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THE LEGENDRE-HARDY INEQUALITY ON
BOUNDED DOMAINS

JAEYOUNG BYEON AND SANGDON JIN

ABSTRACT. There have been numerous studies on Hardy’s inequality on a
bounded domain, which holds for functions vanishing on the boundary. On the
other hand, the classical Legendre differential equation defined in an interval
can be regarded as a Neumann version of the Hardy inequality with subcritical
weight functions. In this paper we study a Neumann version of the Hardy
inequality on a bounded CZ?-domain in R™ of the following form

5 2 |u(z)|? : / u(z)

/Q d” (z)|Vu(z)|“dz > C(«, B) o (@) dr  with o ()

where d(z) is the distance from x € Q to the boundary 992 and «, 3 € R. We

classify all (a, 8) € R? for which C(a,8) > 0. Then, we study whether an

optimal constant C(a, §) is attained or not. Our study on C(a, ) for general

(ar, B) € R? shows that the (classical) Hardy inequality can be regarded as a
special case of the Neumann version.

)

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this paper, we are interested in the following inequality
@I, C/ d%(2)|Vu(z)2dz  with / wz) 40—,
o d*(z) o d*(z)

where a, 8 € R, d(x) = dist(z,09Q) and Q is a bounded CZ-domain in R™. This
study was motivated by the Legendre differential equation. The Legendre differen-
tial equation

—((1=t)¢)Y =11+ 1), 1=0,1,---,
has the first kind of solution P;, which is a polynomial of order I/, and the second
kind of solution @, which is singular at ¢t = £1. Then we see that for any ¢ €
o 1
C'((—1,1)) N L*((—1,1)) satisfying [, ¢dt =0,

1) / (=) 0> 2 / ()

Furthermore, the equality holds for Pj(x) = z; on the other hand, for [ = 0,1, -,
1
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This can be compared with Wirtinger’s inequality, which says that for any ¢ €
CY((~1,1)) N L*((~1,1)) satisfying [, ¢dt = 0,

) R % | oy

where the equality holds for ¢(¢) = sin &t. On the other hand, a version of Hardy’s
inequality says that for any ¢ € W0 (( 1,1)),

®) [ wpa= g [ A

where the equality does not hold for any ¢ € W, *((—1,1)) \ {0}.

These inequalities (), @), @) are quite fundamental and there have been nu-
merous studies on higher dimensional versions of ([2) and ([B). On the other hand,
it seems that there have been no studies for the higher dimensional version of ().
In this paper, we study the high dimensional version of (Il) and find a general form
of inequalities that includes (), @), @B). For their generalization on a bounded
domain Q in RY | we define d(z) = dist(x, RV \ Q) and

(@) = {0 € C'(®) /d5 V() + (ji())) dr < oo}, a,f R,

1/2
For u € X, 5(Q2), we define a norm ||ullq.g = (fQ d?(2)|Vul]? + d=(x )u2dx)

and W;; (Q) the completion of X, 5(€2) with respect to the norm || -||o,3. Then we
consider a minimization

Las(Q) = 1nf{%‘ )\ {0}, /ud d:z:—O}

In this paper, we characterize (, 3) € R? for which L, g is positive, and find
conditions of (a, 3) and domain £ under which L, g > 0 is attained. In fact, we will
see that if (a, 8) is in a subcritical region, the attainability of L, g is determined
by the comparison of two energy levels L, g and H, g, where H, g is defined in ().
For (a, ) in the critical region oo+ 8 = 2, there exists a critical level of L, g, where
we lose a compactness of a minimizing sequence. Then, for some typical domains,
we find conditions of («, 8) in the critical region o+ 8 = 2 under which L, g either
is strictly less than the critical level of L, g or is equal to a critical level of Ly g. In
the same direction, there have been many studies (refer to [3],[4],[5],[6],[7],[8], [,
[10],[12),[13],[14] and references therein) on a generalized Hardy’s inequality, where
they study the following optimal constant

Qdﬂ Vu2d$ 1,2
L§’||d—(|)d € Wik 5@\ {0}].

Here, Wolsﬁ(Q) is the completion of C§°(Q) with respect to the norm || - |4 s-
For a generalized Hardy’s inequality on general domains, refer to [2], [15], [16] and
references therein. Some general results on the positivity and attainability of H, g
will be given in Proposition 2.4l Proposition and Proposition[A4l We will show
in Proposition that for « > 1 and 5 < 1, Wié Q) = Wolsﬁ(fl) Furthermore,

(4) Ha5(Q) = in f{
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we will prove in Appendix, Proposition [A.1] that

DW, Q) if (a,f) € {(a,b) | a < 2,b> 0},
Wy s(2) 3 =W5%(Q) if (a,8) € {(a,b) | a < 2,b=0},
CWQ) if (a,8) € {(a,b) | b<0orb=0,a> 2},

and that for (o, 8) € {(a,b) | a > 2,b > 0}, Wy'3 5(Q) \ W*(Q) and Wy*(Q) \
Woljﬁ(Q) are non-empty sets. The property Wiz(Q) = Wolsﬁ(Q) for > 1 and
B < 1 implies that there is a natural relation between L, g(?) and H, g(€2) and
that our study on L, g(€2) could be a natural extension of previous studies on the
Hardy constant H, g(€2).

Now we state our main results in this paper.

Theorem 1.1. For any bounded C?-domain 2 C RN, L, 5(Q) > 0 if and only if
a+ B <2 and (o, ) # (1,1).

Theorem 1.2. Let Q be a bounded C?-domain in RN . Then it holds that

(1) if (o, 8) € {(a,b) | a+b < 2,2a+b < 3}, Lo 5(R) is achieved by an element
Ua,g € W;;(Q), which satisfies

—div(dP () V) = La.p(Q)d “uq s in Qif a < 1,
—div(d® () Viua,g) = Las(Q)d *uap + pd=* in Q for some p € R if a > 1;

(2) if (o, 8) € {(a,b) | a+b<2,2a+b> 3, (a,b) # (1,1)}, Laﬁ(ﬂ) = Haﬁ(ﬂ)
and Lo g(2) is not achieved.

poed”

NN

A

\ N .

D(%,g\:\Ha,[g >0

nq D%J}\is not attained

The optimal constant L, g(£2) The optimal constant Ho g(€2)

FIGURE 1

The key features and their relation for H, g(2) and L, g(€2) described in The-
orem [[T] and Theorem are illustrated in Figure [[I A result in Theorem
implies that Ly 2-4(12) is not attained for & > 1. When o < 1, as in the Hardy
inequality, we lose a compactness at a critical level of Ly 2_4(£2). In fact, we have
the following result.

Theorem 1.3. Let o < 1 and 2 be a bounded C?-domain in RY. Then Ly 2—o(Q)
< %. Furthermore, Ly 2—o(S2) is achieved if Ly 2—o(2) < %.
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As for the optimal constant Ha (€2) on WOI”QQ,O (Q) = W %(Q), it was proved [12]
that Ho () is achieved if and only if H¢(2) <  when Q is a bounded C?-domain
in RYV. Recently, the result was extended in [J] to C1¥—domains for v € (0, 1]. In
view of the result in [9], we believe that the result of Theorem [[33] would be true
for bounded C'7 domains. On the other hand, it is known that Hs () is not
attained by any function u € Wy?(€) if Q is convex (see [3]), and if Q is weakly
mean convex (see [I0]), that is, the mean curvature of 9 is nonnegative. On the
other hand, as for the optimal constant L, 2—(2), we have the following results,
highly contrasting with the results for Hs o(12).

Theorem 1.4. For a weakly mean convex C?-domain Q C RV, there exists & =
&(N, Q) <1 such that Ly 2—o () is achieved if —oo < o < @.

We will see that the attainability of the optimal constant L, 2—(§2) strongly
depends on a geometry of 2 and the space dimension N. To state the result, we
define

RY ={(z1, - ,on) € RN | 2y > 0},

{
BN(0,1) = {(z1,~-~ ,on) ERY ’ iv:(xi)Q < 1}

E(ay,--- ,an) = {(a:l,--- ,xn) € RN ‘ ﬁ;(j—j)z < 1},

where a; > 0. For the most simple domain Q@ = BY(0,1), we obtain that
La2—a(BY(0,1)) is attained only when N > 3=¢

Theorem 1.5. Let « < 1 and N > 1. Then Laa—o(BN(0,1)) < % and

La2—a(BN(0,1)) is achieved if and only if the space dimension N > 3=<.
When we deform the unit ball BV (0, 1) to an ellipse, we get the following result,
which says that even for N = 3=% L, 5 ,(E(ay, - ,ay)) is attained if the ellipse

1-a?
E(ay1, -+ ,an) is not a ball.

Theorem 1.6. For o < 1, we assume the space dimension N > :I’:_Z Then for

(a1, ,an—1) € (0, N1 with a; +---+an_1 < N — 1, we have
1—a)?
La,Qfoc(E(alu ag, -+ ,AN-1, 1)) < %7
thus, the optimal constant Ly o_o(E (a1, a2, - ,an—1,1)) is altained.

In Theorems [[L.7THI.9] we state our results for annular domains.

Theorem 1.7. Fora > 1 and N > 2, let Q = BN(0,a) \ BN(0,1). Then, for

1— Nil (2 — (a+ 1)N+12=N+1(] 4 aN+1)—1)
a <

Q— (2 — (a 4+ 1)N+12=N+1(1 + aN+1)71)

Lo2-a() < % and Ly 2—o(82) is achieved.

Theorem 1.8. For a > 1 and N > 2, let Q = BN (0,a) \ BN(0,1). Then there
exists ap = (N, Q) € (0,1) such that Ly 2—o(2) is not achieved for o € (ayp,1).
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a half ball

¥

A

a half ball

FIGURE 2. ) containing two half balls

We state the attainable property of Ly 2—o([—1,1]") without a proof. In fact,
using the same type of a test function used in the proof of Theorem [[H we can
show that Ly o_o([—1,1]V) < U=20 O‘) for N > 3(1 o 1

Above results suggest that for a general bounded domain §2, if N or —a is large,
there is a high possibility that L, 2_o(€2) is attained; on the other hand, if N or
1 — a > 0 is small, a low possibility. We conjecture that for any given bounded
C%-domain in RV, L, 2 (Q) is attained if —a is sufficiently large, and not attained
if 1 — a > 0 is sufficiently small.

In the following result, we see that the attainable property of Ly 2_o(2) depends
on a local geometry of € rather than a global geometry of Q). For o < 1, we define
a class of domains

_ 2 . N (1-a)
Ao = { bounded C<-domains D C R ‘ Lyo—o(D) < T},
and for D € A,, a class of functions

Au(D) = {u e C(D)NW2_ (D)\{0} ‘ QD(u)<%,/Dd—a(x)u(x)dx - o},

where
[p &*(2)|Vu|*dz

Jp lul2d=e(x)dx

Qp(u) =
For each u € A, (D), we define
DY ={z € D | u(z) > 0}, u?(z) = max{u(x),0},
D" ={x €D |u(r) <0} and u” =min{u(z),0}.
Also, we define 0D} = 9DY N 9D,0D" = dD* NJD. For each u € A, (D), it
holds that Qp(u?) < M or Qp(uP) < %. Defining @ = —u, we see that

2
) =uP,af = u?. Thus for u € A (D), we may assume that Qp(u?) < %.

