they require that Λ is locally Lipschitz or Hölder
continuous in the state variable. One of the reasons is that, as was pointed out by
D. Carlson in [15], many of the results on the subject can actually be obtained as
a consequence of Property (D) introduced by L. Cesari and T.S. Angell in [20].

Regularity conditions on the state variable or convexity in the velocity vari-
able are not satisfied in several problems arising from real life; discontinuous
Lagrangians appear for instance in models arising from combustion in non ho-
mogeneous media or light propagation in the presence of layers. Some natural
questions arise, and are addressed in the paper:

1. When a priori existence of a minimizer fails because of the lack of continuity
of the Lagrangian with respect to the state or velocity variable, can one at
least approach the infimum of the functional I through the values of I along
“nice” minimizing sequences (say equi-Lipschitz)?

2. May Condition (S) on the time variable replace the customary regular-
ity assumptions in the state variable, in order to prevent the Lavrentiev
phenomenon?

Problem 1 was considered by A. Cellina and A. Ferriero in [17], where the authors
study autonomous, continuous Lagrangians that are convex or differentiable in the
velocity variable and satisfy the growth condition (G). While, in the real valued,
convex case, this result may be seen as a consequence of [21, Theorem 2] ((G)
implies (H) so that minimizers exist and are Lipschitz), new results arise in the
differentiable case or in the extended valued framework, when Condition (G) and
Condition (H), in its original formulation (as in [8, 9, 21]), may even not overlap.
Most of the present work is based on the intuition that some steps of the proof of the
main result in [17] for the basic problem of the calculus of variations could actually
be carried on in a more general setting, namely under a weaker growth condition of
type (H) instead of (G), no more continuity assumptions on the state and velocity,
nor convexity in the velocity variable and in the slightly wider framework of optimal
control problems with a controlled-linear dynamics.

In this article we consider the more general Bolza optimal control (Pt,x) of min-
imizing an integral functional

Jt(y, u) :=

∫ T

t

Λ(s, y(s), u(s)) ds+ g(y(T ))

among the absolutely continuous arcs y : [t, T ] → R
n that have a prescribed value

at t

y(t) = x ∈ R
n,

that are subject to a state constraint

y(s) ∈ S ⊆ R
n ∀s ∈ [t, T ],

and to a control-linear differential equation

(1.2) y′ = f(y, u) = b(y)u,

with

u(s) ∈ U ⊆ R
m
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and g is positive, possibly extended valued, U is a cone. If b is the identity ma-
trix, g is the indicator function of a point and S = R

n problem (Pt,x) is the basic
problem of the calculus of variations. The same Bolza problem was considered
in [9]; the particular form of the dynamics is motivated by the reparametrization
techniques used to obtain the results. The results thus apply for instance to the
class of problems called of Grushin type (see [30]) and to control problems related
to subriemaniann metrics (see [3]). We take nonautonomous Lagrangians which
are Lebesgue–Borel measurable and possibly extended valued. We assume that the
Lagrangian is measurable, has at least a linear growth from below and satis-
fies Condition (S). We admit two different types of Lagrangians: those that are
radially convex w.r.t. the control variable or those that are partial differ-
entiable w.r.t the control variable; no kind of lower semicontinuity nor global
convexity in the state or control variable are required. The extended valued
case needs some extra assumptions. In this situation we impose, moreover, that
Λ tends uniformly to +∞ at the boundary of its effective domain Dom(Λ), to-
gether with some structure conditions on Dom(Λ) that are satisfied if, for instance,
Λ(s, y, u) = a(s, y)L(u) where a is real valued and Dom(L) is star-shaped.

In Section 4 we study various “slow” growth conditions and describe how they
are related. When Λ is smooth Condition (G) imposes that

lim
|u|→+∞

Λ(s, y, u) − u · ∇uΛ(s, y, u) = −∞ uniformly in s, y.

The interpretation of (G) can be easily understood noticing that Λ(s, y, u) − u ·
∇uΛ(s, y, u) is the value of the intersection with the w axis of the tangent hy-
perplane to v �→ Λ(s, y, v) at v = u. Condition (G) has been considered in the
autonomous framework in [16–18] and extended to the nonautonomous case in [8].
In the smooth setting the original Condition (H), as formulated in [21] for the cal-
culus of variations and in [9, 13] for the optimal control problem considered here,
requires that once (y(·), u(·)) is an admissible pair for (Pt,x) with

(1.3) ess inf
s∈[t,T ]

|u(s)| < c

then there is ν > 0 such that

sup
|v|≥ν,v∈U

z∈R
n

{Λ(s, z, v) − v · ∇vΛ(s, z, v)} + Φ(y(·), u(·)) <(1.4)

< inf
|v|<c,v∈U

z∈R
n

{Λ(s, z, v) − v · ∇vΛ(s, z, v)} ,

where

Φ(y(·), u(·)) :=

∫ T

t

{κΛ(s, y(s), u(s)) + A|u(s)| + γ(s)} ds

and the κ,A, γ are as in (1.1). At a first glance, Condition (H) may appear
quite involved since it relies on the essinf of a given admissible pair (y, u) and
on Φ(y(·), u(·)), a function depending on Condition (S). In the autonomous case it
appears to be more ductile since in that case Φ ≡ 0 (see Figure 1 for the interpre-
tation of Condition (H) in the simple case of a Lagrangian of a positive real control
variable). However, as anticipated in [21, Theorem 3] and proved in [9], condi-
tions (1.3)–(1.4) represent merely a violation of the Du Bois-Reymond–Erdmann
equation for high values of the velocity/control. With respect to [8, 9, 13, 21] we
formulate here Condition (H) in a slight different way for several reasons. We take



904 CARLO MARICONDA

Λ(c) − cΛʹ(c)

Λ(v) − cΛʹ(v)

Figure 1. Condition (H) in the case of a convex function Λ(u)
with Dom(Λ) = [0,+∞[: inf

0≤v<c
Λ(v)− vΛ′(v) < sup

v≥ν
Λ(v)− vΛ′(v).

into account that the initial time t and value x may vary. Furthermore, in the
extended valued case the formulation given in § 4.3 widens the class of functions
that satisfy (1.4) (see Remark 4.14 and Example 7.2); as a byproduct the validity
of (G) implies now that of (H) in any “reasonable” case (Proposition 4.17). At the
same time, at least in the real valued and nonautonomous case, our Condition (H)
is slightly more restrictive with respect to the original one due to the presence, in
(1.4), of a technical factor 2 in front of Φ(y(·), u(·)); this does not seem, however,
to have any consequence in concrete applications. A new growth condition (M)
is introduced in § 4.4, so weak that it is in fact satisfied by any Lagrangian that
is bounded on the bounded sets “well-inside” the effective domain (in the sense
of Definition 4.15) and radially convex in the control variable. In the real valued,
smooth case it simply requires that, for a suitable c > 0 and ν > 0,

(1.5) sup
|v|≥ν,v∈U

z∈R
n

{Λ(s, z, v) − v · ∇vΛ(s, z, v)} < +∞,

−∞ < inf
|v|<c,v∈U

z∈R
n

{Λ(s, z, v) − v · ∇vΛ(s, z, v)} .

The main result, formulated in Theorem 5.1, considers the two different types of
growth (H) or (M):

• If Condition (H) is verified, it states that, whenever (y, u) is admissible for (Pt,x)
then there is an admissible pair (y, u) where y is Lipschitz, u is bounded, such
that

Jt(y, u) ≤ Jt(y, u).

Moreover, the Lipschitz constant of y and u are uniformly bounded as t, x
vary in compact sets.

• If the less restrictive Condition (M) holds, given η > 0 we still get a pair (y, u)
with the above regularity properties, and satisfying

Jt(y, u) ≤ Jt(y, u) + η.

Several examples are provided in § 7 to illustrate the growth conditions involved
in the article and the applicability of the results.

In the proof of Theorem 5.1 the Maximum Principle cannot be invoked, due to
the lack of Lipschitz continuity of the Lagrangian in the state variable. Instead,
we extend the method of [17] to this more general framework in order to build
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the desired Lipschitz function y via a Lipschitz reparametrization of y. Without
entering into the several technical points of the proof, it may be of interest to
briefly illustrate the link between reparametrizations and growth conditions. For
simplicity, consider the case of the calculus of variations. Let ϕ be a smooth,
increasing change of variable on [t, T ], y be an admissible trajectory for (Pt,x), and
set y(s) := y(ϕ−1(s)). Notice that, by taking high values of ϕ′(τ ), one lowers the
norm of the derivative of y(ϕ(τ )). The change of variable s = ϕ(τ ) yields

I(y) =

∫ T

t

Λ(s, y(s), y′(s)) ds =

∫ T

t

Λ
(
ϕ(τ ), y(τ ),

y′(τ )

ϕ′(τ )

)
ϕ′(τ ) dτ.

Supposing that Λ smooth, the derivative of μ �→ Λ
(
ϕ, y,

u

μ

)
μ at μ = 1 is

Λ(ϕ, y, u) − u · ∇uΛ(ϕ, y, u).

The proof consists on finding a suitable increasing and one-to-one change of variable
ϕ : [t;T ] → [t, T ]. By choosing ν, c > 0 as in (1.4) (resp. (1.5)), Conditions of
type (H) (resp. (M)) allow to compensate the values of integral in I on the sets
where |y′| > ν with the ones where |y′| < c, up to obtain a lower value than I(y)
(resp. I(y) + η). The essential ideas of the multiple step proof of Theorem 5.1 are
described at the beginning of Section 9 for the convenience of the reader. Many
technical issues are actually related to the fact that the Lagrangian is allowed to
take the value +∞; we invite the reader focused in the real valued case to consult
the simplified version in the announcement of the results given in [5]. It is worth
mentioning that, in the proof of Theorem 5.1, the two growth conditions (H) and
(M) share most of the arguments; their difference play a role just in few of the many
steps. This fact seems to be a byproduct of the care needed to deal with Condition
(H) and was unnoticed in [17], where the authors consider the more restrictive (but
easier to handle) growth of type (G).

Theorem 5.1 has several consequences. Under Condition (H), Corollary 5.5 yields
“nice” minimizing sequences for (Pt,x) formed by equi-Lipschitz trajecto-
ries and equi-bounded controls as t, x vary in compact sets. This property,
that does not need existence of minimizers, is expected to have a strong impact on
the study of the regularity function of the value function

V (t, x) = inf (Pt,x)

and is investigated in [6]. As a further consequences of the main result, the exis-
tence of a solution under slow growth conditions to the optimal control problem
(Pt,x) when, in addition to the conditions of Theorem 5.1, one imposes some stan-
dard lower semicontinuity of Λ(s, y, u) in (y, u), convexity with respect to u, closure
of the state constraint set S, closure and convexity of the control set. Corollary 6.2
almost overlaps [21, Theorem 3] when the problem concerns the calculus of varia-
tions, where the major difference relies on the version of Condition (H) mentioned
above, but seems to be new in the framework of optimal control problems. Exis-
tence for more general controlled differential equations than (1.2) was considered
in the autonomous case in [13]. However, though the controlled-linear structure of
the system (1.2) might appear restrictive, the novelty with respect to the known
literature is represented here by the absence of any kind of local Lipschitz condition
on the state variable, and by the fact that Λ may be extended valued. Theorem 5.1
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does also provide some answers related to Problem 2. The Lavrentiev phenom-
enon is excluded in Corollary 5.7 for a wide class of Lagrangians, assuming a
growth condition of type (M). In particular it is avoided (Corollary 5.9) when Λ is
real valued and, moreover:

a) Λ satisfies Condition (S);
b) Λ is radially convex in the control variable;
c) Λ is bounded on bounded sets.

We stress again the fact that, differently from other results on the Lavrentiev phe-
nomenon for optimal control problems (see [13,26,27]), we do not assume any kind
of Lipschitz continuity of Λ in the state variable, nor we make use of the Maximum
Principle.

2. Basic setting and notation

Let 0 ≤ t < T and x ∈ R
n. We consider the Bolza type optimal control

problem

(Pt,x) min Jt(y, u) :=

∫ T

t

Λ(s, y(s), u(s)) ds + g(y(T ))

Subject to:

(2.1)

⎧⎪⎨
⎪⎩
y ∈ W 1,1([t, T ];Rn)

y′ = b(y)u a.e. s ∈ [t, T ], y(t) = x ∈ S
u(s) ∈ U a.e. s ∈ [t, T ], y(s) ∈ S ∀s ∈ [t, T ],

with the following basic assumptions.

Basic Assumptions and Notation. The following conditions hold.

• The Lagrangian Λ : [0, T ] × R
n × R

m → [0 + ∞[∪{+∞}, (s, y, u) �→
Λ(s, y, u) is Lebesgue–Borel measurable (i.e., measurable with respect to
the σ-algebra generated by products of Lebesgue measurable subsets of
[0, T ] (for s) and Borel measurable subsets of Rn × R

m (for (y, u));
• b : Rn → L(Rm,Rn) (the space of linear functions from R

m to R
n) is a

Borel measurable function such that, for some θ ≥ 0,

|b(y)| ≤ θ(1 + |y|).
We refer to y′ = b(y)u as to the controlled differential equation;

• The control u : [t, T ] �→ R
m is measurable;

• The state constraint set S is a nonempty subset of Rn;
• The control set ∅ �= U ⊆ R

m is a cone, i.e. if u ∈ U then λu ∈ U whenever
λ > 0;

• (Linear growth from below) There are α > 0 and d ≥ 0 satisfying, for
a.e. s ∈ [0, T ] and every y ∈ R

n, u ∈ U ,

(2.2) Λ(s, y, u) ≥ α|u| − d.

• The effective domain of Λ is

Dom(Λ) := {(s, y, u) ∈ [0, T ] × R
n × R

m : Λ(s, y, u) < +∞}.
We assume that for a.e. s ∈ [0, T ] and every y ∈ R

n the set

{u ∈ R
m : (s, y, u) ∈ Dom(Λ)}
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is strictly star-shaped on the variable u w.r.t. the origin, i.e.,

Λ(s, y, u) < +∞, 0 < r ≤ 1 ⇒ Λ(s, y, ru) < +∞.

• The cost function g : S → [0,+∞[∪{+∞} is a given positive function,
not identically equal to +∞. Notice that we allow g to take the value +∞
so that the class of problems studied here contains those with an end-point
constraint.

Remark 2.1. Notice that it is not required that (s, y, 0) ∈ Dom(Λ) for some (s, y) ∈
[0, T ] × R

n.

An admissible pair for (Pt,x) is a pair of functions (y, u) : [t, T ] → R
n × R

m

with u measurable, (y, u) satisfying (2.1) and such that Jt(y, u) < +∞. We assume
henceforth that, for each t ∈ [0, T [ and x ∈ S, there exists at least an admissible pair
for (Pt,x). A minimizing sequence (yj , uj)j for (Pt,x) is a sequence of admissible
pairs such that

lim
j→+∞

Jt(yj , uj) = inf (Pt,x).

Notice, that in the particular case where, the function b is the identity matrix in
the controlled differential equation, then (Pt,x) becomes a problem of the Calculus
of Variations. If z ∈ R

k we shall denote by Bk
r (z) (simply Bk

r if z = 0) the
closed ball of center z and radius r ≥ 0 in R

k. The norm in L1 is denoted by
‖ · ‖1, and the norm in L∞ by ‖ · ‖∞. If (s, y, u) ∈ Dom(Λ) we shall denote by
dist((s, y, u), ∂ Dom(Λ)) the euclidian distance from (s, y, u) to the boundary of
Dom(Λ) in [0, T ]×R

n×R
m. We will denote by |·| both the norm in Euclidean spaces

and the Lebesgue measure in R; the distinction will be clear from the context.

3. Assumption (A) and Condition (S)

In what follows, we assume the structure Assumption (A) on Λ(s, y, u) with re-
spect to u, either radial convexity or partial differentiability, and the local Lipschitz
condition (S) on Λ(s, y, u) with respect to s.

3.1. Assumption (A). We assume henceforth the following structure condition on
Λ(s, y, ·).

Structure Assumption (A). At least one of the two following assumptions holds:

(Ac) (Radial convex case) For a.e. s ∈ [0, T ] and every y ∈ R
n, u ∈ U , the

map 0 < r �→ Λ(s, y, ru) is convex, or
(Ad) (Partial differentiable case) For a.e. s ∈ [0, T ] and every y ∈ R

n, the
map Λ(s, y, ·) has the partial derivative

DuΛ(s, y, u) := lim
h→0

Λ(s, y, u + hu) − Λ(s, y, u)

h

with respect to u at every point u ∈ U with (s, y, u) ∈ Dom(Λ).

Remark 3.1. Notice that for u = 0, 0 < r �→ Λ(s, y, ru) = Λ(s, y, 0) is convex and
DuΛ(s, y, u) = D0Λ(s, y, 0) = 0 exists, whenever (s, y, 0) ∈ Dom(Λ).
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3.2. Condition (S). We will consider the following local Lipschitz condition on
the Lagrangian Λ with respect to the time variable.

Condition (S). There are κ,A ≥ 0, γ ∈ L1[0, T ], ε∗ > 0 satisfying, for a.e. s ∈
[0, T ]

|Λ(s2, y, u) − Λ(s1, y, u)| ≤
(
κΛ(s, y, u) + A|u| + γ(s)

)
|s2 − s1|

whenever s1, s2 ∈ [s−ε∗, s+ε∗]∩[0, T ], y ∈ R
n, u ∈ U , (s1, y, u), (s2, y, u) ∈ Dom(Λ).

Condition (S) was considered in [7, 8, 21]. It is a nonsmooth extension of Con-
dition (S), that appears in [19] to establish the validity of the Du Bois-Reymond–
Erdmann equation in the smooth setting.

Remark 3.2. If Λ(s, y, u) = Λ(y, u) is autonomous then Condition (S) is fulfilled
with κ = A = 0,γ ≡ 0 and ε∗ = T .

We show now that Condition (S) is satisfied if s �→ Λ(s, y, u) is subject to a
suitable growth condition. For y, u ∈ R

n we denote by ∂P
s Λ(s, y, u) the proximal

subgradient of τ �→ Λ(τ, y, u) at τ = s; it coincides with DsΛ(s, y, u) (resp. the
convex subgradient of τ �→ Λ(τ, y, u) at τ = s) if Λ(·, y, u) is C2 (resp. convex). We
refer to [23] for more details on the subject.

Proposition 3.3 (A proximal sufficient condition for the validity of Condition (S)).
Assume that Λ is real valued and that:

(a) The map s �→ Λ(s, y, u) is lower semicontinuous for every y ∈ R
n, u ∈ U ;

(b) There is β ≥ 0, such that, for all s ∈ [0, T ], y ∈ R
n, u ∈ U :

(3.1) |∂P
s Λ(s, y, u)| ≤ β

(
Λ(s, y, u) + |u| + 1

)
.

Then Λ satisfies Condition (S).

Proof. For y ∈ R
n and u ∈ U consider the function

h(s) := Λ(s, y, u) + |u| + 1, s ∈ [0, T ].

Condition (3.1) may be rewritten as |∂Ph(s)| ≤ β h(s) for all s ∈ [0, T ]. By applying
[7, Proposition 9.1], it follows that:

• If β = 0, then h is constant on [0, T ] and thus Λ is autonomous;
• If β > 0, then

|h(s2) − h(s1)| ≤ β′ h(s) |s2 − s1| ∀s, s1, s2 ∈ [0, T ],

where

β′ := (e2β T + 1)
e2β T − 1

2T
.

In both cases it turns out that Λ satisfies Condition (S). �

4. Growth conditions

We introduce here the growth Conditions (G), (Hδ
B), (Mδ

B) that are less restric-
tive than superlinearity. We leave some examples and proofs to Section 8.
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4.1. Partial derivatives and subgradients. In what follows we often deal with
subdifferentials in the sense of convex analysis.

Notation. If (s, y, u) ∈ Dom(Λ), we shall denote by

• ∂μ

(
Λ
(
s, y,

u

μ

)
μ

)
μ=1

the convex subdifferential of the map 0 < μ �→

Λ
(
s, y,

u

μ

)
μ at μ = 1, given by{

p ∈ R : ∀μ > 0 Λ
(
s, y,

u

μ

)
μ− Λ(s, y, u) ≥ p(μ− 1)

}
;

• ∂rΛ
(
s, y, ru

)
r=1

the convex subdifferential of the map 0 < r �→ Λ(s, y, ru)
at r = 1 given by

{q ∈ R : ∀r > 0 Λ(s, y, ru) − Λ(s, y, u) ≥ q(r − 1)} .
• DvΛ(s, y, u) the partial derivative of Λ(s, y, ·) at u, with respect to a

given vector v ∈ R
m;

• ∇uΛ(s, y, u) the gradient of Λ(s, y, ·) at u. Notice that if Λ(s, y, ·) is dif-
ferentiable then DuΛ(s, y, u) = u · ∇uΛ(s, y, u).

Remark 4.1. Let (s, y, u) ∈ Dom(Λ). The following points will be used in the
sequel.

(1) It is easy to show that if 0 < r �→ Λ(s, x, ru) is convex then 0 < μ �→
Λ
(
s, y,

u

μ

)
μ is convex (see, for instance, [36, Theorem 11.5.1]). Further-

more, a simple change of variable r =
1

μ
shows in this case that

p ∈ ∂μ

(
Λ
(
s, y,

u

μ

)
μ
)
μ=1

⇔ Λ(s, y, u) − p ∈ ∂rΛ
(
s, y, ru

)
r=1

.

(2) If DuΛ(s, y, u) exists then

d

dμ

[
Λ
(
s, y,

u

μ

)
μ
]
μ=1

= Λ(s, y, u) −DuΛ(s, y, u).

In particular, if Λ(s, y, ·) is differentiable at u then

d

dμ

[
Λ
(
s, y,

u

μ

)
μ

]
μ=1

= Λ(s, y, u) − u · ∇uΛ(s, y, u).

(3) If for some μ > 0, Du

(
s, y,

u

μ

)
exists, then

d

dμ

[
Λ
(
s, y,

u

μ

)
μ
]
μ

= Λ
(
s, y,

u

μ

)
−Du

μ
Λ
(
s, y,

u

μ

)
(4.1)

=
d

dλ

[
Λ
(
s, y,

u/μ

λ

)
λ
]
λ=1

.

4.2. The Growth Condition (G). The growth assumptions introduced below
involve some uniform limits.

Definition 4.2. If φ : Dom (Λ) → R is a function, ρ,K ≥ 0 and E ⊆ Dom(φ) we
write that

lim
|u|→+∞

(s,y,u)∈E, u∈U

φ(s, y, u) = −∞ unif. |y| ≤ K
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if for all M ∈ R there exists R > 0 such that

φ(s, y, u) ≤ M ∀(s, y, u) ∈ E, s ∈ [0, T ], |y| ≤ K, u ∈ U , |u| ≥ R.

The growth Condition (G) was thoroughly studied by Cellina and his school for
autonomous Lagrangians of the calculus of variations that are smooth or convex in
the velocity variable (see [15, 17]). Its extension to the radial convex case, recalled
here, was considered in [31] in the autonomous case and was introduced in [7,9] for
the nonautonomous case. The growth Condition (G) below subsumes the validity
of the structure Assumption (A). The partial differentiable case is new.

Growth Condition (G). We say that Λ satisfies (G) if (just) one of the following
assumptions holds. Either:

• (Radial convex case) Λ satisfies Assumption (Ac). Moreover, there is
a selection Q(s, y, u) of the convex subgradient ∂rΛ(s, y, ru)r=1 such that,
for all K ≥ 0

(4.2) lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U

Λ(s, y, u) −Q(s, y, u) = −∞ unif. |y| ≤ K.

Equivalently, there is a selection P (s, y, u) of ∂μ

(
Λ
(
s, y,

u

μ

)
μ
)
μ=1

,

lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U

P (s, y, u) = −∞ unif. |y| ≤ K.

Or, alternatively, the following differentiable condition holds.

• (Partial differentiable case) Λ satisfies Assumption (Ad). Moreover,

(4.3) lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U

Λ(s, y, u)−DuΛ(s, y, u) = −∞ unif. |y| ≤ K.

Remark 4.3.

(1) If u �→ Λ(s, y, u) is convex, denoting by Λ∗(s, y, p) its Legendre transform
defined by

∀p ∈ R
m Λ∗(s, y, p) = sup

v∈Rm

p · v − Λ(s, y, v),

then (4.2) is satisfied whenever there is a selection p(s, y, u) of the convex
subdifferential of v �→ Λ(s, y, v) at v = u satisfying

lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U

Λ∗(s, y, p(s, y, u)) = +∞ unif. |y| ≤ K.

(2) If u �→ Λ(s, y, u) is differentiable, (4.3) becomes

lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U

Λ(s, y, u) − u · ∇uΛ(s, y, u) = −∞ unif. |y| ≤ K.

(3) If both assumptions (Ac) and (Ad) hold, the radial convex and the partial
differential cases in Condition (G) are equivalent: indeed in this situation

∂rΛ(s, y, ru)r=1 = {DuΛ(s, y, u)}.
(4) Let (s, y, u) ∈ Dom(Λ). In the partial differentiable case, the existence

of the partial derivatives DuΛ(s, y, u) at (s, y, u) ∈ Dom(Λ) implies, by
definition, that there is λu > 0 such that (s, y, λu) ∈ Dom(Λ) whenever
λ ∈ [1 − λu, 1 + λu].



EQUI-LIPSCHITZ MINIMIZING TRAJECTORIES 911

Remark 4.4 (Interpretation of (G)). Consider the radial convex case, the partial dif-
ferentiable case being similar. Let Λ(s, y, u) < +∞ and Q(s, y, u) ∈ ∂rΛ(s, y, ru)r=1.
Then

Λ(s, y, ru) ≥ φ(r) := Λ(s, y, u) + Q(s, y, u)(r − 1) ∀r > 0.

The value φ(0) = P (s, y, u) := Λ(s, y, u)−Q(s, y, u) represents the intersection with
the z axis of the “tangent” line z = φ(r) to 0 < r �→ Λ(s, y, ru) at r = 1. Condition
(G) thus means that the ordinate P (s, y, u) of the above intersection tends to −∞
as |u| goes to ∞ (see Figure 2).

Figure 2. Condition (G)

Example 4.5. Let

∀(s, y, u) ∈ [0, 1] × R
2 Λ(s, y, u) := h(s, y)

(
|u| −

√
|u|

)
,

where h ≥ 0 is Borel and bounded on bounded sets. Then Λ satisfies Condition
(G). Indeed, 0 < r �→ h(s, y)(r|u|−

√
r|u|) is convex for all u ∈ R and, for all u �= 0,

Λ(s, y, u) − u
d

du
Λ(s, y, u) = −h(s, y)

√
|u|
2

→ −∞

as |u| → +∞ uniformly for s ∈ [0, 1] and y in bounded sets.

The next proposition was formulated for the autonomous case in [17] under the
stronger assumption that Λ(y, u) is either convex or differentiable in u. Its proof is
postponed to Section 8.

Proposition 4.6 (Condition (G) implies linear growth). Assume that Λ fulfils
Condition (G). Then Λ has a linear growth from below, i.e., there are α > 0 and
d ∈ R such that (2.2) holds for a.e. s ∈ [0, T ] and every y ∈ R

n, u ∈ U .
Superlinearity plays a key role in Tonelli’s existence theorem. It has been widely

used as a sufficient condition for Lipschitz regularity of minimizers (see [2,24,25]).

Superlinearity. There exists Θ : [0,+∞[→ R such that

(GΘ) ∀(s, y, u) ∈ Dom(Λ) Λ(s, y, u) ≥ Θ(|u|) lim
r→+∞

Θ(r)

r
= +∞.

If Λ(s, y, ·) is radially convex then superlinearity, together with some local bound-
edness condition, imply the validity of the growth Condition (G). We refer to
[8, Proposition 2] for the proof of the following result.

Proposition 4.7 (Superlinearity ⇒ (G)). Let Λ be superlinear, radially convex and
assume that there is r0 > 0 such that (s, y, u) ∈ Dom(Λ) whenever s ∈ [0, T ], y ∈ R

n

and u ∈ R
m with |u| ≤ r0. Then Λ satisfies Assumption (G).
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4.3. Growth Condition (Hδ
B). When B is an upper bound of a prescribed family

of admissible pairs, with initial time t varying in [0, δ], the following quantities ct(B)
and Φ(B) will play a role in the proof of the main results.

Definition 4.8 (ct(B) and Φ(B)). Let t ∈ [0, T [, B ≥ 0 and assume the linear
growth from below (2.2), i.e., for a.e. s ∈ [0, T ], for all y ∈ R

n, u ∈ U ,

Λ(s, y, u) ≥ α|u| − d (α > 0, d ≥ 0).

Let

ct(B) :=
B + d(T − t)

α (T − t)
.

Moreover, if Condition (S) holds, we define

Φ(B) := κB +
A

α
(B + d T ) + ‖γ‖1,

where we set κ,A, γ equal to 0 if Λ is autonomous.

Remark 4.9. Notice that, in Definition 4.8, t ∈ [0, T [�→ ct(B) and 0 ≤ B �→ ct(B)
are increasing.

The next result highlights the roles of Φ(B) and ct(B) and is a key tool in the
proof of Theorem 5.1.

Proposition 4.10 (The roles of Φ(B) and ct(B)). Assume the linear growth from
below (2.2) and the validity of Condition (S). Let t ∈ [0, T [, x ∈ R

n, (y, u) admis-
sible for (Pt,x) with Jt(y, u) ≤ B for some B ≥ 0. Then

(1)

(4.4)

∫ T

t

|u(s)| ds ≤ B + d(T − t)

α
= (T − t)ct(B).

(2) For every σ > cδ(B)

|{s ∈ [t, T ] : |u(s)| < σ}| ≥
(

1 − cδ(B)

σ

)
(T − t).

(3)

∫ T

t

{
κΛ(s, y(s), u(s)) + A|u(s)| + γ(s)

}
ds ≤ Φ(B).

Proof. 1. Condition (2.2) and the fact that g ≥ 0 yield∫ T

t

|u(s)| ds ≤ 1

α

(∫ T

t

Λ(s, y(s), u(s)) ds+ d(T − t)

)

≤ B + d(T − t)

α
.

2. Let Ω = {s ∈ [t, T ] : |u(s)| < σ}. It follows from Point (1) that

(T − t)cδ(B) ≥ (T − t)ct(B) ≥
∫
[t,T ]\Ω

|u(s)| ds ≥ σ|[t, T ] \ Ω|,

implying that (T − t)cδ(B) ≥ σ(T − t) − σ|Ω|, whence the claim.
3. It is enough to notice that, from (4.4),∫ T

t

{
κΛ(s, y(s), u(s)) + A|u(s)| + γ(s)

}
ds ≤ κB + A

B + d(T − t)

α
+ ‖γ‖1

≤ κB + A
B + d T

α
+ ‖γ‖1 = Φ(B). �
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Given B ≥ 0 and δ ∈ [0, T [, the growth Condition (Hδ
B) below subsumes the

validity of Assumption (A) as well as of Condition (S). It will be applied in The-
orem 5.1 when B is an upper bound for the values of a given set of admissible
pairs for problems (Pt,x) as t ∈ [0, δ]. In the autonomous case Φ(B) is assumed
without restriction to be equal to 0, for then we may take κ = A = 0 and γ ≡ 0
(see Remark 3.2).