Theorem 1.9. Let o < 1 and Q be a bounded C?-domain in RN . We assume that
for each i = 1,2, there exist a domain D; € A, a function u; € A(D;), a rotation
O; € O(N), a translation t; € RN and a scale s; > 0 such that for each i = 1,2,
t74+82074D3f C Q, tl—i—lelaqu; C 092 with (t1+8101D:LLl)m(tg-‘r-SQOqufrz) =0 and
dist(t; + 5;0;2, RN \ Q) = s;dist(x, RN \ D;) for any x € D{'. Then, La—o() <
% and Ly 2—o(2) is achieved.
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In the proofs of Theorems for the estimate Ly 2-4(Q) < %, we use
a test function of form d°(z)xy. Thus we see from Theorem [[9] that if 2 has two
disjoint parts coming from translations, scalings and rotations of a half ball or a
half ellipse or a half annulus as in Figure 2 Ly 2-4(€?) is attained for « satisfying
conditions in the corresponding theorem for ball, ellipse, or annulus.

This paper is organized as follows. Section[2is devoted to give some preliminary
results for proofs of main results. In Section[3], we prove Theorem [[.I]and Theorem
by examining the positivity and attainability of L, g(£2) in a subcritical region.
In SectionH] we study the positivity and attainability of L, g(£2) in a critical region
and prove Theorems [[3] — [[L9 In the last appendix section, we study the inclusion
relation between WO1 2(Q) and WO1 " ﬁ(Q) and prove some general results on the

positivity and attainability of H, g(12).

2. SOME PRELIMINARY LEMMAS

Assume that @ C R is a bounded C?-domain. Now we follow a scheme in
section 1 of [3]. For § > 0, we define Qs = {& € Q | d(z) < 6} and X5 =
{zr € Q| d(z) =6}. If§ > 0 is small, for every z € Qs, there exists a unique
point o(z) € 9 such that d(z) = | — o(x)|. For small § > 0, we define a map
H;s : 000 — X5 defined by Hs(0) = 0+ dn(o), where n(o) is the inward unit normal
to 02 at 0. We define a mapping II : Q5 — (0,6) x 0 by II(z) = (d(z),o(z)).
Then, it is a C'-diffeomorphism and its inverse is given by II7!(¢,0) = o + tn(o)
for t € (0,0), o € 90. It is easy to see that for small § > 0, there exists ¢ > 0 such
that

‘\VHt(a)\ - 1} < ct, Y(t,0) € (0,8) x 99,

where |V H,| is the Jacobin determinant of the Jacobian VH; on 0f.
Then, since for any nonnegative integrable function f in g,

5 5
f(z)dx = / fdodt = / foll Y (t,0)|VH(o)|dodt,
Qs 0 JE, 0 JoQ

it follows that for any nonnegative integrable function f in g,

(5)
/ /6foH_1(t,a)(1—ct)dadt§ f(:c)dxg/ /5foH_1(t,o)(1+ct)dadt.
o J0 Qs o0 J0

Lemma 2.1. Let B < 1 and u € C1((0,1)) with u(0) = 0 and f 7 (u')?dt < oo.
Then we see that for t € (0,1),

(i) u(t) < - ﬁ)z (fo sﬁ( ) ds)at#;
(ii) fo 2Pu?(z)dr < 2(1 fo ( ) ds.

Proof. Since u(0) = 0 and fol t7(u')?dt < oo, for z € (0,1),




214 JAEYOUNG BYEON AND SANGDON JIN

This proves (i). From the inequality (i), we see that for ¢ € (0,1),

/Ot 2P (2)dz < ﬁ /Ot o (u’(s))zds /01t vdz = 2(1157:3) /Ot o (u’(s))2ds;

this proves (ii). O
Proposition 2.2. For a > 1 and f < 1, we have

W) = Wi2,(0).
Proof. Tt is obvious that Walz (Q)> Wol,’jﬁ (). To prove that Walé Q) C Wol,’jﬁ (Q),

we note that if « > 3, for w € C°((0, 1)) satisfying fol P (w")2dt < oo, fol t—w3dt <
o0, we have

w2(y)—w2(:z:)_/:( ())dt<2(/ —dt)l(/ dt)
<o [V ([ owra)’,

where 0 < < y < 1. Then we see that lim,_,ow(z) exists. From this and the

assumptions that o > 1 and fol ’t”—jdt < 00, we deduce that w(0) = 0. This and ({)
imply that if & > 8 and o > 1, then

(6) u=0 on 9Q for ue X,3(Q).

We find a function ¢ € C'(R) such that ¢(t) = 0 for t < 1 and ¢(t) = 1 for
t > 2. For u € X, 3(Q), we define u,(z) = u(x)p(nd(x)). Then we claim that
lun, — tlla,s — 0 as n — oco. To prove the claim, it suffices to show that for a
neighborhood N (zg) of z¢ € 99,

lim dP |V (u — un)|* + d™%(u — up)?dz = 0.

=90 JONN (z0)

By the dominated convergence theorem, we see that

lim d™*(u — up)?dx = lim d~u? (1 - @2(nd(a:))>d:1c =0.

n=0 JONN (z0) =0 JONN (z0)

To prove lim, o anN(xO) dP|V(u — uy)|?dx = 0, we take a small neighborhood
N(zo) of zp € 0N and a C* flattening map ® : (—4,0)Y NRY — QN N(z) for a
small 6 > 0 such that do ®(z1,--- ,2n) = zx and

1
—/ (zn)P|V(vo ®)2dx < / d°|\Vo|*dzx
2 (=8,8)NnRY QNN (z0)
= 2/ (z3)°|V (v 0 ®)[*da,
(=6,0)NNRY
where v € W;Z (©). Thus it suffices to show that

lim (xn)?|V(uo ®) — V(uy, o ®)*dz = 0.

n—roo
(—6,86)NNRY
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Since up (®(z)) = u(®(x))p(nd(®(x))) = u(®(z))p(nzy), we see from the domi-
nated convergence theorem that

lim
n— 00 N
(=6,6)NNRY

0 0 2
ﬂ J—
) ’axi“(@(x)) dz; " |
For ¢ = N, we see that
0 0 2
ﬂ e _
/(6,6)1\’me (=) laxNu((I)(x)) 5$Nu"((p(l’))’ dx
5|9 2
:/ (o3)° [ 5—u(@(2))(1 — plnz)| do
(=8,6)NNRY orn

< 2/ B u(®(x
(_575)NQRN }3131\; ( ))

2 / n2(y)? (u(®(2)))2(¢ (na ) ?de.
(=6,6)NRY

‘2(1 — p(nay))’dx

We see from the dominated convergence theorem that
lim ‘ (1 — p(nzy))?dr = 0.

oo (—6,5)NO]RN

From (@), 8 < 1, Lemma 2IJ(ii) and the dominated convergence theorem, we see
that for some constant C; > 0,

/ n2(n) (u(®(2))) (¢ ()
(—6,6)N RY

sl . [ e 0w ) P

2n" ] 2
“ Il ——u(®(x))| deydz’ — 0 :
< 1—5 sl /0 (zn) ‘6$Nu( (2))| deydx’ =0 asn — o0

Thus, ||up — tlla,s — 0 as n — oco. This proves W, g(Q) C Wy o,(Q2) for a > 1
and 8 < 1. O

Lemma 2.3. Let 6 € (0,1) and (o, ) € {(a,b) | a<b, a+b<2}U{(a,d) | a >
1, a+b<2, (a,b) # (1,1)}. Forv € C1((0,6]) satisfying f06 r~%%dxr < oo and
f05 2P|v'|2dx < oo, it holds that

(5_04)2 ° —a, 2 ° B, I\2 B -« Bz 9
(7) T/Ox vdxg/ox(v)dx—l—Té v=(9).

Proof. Let v € C1((0,0)) satisfying f(f r~%?dr < oo and f(f 2P|v'|?dxr < oo. Note
that

) _ N g —a)? — s
/ (J:gv’—l— fa r2 ) dx —/ 2P (v') + (B-a) %% + b L2 vl da
o ; 16 2
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and for any small £ > 0,

é
/a: = ov'de =
€
ﬂa22 LB
— d (
/ x+2

First, we assume that (a, 8) € {(a,b) | a < b, a+b < 2}. Then, since § € (0, 1),
if (o, B8) € {(a,b) | a <b, a+b <2}, it follows that

— 8 —a — 2 8 —a— — —a
52a/0xﬂ2vv'dx§—w/ox EY B4a = v%(6)

Then, combining [8) and (I0), we get [@).
Next, we assume that (o, 8) € {(a,b) |a > 1, a+b <2, (a,b) # (1,1)}. Since
a > B, we see that for 0 < z <y < 1,

v*(y) — v* (@) —/: (UQ(t))/dt§2</y—2dt)%(/:ta(v/)2dt>%

<o ["Za) ([ t;wdt)z

Then we see that lim,_,o v(x) exists. Since f05 ™ v2dx < 0o, we see that lim, _, v(x)
= 0. Then, from this and (@), we see that for 6 € (0,1), a > 1 and a + 5 < 2,

— 8 —a — 2 8 —a—2 — —a
6 @ / xﬁTm}/de — _M/ xﬁ 2 'Uzdx + ﬁ o 5%1}2(6)
0 0

L\:>|>—l

(9)

(10)

2 8 4

_ N2 0 _ .
S—w/o x_avzdx+¥67v2(5).

Combining () and (), we get (). O

Proposition 2.4. Let Q be a bounded C?-domain in RN. Then we have

(11)

>0 if(a,f) € {(ab) | atb<2,b< 1},

HOWB(Q){:O ’Lf(Oé7ﬁ)€R2\{(a7b) |a+b§2,b<1}

Proof. We first prove that H, g(2) > 0 for (o, ) € {(a,b) | a+b < 2,b < 1}.
We claim that Hy2-4(2) > 0 for @ > 1. In fact, by (8) and (1), we see that for
a+B=2,8<1andve C(0,1)) vanishing in a neighborhood of 0,

1— 2 6 §
ﬂ/ xfo‘v2dx§/ 227 () d,
4 0 0

where ¢ € (0,1). This and ({) imply that for small § > 0, there exists a constant
Ci > 0 such that for any u € C§°(Q2),

(12) /Q d*>=%(x)|Vul*dx > C’l/ |u(x)|?d~* (x)dx.

Qs
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We take ¢ € C5°(£2) such that ¢ € [0,1], ¢(z) =1 for z € Q\ Qs and ¢(x) = 0 for
x € (s/2. By the Poincaré inequality and the fact that

0< inf d(z)< sup d(z) < oo,
€\ Qs /2 €N\ Qs /2

there exists a constant Co > 0 such that for any w € C§°(2\ Q5/2),

(13) /Qd2’a(x)|Vw|2dx > CQ/Q |w|?d~%(x)dz.

Thus, we see from ([2) and ([I3]) that for any u € C§°(Q),

| @) Pae @
<2/|¢ (a:)dx+2/m

2a 2 2—a 2
Sa/d !V (=) do+ o [ @IV Pas

4
< = | T @)(Vul’ + VY u?)de + C_/ 4= (@)(|Vul® + [Vy[u®)do
2 .JQ

Qs

(1 —(x))u(z)| d*(z)dx

’ 2

< C/ d*>=*(x)|Vul?dz + C | d~*(x)u’dz,
Q Qs

where C' is a positive constant depending only on C7,Cy, max,cq d(x), | VY| L.
Combining the above inequality and ([I2]), we see that for some constant C' > 0,
/|u J[2d— d;v<C/d2 @)\ VuPdr,  ueCR(Q).

This shows that H, g(2) > 0 for o+ 8 =2 and 8 < 1. On the other hand, for any
a,B €R witha+ 3 < 2and 8 <1, we can find o > «a such that o/ + 8 = 2. Since

/ Ju(z)|>d=(z)dx < maxdo‘ —( / lu(z)[2d~ (x)dx

and  is bounded, we see that for some C' > 0, Hy g(2) > CHqy g(€2) > 0. Thus,
we prove the claim that H, g(2) >0 fora+ <2 and 8 < 1.

Next, we claim that H, (2) = 0 for (o, 8) € R*\ {(a,b) | a+b < 2,b < 1}.
Then we consider two cases: (i) 8 > 1,a < 1 and (ii) o + 8 > 2. In the case
B>1,a<1,for o >0, we define

d@)\7
w(z) = ( 5 ) if d(z) <4,
1 if d(z) > 6.
Then we see from (B) that
258—1 if 1
/ d’B($)|Vw|2dx _ 025—20/ dﬁ.;.za_z(x)dx < Chio°6 1 /8 >1,
@ Qs Cio if 6=1,

ngl_a fa<l1

/ d_‘)‘(x)dex > (5_2‘7/ d_o‘+2"(x)dx > . ) ’
Q Qs Cyo if =1,
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where C1,Cs > 0 are constants independent of ¢ > 0. Thus, there exists C > 0
such that for small o > 0,

Jod°(z) \Vw|2dx
Jod=(x)w?dx — o

Ha”@(ﬂ) <

which implies that H, g(Q2) =0if o <1 and g > 1.

In the case o + 3 > 2, we define W, (z) = ¢(nd(z)) for a nonnegative ¢ €
C§°((0,6))\{0}. Using (@), we see that for some constants C3, Cy > 0, independent
of n,

/Q 48 ()| VW 2dz < n? /Q dﬁ(x)(d(nd(x))) da

< C3n? /6 tP (¢'(nt))2dt = Cyn'=F /5 tP (¢’(t))2dt
0 0

and

/Q d=(z)W2dz > Cy /O 5t‘°‘(¢(nt))2dt — ool /0 ' t—a(¢(t))2dt.

Then, we see that as n — oo,

dP ()| VW, |2d ¢')2dt
Jo | *dx CC412aﬂfO 0.

Jo =2 () Wiida S t=e(o(1))2dt

This proves that Hy 3(€2) = 0 when o+ > 2, and thus, we complete the proof. O

Proposition 2.5. For a+ <2, 2a+ 8>3, (o, ) # (1,1), we have H, () =
Lo s(Q).

Proof. Assume that a+ 8 < 2, 2a+ 8 > 3, (o, 8) # (1,1). In this case, we have
a>1and B < 1. Clearly, by Proposition 2.2} H, g(2) < L, s(€2). To prove the re-
verse inequality Hy () > L, 5(£2), we choose a minimizing sequence {u,, }59_; C
C§°(Q) of Ha, 5(€2) such that [, d=*(z)u2,dz=1and [, d°(z)|Vu,|*dz — Ha ()
as m — oo. We find a function ¢ € C’l( ) such that p(t) =0fort < 1land p(t) =1

for ¢ > 2. Define wy, m () = U, (:E)gp(nd(x)) and

fQ d=%(x)up, mdx

fd1+n"+2()dx

,a+1_;/i

daflJrn

Wnm = Un,m + Cnym (:E) with Cnom = —

Note that [, d~ )wn mdx = 0, and it is easy to check wnm € W (Q) since
“1<a-2+2n""%" and -1 < B+ 2a — 4 + 2n~°+"3". Then, by the same
argument with the proof of Proposition [Z2] we see that ||ty m — Um e,z — 0 as
n — 0o. Moreover, it follows from the boundedness of { [, d°(z)|Vuy,|*dz},, that
Jo d°(2)| Vit m|*dz < C with C > 0 is a constant independent of m,n. We see
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from Lemma 2.1{i) and (B) that for some Cy, Cy, independent of m,n,

[ @tz = [ d @ude+ [ d @i
Q Q5\Q1/n Q\Qs

5
§C1(1+/ t—a+#dt)
n-1

{02(1+na+‘32“‘) if 20+ 8 — 3 > 0,

<
~ | Ca(1 +logn) if2a+6—-3=0.

Then, since for some Cj5, Cy, independent of m, n,

_ 4 _
—1+n_a+¥ —1+n_a+% at+8-1
d (z)dx > Cs t dt > Cun z
Q 0

it follows that for large n > 0,
len,m| < CgC’[ln_l log n.

Now, we see that

(on,m)2/ﬂdﬁ‘v(d Ln =t )

2 1-8)2 2 dqon—ottgt
:cn)m(oz—l—l—n_owr 2 ) dPetp-dtin dz
Q

2
dx

C5Cnm ( (logn) ) if 2a+p8 -3 >0,
Cs(cnm)’n O( Llogn) ) if 2a+8—-3=0.
and

—at+lzB
(Cn,m)2/ Jo—2+2n += < CG(Cn,m)z _ O(n”(logn)z),
Q

where C5, Cg are positive constants independent of m, n. Therefore, from these, we

see that

Las(Q) < Jod°(x |an\2da: fQ d’(a |vun m[*dz + o(1) fQ d’(x ‘VU *da
P = Jod=(x)widx Jod= mdz +o(1) Jo d=(x)u2,dx

as n — oo. Lastly, lettmg m — 0o, we get Laﬁg(ﬂ) < H, 3(9). a

Lemma 2.6. There exzists a sequence {u,}n C C3(Q) such that

)| Vg |*d
/ dil(z)und‘f =0, lim M _
Q n— o0 de 2)uldx

Proof. By a scaling, we may assume d(z) < 1. We find a function ¢ € C*(R) such
1 ift>2

that ¢(t) = 0 it - 1’ and define

n(2) = $(nd(2)) <| In(d(x))] 7 + ) ,

Jod (@) In(d(x))| "2 p(nd(w))dx
Jo d ! (z)p(nd(x))dz '

where ¢, =
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Then we have [, d~!(z)updz = 0. Using (G)), we see that
[ 47 @) (@) (nd ) da
Q
— [ @) ond()ds + 0)
Qs—Qy/n
§
< Cl/ t7YInt|~Y2dt + O(1) = 201 (Inn) /2 + O(1)

and

do
d~(z)dx > 02/ t=tdt > Colnn + O(1).

2n—1

(@) (nd(z))dz > /

Q 25\,

Then, it follows that

Jo @~ @) n(d(2))| "' 2g(nd(z))dz _ 2C1(Inn)"/* + O(1)
Jo d=H(x)p(nd(x))dx ~—  Cylnn+0(1)

el = < Cy(lnn) ™72,

where C7, Cy and Cj are positive constants, independent of large n > 0. Now, using
) again, we see that for some positive constants Cy, Cs and Cg, independent of
large n > 0,

/Q d(2)|Vun | dz
<2 [ wiate) (o' nd(e))’ (1) 2 )

+ %d_l(ﬂcW(nd(ﬂs))l In(d(x))|~*dz

<0y [/Q nzd(x)(\ In(d(z))| ! + ci)da: +/
§

|1n<d<x>>-3d-1<x>dx]
Q\Q, 1

2n71
<Cs [/ n2t(| Int|~' + ci)dt +/ |Int| 3t 1dt + 0(1)] =0(1)

O n71

2n—1

and

/ A~ (@) (un)?dz = | ¢*(nd(x))d™" (z) <| In(d(x))| ™" + ¢; + 2¢n] ln(d(x))|1/2>
Q Q
> CgIn((Inn)) + O(1).

Ja d(z)|Vun|?ds

i = 0 and completes the proof. (Il
Q n

This implies that lim,,

Lemma 2.7. Let o + 3 > 2. Then there ezists a sequence {uy}, C CL(Q) such
that

dP Vu,|?d
/d‘“(m)und:ﬂzo, lim Jo @ (@)|Vun[*dz =
Q n— oo fQ d—a(;v)u%dx
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Proof. We find nonnegative functions ¢1,¢2 € C§(R) such that ¢1(t) =

1 ifte(2,3)] [1 ittes,6),
{o it e R\ [L,4] E‘md@(t)_{o it e R\ [4,7).

- Jod™(x)¢n (nd(w))d:ﬂ

fQ d=—(x)pa (nd(:c))dx
Then we have [, d™*(z)u,dz = 0. We see from ({) that

Then we define

un(z) = ¢1(nd(z)) + cpp2(nd(z)), where ¢, =

Q

5o 0o
d= (@)1 (nd(z) )z < €y /0 1= (nt)dt = Cyno— /O 1= (1)t

and

do 0o
d’o‘(x)qbg(nd(x))dx > O, /O %o (nt)dt = Con®~! / o (1)dL.

Q 0

These estimations imply that

Jad* @ (nd(x)) dr < Ci [y t o (t)dt
Jod o (2)¢2 (nd(x))dx T Co [Tt a(t)dt’

len| =

where C7 and Cy are positive constants, independent of n. For large n > 0, using
@), we see that

| @i =nt [ @) <(¢a (nd(x))) "+ (¢;<nd<x>>)2)dx

< Cyn? /05 6 ((¢’1(nt))2 + (¢’2(nt))2) dt
— Cynt~? /0 T ((<z>’1<t))2 + (¢é(t>)2>dt

and

/Q d=°(z)ulde = /Q d*a(x)(gzyl(nd(x))fdx o /O 5t*°‘<¢1(nt))2dt

= Cyn! /OOO e (¢1(t))2dt,

where C'5 and Cy are positive constants. Thus, from these estimates and the as-

fQ dﬁ(m)|Vun\2dx —0. 0

sumption a + 8 > 2, we conclude that lim,, T (oulds

Lemma 2.8. Let (o, 3) € R? and Q be a bounded C?-domain. Let {r,,}5°_, be
a sequence such that rp, L 0 as m — oo and {x € Q | d(z) > ro} # 0. Then for
a,b € R and a sequence ., satisfying w,, — 0 in WiZ(Q) as m — oo, we can find

a sequence {m;}2, of positive integers such that m; < mg < --- and
(14) / d“(x)|um,i|d:z:,/ db(x)ufnidx < min{l/2, (r;—1 — TZ‘)Q},
QW Q®

where QW) = {x € Q| d(z) > r;}.
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Proof. Let a,b € R and u,, be a sequence satisfying u,, — 0 in Walé (©2) as m — oo.
Note that

/ Uppy + [Vt [da < Cl/ d=u?, + d° |V, |*dz < Cs,
Szl gl/

where Q' cC Q and C1,Cy > 0 are constants independent of m. Then, by the

Rellich-Kondrachov theorem, we deduce that u,, — 0 in L2 _(Q) as m — oo, up to

a subsequence. Since u,,, — 0 in L?(Q(?)), there is u,,, such that
da(ac)\um0|dm,/ d’(z)ud, dz < 1/2.
Q) Q)

Next, choose t,, such that [oq) d*(@)|um, |dz, [0 d°(z)u2, do < min{1/2, (ro —
r1)?} and m1 > mg. We repeat this process to define a subsequence {u,, } C {um}
fori=1,2,---, which satisfies (I4]). a
Lemma 2.9. Let (o,3) € R? and Q be a bounded C?*-domain. Let u,, be a
minimizing sequence of Lo g(Q) satisfying fQ d=“(z)u,dr = 1 and u, — u in
WiZ(Q) as m — oo, where u # 0 and [, d”*(x)udr = 0. Then u attains Ly 3(Q).