Growth Condition (Hδ
B). Assume that Λ satisfies Condition (S). Let 0 ≤ δ < T ,

B ≥ 0 and t ∈ [0, δ]. We say that Λ satisfies (Hδ
B) if for all K ≥ 0 there are ν > 0

and c > cδ(B) satisfying (just) one of the following assumptions. Either:

• (Radial convex case) Λ satisfies Assumption (Ac). There is a selection
Q(s, y, u) of ∂rΛ(s, y, ru)r=1 satisfying, for all ρ > 0,

sup
s∈[0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞

{Λ(s, y, u) −Q(s, y, u)} + 2Φ(B) <(4.5)

< inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

{Λ(s, y, u) −Q(s, y, u)} .

Equivalently, there is a selection P (s, y, u) of ∂μ

(
Λ
(
s, y,

u

μ

)
μ
)
μ=1

satisfy-

ing

(4.6) sup
s∈[0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞

{P (s, y, u)} + 2Φ(B) < inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

P (s, y, u).

Or, alternatively,

• (Partial differentiable case) Λ satisfies Assumption (Ad). For all ρ > 0,

sup
s∈[0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞

{Λ(s, y, u) −DuΛ(s, y, u)} + 2Φ(B) <(4.7)

< inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

{Λ(s, y, u) −DuΛ(s, y, u)}.

Remark 4.11.

(1) Taking into account Remark 4.1, (4.7) is equivalent to

sup
s∈[0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞

d

dμ

[
Λ

(
s, y,

u

μ

)
μ

]
μ=1

+ 2Φ(B) <

< inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

d

dμ

[
Λ

(
s, y,

u

μ

)
μ

]
μ=1

.

(2) When Λ(s, y, ·) is differentiable, in (4.7) we have

Λ(s, y, u) −DuΛ(s, y, u) = Λ(s, y, u) − u · ∇uΛ(s, y, u).
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(3) With the above notation, Condition (Hδ
B) is satisfied independently of what

the value Φ(B) is if, for some ν > 0 and c > cδ(B):
• Radial convex case: For all K ≥ 0, ρ > 0,

(4.8) lim
ν→+∞

sup
s∈[0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞

P (s, y, u) = −∞; inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

P (s, y, u) �= −∞.

or,
• Partial differentiable case: For all K ≥ 0, ρ > 0,

lim
ν→+∞

sup
s∈[0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞

{Λ(s, y, u) −DuΛ(s, y, u)} = −∞;(4.9)

inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

{Λ(s, y, u) −DuΛ(s, y, u)} �= −∞.

In particular Condition (Hδ
B) is satisfied if, for some ν > 0, |u| < ν whenever

(s, y, u) ∈ Dom(Λ) and the “inf” term in (4.8), or in (4.9), is not equal to −∞.

Example 4.12 illustrates the importance of Condition (Hδ
B); it is taken from

[21, Example 4.3].

Example 4.12 (The minimal length functional). Let n,m ≥ 1. The function

∀(s, y, u) ∈ [0, T ] × R
n × R

m Λ(s, y, u) = L(u) :=
√

1 + |u|2

satisfies Condition (Hδ
B) for any choice of δ ∈ [0, T [ and B. Indeed here Φ(B) = 0.

Moreover,

L(u) − u · ∇L(u) =
1√

1 + |u|2
so that

lim
ν→+∞

sup
|u|≥ν

{L(u) −DuL(u)} + 2Φ(B) = lim
ν→+∞

1√
1 + ν2

= 0,

whereas, for any c > 0,

inf
|u|<c

{L(u) −DuL(u)} = inf
|u|<c

1√
1 + |u|2

=
1√

1 + c2
.

Notice that Λ does not satisfy Condition (G), since

lim
|u|→+∞

{L(u) −DuL(u)} = lim
|u|→+∞

1√
1 + |u|2

= 0.

Remark 4.13. It is useful to clarify the quantities that appear in Condition (Hδ
B).

(1) It follows from Remark 4.9 that if B > B′ ≥ 0 then the validity of Condition
(Hδ

B) implies that of (Hδ
B′).

(2) Comments on the “inf” part of (4.5)–(4.7):
• If Λ is real valued, the additional condition dist((s, y, u), ∂ Dom(Λ)) ≥
ρ in (4.5), (4.6), (4.7) is trivially fulfilled since Dom(Λ) = [0, T ]×R

n×
R

m.
• The validity of Condition (Hδ

B) implies that the right-hand side of
(4.6), or (4.7), is not equal to −∞.
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• (the role of B) In view of Proposition 4.10, the initial assumption
on B ensures that, if (y, u) is admissible for (Pt,x) (t ≤ δ) then, for
K ≥ ‖y‖∞ and c > cδ(B), the set

{(s, z, v) ∈ Dom(Λ) : |z| ≤ K, v ∈ U , |v| < c}
is non empty, so that, if Dom(Λ) is open in [0, T ] × R

n × R
m, there

is ρ > 0 in such a way that the infimum in the right-hand side of
(4.5)–(4.7) is not equal to +∞.

(3) Comments on the “sup” part of (4.5)–(4.7):
• Unless |v| < ν whenever (s, z, v) ∈ Dom(Λ), the sup in the left-hand

side of (4.5)–(4.7) is not equal to −∞.

Remark 4.14. Condition (Hδ
B) represents a violation of the Du Bois-Reymond–

Erdmann condition for high values of the control variable (see [9]). Condition (H0
B)

was introduced in [21] under the name of (H) for a fixed initial time problem t = 0
in the following setting:

• a convex problem of the calculus of variations with a real valued Lagrangian;
• B equal to any upper bound of Jt(y, y

′) for a suitable admissible trajectory
y : [0, T ] → R

n.

The present formulated is suitable for classes of admissible trajectories as the ini-
tial time varies in an interval [0, δ]. We point out that, with respect to the original
version, the term 2Φ(B) in the right-hand side of (4.6) replaces Φ(B), so that our
condition, in the nonautonomous case, is slightly more restrictive than [21, Hy-
pothesis (H2)′]. We do not have, however, an example where this represents a true
drawback. At the same time, the present version enlarges the realm of application
in several new aspects: it takes into account the partial differentiable case, variable
initial time/position (which involves the choice of B, cδ(B) and Φ(B) in Defini-
tion 4.8) and, in (4.5), (4.7), the additional requirement that the infimum is taken
just for the points of the effective domain that satisfy dist((s, y, u), ∂ Dom(Λ)) ≥ ρ
gives more chances for the condition to be satisfied. This fact is clarified in Exam-
ple 7.2.

Proposition 4.17 shows that the infimum in (4.8)–(4.9) is finite under a natural
assumption related to the boundedness of Λ on bounded sets that are far away
from the boundary of the domain. In this situation, the validity of Condition (G)
implies that of Condition (Hδ

B), whatever are the choices of B and 0 ≤ δ < T .

Definition 4.15. We say that a subset of Dom(Λ) is well-inside Dom(Λ) if it
is contained in {(s, y, u) ∈ Dom(Λ) : dist((s, y, u), ∂ Dom(Λ)) ≥ ρ}, for a suitable
ρ > 0.

Remark 4.16. If the effective domain of Λ is open in [0, T ]×R
n×R

m, as is the case
under Assumption h1) of Theorem 5.1, the notion of “well-inside” coincides with
that of relatively compact subset.

Proposition 4.17 ((G) implies (Hδ
B) for all B, δ). Assume that Λ is bounded on

the bounded sets that are well-inside Dom(Λ) and at least one of the following
structure conditions:

(a) Λ is radially convex in the control variable as in (Ac), or,
(b) Λ(s, y, ·) is partially differentiable as in (Ad) and is uniformly Lipschitz

for (s, y, u) in each bounded set that is well-inside the domain.
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The following properties hold:

(1) Let Q(s, y, u) ∈ ∂rΛ(s, y, ru)r=1 if (a) holds, otherwise set Q(s, y, u) :=
DuΛ(s, y, u). Then for every c, ρ > 0 and K ≥ 0,

(4.10) inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

{Λ(s, y, u) −Q(s, y, u)} > −∞.

(2) If Λ satisfies Condition (G) and Condition (S) then Λ satisfies Hypothesis
(Hδ

B), whatever are the choices of δ ∈ [0, T [, c > 0 and B ≥ 0.

Proof. Fix K ≥ 0, c, ρ > 0 and let WK,c,ρ be the subset of Dom(Λ) defined by

{(s, y, u) ∈ Dom(Λ) : |y| ≤ K, u ∈ U , |u| < c, dist((s, y, u), ∂ Dom(Λ)) ≥ ρ}.
(1) It is not restrictive to assume that WK,c,ρ �= ∅, otherwise the infimum in

(4.10) equals +∞. It follows either from Lemma 4.18 (radial convex case) or from
the local Lipschitzianity of Λ well-inside the domain (partial differentiable case)
that Q(s, y, u) is bounded above on WK,c,ρ. The local boundedness condition on Λ
implies that

inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

{Λ(s, y, u) −Q(s, y, u)} > −∞.

(2) In the partial differentiable case we set Q(s, y, u) := DuΛ(s, y, u); otherwise let
Q(s, y, u) ∈ ∂rΛ(s, y, ru)r=1 be such that

lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U

Λ(s, y, u) −Q(s, y, u) = −∞ unif. |y| ≤ K.

Then

lim
ν→+∞

sup
s∈[0,T ]

|u|≥ν,u∈U, |y|≤K
Λ(s,y,u)<+∞

{Λ(s, y, u) −Q(s, y, u)} = −∞.

It follows from (4.10) that Condition (Hδ
B) is valid, for any choice of B, c > 0,

δ ∈ [0, T [. �

Lemma 4.18 (Bound of ∂rΛ(s, y, ru)r=1 on bounded sets). Assume that Λ(s, y, u)
is radially convex in the control variable and bounded on the bounded sets
that are well-inside Dom(Λ). Let

∀(s, y, u) ∈ Dom(Λ) Q(s, y, u) ∈ ∂rΛ(s, y, ru)r=1.

Then Q is bounded on the bounded sets that are well-inside Dom(Λ).

Proof. Let (s, y, u) ∈ Dom(Λ) with |y| + |u| ≤ C for some C > 0 and

dist((s, y, u), ∂ Dom(Λ)) ≥ ρ

for some ρ > 0. We have

dist
((

s, y, u +
ρ

2C
u
)
, ∂ Dom(Λ)

)
≥ ρ

2
.

Since

Λ
(
s, y, u +

ρ

2C
u
)
− Λ(s, y, u) ≥ ρ

2C
Q(s, y, u),
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the boundedness assumption of Λ implies that Q(s, y, u) is bounded above by a
constant depending only on C and ρ. Similarly, from

Λ
(
s, y, u− ρ

2C
u
)
− Λ(s, y, u) ≥ − ρ

2C
Q(s, y, u),

we deduce a lower bound for Q. �

Remark 4.19. At a first glance the conclusion of Lemma 4.18 is puzzling, if one
thinks at a convex function on [0,+∞[ with a vertical tangent in 0. However,
Q(s, y, u) stands for a subgradient of 0 < r �→ Λ(s, y, ru) at r = 1 and not as a
subgradient of v �→ Λ(s, y, v) at v = u.

Remark 4.20.

• The local boundedness assumption in Proposition 4.17 is crucial in order
to conclude; a counterexample is provided in Example 7.3.

• Conditions (G) and (Hδ
B) are not equivalent. Example 4.12 exhibits real

valued Lagrangians Λ(s, y, u) that is convex in u, bounded on bounded sets,
satisfies Condition (Hδ

B), for some δ, B ≥ 0, but nevertheless does not fulfill
Assumption (G).

• Example 7.2 illustrates the role of the condition dist((s, y, u), ∂ Dom(Λ)) ≥
ρ in (4.5)–(4.7) and shows that in the extended valued case, the original
Condition (H) as defined in [9, 13, 21] may not imply (G), even for convex.

4.4. Growth Condition (Mδ
B). We introduce here a new condition, that turns

out to be satisfied by a wide class of Lagrangians, as shown in Proposition 4.24.
Whereas, in the nonautonomous case, the growth hypothesis (Hδ

B) subsumes the
validity of Condition (S) through the definition of Φ(B), the growth Condition
(Mδ

B) does not involve it anymore.

Growth Condition (Mδ
B). Let 0 ≤ δ < T , B ≥ 0 and t ∈ [0, δ]. We say that Λ

satisfies (Mδ
B) if, for all K ≥ 0, there are ν > 0 and c > cδ(B) satisfying (just) one

of the following assumptions. Either:

• (Radial convex case) Λ satisfies Assumption (Ac). There is a selection
Q(s, y, u) of ∂rΛ(s, y, ru)r=1 satisfying, for all ρ > 0:

(i) −∞ < inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

{Λ(s, y, u) −Q(s, y, u)} ,(4.11)

(ii) sup
s∈[0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞

{Λ(s, y, u) −Q(s, y, u)} < +∞.

Equivalently, for a suitable selection P (s, y, u) of ∂μ

(
Λ
(
s, y,

u

μ

)
μ
)
μ=1

:

(i) −∞ < inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

{P (s, y, u)} ,(4.12)

(ii) sup
s∈[0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞

{P (s, y, u)} < +∞.



918 CARLO MARICONDA

Or, alternatively,

• (Partial differentiable case) Λ satisfies Assumption (Ad). For all ρ > 0:

(i) −∞ < inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

{Λ(s, y, u) −DuΛ(s, y, u)} ,(4.13)

(ii) sup
s∈[0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞

{Λ(s, y, u) −DuΛ(s, y, u)} < +∞.

A graphical interpretation of Condition (Mδ
B) is illustrated in Figure 3.

ν
inf   {Λ(u) − D

u
Λ(u)}

0≤u<c

sup   {Λ(u) − D
u
Λ(u)}

u≥ν

c

Figure 3. The infimum and the sup involved in Condition of type
(M): the case of a smooth function of a positive variable.

Remark 4.21. Proposition 4.17 shows that (i) of Condition (Mδ
B) in (4.11), (4.12),

(4.13) is satisfied under very mild conditions. In particular, in the radial convex
case (Ac), it is enough that Λ is bounded on the bounded sets that are well-inside
the domain.

Remark 4.22. The strict inequality sign in (4.5), (4.6), (4.7) shows that the validity
of Condition (Hδ

B) implies that of (Mδ
B). The converse is not true, as shown by

Λ(u) = |u| or by the Lagrangian in Example 4.23.

Example 4.23 (A radially concave function that satisfies (Mδ
B) but not (Hδ

B)).
Let

Λ(u) := 2|u| −
√

1 + u2 ∀u ∈ R.

Then

∀u ∈ R Λ(u) −DuΛ(u) = − 1√
1 + u2

.

Thus, for any c > 0 and ν > 0 we have

sup
|u|≥ν

Λ(u) −DuΛ(u) = 0, inf
|u|<c

Λ(u) −DuΛ(u) = −1.

Therefore, for any B, δ, Condition (Mδ
B) is satisfied, whereas Condition (Hδ

B) is
not. Notice that Λ is concave on [0,+∞[ and on ] −∞, 0].
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Figure 4. The function considered in Example 4.23

Condition (Mδ
B) is satisfied by every real valued radially convex Lagrangians

that is bounded on the bounded sets. The proof of Proposition 4.24 is postponed
to Section 8.

Proposition 4.24 (Validity of Condition (Mδ
B)). Assume that Λ is radially con-

vex in the control variable as in (Ac). Assume, moreover, that:

(a) Λ is bounded on the bounded sets that are well-inside Dom(Λ);
(b) For all K ≥ 0 there is rK > 0 such that [0, T ] ×Bn

K ×Bm
rK ⊆ Dom(Λ).

Then Λ satisfies condition (Mδ
B) for any choice of B ≥ 0 and δ ∈ [0, T [. In

particular the condition is satisfied whenever Λ(s, y, u) is real valued, continuous
and radially convex in the control variable.

Remark 4.25. Assumption (b) in Proposition 4.24 is a well known sufficient con-
dition for the nonoccurrence of the Lavrentiev gap for positive autonomous La-
grangians of the calculus of variations (see [1, Assumption (B)]).

5. Regularity of minimizing pairs

5.1. Nice admissible pairs. Theorem 5.1 is the main core of the paper. Some ex-
amples that illustrate its applications are postponed to Section 7, whereas Section 9
is entirely devoted to its proof.

Theorem 5.1 (Nice admissible pairs). Suppose that Λ satisfies Assumption (A)
and Condition (S). Let δ ∈ [0, T [, δ∗ ≥ 0, x∗ ∈ R

n, and A be a family of admissible
pairs for (Pt,x), for some t ∈ [0, δ] and x ∈ Bn

δ∗
(x∗). Assume that Jt(y, u) ≤ B for

some B ≥ 0, whenever (y, u) ∈ A. Unless Λ is real valued assume, moreover, the
following conditions:

(h1) The domain is a product, i.e., Dom(Λ) = [0, T ] × D for some D ⊆
R

n × R
m.

(h2) Λ tends uniformly to +∞ at the boundary of the effective domain,
i.e.,

lim
dist((s,z,v), ∂ Dom(Λ))→0

(s,z,v)∈Dom(Λ), v∈U

Λ(s, z, v) = +∞.

The following claims hold:

(1) Suppose that Λ satisfies Condition (Hδ
B). Then there is a constant KA

such that, for every admissible pair (y, u) ∈ A for (Pt,x) there exists an
admissible pair (y, u) for (Pt,x) such that
(a) y = y ◦ ψ, where ψ is a Lipschitz reparametrization of [t, T ];
(b) ‖u‖∞ ≤ KA, ‖y‖∞ = ‖y‖∞ ≤ KA, and y is Lipschitz of rank KA;
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(c) Jt(y, u) ≤ Jt(y, u), the inequality being strict if u is not bounded.
(2) Suppose that Λ satisfies Condition (Mδ

B) and let η > 0. Then the conclu-
sions (a), (b) of Claim (1) remain valid with KA possibly depending on η
and, moreover,
(c′) Jt(y, u) ≤ Jt(y, u) + η.

Remark 5.2.

(1) Hypothesis (h1) implies that

∀(s, z, v) ∈ Dom(Λ) dist((s, z, v), ∂ Dom(Λ)) = dist((z, v), ∂D);

in particular if dist((s, y, v), ∂ Dom(Λ)) ≥ ρ for some (s, y, v) ∈ Dom(Λ)
then dist((s̃, z, v), ∂ Dom(Λ)) ≥ ρ for every s̃ ∈ [0, T ]; this fact is essential
in the proof of Theorem 5.1. Hypothesis (h1) is satisfied if, for instance,
Λ(s, z, v) = φ(s)L(z, v) where φ : [0, T ] → [0,+∞[ and L : Rn × R

m →
[0,+∞].

(2) Hypothesis (h2) implies that the effective domain Dom(Λ) is open in [0, T ]×
R

n × R
m.

(3) In the case of a family A reduced to single admissible pair (y, u) for (Pt,x),
the requirement of the validity of condition (Hδ

B) (resp. (Mδ
B)) in Theo-

rem 5.1 may be replaced by that of the validity of (Ht
Jt(y,u)

) (resp.

(Mt
Jt(y,u)

)).

The existence of an upper bound B in Theorem 5.1 is ensured, obviously, if the
family A is reduced to a singleton {(y, u)}, in which case B = Jt(y, u) is a suitable
choice. Some sufficient conditions for the existence of B may be obtained when Λ
is real valued.

Lemma 5.3 (A uniform upper bound for the infima of (Pt,x)). Assume that Λ is fi-
nite valued and bounded on bounded sets. Suppose that one of the two assumptions
holds:

(1) either b = 1 in the controlled differential equation, S is convex and
U = R

m, or
(2) the cost function g is real valued, bounded on bounded sets and 0 ∈ U .

Let δ ∈ [0, T [, δ∗ ≥ 0 and x∗ ∈ R
n. There is B ≥ 0 such that for every t ∈ [0, δ], x ∈

Bn
δ∗

(x∗), there exists an admissible pair (y, u) for (Pt,x) satisfying Jt(y, u) ≤ B.

Proof. We consider separately the cases (1) and (2).

(1) Let ξ∗ ∈ S be such that g(ξ∗) < +∞. Define y(s) :=
T − s

T − t
x +

s− t

T − t
ξ∗.

Then, since y(t) = x and, by the convexity of S, y has values in S then (y, y′) is
admissible. Now,

Jt(y, y
′) =

∫ T

t

Λ(s, y, y′) ds + g(ξ∗).

Moreover, for every s ∈ [t, T ], y(s) belongs to the segment joining x with ξ∗, and

y′(s) =
ξ∗ − x

T − t
. Since |ξ∗ − x| ≤ |ξ∗ − x∗| + δ∗ and t ≤ δ we get

|y(s)| ≤ |ξ∗ − x∗| + δ∗, |y′(s)| ≤ |ξ∗ − x∗| + δ∗
T − δ

:
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It follows from the boundedness assumption of Λ on bounded sets that there is a
constant B, depending only on x∗, δ, δ∗ such that

Jt(y, y
′) ≤ B.

(2) Assume that 0 ∈ U . Since the constant pair (y(s) := x, u(s) := 0) is admis-
sible we have

(5.1) Jt(y, u) =

∫ T

t

Λ(s, x, 0) ds + g(x).

The fact that Λ is bounded on bounded sets and that g is bounded on Bn
δ∗

(x∗)
imply that the right-hand side of (5.1) is bounded above by a constant depending
only on x∗, δ, δ∗, whence the claim. �
Remark 5.4. The proof of Lemma 5.3 shows that B can be estimated in both cases
from above, respectively, by the following constants:

(1) B ≤ T sup

{
Λ(s, z, v) : s ∈ [0, T ], |z| ≤ |ξ∗ − x∗| + δ∗, |v| ≤

|ξ∗ − x∗| + δ∗
T − δ

}
+ g(ξ∗), where is an arbitrary element in S such that g(ξ∗) < +∞;

(2) If 0 ∈ U then B ≤ sup{T Λ(s, x, 0) + g(x) : s ∈ [0, T ], x ∈ Bn
δ∗

(x∗)}.
5.2. Nice minimizing pairs. As a consequence of Theorem 5.1, the existence of
uniformly equi-Lipschitz minimizing sequences under a growth assumption of type
(H).

Corollary 5.5 (Equi-Lipschitz/bounded minimizing pairs). Assume that Λ satis-
fies Assumption (A) and Condition (S). Unless Λ is real valued assume, moreover,
Hypotheses (h1), (h2) of Theorem 5.1.

(1) Let t ∈ [0, T [, x ∈ R
n and suppose that Λ satisfies Condition

(
Ht

Jt(y,u)

)
,

for a suitable admissible pair (y, u) for (Pt,x). Then there are a mini-
mizing sequence (yj , uj)j for (Pt,x), a constant Kt,x such that ‖yj‖∞ ≤
Kt,x, ‖uj‖∞ ≤ Kt,x and each yj is Lipschitz of rank Kt,x.

(2) (Uniformity w.r.t. t, x, j) Let 0 ≤ δ < T , x∗ ∈ R
n and δ∗ ≥ 0. Assume

that, for some B ≥ 0, and any t ∈ [0, δ], x ∈ Bn
δ∗

(x∗), there is an admissible
pair (y, u) for (Pt,x) satisfying Jt(y, u) ≤ B. Furthermore, suppose that
Λ satisfies Condition (Hδ

B). Then the constants Kt,x in Claim (1) may be
chosen to be uniformly bounded above with respect to t ∈ [0, δ], x ∈ Bn

δ∗
(x∗).

Proof. (1) Consider any minimizing sequence (yj , uj)j for (Pt,x) with Jt(yj , uj) ≤
Jt(y, u) for every j ∈ N. The application of Claim (1) of Theorem 5.1 with A =
{(yj , uj) : j ∈ N}, B = Jt(y, u), δ = t, δ∗ = 0 and x = x∗ yields the claim. (2) Let

t ∈ [0, δ], x ∈ Bn
δ∗

(x∗) and consider any minimizing sequence (yt,xj , ut,x
j ) for (Pt,x);

we may assume without restriction that

∀j ∈ N Jt
(
yt,xj , ut,x

j

)
≤ B.

The application of Claim (1) of Theorem 5.1 with A = {(yt,xj , ut,x
j ) : j ∈ N, t ∈

[0, δ], x ∈ Bn
δ∗

(x∗)} allows to conclude. �
Remark 5.6. The construction of a equi-Lipschitz minimizing sequence was consid-
ered under Condition (G) in [17] for continuous and autonomous Lagrangians of
the calculus of variations, under prescribed boundary data and conditions, assum-
ing either convexity or differentiability of Λ(y, y′) with respect to the “velocity”
variable y′. Corollary 5.5 extends [17, Theorems 1,2,3,4] in several directions.
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5.3. Avoidance of the Lavrentiev phenomenon. Another consequence of The-
orem 5.1 is the avoidance of the Lavrentiev phenomenon under Condition (S) and
the weakest growth Condition of type (M). Differently from other results in the
literature (see [26, 37]), we assume neither continuity of Λ, nor the local Lipschitz
continuity of Λ(s, ·, u), nor global convexity on the control variable and we do not
make use of the Maximum Principle. With respect to Corollary 5.5 we loose equi-
boundedness of the minimizing sequences of controls; nevertheless in Claim (2) we
still keep some uniformity with respect to the initial points and state, for any given
index j of the sequence.

Corollary 5.7 (Non-occurence of the Lavrentiev phenomenon). Assume that Λ
satisfies Assumption (A) and Condition (S). Unless Λ is real valued assume, more-
over, Hypotheses (h1), (h2) of Theorem 5.1.

(1) Let t ∈ [0, T [, x ∈ R
n and suppose that Λ satisfies Condition

(
Mt

Jt(y,u)

)
,

for a suitable admissible pair (y, u) for (Pt,x). Then there is a minimizing

sequence (yt,xj , ut,x
j )j for (Pt,x) where, for each j ∈ N, uj is bounded and yj

is Lipschitz.
(2) (Uniformity w.r.t. t, x) Let 0 ≤ δ < T , x∗ ∈ R

n and δ∗ ≥ 0. Assume
that there is B ≥ 0 with inf (Pt,x) < B for any t ∈ [0, δ], x ∈ Bn

δ∗
(x∗).

Furthermore, suppose that Λ is satisfies Condition (Mδ
B). Then in Claim

(1), one may choose the minimizing sequences in such a way that, for all

j ∈ N, there is a suitable constant Kj such that ‖ut,x
j ‖∞ ≤ Kj and the rank

of yt,xj is less than Kj, as t varies in [0, δ] and x varies in Bn
δ∗

(x∗).

Proof. The proof follows the lines of that of Corollary 5.5 making use of Claim (2),
instead of Claim (1), of Theorem 5.1.

(1) Consider any minimizing sequence (yj , uj)j for (Pt,x) with Jt(yj , uj) ≤
Jt(y, u) for every j ∈ N. The application of Claim (2) of Theorem 5.1 with
A = {(yj , uj) : j ∈ N}, δ = 0, B = Jt(y, u), δ∗ = 0 and x = x∗ yields the
claim.

(2) Let t ∈ [0, δ], x ∈ Bn
δ∗

(x∗) and consider any minimizing sequence (yt,xj , ut,x
j )

for (Pt,x); we may assume without restriction that

∀j ∈ N Jt
(
yt,xj , ut,x

j

)
≤ inf (Pt,x) + ηj ≤ B,

for a suitable ηj ≥ 0 with lim
j→+∞

ηj = 0. Fix j ∈ N. The application of Claim (2)

Theorem 5.1 with

A := Aj := {(yt,xj , ut,x
j ) : t ∈ [0, δ], x ∈ Bn

δ∗(x∗)}, η := ηj

allows to conclude. �

Remark 5.8. Condition (S) plays an essential role here. In the framework of the
calculus of variations the celebrated example by Ball and Mizel in [4] exhibits a
Lagrangian Λ(s, y, y′) that is a polynomial, superlinear and convex in y′, for which
the Lavrentiev phenomenon occurs with some suitable boundary data. As shown in
[1], autonomous problems of the calculus of variations (therefore with the dynamics
y′ = u) do not face the Lavrentiev phenomenon, no matter what the growth of the
Lagrangian is.
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Taking into account Proposition 4.24, we deduce as a particular case of Corol-
lary 5.7, the nonoccurrence of the Lavrentiev phenomenon for a wide class of func-
tionals with a real valued Lagrangian. We stress the fact that apart radial convexity
in the control variable, no more regularity than measurability is required on the
state and control variable.

Corollary 5.9 (Nonoccurrence of the Lavrentiev phenomenon for real valued La-
grangians that are radially convex in the control variable). Assume that

• Λ is real valued and bounded on the bounded sets ;
• Λ satisfies Condition (S);
• Λ is radially convex in the control variable, i.e., for a.e. s ∈ [0, T ] and
every y ∈ R

n, u ∈ U , the map 0 < r �→ Λ(s, y, ru) is convex.

Then the Lavrentiev phenomenon for (Pt,x) does not occur.

Remark 5.10. Example 4.23 shows that there are Lagrangians that are not radially
convex in the control variable for which the Lavrentiev phenomenon does not occur.

6. Existence and regularity of optimal pairs

The following Lipschitz regularity result somewhat extends and partly overlaps
those formulated in [8, 9] in the extended valued case. The lower semicontinuity
assumption of u �→ Λ(s, y, u) in [9, Theorem 4.2] is replaced here by Hypotheses
(h1) and (h2). Also, as explained above, the growth condition (Hδ

B) considered here
is somewhat less restrictive than the one considered previously. At the same time
we require here the structure assumption (A), not needed in [8, 9].

Corollary 6.1 (Lipschitz regularity). Suppose that Λ satisfies Assumption (A) and
Condition (S). Unless Λ is real valued assume Hypotheses (h1), (h2) of Theorem 5.1.
Let t ∈ [0, T [, x ∈ R

n and (y∗, u∗) be an admissible pair for (Pt,x) and suppose that
Λ satisfies Condition

(
Ht

Jt(y∗,u∗)

)
. Then u∗ is bounded and y∗ is Lipschitz.