Proof. Let v,, = Uy, — u. Then v, converges weakly to 0 in Walé () as m — co.
Now we see that
(15)

Lo.s(Q) +o(1) /dﬁ )| V| dm—/dﬁ V(| Vul? +2Vu - Vo, + | Vo, [?)de

d (z)|Vul dx+/dﬁ )| Vum|2dz + o(1)
Q

and

(16) 1:/Qdfo‘(z)ufndx:/Qdfo‘(z)u2dx—|—/ﬂd7a(x)vfndx+0(1).

Since u # 0, it follows that

(17) lim sup/ d=(z)vi dr < 1.
m—oo JQ
Thus, by (I5)-[D) and the facts that [, d~*(z)udr = [, d *(z)v,dz = 0, we
obtain
Los() < Jod®(x |Vu|2dx Lo 5(Q) Jod ( Vv |2dz + o(1)
Jod=(z)udds — [qd=o(x)v2,dz + o(1)
LQB(Q fQ 2d:r—i—o( )
< — Lo 5(9) +o(1).
- 1—fQ v2da?+0(1) #() +ol)
This implies that u attains La”@(Q). |

Lemma 2.10. Let o < 1, b € [0,00), N > 2, and f € C([0,1)) satisfying
fol(l —7)27%(f)2%dr < oo and fol(l —7)7%f%dr < co. Forb> 0 and N = 2, we
assume that f(0) = 0. Then, for g(r) = (1 —r) 2 r=tf(r), it holds that
1 1 2
/ (1_r)2—arN—1(f/)2dr:/ N— 1( ) af2|:( 1 ) b(N+b—2)7‘_2(1—7“)2
0 0
N -1

+ (b -(1-a) )’I"_l(l — T)} + rNT2=L ) (g 2dr



THE LEGENDRE-HARDY INEQUALITY ON BOUNDED DOMAINS 223

Proof By the arguments in Proposition and the assumptions that
fo “(f")2dr < oo and fo —7)"*f2dr < oo, we may assume that g(1) = 0.
We note that f(r) =rb(1—r)= "2 g(r),

P = (g0

2
_a 1— —a —a
B kbr’”(l—r)-—lz F gt (=) gkt g’]

—c 1— —a 2 —a 2
= (o' 1=+ ST 4 (P -0 T

e 11— N o
—}-Q(brb*l(l—T)ilT-f— 204 b(l—T) ST)T'b(l—T)ingg’

_ <b2r2(b71)(1_r)71+a+(1_a)2T2b(1_T)73+a+b(1_a)r2b71(1_r)72+a)g2
4

21 _\—1+a/ N2 W-1pq _n—l4a | L= Q op 0 oia\, 2y

+7r(1—r) (g 4+ (br (1—7) + 5" (1—r) (g%).

Moreover, by the assumption that f(0) = 0if b > 0 and N = 2, we see that for
be[0,00) and N > 2,

1 1
(bTN+2b—2(1 ) > arN+2b—1)g2

_ (brN’g(l _p)2a g 1 ; aqu(l _ r)koé) 2
=0.

r=0
1

r=0

Therefore, we conclude that
1
/ (1 _ 1")270‘7”N71(f/)2d’l”
0

_ ! 2 N+2b—3 (1-a) N+42b—1 -1 N42b—2) 2
= b°r (1—7")—!—Tr 1-r)""+b1—-a)r g
0
1 ; arN+2b—1) (92)/ + 'I”N+2b_1(1 _ r)(g’)zdr

+ (brN+2b—2(1 —r)+
_ ! 2 N+2b—3 (1- a)z N+2b—1 -1 N+42b—2
= br (1—7’)+T7’ 1-7r)"4+bd1-a)r

0

1_
-—a (N +2b— 1)pN+20=2) g2

— (N + 25— 2RI =) 4 N2

+ ’I“N+2b_1(1 _ r)(g’)zdr

- /1 PN (] g2 [7(1 _40‘)2 — (N +b—2)r (1 —7)?
0

+ (b -(1- a)N — 1)7"_1(1 - T)} + rN+2b_1(1 —r)(g')%dr

2

1
:/ N=1(1 ) aﬂ[( —a) —b(N +b—2)r 21 —r)?
0 4

+ (b —(1- a)%)r‘l(l - 7’)} + PN — ) (¢)2dr, O
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3. PROOFS OF MAIN RESULTS FOR SUBCRITICAL CASES

3.1. Proof of Theorem [I.Jl By Lemmal[Z6land Lemma27 if a, 8 € {(a,b) | a+
b>2}U{(1,1)}, we have L, g(2) = 0. Thus it suffices to prove that for a + 3 < 2

and (a, 8) # (1,1),
(18) Lo g(2) > 0.

Ifa<l,a+B <2and a > B, we can take 8’ € R satisfying a+4' <2,8 > a > f.
Then, if L, 5 (2) > 0, we see that

Laﬂ/(ﬂ)/d_”‘(;ﬂ)uzdfcg/dﬁl(x)|Vu|2dx§C’/dﬁ(x)|Vu|2dx,
Q Q Q

where C' = max{d? ~#(z) | 2 € Q} < oo. This implies that for « < 1,a + 3 < 2
and o > 3, Lo g > 01if Ly g(2) >0 for a + 3 <2, > a > . Thus it suffices to
show that L, s > 0 when

(a, B) € {(a,b) |a+b<2, a<blU{(a,b) |a>1,a+b<2,a=0+#1}.

First, take any (o, ) € {(a,b) | a>1,a+b<2,a=b+# 1} and u € W;Z(Q)
By Proposition 2:2] we may assume that v € C5°(£2). We see from Lemma 23] that
fora>1,a+B8<2,a=08+#1and v € C'((0,1)) vanishing in a neighborhood of

0,
)2 é )
M/ x_‘)‘v2dx§/ 2P (v')%dz.

This and (@) imply that for small 6 > 0, there exists a constant Cy > 0 such that
for any u € C§°(Q),

(19) / d?(z)|Vul*dz > él/ lu(z)[2d=%(x)dz.

Qs Qs
We take ¢ € C5°(£2) such that ¢ € [0,1], ¢(z) =1 for z € Q\ Qs and ¢(x) = 0 for
x € Qs/2. Since

(20) 0< inf d(x)< sup d(z) < oo,
EGQ\Q(;/Q er\Qa/z

there exists a constant Cy > 0 such that for any u € C§°(Q \ Qs/2),
(21) /dﬁ(x)\vu|2dx > 02/ lu(x)|2d=%(x)dx.
Q Q

Now, we see from ([9) and (2I)) that for any u € C§°(Q),
[ )P )ds
Q

< 2/Q |¢(z)u(x)|?d=*(z)ds + 2/ (1 - 1/)(:17))u(x) d"%(z)dx

‘ 2

2 ? - ’ 2 B 2
<g | @ —vufas o [ P@wnte

i A 2 242 i B 2 2 9
<& [ @OV e+ 2 [ P00 + Do)

SC’/ dﬁ(x)|Vu|2dx+C'/ d=°(z)u’dz,
Q Qs
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where C is a positive constant depending only on 6, C1, Cs, IV Loo. Combining
the above inequality and (I9), we see that for (o, 8) € {(a,b) |a > 1,a+b<2,a =
b#1} .

/ lu(z)[2d=(z)dx < C/ B ()| Vul?de, u e Ce(Q),

where C' > 0 is a constant; thus L, g > 0.
Next, take any (o, 8) € {(a,b) | a +b < 2, a < b}. We note that in this case,
a < 1. Take any function u € C1(Q) satisfying

/ dB( )|Vu|2d:§ < 00 / 2d:10 < oo and / d=*(x)udr = 0.

Q
For any small ¢ € (0, o), it follows from the Poincaré-Wirtinger inequality and (20])
that for a constant C, which depends only on N and 2\ s,

/Q\m (“ - /Q\m di“(’v’)dZ)fl /S - da(z)u(z)d2>2da(as)da;

<C |Vu|*dz.
o\Qs

Then we see that

(22) /Q\Q_ d=%(x)u’dx

2
< Cy max{6~" 1}/ z)|Vul2dz + Oy (/ d_a(:v)udx> ,
o\or

where C7,C5 > 0 are independent of u. Since fQ (z)udxz = 0, we see that for
some (s, independent of § > 0 and u,

(/Q\Q_S d_‘)‘(x)udx)2 = (— /Qé d_a(sr)udx)2

§/ d*a(x)u2dx/ d*a(x)dnggélfa/ d=(z)u’dz.
Qs Qs Qs

Then, it follows from this estimate and ([22]) that

(23) /Q\Q d=%(x)u’dx

< Cymax{6 7,1} d?(2)|Vul?dx + CoC36' / d=(z)u?dz.
O\Qs Qs

Thus, we deduce that for small § > 0,

/d_a(x)u2dx:/ d_a(x)u2dx+/ d=(z)u’dx
Q 9\95 Qs

<y max{éfﬁ,l}/ d? ()| Vu|?dx + 2/ d=(z)u?dz.
Q Qs

Now, for the completion of the proof, it suffices to show that for small § > 0,

(24) /Q d™*(z)uldr < Cy /Q d? ()| Vu|?dz
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for some constant Cy > 0, independent of u. By Lemma 23] and (H]), we see that
for some C5,Cg > 0 independent of v and 9,

5 5
/ d~*(z)udr = / / t~u dodt < Cs / / t~u*(t, o)dodt
N oN

(25) < _a 05 / /mtﬁ dodt—i—%/@ﬂuz(&@da}

§C6(/Qd (2)|Vul2da + 5°7° /mu (6.0)do).

Note that for some C7 > 0, independent of v and small § > 0,

(26) / u?(8,0)do < C7/ u’dos,
a0

Zs

and by the trace inequality, there exists a constant C’, independent of small § > 0
such that for small § > 0,

/ u?dos < C |Vu|? + u?dx
s Q\Q_5

(27) <C < max{6 ", (diam(Q)) "} d°(z)|Vu|*dx
Q\0s
+ max{d%, (diam(2))*} d_a(x)u2d:1c>.
o\
By ([23) and (25)-(21), we see that for small § > 0,

/ d=%(x)uldx
Qs

< Co((1 4671 max{1,57)) / i ()| Vul2de
Q

+ 677 max{6°, (diam(Q))*} d*a(x)@ﬂdx)
N
1
< Cg/ d?(2)|Vul?dx + = d=(z)u?dz,
Q 2 Jas

where Cg, Cy = Cy(d) > 0 are independent of u, which implies (24]). This completes
the proof.

3.2. Proof of Theorem We first prove the second result (2). We assume
that a4+ 8 < 2, 2a+ 5 > 3, (o, 8) # (1,1). By Proposition[ZH] L, () = Ha 5(02)
in this case. Suppose that there exists a minimizer u, g of L, g(2) such that
Jod=*(z)ul gdz = 1. By Proposition 23] we deduce that |ua,g| is also a minimizer
of Hy (). Then, we see from the strong maximum principle that |uq g| > 0 in
Q. This contradicts that [, d~*(x)uq,gdz = 0. Thus, L, () is not achieved for
(o, )6{(ab)|a—|—b§22a+b23a7b751}

Next, we prove the first result (1). We assume («, ) € {(a,b) | a +b < 2,
2a + b < 3}. Let {u, }5_; € C1(Q) be a minimizing sequence of L, () with

/d_a(x)umdacz(), /d_a(x)u?ndaszl and lim A% (2)|Vum|*dr = Lo, 5(Q).
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Taking a subsequence if it is necessary, we may assume that as m — 00, up
. 1,2
converges weakly to u in W, 5(02).
Suppose that u = 0. Let {r,,}>°_, be a sequence such that rq is sufficiently small
and r,,, | 0 as m — oo. Then, taking a subsequence of {u;} if it is necessary, we
see from Lemma 2.8 that {u,} satisfies

(28) d=%(x)|u;|de < min{1/2, (r;_1 —r;)*} and
Q)

(29) / dﬂ(x)u%d:c,/ d=(z)udr < min{1/2, (ri_y —r;)*},
Q@) Q@

where Q) = {z € Q | d(z) > ri}. For each m > 1, we define ¢, € C*(Q) such
that [V, | < 2(rm—1 —rm) "

1 ifzeQ\Qom,
%(x)_{o if 2 € Qm=1).