Proof. If u∗ is not bounded then Claim (1)(c) of Theorem 5.1 provides the existence
of an admissible pair (y, u) with Jt(y, u) < Jt(y∗, u∗), a contradiction. Therefore
u∗ is bounded. The controlled differential equation y′∗ = b(y∗)u∗ implies the Lips-
chitzianity of y∗. �

The following existence result for the optimal control problem (Pt,x), follows
easily from the previous claims. In the case of the real valued case of the calculus
of variations it gives back [21, Theorem 3], though the Lagrangians with no linear
growth from below escape from our method. In the extended valued case of the
calculus of variations our Condition (H) brings in some new cases with respect to
the one considered in [21] (see Remark 4.14); at the same time the uniform limit
Hypothesis (h2) at the boundary of Dom(Λ) is more restrictive than the lower
semi-continuity alone required in [21, Theorem 3]. In the framework of optimal
control problems, the existence question under the same slow growth condition was
considered for autonomous Lagrangians (where Φ(B) = 0) in [13] with a more
general type of differential controlled equation of the form y′ = f(y, u), assuming
some extra regularity assumptions, e.g., local Lipschitz continuity on Λ(y, u) and
f(y, u) with respect to the y variable, not required here.
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Corollary 6.2 (Existence and regularity of a solution to (Pt,x)). Suppose that
Λ satisfies Assumption (A) and Condition (S). Unless Λ is real valued assume
Hypotheses (h1), (h2) of Theorem 5.1. Let t ∈ [0, T [, x ∈ R

n. Suppose that Λ
satisfies Condition

(
Ht

Jt(y,u)

)
for some admissible pair (y, u) for (Pt,x). Moreover,

suppose the validity of the following structure conditions:

• For a.e. s ∈ [t, T ] the function (y, u) �→ Λ(s, y, u) is l.s.c.;
• For a.e. s ∈ [t, T ] and every y ∈ R

n the function u �→ Λ(s, y, u) is convex;
• The cost function g is l.s.c. and b is continuous;
• The set U ⊆ R

m is closed and convex and S ⊆ R
n is closed.

Then Problem (Pt,x) admits a solution (y∗, u∗), with y∗ Lipschitz and u∗ bounded.

Proof. Let (yj , uj)j be a minimizing sequence for (Pt,x). We may assume, from
Claim (1) of Corollary 5.5, that yj are equi-Lipschitz, equi-bounded and that the
controls uj are uniformly bounded. Ascoli’s theorem implies that, modulo a sub-
sequence, yj converges uniformly to a Lipschitz function y∗ on [t, T ]; the closure
of S implies that y∗([t, T ]) ⊆ S. By the reflexivity of L2[t, T ] we may also assume
that uj converges weakly in L2 to a function u∗: Mazur’s lemma shows that u∗ is
bounded and that, due to the closure and convexity of the sets U , that u∗(s) ∈ U
for a.e. s. We may then invoke a standard integral semicontinuity theorem (see,
for instance, [23, Theorem 6.38]) to deduce that

Jt(y∗, u∗) ≤ lim inf
j→+∞

Jt(yj , uj).

There remains only to verify that y∗ is the state trajectory corresponding to u∗,
which is a standard matter. We proceed by following, for instance, the proof of
[23, Theorem 23.11]. It is enough to show that, for any measurable subset A of
[t, T ], we have ∫

A

y′∗(s) − b(y∗(s))u∗(s) ds = 0.

The equality holds when y∗ and u∗ are replaced by yj and uj , respectively. To
obtain the desired conclusion, it suffices to justify passing to the limit as j → +∞.
By weak convergence, and by dominated convergence theorem, we have∫

A

y′j(s) ds →
∫
A

y′∗(s) ds as j → +∞.

We also know that, as j → +∞,∫
A

b(y∗(s))uj(s) ds →
∫
A

b(y∗(s))u∗(s) ds,

since b(y∗(s)) is bounded. By Hölder’s inequality we have that∣∣∣∣
∫
A

(
b(yj(s)) − b(y∗(s))

)
uj(s) ds

∣∣∣∣
≤

(∫
A

|b(yj(s)) − b(y∗(s))|2 ds
)1/2 (∫

A

u2
j (s) ds

)1/2

→ 0

as j → +∞. Indeed the first factor tends to 0 by dominated convergence, and
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the second is uniformly bounded since the sequence (uj)j is bounded in L2[t, T ].
Therefore∫

A

b(yj(s))uj(s) ds =

∫
A

b(yj(s)) − b(y∗(s))uj(s) ds +

∫
A

b(y∗(s))uj(s) ds

tends to

∫
A

b(y∗(s))u∗(s) ds as j → +∞. The result follows. �

Remark 6.3. The assumptions of Corollary 6.2 imply that the pair (y∗, u∗) satisfies
the Du Bois-Reymond–Erdmann variational inequality established in [9]: there is
a real valued absolutely continuous function p(s), whose derivative belongs a.e. to
Clarke’s partial subgradient ∂C

s Λ(s, y∗(s), u∗(s)) of τ �→ Λ(τ, y∗(s), u∗(s)) at τ = s,
satisfying, for a.e. s ∈ [0, T ],

Λ(s, y∗, ru∗) − Λ(s, y∗, u∗) ≥ (Λ(s, y∗, u∗) − p(s))(r − 1) ∀r > 0,

or, equivalently,

Λ(s, y∗, u∗) − p(s) ∈ ∂rΛ(s, y∗, ru∗)r=1.

7. Examples

We consider here some examples related to the growth conditions introduced
above and some Lagrangians to which our results may be applied.

7.1. Growth Conditions.

Example 7.1 (Radial functions of one variable). Consider first the case of a
function of a positive real variable. Let L : R → R ∪ {+∞} be convex with
Dom(L) = [0,+∞[, assume that L is not definitely affine, namely that for every
c ≥ 0 there is ν > 0 such that max ∂L(c) < min ∂L(ν). Then L satisfies Condition
(Hδ

B), no matter what are B, δ ∈ [0, T [. Indeed ∂L(ru)r=1 = u ∂L(u) for any u ≥ 0.
Let Q(u) ∈ ∂L(ru)r=1, u ≥ 0 and set P (u) := L(u) − Q(u). The monotonicity of
the subdifferential of L implies that

v ≥ u ≥ 0 ⇒ P (v) ≤ P (u),

the inequality being strict if max ∂L(u) < min ∂L(v). Fix c > 0. The fact that
L is not definitely affine implies that there exists ν > 0 such that max ∂L(c) <
min ∂L(ν). Therefore, we obtain

sup
|v|≥ν

L(v)<+∞

P (v) ≤ P (ν) < P (c) ≤ inf
|v|<c

L(v)<+∞

P (v).

More generally if L : R → R is radially convex and c > 0, (4.5) is fulfilled whenever
(see Figure 5)

(7.1) max{P (ν), P (−ν)} < min{P (c), P (−c)}.
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Figure 5. Condition (7.1) in the radial convex case

Notice that Condition (Mδ
B) is fulfilled for every B ≥ 0, δ ∈ [0, T [ (see Proposi-

tion 4.24).

Example 7.2. The example illustrates the role of the condition

dist((s, y, u), ∂ Dom(Λ)) ≥ ρ

in (4.5)–(4.7). Consider the convex function

Λ(s, y, u) = L(u) =

⎧⎪⎪⎨
⎪⎪⎩

+∞ u ≤ −1
1

1 − u2
−1 < u ≤ 0,

u2 + 1 u > 0.

If u > −1,

L(u) − uL′(u) =

⎧⎪⎨
⎪⎩

1 − 3u2

(u2 − 1)
2 −1 < u < 0

−u2 u ≥ 0.

In particular

lim
u→+∞

L(u) − uL′(u) = −∞,

so that Λ satisfies Condition (G). Consider the problem of minimizing I(z) :=∫ 1

0

L(z′(s)) ds among the absolutely functions z : [0, 1] → R satisfying z(0) =

0, z(1) = 1: we thus consider here problem (Pt,x) with t = 0 and x = 0. An
admissible pair is y(s) := s; we set

B := I(y) =

∫ 1

0

(12 + 1) ds = 2.
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Since L(u) ≥ 2|u| for all u ∈ R d > 0, from Definition 4.8 we get c0(B) = 1. Now,
since lim

u→(−1)+
L(u) − uL′(u) = −∞, then for any c > 1 one gets

inf
|u|<c,u>−1

{L(u) − uL′(u)} = −∞,

so that Λ does not satisfy [21, Condition (H2)]. Instead, for any 0 < c and 0 < ρ < 1,

inf
|u|<c

u>−1+ρ

{L(u) − uL′(u)} ≥ min

{
−c2,

1 − 3(−1 + ρ)2

((−1 + ρ)2 − 1)
2

}
.

Therefore Λ fulfills Condition (Hδ
2) for all δ ∈ [0, 1[.

Example 7.3 (Lack of boundedness on bounded sets: a case where (G)
holds but (Hδ

B) does not). We show here that the local boundedness assumption
in Proposition 4.17 is crucial in order to obtain the conclusion. Let, for any s ∈
[0, 1], y ∈ R

2, u = (u1, u2) ∈ R
2

Λ(s, y, u) = L(u) :=

⎧⎨
⎩(u2

1 + u2
2)
u2

u1
if 0 < u1 ≤ u2,

u2
1 + u2

2 otherwise.

Then

Figure 6. The function L in Example 7.3

L(u) −DuL(u) =

{
−L(u) if 0 < u1 ≤ u2,

−|u|2 otherwise.

• Λ satisfies the growth Condition (G). Indeed for each u ∈ R
2 we have

L(u) −DuL(u) ≤ −|u|2 → −∞
uniformly as |u| → +∞.

• Condition (Hδ
B) does not hold, no matter what are the choices of δ ∈

[0, 1[, B ≥ 0. Indeed, fix c > 0, α ∈ [π/4, π/2[ and u(α) :=
c

2
(cosα, sinα).

Then

L(u(α)) −Du(α)L(u(α)) = −c2

4
tan(α) → −∞ as α →

(π
2

)−
.
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Therefore

inf
|u|<c

{L(u) −DuL(u)} = −∞,

proving the claim (see (3) of Remark 4.11).

Example 7.4 (Violations of (Mδ
B)). Proposition 4.24 exhibits a wide variety

of Lagrangians that satisfy Condition (Mδ
B). Here are some pathological examples

where its validity fails.

• Let, for s ∈ [0, T ], y ∈ R
2, u = (u1, u2) ∈ R

2,

Λ(s, y, u) = L(u) :=

{
β|u|2 − 1 if u2 = βu1 for some β ∈ R;

0 if u1 = 0.

Then, for every c > 0,

inf
|u|<c

L(u) −DuL(u) = −1 − βc2 → −∞ as β → +∞,

thus violating (i) in (4.12) of Condition (Mδ
B).

• Let Λ(s, y, u) = L(u) :=
√
|u| for every s ∈ [0, T ], y, u ∈ R. Then, for every

ν > 0,

sup
|u|≤ν

L(u) − uL′(u) = sup
|u|≤ν

√
|u|
2

= +∞,

thus violating (ii) in (4.12) of Condition (Mδ
B).

7.2. Application of the main results: real valued case. Example 7.5, a dis-
continuous version of [21, Example 4.3], exhibits a real valued Lagrangian of the
calculus of variations that satisfies the assumptions of Theorem 5.1, to which the
previous results of the literature (e.g., [14], [17], [21]) do not apply.

Example 7.5. Let φ : [0, 1] → R be a C1 function whose minimum is mφ > 0. For
y, u ∈ R

2 let

Λ(s, y, u) := φ(s)a(y)
√

1 + |u|2
where a is any measurable and bounded function with inf a = 1, a ≤ 2: we stress
the fact that a might be discontinuous. We consider the problem (P) of minimizing

J0(y, y
′) =

∫ 1

0

Λ(s, y(s), y′(s)) ds

among the functions y ∈ W 1,1([0, 1];R2) satisfying

y(0) = (0, 0), y(1) = ζ = (ζ1, ζ2), ζ1 > 0, ζ2 > 0.

• We have Λ(s, y, u) ≥ mφ|u| for all s ∈ [0, 1] and y, u in R
2.

• Λ satisfies Condition (S) with κ =
‖φ′‖∞
mφ

, A = γ = 0. Indeed, if s, s1, s2 ∈ [0, 1]

and y, u ∈ R
2 then

|Λ(s2, y, u) − Λ(s1, y, u)| ≤ ‖φ′‖∞a(y)
√

1 + |u|2|s2 − s1|

≤ ‖φ′‖∞
mφ

Λ(s, y, u)|s2 − s1|.

• 0 < r �→ Λ(s, y, ru) = φ(s)a(y)
√

1 + r2|u|2 is convex for all s ∈ [0, 1] and y, u ∈
R

2.
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• For a suitable choice of φ, Λ satisfies assumption (H0
B), where

B := J0(y∗, y
′
∗) =

√
1 + |ζ|2

∫ 1

0

φ(s)a(sζ) ds, y∗(t) := tζ, t ∈ [0, 1].

From Definition 4.8 we get

Φ(B) =
‖φ′‖∞
mφ

B, c0(B) =
B

mφ
.

For all (s, y, u) ∈ [0, 1] × R
2 × R

2,

Λ(s, y, u) − u · ∇uΛ(s, y, u) = φ(s)a(y)
√

1 + |u|2 − φ(s)a(y)
|u|2√

1 + |u|2

=
φ(s)a(y)√

1 + |u|2

.

Therefore, for any c ∈ R and K ≥ 0 we have

inf
|u|<c,u∈R

2

s∈[0,1],|y|≤K

{Λ(s, y, u) − u · ∇uΛ(s, y, u)} =
mφ√
1 + c2

,

and for ν ∈ R,

sup
|u|≥ν,u∈R

2

s∈[0,1],|y|≤K

{Λ(s, y, u) − u · ∇uΛ(s, y, u)} + 2Φ(B) =
‖a‖∞‖φ‖∞√

1 + ν2
+ 2Φ(B),

so that

lim
ν→+∞

sup
|u|≥ν,u∈R

2

s∈[0,1],|y|≤K

{Λ(s, y, u) − u · ∇uΛ(s, y, u)} + 2Φ(B) = 2Φ(B).

Therefore (H0
B) is satisfied whenever, for some

(7.2) c > c0(B) =
B

mφ

we get

(7.3) 2Φ(B) =
2λB

mφ
<

mφ√
1 + c2

, λ := ‖φ′‖∞.

Either φ′ ≡ 0, in which case any c satisfies (7.3), or (7.2) and (7.3) are satisfied
whenever

(7.4)
B

mφ
< c < 2

√
1 + c2 <

m2
φ

λB
.

Now, B is bounded above by 2(mφ + ‖φ′‖∞)
√

1 + |ζ|2. Thus, a sufficient condi-
tion for the validity of (7.4) is

2
√

1 + |ζ|2(mφ + λ)

mφ
< c < 2

√
1 + c2 <

m2
φ

2λ(mφ + λ)
√

1 + |ζ|2
.

Since

lim
λ→0+

mφ + λ

mφ
= 1, lim

λ→0+

m2
φ

λ(mφ + λ)
= +∞,

the existence of c is ensured at least for sufficiently small values of λ = ‖φ′‖∞
i.e., whenever φ is sufficiently close for being a constant.



930 CARLO MARICONDA

Note, however, that Λ does not satisfy the assumptions required in the results of
[17] or those of [21]:

• Depending on the regularity of a, Λ might not be lower semicontinuous;
• Λ does not satisfy the growth Condition (G). Indeed, for s ∈ [0, 1] and y ∈ R

2,

lim
|u|→+∞

Λ(s, y, u) − u · ∇uΛ(s, y, u) = lim
|u|→+∞

φ(s)a(y)√
1 + |u|2

= 0.

7.3. Applications of the main result: extended valued case. In Example 7.6
we exhibit a nonautonomous, extended valued Lagrangian Λ(s, y, u) that satisfies the
assumptions of Theorem 5.1 without being regular in the state variable, nor convex
in the control variable.

Example 7.6. For s ∈ [0, 1], y ∈ R
2, u = (u1, u2) ∈ R

2 let

(7.5) L(u1, u2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 − u2
1 − u2

2

if u2 ≤ |u1|, u2
1 + u2

2 < 1,

u2
1 + u2

2

1 − 2|u1|u2
if u2 > |u1|, u2 ≤ 1

2|u1|
, |u1| ≤

1√
2
,

+∞ otherwise;

the graph of L is depicted in Figure 7. The domain of L is star-shaped with respect

Figure 7. The function L(u1, u2) in Example 7.6

to the origin. The function L has the following properties.

• L tends uniformly to +∞ at the boundary of its effective domain.

Fix 0 < ε <
1√
2

and consider the ε-neighbourhood of ∂ Dom(L) given by

Uε := {u ∈ Dom(L) : dist(u, ∂ Dom(L)) ≤ ε}.
Then Uε ⊆ U1

ε ∪ U2
ε ∪ U3

ε , where (see Figure 8)

U1
ε := {(u1, u2) ∈ Dom(L) : 1 − ε2 ≤ u2

1 + u2
2 < 1, u2 ≤ |u1|},

U2
ε :=

{
(u1, u2) ∈ Dom(L) : |u1| ≤ ε,

1

2ε
≤ u2 <

1

2|u1|

}
,
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U3
ε :=

{
u = (u1, u2) ∈ Dom(L) :

1

2|u1|
> u2 ≥ |u1| ≥ ε, dist(u, ∂ Dom(L)) < ε

}
.

Figure 8. The sets U1
ε , U

2
ε , U

3
ε in Example 7.6

On each of the above sets we obtain the following estimates from below:
– On U1

ε we have

(7.6) ∀u ∈ U1
ε L(u) ≥ 1

ε2
;

– On U2
ε , u2

1 + u2
2 ≥ u2

2 ≥ 1

4ε2
and 1 − 2|u1|u2 < 1 so that

(7.7) ∀u ∈ U2
ε L(u) ≥ 1

4ε2
;

– On U3
ε we have

(7.8) ∀u ∈ U3
ε L(u) ≥ 1

2
√

2ε
+ oε→0+(1).

Indeed, let (u1, u2) ∈ U3
ε and |a| ∈

[
ε, 1√

2

]
be such that

|u1 − a| ≤ ε,

∣∣∣∣u2 −
1

2|a|

∣∣∣∣ ≤ ε.

We assume that a > 0, the case a < 0 being similar. Then

0 < 1 − 2|u1|u2 ≤ ε

(
1

a
+ 2a

)
− 2ε2,
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and therefore

(7.9) L(u1, u2) ≥ m(a, ε) :=

(a− ε)2 +

(
1

2a
− ε

)2

ε

(
1

a
+ 2a

)
− 2ε2

If a ≤ ε| log ε| then

m(a, ε) ≥

(
1

2ε| log ε| − ε

)2

ε

(
1

ε
+ 2ε

)
− 2ε2

=

(
1

2ε| log ε| − ε

)2

∼
(

1

2ε| log ε|

)2

ε → 0+.

If a ≥ ε| log ε| then, using the fact that a ≤ 1√
2

we obtain

m(a, ε) =

(
a2 +

1

4a2

)
− 2ε

(
a +

1

2a

)
+ 2ε2

ε

(
1

a
+ 2a

)
− 2ε2

≥
1 − 2ε

(
ε| log ε| + 1

2ε| log ε|

)
+ 2ε2

ε

(
1

a
+ 2a

)
− 2ε2

≥ 1 + oε→0+(1)

2
√

2ε− 2ε2
∼ 1

2
√

2ε
ε → 0+,

which, together with (7.9), gives (7.8).
From (7.6), (7.7) and (7.8) we conclude that

lim
ε→0+

dist(u,∂ Dom(L))≤ε

L(u) = +∞,

which proves the claim.
• L is radially convex. Indeed, Fix u = (u1, u2) ∈ Dom(Λ) and r ∈]0, 1]. Then

L(tu1, tu2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 − r2(u2
1 + u2

2)
if u2 ≤ |u1|, u2

1 + u2
2 < 1,

r2(u2
1 + u2

2)

1 − 2r2|u1|u2
if u2 > |u1|, u2 ≤ 1

2|u1|
, |u1| ≤

1√
2
,

+∞ otherwise.

We recognize easily that r ∈]0, 1] �→ L(ru1, ru2) is convex.
• L is superlinear. Indeed if u = (u1, u2) ∈ Dom(Λ) and u2 > |u1| then

L(u1, u2) =
u2
1 + u2

2

1 − 2|u1|u2
≥ |u|2.
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• L is bounded on the bounded sets that are well-inside the domain. Indeed the
domain of L is open and L is bounded on the relatively compact subsets of the
domain.

• L is not continuous in the interior of its domain and thus L is not convex. Indeed,
for instance,

lim
(u1,u2)→ 1

2

(
1√
2
, 1√

2

)
u2<|u1|

L(u1, u2) =
4

3
,

whereas

lim
(u1,u2)→ 1

2

(
1√
2
, 1√

2

)
u2>|u1|

L(u1, u2) =
1

3
.

Now, let φ : [0, 1] →]0,+∞[ be Lipschitz, a : R2 → R be any measurable function
that is bounded below by a positive constant and bounded on bounded sets. Define

∀s ∈ [0, 1], ∀(y, u) ∈ R
2 × R

2 Λ(s, y, u) := φ(s)a(y)L(u),

where L is defined in (7.5). The above discussion shows that

• The domain of Λ is a product, in the sense of Hypothesis (h1). Indeed, Dom(Λ) =
[0, 1] × R

2 × Dom(L);
• Λ tends uniformly to +∞ at the boundary of the effective domain, in the sense

of Hypothesis (h2);
• 0 < r �→ Λ(s, y, ru) is convex for every (s, y, u) ∈ Dom(Λ);
• Λ is superlinear and (s, y, u) ∈ Dom(Λ) whenever s ∈ [0, 1], y ∈ R

n and u ∈ R
m

with |u| ≤ 1/2. Proposition 4.7 then implies that Λ satisfies the growth Condition
(G);

• Λ is bounded on the bounded sets that are well-inside the domain Dom(Λ) so that,
from Proposition 4.17, it satisfies Condition (Hδ

B) for all δ ∈ [0, 1[ and B ≥ 0;
• Λ satisfies Condition (S). Indeed if cφ is the Lipschitz constant of φ, for all
s, s1, s2 ∈ [0, 1], y ∈ R

2 and u ∈ Dom(L),

|Λ(s2, y, u) − Λ(s1, y, u)| ≤ cφ|s2 − s1|a(y)L(u) ≤ cΛ(s, y, u)|s2 − s1|,

where c :=
cφ

minφ
;

Therefore Λ fulfills the assumptions of Theorem 5.1, might be discontinuous in the
variables y, u, and is nonconvex in u.

8. Growth conditions in more depth

We give here the proofs of some results formulated in Section 4.

8.1. Proof of Proposition 4.6.

Proof of Proposition 4.6. In the convex case let Q(s, y, u) ∈ ∂rΛ(s, y, ru)r=1 for
every u such that (s, y, u) ∈ Dom(Λ); in the partial differentiable case we set
Q(s, y, u) := DuΛ(s, y, u). From (4.2) we may choose R > 0 in such a way that for
s ∈ [0, T ], every y and Λ(s, y, w) < +∞, w ∈ U ,

(8.1) Q(s, y, w) − Λ(s, y, w) ≥ 1 ∀|w| ≥ R.

Fix u ∈ U with |u| > R > 0, s ∈ [0, T ] and (s, y, u) ∈ Dom(Λ). It is enough to
consider the case where Λ(s, y, u) < +∞. The assumption on Dom(Λ) implies that
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Λ

(
s, y, r

u

|u|

)
< +∞ for all 0 < r ≤ |u|. We consider separately the radial convex

and the partial differentiable case.

(a) Radial convex case. Let 0 < R < r ≤ |u|. We have

Λ

(
s, y, r

u

|u|

)
− Λ

(
s, y, R

u

|u|

)
≥ Q

(
s, y, ρ

u

|u|

)( r

R
− 1

)
whence

(8.2)
Λ

(
s, y, r

u

|u|

)
≥ (Q− Λ)

(
s, y, R

u

|u|

)( r

R
− 1

)
+ Λ

(
s, y, R

u

|u|

)
r

R

≥ r

R
− 1.

By choosing r = |u| in (8.2) we obtain

(8.3) Λ(s, y, u) ≥ |u|
R

− 1 ∀|u| ≥ R.

(b) Partial differentiable case. Assume that Λ satisfies (4.3). By applying (8.1)

with w := r
u

|u| we obtain

∀r ∈ [R, |u|] Λ
(
s, y, r

u

|u|
)
−Dr u

|u|
Λ
(
s, y, r

u

|u|
)
≤ −1,

or, equivalently, setting h(r) := Λ
(
s, y, r

u

|u|
)
,

∀r ∈ [R, |u|] h(r) + 1 ≤ r
d

dr
h(r) = r

d

dr
(h(r) + 1).

It follows that
d

dr

h(r) + 1

r
≥ 0 on [R, |u|], whence

Λ(s, y, u) + 1

|u| =
h(|u|) + 1

|u| ≥ h(|R|) + 1

R
≥ 1

R
.

Thus

(8.4) Λ(s, y, u) ≥ |u|
R

− 1 ∀|u| ≥ R, u ∈ U .

It follows from (8.3), (8.4) and the positivity of Λ that

Λ(s, y, u) ≥ 1

R
|u| − 2 ∀u ∈ U . �

8.2. Proof of Proposition 4.24.

Proof of Proposition 4.24. Let δ ∈ [0, T [ and B ≥ 0. Fix K ≥ 0, c > cδ(B) and
ρ > 0. Let Q(s, y, u) ∈ ∂rΛ(s, y, ru)r=1 whenever (s, y, u) ∈ Dom(Λ). Lemma 4.18
shows that there is c1(ρ,K) ∈ R such that

c1(ρ,K) ≤ inf
s∈[0,T ],|y|≤K
|u|<c,u∈U

Λ(s,y,u)<+∞
dist((s,y,u),∂ Dom(Λ))≥ρ

{Λ(s, y, u) −Q(s, y, u)} ,

proving the validity of (i) in Condition (Mδ
B). Choose 0 < ν < rK and let (s, y, u) ∈

Dom(Λ) with |y| ≤ K and |u| ≥ ν, u ∈ U . Then the fact that Dom(Λ) is star-shaped
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in the control variable implies that
(
s, y, ν

u

|u|
)
∈ Dom(Λ); radial convexity along

the direction u gives

Λ
(
s, y, ν

u

|u|
)
− Λ(s, y, u) ≥ Q(s, y, u)

( ν

|u| − 1
)
,

from which we deduce that

(8.5) Λ
(
s, y, ν

u

|u|
)
− ν

|u|Q(s, y, u) ≥ Λ(s, y, u) −Q(s, y, u).

Now, the monotonicity of the convex subdifferential implies that

Q(s, y, u) ≥ Q
(
s, y,

ν

|u|u
)
.

Inequality (8.5) then yields

Λ
(
s, y, ν

u

|u|
)
− ν

|u|Q
(
s, y, ν

u

|u|
)
≥ Λ(s, y, u) −Q(s, y, u).

Again, Lemma 4.18 and the assumption that Λ is bounded on bounded sets that
are well-inside the effective domain imply that there is a constant c2(K) satisfying

∀s ∈ [0, T ], |y| ≤ K,u ∈ U , |u| ≥ ν Λ(s, y, u) −Q(s, y, u) ≤ c2(K),

proving the validity of (ii) of Condition (Mδ
B). �

9. Proof of the main result

This section is devoted to the proof of Theorem 5.1. Many technical points derive
from the fact that the Lagrangian is allowed to take the value +∞. Due to its length,
it may be convenient to illustrate what are the main arguments. We will often write,

for the sake of clarity,

∫ T

t

Λ(φ, y, u) ds instead of

∫ T

t

Λ(φ(s), y(s), u(s)) ds.

9.1. Strategy of the proof of Theorem 5.1.

Proof. We fix δ ∈ [0, T [, x∗ ∈ R
n, t ∈ [0, δ], x ∈ Bn

δ∗
(x∗) and consider an admissible

pair (y, u) for (Pt,x). We build a suitable admissible pair (y, u) with Jt(y, u) ≤
Jt(y, u) if (Hδ

B) holds, Jt(y, u) ≤ Jt(y, u) + η, where η > 0 is arbitrary, if (Mδ
B)

holds:

• Let c be the constant that appears in the growth conditions. For ν ≥ c let

Sν := {s ∈ [t, T ] : |u(s)| > ν}.
Then the “excess” function

εν :=

∫
Sν

(
|y′(s)|

ν
− 1

)
ds

tends to 0 as ν → +∞.
• There are μ ∈]0, 1[, and ρ > 0 such that, for a.e. s on a non negligible set Ω and

a.e. s̃ ∈ [t, T ],

Λ

(
s̃, y(s),

u(s)

μ

)
< +∞,

|u(s)|
μ

< c, dist

((
s̃, y(s),

u(s)

μ

)
, ∂ Dom(Λ)

)
≥ ρ.

We use here the fact that c > cδ(B) (see Proposition 4.10). In the extended
valued case this is where Hypotheses (h1) and (h2) play a role, in which case
Steps (v)–(vi) of the proof are rather technical.
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• For any ν > 0 big enough, we can choose Σν ⊆ Ω such that |Σν | =
εν

1 − μ
and

Sν ∩ Σν is negligible.
• Define an absolutely continuous, bijective, increasing function ϕ : [t, T ] → [t, T ]

such that

ϕ(t) := t, for a.e. τ ∈ [t, T ] ϕ′(τ ) =

⎧⎪⎪⎨
⎪⎪⎩

|u(τ )|
ν

if τ ∈ Sν ,

μ if τ ∈ Σν ,

1 otherwise;

let ψ = ϕ−1 be its inverse.
• The condition ϕ(T ) = T is ensured from the fact that εν = (1 − μ)|Σν |.
• Let y(s) := y(ψ(s));u(s) :=

u(ψ(s))

ϕ′(ψ(s))
. Then (y, u) is admissible and |u| ≤ ν is

bounded.
• The change of variable τ = ψ(s) gives

Jt(y, u) =

∫ T

t

Λ

(
ϕ(τ ), y(τ ),

u(τ )

ϕ′(τ )

)
ϕ′(τ ) dτ + g(y(T ))

=

∫
Sν

∗ +

∫
Σν

∗ +

∫
[t,T ]\(Sν∪Σν)

Λ(ϕ(τ ), y(τ ), u(τ )) dτ + g(y(T )),

where, above, ∗ replaces

(
ϕ(τ ), y(τ ),

u(τ )

ϕ′(τ )

)
ϕ′(τ ) dτ .

• Let, in the radial convex case, P (s, z, v) ∈ ∂μ

(
Λ
(
s, y,

u

μ

)
μ
)
μ=1

be as in the

growth conditions or set P (s, z, v) := Λ(s, z, v) − v · ∇vΛ(s, z, v) in the differen-
tiable case. There is K = K(B, δ∗, x∗) such that ‖y‖∞ ≤ K. We obtain∫

Sν

∗ ≤
∫
Sν

Λ(ϕ, y, u) dτ + εν Ξ(ν), Ξ(ν) := sup
s∈[0,T ],|z|≤K
|v|≥ν,v∈U

Λ(s,z,v)<+∞

P (s, z, v).

Assumption (h1) yields∫
Σν

∗ ≤
∫
Σν

Λ(ϕ, y, u) dτ − (1 − μ)|Σν |Υ, Υ := inf
s∈[0,T ],|z|≤K
|v|<c,v∈U

Λ(s,z,v)<+∞
dist((s,z,v),∂ Dom(Λ))≥ρ

P (s, z, v).

• As a consequence we obtain

Jt(y, u) ≤
∫ T

t

Λ(ϕ, y, u) dτ + εν(Ξ(ν) − Υ) + g(y(T )).