Then, by ([28) and the assumption [, d~ )umd:t = 0, we have

(30) ’/ um¢mda: - ‘/ ¢m)da:‘ =0

1 ift>
as m — oo. For § € (0,d), define ¢ € C1(R) such that ¢(t) = {0 ifi ; 27/2 an
bm -+ Cmt(d()) with ot “m¢mdm
Um = UmPm Cm T)) wl Cm =
fsz ( ))dx
Note that for large m, supp(tm, ¢m )N supp(v(d =0, fQ x)vpmdr = 0, and

from @B0), |¢;n| — 0 as m — co. We take a small L > 0 so that a—l—ﬁ—l—L < 2. Then,
by ([29), there exists a constant C > 0, independent of m, such that

d?H(z)| Vo, |dx—/d5+L <|V(um¢m)|2+c (w (d(m))>2)da:

Q

smﬂxéwww%wWM+@/

5\ Qs /2

(31) a7+ (@) (v'(dl2)) b

< 2(rm,1)L/Qd6(a?)u?n|V¢m|2da:+2(7‘m,1)L/Qd5(x)|Vum|2¢?ndx+o(1)

< C(Tm—l)L + 0(1)
as m — oco. Note that, by 29)), for each m > 1,

32) [ do@)tde > [ do @) (umdm)2ds > / 4o (2)ul,dz > 1/2.

Q Q Q\Q(m)
Thus, by 31), (32) and the property fQ x)vmdx = 0, we see that for large
m > 1,

B L V| ?dx
f }l ; )‘Vv2md|xd Sz(c(rm—l)L—i_o(l))'
Q

This is a contradiction to the fact that L g4,(€2) > 0. Thus we see that u # 0.
Now we claim that [, d™*(z)udz = 0. If a < 1, since u,, converges weakly to

La7B+L(Q) >

u in Wi;(Q) as m — oo and any constant functions are in Wi;(ﬂ), it follows
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that fQ (x)ude = 0. If & > 1 and 2a + 8 < 3, by Proposition 2.2, we may
assume that u,, € C§°(2). As before, we find a function ¢ € C*(R, [0, 1]) such that

1 ift>4
P(t) = {0 ;ft ; (57/2 and write Uy, = U 1 +Um, 2, Where uy, 1 = um(l—w(d(:c)))

and U2 = Uy (d(z)). Since Y od € WQIZ(Q) and u,, converges weakly to u in
W;;(Q) as m — 0o, we see that

m—o0

(33) lim d™%(x)um, 2dx = / d=%(x)up(d(x))dx
Q Q
Since 8 < 1, we see from Lemma [2.I]ii) that
| @V unaPdo < [ P @[Vl + d ()i, (@) de < O,
Q Q

where C7 > 0 is a constant independent of m. Now, since
t

Oum 1(8,0)

Um 1 (t o) < | |l

)| < [ |2

t 12 et 1/2
< </ Sﬁvum71(570)|2d8> (/ sfﬁds) , 0 €09,
0 0

we see that for o € 01,

5 o , 2 2 55 20
£ gy 1 (, 0)|dE < BN 1 (t, 0)|2dt s

Then, we see from (B and the Cauchy inequality that for some constants Cs, C5 > 0,

5
‘/ / t_o‘|um71|datdt‘
0o Jz,
< 02/ / o1 (t, 0)|dodt
a0

02 3—2a—p3 6 ,6 2 1/2
< 0 2 / ( / t? |V 1(t, o dt) do
0BG 20— ) oo \Jy 1 Vma (8:0)]

ds

202 3—2a—-8 g 1/2
< 52 |00 1/2</ / 2\ Vuma(t, o 2dtdo)
G-gs—aa—p g )y TVt
203 3—2a—-8 1/2
< 5= |oQ|!/? /dﬁ Vit 1|*d
ST p TNl
1/2
S 203(01) / 3 2"‘ B‘aQ'l/Q
(1-p8)1/2(3—2a - 5)
This and (B3) imply that lim, o [o, d™*(@)umdz = [, d”*(z)udz = 0. Thus, by
Lemma 29 we see that u attalns L, B(Q) The above estlmate 1mphes that for
any u € W; )y Jod~ x)dz is well-defined and a functional u € W (Q) —

Jod *(z)u(zx )d:c is dlfferentlable
We denote the minimizer u by us,3. We may assume that [, d=*(x)(uq,g)*de =
1. Then, there are Lagrange multipliers A, 4 € R such that

—div(d? (2)Va,p) = M~ (2)uq. 5 + pd~*(x) in Q.
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Since

/dﬁ($)|Vua’5|2d:v:)\/ d‘”‘(w)(uayg)zdx—i—u/ d=%(2)uqg,pdx
Q ) Q
= A/ d™(z)(ua,p)’de = A,
Q

it follows that A = L, g(€2). For a < 1, a constant function 1g(z) =1 on Q is in
W,'5(€). This implies that

0=X[ d%)uapdr+p | d%x)de=p [ d”%(z)dz.
Q Q Q

Then, we get that py=0and A =L, g(Q) ifa<1l. O

4. PROOF OF MAIN RESULTS FOR CRITICAL CASES

In this section, we study whether or not there exists a minimizer of

Jo @ %(2)|Vul*da
Jo lul?d=e(z)dx

Losal®) = inf { we W (@)\ {0}, / ud = (2)dz = 0},
Q

where @ < 1. We give some criteria for the (non-)attainability of the optimal
constant Ly 2—(€2) when Q is the unit ball, an ellipse or an annulus. Moreover,
we prove that the attainability of Ly 2—q(€2) depends on a local geometry of a
domain 2.

4.1. Proof of Theorem [I.3l We first prove that for & < 1, Ly 2-4(22) < (174'1)2.
Assume N > 1. For small § > 0 and m > 1, we define

u(z) = {“Og(d(x)/ DI i d(z) <
0 if d(z) > 6.

Since |Vu(z)| = m|log(d(z)/§)|™* |d(1m)\’ using a change of variables —log(¢/6) = s

and the fact that fooo s%e b ds = b1 (14a) with b > 0 and a@ > —1, we see that
for some constant ¢ > 0, independent of small § > 0

5
/ d?*a(x)\w?dxgm2(1+ca)|am/ = log(t/0) ™24t
Q5 0

=m?25 (1 + ¢6)]09| / g2m=2e=(1=a)s g
0

= m25 (1 + ¢6)|09Q|(1 — @) 72T (2m — 1),

s
/ d=(z)ulde > (1 — 06)|BQ|/ t=| log(t/8)|*™dt
Qs 0

=0t (1 - 65)|8Q|/ §¥me~ (1= g
0

=071 = ¢0)|0Q(1 — ) 2T (2m + 1)
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and

([ ae@uie)” < oo (0 copony /05”' os(t/o)"at)

§20=) (1 4 ¢6)20Q)? / [ 2
_ m,—(l—a)s
] (/0 s™e ds)

520-0)(1 4 c5)2|902 ) 2
< _ —1l—m
e R ITe] (1= mrem 1))

_ 0+ ed)?00]

—2-2m 2
Hence, it follows that
Jo ()2|VU\2dw
Laj2-a(2) <
2-a(S) Jo d=(z)uldx — IQ\ (Jg d=o(x)udx)?
< m2§t- “(1+c5)|aQ|(1fa)1*2mr(2m71)

0o (1-e0)|oQ|(1—a) 12 (2m 1) — SRR (1 —a) <22 (D(m4- 1))
(1 —a)?(1 + cd)

2m(2m—1) (1—a)=15—*(14cs)2 (I'(m+1))2
(1—cd)=— - 1=c3) mIF(@m-1)
_ (1-0a)?
- ) a 6 (P(m))2 -~
1+Z§ (4 - _) (1 - CY) 16~ iJthS F((Z(m))l)

Since
(Cm)? _ (m=1)m=2)- ()1
rem-1 (2m-2)2m—3)---(m+1)m
letting m — oo and then § — 0 in the above inequality, we get the inequality
2
La,2fa(Q) S %-
Next, we prove that if L, 24 (9) < (11‘1)2 s La2—a(Q) is achieved, where v < 1.
Let {un,}5o_, € CH(Q) be a minimizing sequence of Ly 2 (£2) with

/ d=%(x)u? dx = 1,/ d=%(x)umdz =0
Q Q
and lim d?=(2)|Vum|[?dz = Laz—a(Q).

m—r oo O

<21"™ 50 as m — oo,

Taking a subsequence if it is necessary, we may assume that as m — 00, Up,
converges weakly to some v in I/VO(’2 o ().

Suppose that u = 0. Then, by Lemmam taking a subsequence if it is necessary,
we may assume that u; satisfies

d_a(ac)u?dx < min{1/2, (r;—1 — 7"1')2}7
0)

where Q) = {z € Q | d(z) > r;} and {r,,}>°_, is a sequence such that r,, | 0
as m — oo. For each m > 1, we define ¢, € C1(£,]0,1]) such that |V¢,,| <

2(rm_1 — 7m) "t and
1 ifzeQ\Qm
Om(¥) = {0 if 2 € Q=1



THE LEGENDRE-HARDY INEQUALITY ON BOUNDED DOMAINS 231

Then we have

/ d2ia($)|vum|2d$ = / dzia(x”v(umd)m) + (1 - (bm)vum - uvnv¢m|2dx
Q Q
— [ @) 9 n ) + (1= 6V + 2T
Q
+ 2(1_¢m)v(um¢m) : vum_2umv(um¢m) : V(bm_zum(l_(bm)vum -V, |dx

> /Q 0 @) |V () = 2 (o) - Vo] i

From this, Lemma 23] and the fact that

/ d27°‘(z)ufn|v¢m\2daz < 47‘7271_1(7‘,”_1 - rm)fz/ dfa(z)ufndaj < 41"3n_1,
Q Q

m

we see that for some ¢ > 0,

[ @I unPdr > [ @IV o) Pdr + o)
Q Q
:/ d>7(2) |V (o )| d + o(1)
Q\Qm-1)

et 2—« d 2
> (1_crm_1)/m/0 ¢ (%(um%)) dtdo + o(1)

(1_04)2 e —o 2
T(l—c?“mA) /89/0 ™ (U ) “dtdo + o(1)
(1_a)2(1_07“m71)
B 4(1+Crm—1)

_ (1—a)?(1 —erm_1) . .
= T rany) [t @ wmén) de+ofl).

Since [, d™*(x)umdz =0, [,d"*(x)ud,dz =1 and [, d~*(x)u,dz = o(1), we
deduce that

v

/ 4= () (o) 2 + o(1)
Q\Q0m -1

1— 2
Lao ol = lim [ & °(@)|Vup?de > %7

m— o0 Q

2
which is a contradiction to the assumption L, 2o (92) < %.