• For ν large enough, ‖ϕ(τ ) − τ‖∞ ≤ ε∗: Condition (S) implies∫ T

t

Λ(ϕ, y, u) dτ ≤
∫ T

t

Λ(ϕ, y, u) dτ + 2ενΦ(B),

so that

(9.1) Jt(y, u) ≤ Jt(y, u) + εν(Ξ(ν) + 2Φ(B) − Υ).
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• If Condition (Hδ
B) holds, we choose ν > 0 satisfying Ξ(ν)+2Φ(B)−Υ < 0. From

(9.1) we deduce that Jt(y, u) ≤ Jt(y, u), the inequality being strict if εν > 0, i.e.,
|u| > ν on a non negligible set.

• If Condition (Mδ
B) holds, since εν → 0 as ν → +∞ we choose ν in such a way

that εν(Ξ(ν)+2Φ(B)−Υ) ≤ η. From (9.1) we deduce that Jt(y, u) ≤ Jt(y, u)+η.

Finally, though Sν ,Σν , εν might depend on the chosen admissible pair (y, u), the
constant ν – therefore the bound of ‖u‖∞ and the Lipschitz constant of y – depend
in fact only on δ, B, δ∗, x∗ (and possibly on η if one assumes just Condition (Mδ

B)
instead of (Hδ

B)). �

9.2. Proof of Theorem 5.1.

Proof. Fix δ ∈ [0, T [, x∗ ∈ R
n and let t ∈ [0, δ], x ∈ Bn

δ∗
(x∗). Fix a generic pair

(y, u) ∈ A that is admissible for (Pt,x). We consider the following steps.

(i) Let α, d be as in (2.2). Then∫ T

t

|u(s)| ds ≤ (T − t)ct(B) ≤ R = R(B) :=
B + d T

α
.

The claim follows immediately from Point (1) of Proposition 4.10.
(ii) There is K := K(B, δ∗, x∗) such that |y(s)| ≤ K for every s ∈ [t, T ]. Indeed,

for a.e. s ∈ [t, T ],

|y′(s)| ≤ θ(1 + |y(s)|)|u(s)|.
Gronwall’s Lemma (see [23, Theorem 6.41]) and Claim (i) imply that, for all
s ∈ [t, T ],

|y(s) − x| ≤
∫ s

t

exp

(
θ

∫ s

τ

|u(r)| dr
)
θ|u(τ )|(|x| + 1) dτ

≤ θTReRθ(|x| + 1) ≤ θTReRθ(|x∗| + δ∗ + 1).

The claim follows from the fact that R depends on B, with

K = δ∗ + θTReRθ(|x∗| + δ∗ + 1).

(iii) Definition of Ξ(ν), Υ(ρ), choice of ν, ρ. In the radial convex case, let P (s, z, v),
c > cδ(B) be as in Condition (Hδ

B) or (Mδ
B) corresponding to the value K

defined in Claim (ii); in the partial differentiable case we set

P (s, z, v) := Λ(s, z, v) −DvΛ(s, z, v).

For ρ > 0 and ν > 0 we define

Ξ(ν) := sup
s∈[0,T ],|z|≤K
|v|≥ν,v∈U

Λ(s,z,v)<+∞

P (s, z, v), Υ(ρ) := inf
s∈[0,T ],|z|≤K
|v|<c,v∈U

Λ(s,z,v)<+∞
dist((s,z,v),∂ Dom(Λ))≥ρ

P (s, z, v).

We may assume that Ξ(ν) > −∞ for all ν > 0, otherwise there is ν > 0 such
that |v| ≤ ν for all (s, y, v) ∈ Dom(Λ), v ∈ U and the result follows trivially.
In view of Remark 4.13, there is ρ > 0 in such a way that Υ(ρ) < +∞ for all
0 < ρ ≤ ρ. Fix ν = ν(δ, B,K) = ν(δ, B, δ∗, x∗) ≥ 0 in such a way that:

� If Condition (Hδ
B) holds,

(9.2) ∀ρ ∈]0, ρ[ ∀ν ≥ ν −∞ < Ξ(ν) + 2Φ(B) < Υ(ρ) < +∞;

notice in particular that Ξ(ν),Υ(ρ) are both finite.
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� If Condition (Mδ
B) holds,

∀ρ ∈]0, ρ[ ∀ν ≥ ν Υ(ρ) ∈ R, Ξ(ν) ∈ R.

(iv) For any
cδ(B)

c
< μ < 1 let Ωμ :=

{
s ∈ [t, T ] :

|u(s)|
μ

< c

}
. Then

|Ωμ| ≥
(

1 − cδ(B)

μc

)
(T − t).

Indeed, it is enough to apply Point (2) of Proposition 4.10 with σ := μc >
cδ(B).

(v) For every ρ > 0 let

Iρ := {s ∈ [t, T ] : dist((s, y(s), u(s)), ∂Dom(Λ)) ≥ 2ρ}.

Then lim
ρ→0

|Iρ| = T − t uniformly w.r.t. t ∈ [0, δ], x ∈ Bn
δ∗

(x∗); more precisely,

given ε > 0 there is ρε = ρε(B) such that |Iρ| ≥ T−t−ε whenever 0 < ρ < ρε.
Fix � > 0; from Hypothesis (h2), there exists ρ > 0 satisfying

∀s ∈ [t, T ], ∀v ∈ R
m dist((s, y(s), v), ∂ Dom(Λ)) < 2ρ ⇒ Λ(s, y(s), v) ≥ �.

For 0 < ρ ≤ ρ, we thus have

B ≥
∫ T

t

Λ(s, y(s), u(s)) ds ≥
∫
[t,T ]\Iρ

Λ(s, y(s), u(s)) ds ≥ �|[t, T ] \ Iρ|,

whence B ≥ �
(
T − t− |Iρ|

)
, from which we obtain the estimate

∀ 0 < ρ ≤ ρ |Iρ| ≥
�(T − t) −B

�
= (T − t) − B

�
.

The claim follows.
(vi) Let ρ > 0 be as in Claim (iii). There are μ = μ(B, δ) ∈]0, 1[, ρ ≤ ρ, m :=

m(δ, B) ∈]0, 1] and a subset Ω of Ωμ with |Ω| ≥ m(T − t), such that, for a.e.
s ∈ Ω and a.e. s̃ ∈ [t, T ],

(9.3)

Λ

(
s̃, y(s),

u(s)

μ

)
< +∞,

|u(s)|
μ

< c, dist

((
s̃, y(s),

|u(s)|
μ

)
, ∂ Dom(Λ)

)
≥ ρ.

Choose μ0,Δ ∈]0, 1[ such that

cδ(B)

μ0c
< Δ < 1,

and let, from Step v), ρ ∈]0, ρ] be such that

(9.4) |Iρ| ≥ Δ(T − t).

Set

μ :=
c

ρ + c
∈]0, 1[, Ω := Ωμ ∩ Iρ.

Since lim
ρ→0

c

ρ + c
= 1, we may assume that μ ≥ μ0. Since, from Step iv), for
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a.e. s on Ωμ, |u(s)| < μc < c, we deduce that, for a.e. s ∈ Ω,

∣∣∣∣u(s)

μ
− u(s)

∣∣∣∣ =

ρ
|u(s)|
c

< ρ, so that dist

((
s, y(s),

u(s)

μ

)
, (s, y(s), u(s))

)
≤ ρ and thus, for

a.e. s ∈ Ω,

Λ

(
s, y(s),

u(s)

μ

)
< +∞ dist

((
s, y(s),

u(s)

μ

)
, ∂ Dom(Λ)

)
≥ ρ a.e. s ∈ Ω.

Hypothesis (h1) implies the validity of (9.3) for a.e. s̃ ∈ [t, T ] and a.e. s ∈ Ω.
It remains to show that |Ω| is big enough. It follows from Step (iv) and (9.4)
that

|Ω| = |Ωμ| + |Iρ| − |Ω ∪ Iρ|

≥
(

1 − cδ(B)

μc

)
(T − t) + Δ(T − t) − (T − t)

≥
(

Δ − cδ(B)

μc

)
(T − t) ≥ m(T − t),

with m := Δ − cδ(B)

μc
.

(vii) From now on we set Υ := Υ(ρ). For a.e. s ∈ Ω and a.e. s̃ ∈ [t, T ],

(9.5) Λ

(
s̃, y(s),

u(s)

μ

)
μ− Λ(s̃, y(s), u(s)) ≤ −(1 − μ)Υ.

Indeed, it follows from Step (vi) and the basic assumptions on Dom(Λ) that,
for a.e. s ∈ Ω, for a.e. s̃ ∈ [t, T ],

∀0 < r ≤ 1

μ

(
s̃, y(s), ru(s)

)
∈ Dom(Λ).

Notice that, for such s, s̃,

Λ

(
s̃, y(s),

u(s)

μ

)
μ− Λ(s̃, y(s), u(s)) =(9.6)

= −μ

[
Λ

(
s̃, y(s),

u(s)

μ
μ

)
1

μ
− Λ

(
s̃, y(s),

u(s)

μ

)]
.

We consider separately the radial convex and the partial differentiable cases.
(a) Radial convex case. We have

Λ

(
s̃, y(s),

u(s)

μ
μ

)
1

μ
− Λ

(
s̃, y(s),

u(s)

μ

)
≥ P

(
s̃, y(s),

u(s)

μ

)
1 − μ

μ
.

From Step (vi) and the fact that U is a cone we obtain

Λ

(
s̃, y(s),

u(s)

μ
μ

)
1

μ
− Λ

(
s̃, y(s),

u(s)

μ

)
≥

≥ 1 − μ

μ
inf

s̃∈[0,T ],|z|≤K
|v|<c,v∈U

Λ(s̃,z,v)<+∞
dist((s̃,z,v),∂ Dom(Λ))≥ρ

P (s̃, z, v) =
1 − μ

μ
Υ,

and thus the conclusion follows from (9.6).
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(b) Partial differentiable case. For ω > 0 let h(ω) := Λ

(
s̃, y(s),

u(s)/μ

ω

)
ω.

Then

Λ

(
s̃, y(s),

u(s)

μ
μ

)
1

μ
− Λ

(
s̃, y(s),

u(s)

μ

)
=

= h

(
1

μ

)
− h(1) =

∫ 1
μ

1

h′(ω) dω.

It follows from (4.1) that, for all ω ∈
[
1,

1

μ

]
,

h′(ω) =
d

dλ

[
Λ

(
s̃, y(s),

u(s)/(ωμ)

λ

)
λ

]
λ=1

.

We deduce from that, for a.e. s ∈ Ω,

∀ω ∈
[
1,

1

μ

] ∣∣∣∣u(s)

ωμ

∣∣∣∣ ≤
∣∣∣∣u(s)

μ

∣∣∣∣ < c.

It follows from Step (vi) and the fact that U is a cone that

Λ

(
s̃, y(s),

u(s)

μ
μ

)
1

μ
− Λ

(
s̃, y(s),

u(s)

μ

)
≥

≥ 1 − μ

μ
inf

s̃∈[0,T ],|z|≤K
|v|<c,v∈U

Λ(s̃,z,v)<+∞
dist((s̃,z,v),∂ Dom(Λ))≥ρ

d

dλ

[
Λ
(
s̃, z,

v

λ

)
λ
]
λ=1

=
1 − μ

μ
Υ,

where the last equality is a consequence of Remark 4.1. The claim follows
from (9.6).

(viii) For every ν > 0 define

Sν := {s ∈ [t, T ] : |u(s)| > ν}, εν :=

∫
Sν

(
|u(s)|
ν

− 1

)
ds.

Then

|Sν | → 0, 0 ≤ εν ≤ R

ν
→ 0 as ν → +∞

uniformly with respect to t ∈ [0, δ] and x ∈ Bn
δ∗

(x∗). Indeed, it follows from
Step (i) that

ν|Sν | ≤
∫
Sν

|u(s)| ds ≤ R.

(ix) Choice of ν ≥ ν and of Σν ⊆ Ω. Taking into account Claim (viii), we choose
ν = ν(δ, B, δ∗, x∗) ≥ max{ν, c} in such a way that

(9.7)
R

ν
≤ min

{
(1 − μ)m(T − δ),

ε∗
2

}
.

If Condition (Mδ
B) holds, we impose moreover that ν = ν(δ, B, δ∗, x∗, η) is

large enough in such a way that

(9.8)
R

ν
(2Φ(B) + Ξ(ν) − Υ) ≤ R

ν
(2Φ(B) + Ξ(ν) − Υ) ≤ η.
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From now on we set Ξ := Ξ(ν). Choose a measurable subset Σν of Ω in such

a way that |Σν | =
εν

1 − μ
: this is possible since, from (9.7) and Step (vi),

εν
1 − μ

≤ m(T − δ) ≤ m(T − t) ≤ |Ω|.

(x) Sν ∩ Ω is negligible. Indeed, if u(s) is defined and s ∈ Sν then |u(s)| > ν,
whereas if s ∈ Ω then |u(s)| < c ≤ ν.

(xi) The change of variable ϕ. We introduce the following absolutely continuous
change of variable ϕ : [t, T ] → R defined by

ϕ(t) := t, for a.e. τ ∈ [t, T ] ϕ′(τ ) =

⎧⎪⎪⎨
⎪⎪⎩

|u(τ )|
ν

if τ ∈ Sν ,

μ if τ ∈ Σν ,

1 otherwise.

Notice that ϕ depends on both y, u and is well defined since Sν ∩ Σν , a
subset of Sν ∩Ω, is negligible. Clearly ϕ is strictly increasing and, from Steps
(viii)–(ix),∫ T

t

ϕ′(τ ) dτ =

∫
Sν

|u(τ )|
ν

dτ +

∫
Σν

μ dτ + |[t, T ] \ Sν ∪ Σν |

= (εν + |Sν |) + μ|Σν | +
(
(T − t) − |Sν | − |Σν |

)
= εν − (1 − μ)|Σν | + (T − t) = T − t.

Therefore the image of ϕ is [t, T ] and thus ϕ : [t, T ] → [t, T ] is bijective; let
us denote by ψ its inverse, which is absolutely continuous and even Lipschitz,

since ‖ψ′‖∞ ≤ 1

μ
.

(xii) Set u(s) :=
u(ψ(s))

ϕ′(ψ(s))
, y := y ◦ψ. Then (y, u) is admissible and y(T ) = y(T ).

It follows from [34, Corollary 5] and [32, Chapter IX, Theorem 5] that y is
absolutely continuous and that, for a.e. s ∈ [t, T ],

y′(s) = y′(ψ(s))
1

ϕ′(ψ(s))
= b(y(ψ(s))

u(ψ(s))

ϕ′(ψ(s))
= b(y(s))u(s).

Since y is defined via a reparametrization of y, we still have that y(s) ∈ S for
all s. Moreover, y(t) = y(ψ(t)) = y(t) and y(T ) = y(ψ(T )) = y(T ). Notice
that

u(s) =
1

ϕ′(ψ(s))
u(ψ(s)) ∈ U a.e. s ∈ [t, T ],

the set U being a cone.
(xiii) u is bounded, y is Lipschitz; if Condition (Hδ

B) holds the bound of u and the
Lipschitz rank of y depend just on δ, B, δ∗, x∗; otherwise they might depend
also on η. It is convenient to write explicitly the function u(s), which is given
by

u(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ν

u(ψ(s))

|u(ψ(s))| if ψ(s) ∈ Sν ,

u(ψ(s))

μ
if ψ(s) ∈ Σν ,

u(ψ(s)) otherwise.
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Since |u(s)| ≤ ν a.e. out of Sν it turns out from the fact that Σν ⊆ Ω that

|u(s)| ≤ max {ν, c} = ν.

Now

‖y′‖∞ = ‖b(y)u‖∞ ≤ θ(1 + ‖y‖∞)‖u‖∞ = θ(1 + ‖y‖∞)‖u‖∞ ≤ θ(1 + K)ν;

the claim follows from Step (ii).
(xiv) ‖ϕ(τ ) − τ‖∞ ≤ 2εν ≤ ε∗. Indeed, for all τ ∈ [t, T ] we have

|ϕ(τ ) − τ | ≤
∫ τ

t

|ϕ′(s) − 1| ds

≤
∫
Sν

(
|u(s)|
ν

− 1

)
ds +

∫
Σν

(1 − μ) ds

≤ εν + (1 − μ)|Σν | = 2εν ≤ ε∗.

(xv) Estimate of Jt(y, u) in terms of

∫ T

t

Λ
(
ϕ(τ ), y(τ ), u(τ )

)
dτ .

Since y and y share the same boundary values, we have

(9.9) Jt(y, u) =

∫ T

t

Λ(s, y(s), u(s)) ds + g(y(T )).

The change of variables s = ϕ(τ ) yields

(9.10)

∫ T

t

Λ(s, y(s), u(s)) ds =

∫ T

t

Λ
(
ϕ(τ ), y(τ ),

u(τ ))

ϕ′(τ )

)
ϕ′(τ ) dτ

= ISν
+ IΣν

+ I1,

where we set

ISν
:=

∫
Sν

Λ
(
ϕ(τ ), y(τ ), ν

u(τ )

|u(τ )|
) |u(τ )|

ν
dτ,

IΣν
:=

∫
Σν

Λ
(
ϕ(τ ), y(τ ),

u(τ )

μ

)
μ dτ,

I1 :=

∫
[t,T ]\(Σν∪Sν)

Λ (ϕ(τ ), y(τ ), u(τ )) dτ.

In what follows, for brevity, we set

∫
∗
Λ(ϕ, y, u) dτ :=

∫
∗
Λ(ϕ(τ ), y(τ ), u(τ )) dτ .

• Estimate of ISν
:

(9.11) ISν
≤

∫
Sν

Λ
(
ϕ, y, u

)
dτ + Ξεν .

Indeed, recall that (s, y(s), u(s)) ∈ Dom(Λ) for a.e. s ∈ [t, T ]. Since
|u(τ )| > ν a.e. τ ∈ Sν and U is a cone then, for a.e. τ ∈ Sν ,

Λ
(
ϕ(τ ), y(τ ), ν

u(τ )

|u(τ )|
)
< +∞, ν

u(τ )

|u(τ )| ∈ U .
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We consider the two following frameworks.
(a) Radial convex case. For a.e. τ ∈ Sν we have

Λ
(
ϕ(τ ), y(τ ), u(τ )

) ν

|u(τ )| − Λ
(
ϕ(τ ), y(τ ), ν

u(τ )

|u(τ )|
)
≥

≥ P
(
ϕ(τ ), y(τ ), ν

u(τ )

|u(τ )|
)( ν

|u(τ )| − 1
)

which implies

(9.12)

Λ
(
ϕ(τ ), y(τ ), ν

u(τ )

|u(τ )|
) |u(τ )|

ν
− Λ

(
ϕ(τ ), y(τ ), u(τ )

)
≤

≤ P
(
ϕ(τ ), y(τ ), ν

u(τ )

|u(τ )|
)( |u(τ )|

ν
− 1

)
.

Since, for a.e. τ ∈ Sν , |u(τ )| > ν and

∣∣∣∣ν u(τ )

|u(τ )|

∣∣∣∣ = ν, we deduce that

a.e. τ ∈ Sν P
(
ϕ(τ ), y(τ ), ν

u(τ )

|u(τ )|
)( |u(τ )|

ν
− 1

)
≤

( |u(τ )|
ν

− 1
)
Ξ.

Therefore, for a.e. τ ∈ Sν inequality (9.12) yields

Λ
(
ϕ(τ ), y(τ ), ν

u(τ )

|u(τ )|
) |u(τ )|

ν
≤ Λ

(
ϕ(τ ), y(τ ), u(τ )

)
+
( |u(τ )|

ν
− 1

)
Ξ,

whence (9.11).
(b) Partial differentiable case. For a.e. τ ∈ Sν we set

hτ (μ) := Λ
(
ϕ(τ ), y(τ ),

u(τ )

μ

)
μ, μ ∈

[
1,

|u(τ )|
ν

]
.

Fix such a value of τ . Since

Λ
(
ϕ(τ ), y(τ ), ν

u(τ )

|u(τ )|
) |u(τ )|

ν
− Λ

(
ϕ(τ ), y(τ ), u(τ )

)
= hτ

(
|u(τ )|
ν

)
− hτ (1),

there is μτ ∈
]
1,

|u(τ )|
ν

[
satisfying

Λ
(
ϕ(τ ), y(τ ), ν

u(τ )

|u(τ )|
) |u(τ )|

ν
− Λ

(
ϕ(τ ), y(τ ), u(τ )

)
= h′

τ (μτ )

(
|u(τ )|
ν

− 1

)
.

Now, from (3) of Remark 4.1 we have

h′
τ (μτ ) =

d

dλ

[
Λ
(
ϕ(τ ), y(τ ),

u(τ )/μτ

λ

)
λ

]
λ=1

.

Since
|u(τ )|
μτ

> ν on Sν , we deduce that |h′
τ (μτ )| ≤ Ξ. It follows that,

on Sν ,

Λ
(
ϕ(τ ), y(τ ), ν

u(τ )

|u(τ )|
) |u(τ )|

ν
− Λ

(
ϕ(τ ), y(τ ), u(τ )

)
≤ Ξ

(
|u(τ )|
ν

− 1

)
,

from which we obtain (9.11).
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• Estimate of IΣν
. The function ψ being Lipschitz, the set of τ ∈ [t, T ]

such that s̃ = ϕ(τ ) satisfies (9.5) is of full measure. Since Σν ⊆ Ω and

|Σν | =
εν

1 − μ
, it is immediate from Step (vii) that

(9.13) IΣν
≤

∫
Σν

Λ
(
ϕ, y, u

)
dτ − (1 − μ)Υ|Σν | ≤

∫
Σν

Λ
(
ϕ, y, u

)
dτ − Υεν .

Therefore, from (9.9), (9.10), (9.11) and (9.13) we deduce the required esti-
mate

(9.14)

Jt(y, u) = ISν
+ IΣν

+ I1 + g(y(T ))

≤
∫ T

t

Λ
(
ϕ, y, u

)
dτ + εν

(
Ξ − Υ

)
+ g(y(T )).

(xvi) Estimate of

∫ T

t

Λ
(
ϕ, y, u

)
dτ :

(9.15)

∫ T

t

Λ
(
ϕ, y, u

)
dτ ≤

∫ T

t

Λ
(
τ, y(τ ), u(τ )

)
dτ + 2Φ(B)εν .

Indeed, the assumptions of Theorem 5.1 ensure that (ϕ(τ ), y(τ ), u(τ )) ∈
Dom(Λ) for a.e. τ ∈ [t, T ]. Condition (S) and Step (xiv) then imply that, for
a.e. τ ∈ [t, T ],

Λ
(
ϕ(τ ), y(τ ), u(τ )

)
≤ Λ

(
τ, y(τ ), u(τ )

)
+ k(τ )|ϕ(τ )− τ |

≤ Λ
(
τ, y(τ ), u(τ )

)
+ 2k(τ )εν ,

where we set

k(τ ) := κΛ(τ, y(τ ), u(τ )) + A|u(τ )| + γ(τ ).

Notice that, from Proposition 4.10,∫ T

t

k(τ ) dτ ≤ Φ(B) :

(9.15) follows now immediately.
(xvii) Final estimate of Jt(y, u). From (9.14) and (9.15) of Steps (xv)–(xvi), we

obtain

(9.16) Jt(y, u) ≤ Jt(y, u) + εν (2Φ(B) + Ξ − Υ) .

Two cases may occur.
• If Condition (Hδ

B) holds true, the choice of ν in (9.2) of Step (iii) implies
that

2Φ(B) + Ξ − Υ < 0.

Thus, from (9.16) we obtain Jt(y, u) ≤ Jt(y, u). Actually, the inequality
Jt(y, u) < Jt(y, u) is strict, unless εν = 0, and this occurs if and only if
|u| ≤ ν a.e. on [t, T ].

• If Condition (Mδ
B) holds true, from (9.16) and (9.8) of Step (ix) we

obtain

Jt(y, u) ≤ Jt(y, u) +
R

ν
(2Φ(B) + Ξ − Υ).

The conclusion follows from the choice of ν in (9.8). �
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Remark 9.1 (Explicit bounds and Lipschitz ranks). In the real valued case, the
knowledge of ν and c in Condition (Hδ

B) correspondingly to the value K provided
in Step (ii) of the proof of Theorem 5.1 allows to give an explicit bound of ‖u‖∞
and ‖y′‖∞) (thus of KA in Claim (1) of Theorem 5.1). Indeed, referring to the
proof of the theorem:

• From Step (xiii), ‖u‖∞ ≤ ν and ‖y′‖∞ ≤ θ(1 +K)ν where, from Step (ix),
one may take

(9.17) ν := max

{
R

(1 − μ)m(T − δ)
, c, ν,

2R

ε∗

}

and, from Step (i), R =
B + d T

α
;

• In the real valued case it is enough from Step (vi) to take μ, equal to any

real number such that
cδ(B)

c
< μ < 1;

• The proof of Step (vi) shows that m in (9.17) is given by

m = Δ − cδ(B)

μc
,

where Δ is any real number in

]
cδ(B)

μc
, 1

[
.

Remark 9.2. The proof of Theorem 5.1 shows that one could replace in the growth
Conditions (Hδ

B), (Mδ
B) and in Hypothesis (h2) the Euclidean distance

dist((s, y, v), ∂ Dom(Λ))

with the pseudo-distance

distc((s, y, v), ∂ Dom(Λ))) := inf{|v′ − v| : (s, y, v′) ∈ ∂ Dom(Λ)} :

indeed in this case distc((s, y, v), ∂ Dom(Λ)) ≥ ρ > 0 whenever (s, y, v′) ∈ Dom(Λ)
for every v′ ∈ Bm

ρ (v), so that, from Hypothesis (h1) it follows that

distc((s, y, v), ∂ Dom(Λ)) ≥ ρ ⇒ distc((s̃, y, v), ∂ Dom(Λ)) ≥ ρ ∀s̃ ∈ [0, T ],

an essential property in Step (vi) of the proof of Theorem 5.1. There are some
advantages and drawbacks in replacing the Euclidean distance dist with distc. In-
deed, in doing so, the infima in the growth conditions become smaller, so that
(Hδ

B), (Mδ
B) become more restrictive (i.e., are satisfied by a smaller class of La-

grangians). Instead, Hypothesis (h2) is less restrictive (i.e., satisfied by a wider
class of Lagrangians). However, the notion of being well-inside the domain for distc
(Definition 4.15) does not correspond anymore to the notion of relatively compact
subset.
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Atlantique for the warm hospitality during the initial part of the work. I am
further indebted with Piernicola Bettiol for his useful comments on the structure
of the manuscript and with Francis Clarke for his encouragement. I am grateful to
the referees who read very carefully the work, and for their suggestions that led me
to an improved version of the paper.



946 CARLO MARICONDA

References

[1] Giovanni Alberti and Francesco Serra Cassano, Non-occurrence of gap for one-dimensional
autonomous functionals, Calculus of variations, homogenization and continuum mechanics
(Marseille, 1993), Ser. Adv. Math. Appl. Sci., vol. 18, World Sci. Publ., River Edge, NJ,
1994, pp. 1–17. MR1428688

[2] Luigi Ambrosio, Oscar Ascenzi, and Giuseppe Buttazzo, Lipschitz regularity for minimizers
of integral functionals with highly discontinuous integrands, J. Math. Anal. Appl. 142 (1989),
no. 2, 301–316, DOI 10.1016/0022-247X(89)90001-2. MR1014576

[3] M. Soledad Aronna, Monica Motta, and Franco Rampazzo, A higher-order maximum princi-
ple for impulsive optimal control problems, SIAM J. Control Optim. 58 (2020), no. 2, 814–844,
DOI 10.1137/19M1273785. MR4075327

[4] J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not
satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), no. 4, 325–388,
DOI 10.1007/BF00276295. MR801585

[5] Julien Bernis, Piernicola Bettiol, and Carlo Mariconda, Higher order problems in the calculus

of variations: Du Bois-Reymond condition and regularity of minimizers, J. Convex Anal. 27
(2020), no. 1, 181–206. MR4099066

[6] J. Bernis, P. Bettiol, and C. Mariconda, Some Regularity Properties on Bolza problems in
the Calculus of Variations, C. R. Math. Acad. Sci. Paris., in press.

[7] Piernicola Bettiol and Carlo Mariconda, A new variational inequality in the calculus of vari-
ations and Lipschitz regularity of minimizers, J. Differential Equations 268 (2020), no. 5,
2332–2367, DOI 10.1016/j.jde.2019.09.011. MR4046192

[8] Piernicola Bettiol and Carlo Mariconda, A Du Bois-Reymond convex inclusion for non-
autonomous problems of the Calculus of Variations and regularity of minimizers, Appl. Math.
Optim. 83 (2021), 2083–2107. MR4261282.

[9] Piernicola Bettiol and Carlo Mariconda, Regularity and necessary conditions for a Bolza
optimal control problem, J. Math. Anal. Appl. 489 (2020), no. 1, 124123, 17. MR4083121.

[10] Pierre Bousquet, Carlo Mariconda, and Giulia Treu, On the Lavrentiev phenomenon for
multiple integral scalar variational problems, J. Funct. Anal. 266 (2014), no. 9, 5921–5954,
DOI 10.1016/j.jfa.2013.12.020. MR3182966

[11] G. Buttazzo and M. Belloni, A survey on old and recent results about the gap phenomenon
in the calculus of variations, Recent developments in well-posed variational problems, Math.
Appl., vol. 331, Kluwer Acad. Publ., Dordrecht, 1995, pp. 1–27. MR1351738

[12] Giuseppe Buttazzo, Mariano Giaquinta, and Stefan Hildebrandt, One-dimensional varia-
tional problems, Oxford Lecture Series in Mathematics and its Applications, vol. 15, The
Clarendon Press, Oxford University Press, New York, 1998. An introduction. MR1694383

[13] P. Cannarsa, H. Frankowska, and E. M. Marchini, Existence and Lipschitz regularity of so-
lutions to Bolza problems in optimal control, Trans. Amer. Math. Soc. 361 (2009), no. 9,

4491–4517, DOI 10.1090/S0002-9947-09-04765-5. MR2506416
[14] Piermarco Cannarsa, Hélène Frankowska, and Elsa M. Marchini, On Bolza optimal control

problems with constraints, Discrete Contin. Dyn. Syst. Ser. B 11 (2009), no. 3, 629–653, DOI
10.3934/dcdsb.2009.11.629. MR2481328

[15] Dean A. Carlson, Property (D) and the Lavrentiev phenomenon, Appl. Anal. 95 (2016), no. 6,
1214–1227, DOI 10.1080/00036811.2015.1057703. MR3478999

[16] Arrigo Cellina, The classical problem of the calculus of variations in the autonomous case:
relaxation and Lipschitzianity of solutions, Trans. Amer. Math. Soc. 356 (2004), no. 1, 415–
426, DOI 10.1090/S0002-9947-03-03347-6. MR2020039

[17] A. Cellina and A. Ferriero, Existence of Lipschitzian solutions to the classical problem of the
calculus of variations in the autonomous case (English, with English and French summaries),
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