Now, it holds that u # 0. Thus, by Lemma[29] we see that u attains Ly 2— ().
(Il

To prove Theorem [[4] we prepare some geometric results of a domain 2. For a
bounded C2-domain Q2 C R, let x(yo) = (k1(%0),- -+ , kn—1(y0)) be the principal
curvatures with respect to the outward unit normal of 92 at yo. Then the mean
curvature of 9Q at yo is given by H(yo) = w5 Zf\gl ki(yo). We adopt the con-
vention that a standard unit sphere SNV~ € RY has mean curvature 1 everywhere.
Let G C Q be the largest open subset of 2 such that for every = in G there is a
unique nearest point 2’ € 92 with d(x) = |z — 2’|. We call G the good set of Q
and Q\ G a singular set. We denote S = Q\ G. By [10, Lemma 3.8], there exists
a C'-domain Q. C Q such that Q\ Q. C G, U;>o(2\ Q) = G and v, - Vd > 0 on
09, where v, is the unit inner normal of the boundary of 99.. [10, Lemma 2.3
implies that the distance function d is in C%(G) if 9Q € C? and [10, Corollary 3.2
(see also [I1]) implies that the measure of S is 0. Thus, d € W1°(Q).
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4.2. Proof of Theorem [I.4. We assume that €2 is a weakly mean convex C?2-
domain in RY. We note that if 2 is a weakly mean convex C?-domain in R¥, it
follows from [I0, Theorem 1.7] that Ad < 0 in G. For each a < 1, we take p, € R
such that

Jo d= %z dx

bo = d%dw

Then {|pa|}a is bounded uniformly in o < 1. We define u, = (71 + po)d? and
Vo = d 2" ()t = (21 + pa)d?. Then we see that

/ d™%(x)uqdx = 0, / d~*(z)uide = / (21 + pa)?dz < oo,
Q Q

Q
2
/ d*=(@)|Vue|*dz = / a_(xl +pa)’ + (1 - g)dz(x)da: < o0.
Q o 4 2
Thus, us € W;Z(Q) and fQ d~%*(x)uqdx = 0. Then, since v, = 0 0on 0N, v.-Vd > 0
on 0f2. and
d*>~(z)|Vug|?

o — 2

2
1— 2
= d**(x) (%d“?’(x)lwl%i +d* 7 (@) Vv

1 a—1 a—1
d T YVd)v, +d = (2)Vva

= ()|

—(1—a)d* ?(z)vaVd - Vv(y>

1—a)? 1—

= %d_l(x)wdfvi +d|Vva|? — To‘w -V (v2)
1— 2

= %d_a(x)ui +d| Vo, |* —

1

3 CVd-V(?) in G,

we see that

(o3

2
| & @IVl - U=l ey de
Q 4
- / AVoal? - 120Va. v(02)dz
Q 2

(34) = / d|Vv,|[2dx + 1—a (/ (Ad)vidz — / vd - V(vi)daj)
Q 2 Qe

S €
11—« od
2 Q. 8V€

g/ d|Vva|*dz + 1_0‘(/ (Ad)vgdx—/ w-V(vg)dx),
Q 2 ONQ. Qe

where v, is the unit inner normal of the boundary of 0). Since {|pa|}o is bounded
uniformly in @ < 1 and

2
vodoe

9 o

N | —

1
/ d|Vvg |2 dx = / (21 + pa)? +d* + (21 + pa)
Q o4

_ 1 2 1 2
_/94(331—|—pa) + dd,
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we see that

(35) { / d\Vva\zd:r} is bounded.
Q a<l
An estimate [10, Corollary 2.7] says that for any = € G,
H(y)
36 “Ad(z) > — )
% R L)

where y € 9 satisfying d(z) = |z — y|. Since H > 0 on 9Q and 0N is compact,
H cannot be identically zero. In fact, a classical result [I] of Alexandroff says
that any compact hypersurface in RY with a constant mean curvature should be a
sphere; thus H is positive in an open subset A of 9€). Then, we see from (30) that
Ad < 0 in an open subset Q' of G C Q. This implies that for small € > 0, the set
{fQ\Q—E(Ad)(xl +Pa)?d(x)dr} o<1 is bounded away from 0. Then, for small € > 0,
there exists C' > 0, independent of large —a > 0, satisfying

/ (Ad)vidz—/ Vd -V (v?)dx
oo, Qe

od
— / (Ad) (21 + po)?d(x)dx — / (21 + pa)® 4+ 2(z1 + po)d=—dzx < —C.
o\a; Q. d,

Combining (34))-([3), we see that for large —a > 0,

1— 2
d27oz(x)|vua|2 _ ( OZ)
Q 4

(37)

d~*(z)uidr < 0,

which implies that Ly 2-4 () < - O‘) . This completes the proof. [

4.3. Proof of Theorem We note that Theorem [[3 says that Ly 2—a(2) <
(1 )

* for <1 and any C?-domain . First, we assume that & < 1 and N = 1.
We denote I = (—1,1). Then we claim that Ly oo () = % and Ly o_o (1) is
not achieved. We see that
AP (t) [/ [Pt
La72—a(I) - inf ff—)|u2|
weWl2_ (I\{0}, [, d=o(tudt=0 [; d=*(t)u?dt
f I; d>=(t) | | dt
in
weW 2 (0} [ d=o(t) (u— (f, d=(t)dt)~" [, d=(t)udt)’dt

1+t ifte(—1,0)

) " Since the functional
1—t iftelo1).

where d(t) = {
f d2 a \u’|2dt
—
[rd=e(t)(u— ([, d=(t)dt)=" [, d=e(t)udt)’dt
is invariant under the addition of any constant, it suffices to prove that if u €

w2 (I) and u(0) = 0,

a,2—a

(38)

/Idz—a(t)\u'|2dt > %/jd_a(ﬂ <u— (/Id_“(t)dt)_l/Id_a(t)udt>2dt.
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By the density, it is sufficient to prove [B8) for any function v € C(I) satisfying

u(0) = O,/dfa(t)uzdt < oo and /d27a(t)|u/\2dt < 0.
I I

—a

Defining v(t) = d=* (t)u(t), we see that

(39)
>~ () (1))
l—a ja-3

a1 2
= (1) (= =T (O (Bv() +d°F (V' (1))
= @[ (F52) () P~ (- a)d 2 (O (ot ()44 (1) (1)
= (552) a @ — (= a)d (1ot (1) + do) o' (1)

Since for —1 <z <y <1,
/: (vz(t)>/dt‘ - : (dl_"‘(t)uQ(t)>/dt‘
<(1-a) /y d=(t)u?(t)dt

AL (oot

we see that limy_,+; v(t) exists. If limy_,+; v(¢) is not 0, then [, d~ Yuldt =
which is a contradiction. Thus v(0) = v(1) = v(—1) = 0. Then

[v%(y) — v*(x)] =

1 1 1 0
U l _ ! 2 Iy ,02 ! 1)2 ! — .
QLId(t)U(t)U (t)dt_/ d'(t) (02 (1)) dt = /O (v2(t)) dt+/ (v2(t))'dt =0

1 -1

Thus, we see from ([39) that
(40)

/Id2—a(t)|u’|2dt_ (1 —40‘)2 /zd_a(t) (u_ (/Id_“(t)dt)1/ld_"‘(t)udt>2dt
_ 2—o 04)2 o wlde
PR
+ 1 (/I (/Id udt
/Id(t)|v’(t)| dt + %(/ld ot )dt) 1(/}d’°‘(t)udt>2

0,

v

which implies that L oo () = %. Moreover, ([#0) implies that if Ly 2o (1) is
attained, then u =0 on (—1,1).

2

Next, assume « < 1 and N > 2. We first prove that L, 2_o(BY(0,1)) < %

and Lq2—o(BY(0,1)) is achieved when the space dimension N > 3=2. We take
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u(z) = xnd=*(x) with s € (0, 152). Since
d2—a|vu|2
= d* | —sd—*"Y(Vd)xzy + (0,0,---,0,d"%)|?
(41) _ 2—af 25-25—2 2,2 “os  oug-2s—1,. 0d
0 (20752 + 47 - 2sd xN—axN)

2s
T
—a—25+2 NaxN

— SQd_a_QSCE?\[‘VdF + d—a—2$+2 _ (d—a—2s—i-2)7

and )
I'(1 I'(1+b
/ (1 —r)bdr = M for a,b > —1,
o I'24+a+0b)
it follows that
fBN(0,1) 4= (2)|Vul?
S~ 00y 4 (@)ulde
fBN(07l) SQd*Q*QSx?V + dia728+2 —a 2§s+2xN ox N (d “ 28+2)d
fBN(O,l) d—o=2s13 dx

2 ) fBN(O,l) d_a_28+2d$

—a—25+2 fBN(O,l) d=—o=2s13 dx

) N(Oz . 2) fBN(O,l) dfoc72s+2d1.
a+2s—2 fBN(O 1y A7 |z Pd

5 N(a—2) fol rpN=H1 — ) 2s42gy
a+2s—2 fol PNHL(] = p)=o=2sdp

9 N(@—-2) TD(N)IT(-a—2s+3)

a+2s—2T'(N+2)['(-a—2s+1)

2-—a)(1—a-—2s)

:32+(1+

=S

=S

p— 2 =
=s"+ N1 = g(s).
Then since for N > ?%g,
dg(s) *1—04—2(2_01) N -3 N—l -0, (1—04)7(1—04)2
ds ls—1ze = N+1 N+1 N+1° N7 )~ 4
g(s) < (1 )” for s less than and close to 152, This implies that L, 2« (BY(0,1)) <

% fOI' N > m
Lastly, we prove that for o < 1 and the space dimension N < %, Lo 2—o(Bn(0,1))
=a f) and Ly 2—(Bn(0,1)) is not achieved. If L, 2o (Bn(0, 1)) is achieved by
u, we see that u € C2(B¥(0,1)). Moreover, since C2(BN(0,1))NW,'5_,(BN(0,1))
is dense in Walg o(BY(0,1)), it suffices to prove that
fBN(O,l) d2—"(;v)|Vu|2dx (1 — a)2
fBN(O,l) d—(x)u2de ~— 4

and the equality does not hold for u € (C’z(BN(O7 1)) N Wi (BN, 1))) \ {0}

(42)

a2—a

with fBN(O,l) d=%(x)udx = 0. As far as it makes no confusion, we abuse d(x) =
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d(r), where r = |z|. We define @(z) = u(z) — ¥o(r), where r = |z| and ¥o(r) =
\SN%H Jgn—1 u(rf)dd. We note that 1o,u € C*(BN(0,1)),

(43) /Sm a(r)do = /SNI u(rf)dd — |SN " [oo(r) = 0 for r € [0,1)

and
1
0 :/ d=(x)udz :/ / N d= (rudfdr
BN((0,1)) 0 JSN-t
1
= |SN_1\/ d=rN " epo (r)dr.
0
By @3),
ou 0 _ _
/SN_l EWW = Jows u(rf)dd =0 for r € [0, 1).

Hence, for r € [0, 1),

/SM (‘;—:f)gde - |SN‘1|<¢6(7°))2 +/SN71 (%)Qd&

Then we deduce that

/01 /SM dQ‘%N‘l(%>2d9dr

! 2 ! ou\ 2
_ N—-1 2—a, N—1 / 2—a, N—1
=|s |/O d2or (1/10(7“)) dr—i—/o /SN_ld r (_87") dfdr-.

From this and the fact that Vgv-1u = Vgn-11, we have

/ d*>~*|Vul*dz
BN((0,1))

1 2 .
:/ / dQ*%N*(a—“) AN 3V g1l dOdr
0 SN*I

or
1 2
(44) = |sN Y / =N (v (r)) dr
0
1 =2 .
+/ / dzfaerl(@) + a2 0PN 3|V gno1al2dodr
0 SN-1 87‘

1 2
= |SN71|/0 d27°‘rN71(1/)6(r)) dr—l—/BN((O o) d*~|\Va|*de.

Similarly, by @3],

1
/ dfau2d:// d= N1 2dx
BN((0,1)) 0o Jen-1

1 1
(45) :\SN‘1|/ d—%N—lngerr/ / d=rN=1a2dfdr
0 0 SN—l

1
= \SN’1|/ d*“rN*1¢§dr+/ d~@?dz.
0 BN ((0,1))
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By ({@4), (@3) and the fact that for r € [0, 1),

/ |V gv-1i|?df > (N—l)/ u?db,
SN—l

SN—-1
we get

(46)
fBN((O,l)) d*>=*|Vul?dz

o~ (0.0 @~ uPde
2
_ 1 _ _ _ _
|SN 1‘]‘0 d2 aTN 1(1/)6(7“)) dT+fBN((011))d2 a|vu|2dx
= 1 —
[SN=Y [y d=orN=LY3dr + a1y, 4002z

2 N2

Jowos Jo o™= (wh() "+ @orN L (G5) 4 (W = D2 =orN-Suldrad
>
=z ‘SN71|‘/‘01 diaTN?ld)ng_FfSN—lfol d—rN=132drd0

where fol d=rN="2g(r)dr = 0 and [gn_, u(rf)df = 0 for r € [0,1). We claim that
for 6 € SN=1 and fol(l — )N lyodr = 0,

/01(1 — )2Vl (%(T, 9))2 + (N = 1)(1 = )2~V =3(a(r, 0))%dr

a2 e oy

a)?

! 2—« —1 1 2 (1_ ! —a -1 2
[ a2 = B [ a—n ety far

which implies ([@2). We first show that for f € C'([0,1)),

1 1
[ a2 -1 [ R e
0 0
1—a)? [
> U= [ ey —n e ar
0
when the integrals involved above are all finite. For N = 2, the second integral in

(@8 is not finite if f(0) # 0. Thus, we may assume that f(0) = 0 for N = 2. Define
g(r) = (1 - r)lfTar—lf(r). By Lemma 210 and the assumption a > £=3, we see
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that
/1(1 — )27 N () 2dr + (N = 1) /1(1 — )2 N=3 2 (0
0 0
_ / PNHL(T )12 {—(1 — vy
0
+ (1 —-(1- a)NQ_ 1)7°_1(1 — r)}
(48)

O‘rN_ldr.

This implies @8). Next, we show that for N < 2= and f € C'([0,1)) satisfying
fol rNI1 — )= fdr =0,

(49) /0 (1 — )2 N1 2dr > d-a) —404) /0 (1—r)"2rN=1f2dr

when the integrals involved above are all finite. This is equivalent to show without
the average condition fol N1 — )= fdr = 0 that

fo 2 ap N-— 1(f/)2d7“
fol(l —r)moerN=1(f — fo sN=1(1 — s)—ads) ! fol sN=1(1 — s)—afds)er
(- a)
> .
- 4

Note that for any x € R,

= e par
fol(l—r)—arN—l(f—(fO sN= 1(1—5) ads)= f sN=1(1 —s)~ (’fds)zdr
_ fol(l—r)2 o N — 1((f—|—/$)’) dr
fol(l—r)_arN_l[f—i-li—(fOl sN=1(1—s)—ds)~1 fol SN_I(l—S)_a(f—l-H)ds}zdr.

Thus it suffices to prove that for f € C'([0,1)) \ {0} with f(1 —e'™N) = 0,
f01(1 — )22 (f)2dr < oo and fol(l —7r) "% f2dr < oo,

fO 2 [ N 1(f’)2dr
fol(l —r)merN=1f — fo sN=1(1 — s)~ads) 1 fol sN=1(1 — s)*afds]er
> _O‘)Q.
- 4
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Defining g(r) = (1 — 1“)1_Taf(r)7 we see from Lemma 210 that
1
/ (1 _ T)Q—arN—l(f/)QdT

0

1 2

1— N-—-1
= / 4( 4a) N A—r) g —(1—a)—— 5 V202 N1 =) (o) 2.
0
Then it follows that

fO 2 a N l(f/)Qd,r
fol(l —r)~erN-1[f — (fol sN- 1(1 —s)~ds)~1 fol sN=1(1 — s)*afds]zdr
fO 2 a N 1(f,)2d1"

fo (1 —r)—apN-1f2 _ (f sN— 1( )*O‘ds)*l(fo sVN=1(1 — g)~ O‘fds)

Jo SEE AN (1= ) g — (11— @) AN 262 4 N (1 ) (g)2dr
foer 1 — 1)~ tg2(r)dr

(1—a)? fo rN1 1 —7r)(g)? — (1—04)NT N=2g2qy

4 fo PN 1) ~1g2(r)dr '

3
3_N

(50)

>

Denoting ay =1 —e , we see that by integration by parts,

an an 1 1 an  q N -3
51 N—Q(/ 7dt)d - / dr = 2 1.
(51) /0 " o a—™)" T N1, 1T NS

Since %(e(N_l)s —1) < N —1for s < 0, it follows that by a change of variables
Inr =s,

/a v /a W(ﬂ )i

1 1 _,N-1 1 M=oy
:N—l/N erl(rl—r)dr:N—l ;/QNFC”
1 ! 1 1
o —d”’m— ﬁ/ TNy rlar
1)s _ 0

B N—l/maN se<N—1>sldS§/maN el

= (T ) = (e ),
Since

1
e® > 2/ex for £ >2 and (1—.’13)7%§€2 for O<x<§,
we deduce that

1 —
(L—er M)V = (1 -2y AV F <ot

From this and (52), for N > 3,

1 r 1
N-2
/aNr (/a 7tN*1(1—t)dt)dr<1'

< e for N > 3.
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When N = 2, since e — /e > 1,

! r 1 1 1 1
N—2 -+ _ [t N _ 3
/a r (/a NI t)dt)dr—/a rdr— In(l—e"2) < 1.

N
Thus, we have for N > 2,

(53) /U:v rf”(/arv mdt)dr <1

Then it follows from (BI]) and (B3]) that
(54)

Then, from this, (B0) and the assumption « > %, we see that

fol _ 27aTN71(f/)2d7,
fol(l—r)—arN—l[f—(f sN=1(1 — s)~ads)~ f sN=1(1—s)~ afds]er
(1-a) | [0 = () — (1 — ) S5l 2g2r
55 >
o= 4 + Joy TN = )" 1g2(r)dr
(1—a)? fo (1— — )Tl) N=1(1 —r)(¢")2dr o (1—a)?
n 4 f rN=1(1 —r)=1g2(r)dr N 4

which implies (@3]). Thus, combining (@6]), {@]) and {@3J), we get [@2).

We note that if Ly 2-o(Bn(0,1)) is achieved, the equalities in the estimations
[@8) and ([BH) instead of inequalities should hold. In #3), the equality holds only

when ¢’ = 0. This means that f(r) = cr(l —r) T = for some ¢ € R; in this case,
¢ = 0 since f01 1—r)=oN=1(p(1 — 7)*2")2dr = co. Next, in (55), the equality
holds only when fl N=1(1—5)"*fds = 0 and ¢’ = 0 because the estnnatlons &),
(3) and the equality in (54) should hold. Since ¢’ =0, f = ¢, (1 — s)“ for some
c1 € R; in this case, ¢; = 0 since fol sV=1(1 — s)"@fds = 0. These imply that
Loo—o(Bn(0,1)) is not achieved by any element in W35 (BN (0,1))\ {0}. O

a,2—a



THE LEGENDRE-HARDY INEQUALITY ON BOUNDED DOMAINS 241

4.4. Proof of Theorem[I.6l We assume that o« < 1, N > i’:—z and (a1, - ,an—1)
€ (0, 1]Vt with a;+- - -+an_1 < N—1. We define diffeomorphisms ¥ : BV (0,1) —
E(ala"' 7aN7171) by

U(y) = (a1y1,a2y2, " ,AN-1YN—1,YN)
and ® : E(ay, -+ ,an_1,1) — BY(0,1) by

Tl T2 TN-1
o) = (2,2, 2 gy,
a1 G2 aN-—1

For r(t) = t®(x) + (1 — t)% and z € Q = E(aq,--- ,an—1,1), we see that

(56) d(x)é/o o) = G- ).

Define u(z) = xyd™*(x), where s € (0,15%) and a + 2s > 0. From (@) and (58),
we see that

(57)
fQ d27a x)|vu‘2 _ fQ S2d7a72s$?\[ +d7a72s+2 n 2§9+2xN o (d a— 2s+2)d
Jod=(x)uldx Jod—om2sa3 dx
d7a72s+2d
—52—1—(1—1— 2s )fg__z 2:10
—a—2s5+2 de =22 du
—a—285+2
L a—2 o (@ —1e@)) da
S (a + 25 — 2)

o ( qiz;)l A le@)) " addr

Since I\If‘(yzl/)l <1 and

(Lo (Rl = )y =

[yl ly[?
N-1
<14 (Tos2et2) (Xisi (af — Dy?)
- 2 ly[? ’
we see by a change of variables z = ¥(y) that
—a—25+2 —a—2s+2
Jo (@ (1 = 12@)) R e ) dy
—a—2s =

fg(lq) A-10@D) " B fyn (SO l)) T vy

N-1(g?2—1)y?
- fBN(O,l)(l — |y|)m o2t {1 + (70[7225%) (21:1 I?(/\; l)yl)}dy
(58) S~ 01— ly)~o2sy3dy
B Jovny @ = lyh=om+? {1 +N! (770‘722%2) (le\;_ll(af - 1))}(1@/

N7 [pn o = [y~ 2[y|2dy
1

= {N+ (LM) (%ﬁ(a? - 1))} Jow oy (L= Iy~ > 2dy |

2 fBN(O,l) 1 - |y|) a72s‘y|2dy
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Then, by (57) and (B8) and the fact that

fBN(oJ)(l —yl)~ e 2dy 7 fol(l — )T 22 N1y
fBN(o,1)(1 —lyl)= =2 ly|2dy fol(l — )= 2sp N+l
D(N)(—a —2s+3) (—a—25s+2)(—a—2s+1)
TT(N+2T(—a—-2s+1) N(N +1)

)

1—
we see that for s € (max{(), -51, T(X)’

Jo @7 (2)|Vul?
Jod=(z)uldx

§32+( a—2 )N—i—( a— 2s+2>
a+2s—2

282+(a—2)](\fa—;|—125—1)[1+( 04—254—2)(; o3 _1)] = h(s).

e . )] a—28+]2\])i—13v—2s+1)

z:l

2
Note that h(l_T(’) = (%) and

N-1

B (s) =2s+

N

i=1
N-1

lesdler b (S )

Thus, for N > :{’:—3,

{ e L 2a-2)

(Za —1)]>1— e

l-«a 2(a—2)
W(=)=1-
“TNET N+1

Taking s strictly less than and sufficiently close to 1*70‘, we see that Ly 2- () <

2
(1*7‘1) when N > 3 . This completes the proof. [

4.5. Proof of Theorem[I.7l Define u = xyd*(z) for s strictly less than and close

— if Q
a—lz| ifwe 17WherteE{acEQ||az:|>‘17+1}

to 15%. Note that d(z) = {|$|_1 if x €y
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and Qy = {2z € Q| |z| < &L}, By @), it follows that
(59)

/ d?>~*|Vul*dz
Q
od

_ / $2d707 2502 |Vd|? 4 4O gegmo2tgy O gy
Q Ozrn

= / s%(a— |2z))7 P2k + (a — [a) 772 4 25(a — [2|) O 2R | T de
Q
+/ s*(Ja| = 1) 7072y + (|2 = )77 = 2s(|z| — 1) e} 2] e
Qo

a 2
— |SN—1||:/IJrl (SZ(G_T)—Q—Z‘;TN_’_(a_T)—a—2s+2+2S(a_7,)—a—2s+1%)TN—ldr

2
a+1 2

2 2 —a-2s" —a—2s+2 —a-2s4+1 T ) N—1 }
1 " -1 —2s(r — 1 -z d
+/1 (s (r ) v +(r ) s(r ) N r r

1 a
— |SN71|—|:/ SQTN+1(a—T)7a725
Nt ep
+ NV (a—r) 7072421250 N (g —r) "7 25 gy
a+t1

2
+ / SQTNJrl(’I"—1)7a72S+N’I"N71(T—1)7Q725+2—QSTN(T—1)7Q725+1dT
1

and
/ d™(x)ulde = / (a —|z))~* %23 dx +/ (Jz| — 1)~ 2% da
Q Ql Q2
(60) . N at1
= |SN71|—[/ TNJrl(a—T)*O‘*QSdr—I—/ PN — 1) 7725y |
N a1 1
Since
/ 7qN (CL _ 7q)7a¢72s+1dr
a,T-H
1 a—+1 N+1,q — 1\ —a—2s+1
N+1{_< 2 ) ( 2 )
+(—a—2s+1) / N+ (g — r)o‘zsdr]
a+1
2
and

/a erl(a _ T)fa72s+2dr

a

= %[_ (agl)N(a; 1)—a—2s+2 +(—a—2s+2) /ai1 TN(a—r)*O"QS“dr}
e e |

1 a+ 1\N+1l /g —1\—a—2stl
+(_a_25+2)N+1(_( 2 ) ( 2 )
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+(—a—2s+1) /a N+ (g — r)*a*QSdr)}

ot
__Riﬁgjﬁ{—(N>kn(a;1)N(agl)—waﬁa
- (—a—2s+2)(“;1)N”(a; 1>7a725+1

TN+1((1 _ 'l“)_a_QSd’I“:| ,
a+1

2

—|—(—a—28+2)(—a—2s+1)/a

we deduce that
(61)

a
/ SQ,,,NJrl(a _ T)fa72s + N’I"Nil(a _ T)fa72s+2 + QSTN((Z _ T)7a725+1dT

1
T N+1

a+1)N(a_ 1)70&7234»2
2

2
INN+L /g — 1\ —a—2s+1
_(—a—2$—|—2)<a+ ) (a2 )

a+ 1 N+1 a—1 —a—2s+1
-5(57) (%)
2 2

{—(N+1)(

1
+ {32 + N——l-l(_a — 254+ 2)(—a—2s+1)

2

a
+ N—j_l(—a — 25+ 1)} /aT+1 R (T R

() ()T

o)) ]

1 a
+ {82 4 N——i—l(_a + 2)(—a — 25+ 1)] /aﬂ TN+1(G - T)_a_%dr.

2

Similarly, since

at1

/ ’ rN(r—1)7o7 25 gy
1

1 Cl+1 N+1 a—1 —a—2s+1
N+1 ( 2 ) ( 2 )

a+1

_(_a_25+1)/ 2 TN+1(’I“—1)_O(_2sd7“:|
1

and

a+1

2
/ TNil(’r‘ _ 1)7a725+2d7”
1

[ B e e ] A
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1 (a—l—l)f\’<a—1)*0**254r2
N[\ 2 2

- (—a_23+2)L((a+ 1)N+1<a— 1>—a—2s+1

N +1 2 2

a+1

—(—a—2s+ 1)/1 TN 1)-a—25dr>}
1

“so () ()

INN+L fq — 1y —a—2s+1
_(—a—23+2)(a; ) (a2 )

245

a+1

2
+(—a—28+2)(—a—23—|—1)/ PN — 1) 7725
1

we see that

(62)
aTl
/ 82TN+1(T _ 1)—a—2s 4 NTN_I(T _ 1)—a—2s+2 _ 287‘N(7‘ _ 1)—04—23+1d,r
1
1

-l () ()

1\ N+1 — 1\ —a—2s+1
~ra-mea(50) ()

a+ 1 N+1 a—1 —a—2s+1
() () T
2 2

1
+ [524——N+1(—a—25+2)(—oz—2$+1)

a+1

1 2
g 128(—a —2s+ 1)} /1 PN (r — 1) 25y
1

() ()

N (a—2)(a;— 1)N+1(a_ 1)a25+1]

+

2

a+1
1 2
+ |:82 + N—H(—a + 2)(—04 — 25+ 1):| /1 ’I“N+1('r — 1)_a_28dr_

Then, by (B9)-(62) and the identity

[ 2 ()

a—1

a+1\N+1
- camme (2
(—a s+1) p—

Sove (e ) () e

a—1
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we obtain that

Jo d2_°‘\Vu|2da: 1
Q
a+1
_9 INN+L fg—1y —a—2s+1[ [“%
R [ e

a —1
+ / N+ (g — r)_a_%dr]

+1
2

1
=52+ —+(—a—|—2)(—a —2s+1)

g () [ ) ) e
r — - r
N+1\a-1 0 -1 a—1

1
=3 —|——+(—a+2)(—a—25+1)

-1

_9 1\ N+1
a (Zfl) (—a—2s+1)

1
X {2 ai—i)NH - (N+1)/01ra25+1((r+il)]v
)]

N N
Define h(s) = f()l p—a—2s+1 [(T + %) — (2—‘11 — r) }dr. Note that

a—

h/ —2‘/ Inr r+a_1>N—(a2_al—r)N}dr‘<Ca

and

R A e

9 \N+1
- (a—l) (1+a™"),

2
where C, > 0 is a constant depending on a > 0. Then, since f(l’Ta) = (ﬂ)
and

f’(l_Ta) =1l-a+ ﬁ(—a+2)(—2)

a—2 ra+1\N+1 a— 1\N+1
9 ( ) _2( ) 1 N+1y-1
iy alaz) (1+a777)
2 a—2 N+1g—N+1 N+1y—1
N+1(a—2)—N+1(a+1) 2 (I+a™™)™" >0

. - 757 (2 (a+ 1)V 27N (1o N HE)— 1)
if a <

. This implies that f(s) < % for s

1- (2—<a+1>N+127N+1(1+aN+1>71)

strictly less than and sufficiently close to 1_7‘1 This completes the proof. [
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4.6. Proof of Theorem [1.8l

Lemma 4.1. Let Q = BN(0,a) \ BN (0,1), where N > 2 and a > 1. Then there
exists oy € (0,1) such that for a € (aq,1) and u € C*(Q) N W;;(Q) satisfying
Jon—1 u(r8)dd = 0 with any r € (1,a),

_ 2
(63) /d2*“|vu|2dxz u/ d~u?dzx.
Q 4 Q

Moreover, for a € (ay,1), the best constant % in ([63) is not achieved.

Proof. Denote O = BV (0,a) \ BN(0, %) and Q, = BY(0,13%) \ BN(0,1). For

l—a

uweCHQ)N Wi;(ﬂ), we define v =d 2z (z)u. Then, we see that

/ d(z)wide = / d~*(z)udx < co and / v(rd)dd =0 for r € (1,a).
Q Q SN -1
Then, since
d?=%(x)|Vul?
2o y|@¥ =1 a1y o1
—d (a:)‘Td = ~1(Vd)v+d°T (z) Vv

= () (L o2 ) P+ 401 () 9 (1 - a2 (w9 )

‘ 2

1;aw-v<v2),

N2
= %d-l(x)wdm? +d|Vo|? —

it follows that [, d|Vv|?dz < co and

—a)?
/ d*>=(z)|Vu|* - %dfo‘(aj)zfdx
Q

1—
:/d|V’U|2— YVd- V(v?)dz
o 2

:/ Vol + 1;O‘(Ad)v2dx+/ Vol
(o5

(64) 11—« ”
+ (Ad)v?dz — (1 — a) / v2do
0Q1NON
l-al—-N
= / d|Vol* + a vidx —l—/ d|Vol|?
o 2 g Q0
l1—-aN-1

2 2
—_— v dx—(l—a)/ vedo.
2 Ed Q1N

By the trace inequality, we see that for some C; > 0,

(65) / vido < C’l/ |Vl + vide,
001NN Q3

where Q3 = BN (0, 3¢EL)\ BN (0, 142
that ¢ € [0,1], ¥(r) =1ifr € [a —

). For small 6 > 0, define ¢ € C*°([1, a]) such
0/2,a] and ¥(r) = 0if r € [1,a — ¢]. Denote
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v = v1 + vg, where v; = vy(d(x)) and ve = v(l - 1/1(d(3:))) Since [gn_ v(rf)do =
0 for r € (1,a), it holds that

a 2
d|Vv|*dz :/ / (a—r)rN_l}@‘ + (@ — ) rN 3| Vgn-1v|?dodr
[oH # SN—-1 or

¢ N-1]|0v? N-3, 2
2/ / (a—r)r ’—‘ + (N = 1)(a—r)r* "vdodr.
lga SN—l aT
Then, from (66) and the fact that

/ Vs dac>/ /
Q1 SN-1

we have

(67)
/ vade < Cg/ Vg |?de < 2C,
o o

(66)

81}2

+ (N = 1)rN=3v2dodr > C;* vadr,
(o

[ IV (1= (@) + o (v (@) do
Scs/g d|Vov|*dz,

where Cy, C5 are constants. On the other hand, by (&), ([@6) and Lemma [Z3]
(68)

a 2
/ 24 < 2/ / V2 (t, 0)dtdo < 32/ / (a—t)(gvl(t,a)) dtdo
09 Ja—s a—6 ot

2

2
§64/ 4|V, Pz < 128/ Aol (w(d(e))) +d(v/(d(x)) vda
Ql Q1
<Oy / d|Vol|?,
Q
where Cy is a constant. Then, by (67]) and (68]), we see that

/ vide < 2/ v%d:v—l—?/ vidr < 2(Cs +C’4)/ d|Vv|?dz.
Q4 0 Q1 231

Then, from this and (63, there exists an = a1(N,) € (0,1) such that for o €
(ala 1)

/ d2_a(x)|Vu|2 - %d—a(mﬂdm
Q

= | dvuP - —E(NV - 1)v2da
o, 2| |
+ [ 4Vl —|— - a(N — Dv?dr — (1 - a)/ vido
0, 2|x| 891 M09,
> / AVl — YN~ 1?da
Jay 2|x|

+/ d|Vv|? + 1_a(N—1)Ude—Cl(1—a)/ Vo2 + v?dx
2 2|z| 24
-«

1
> —/ d|Vv|2d:E+/ d|Vo|? + ———(N — 1)v?dz.
2 Ja, o8 2| |
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This proves the inequality ([63). If the equality in (63]) holds, we see from the
estimation above that v(x) = 0 for € Q2 and v is constant on £23. Since v = d="u,
we conclude that v = 0 in 2. This completes the proof. O

Lemma 4.2. Let N > 2 and a > 1. Then there exists aa = az(N,a) € (0,1) such
that for o € (ag, 1),

o) [ e (1) ar= S5 )

for any radially symmetric f(z) = f(r) € C1(Q)N W;Z(Q) satisfying
[y —o
1

r—1 ifrell, 3],
! [t =5 Moreover, for a € (awg, 1), the best constant

)
a—r ifre[i3%a.

where d(r) = {

2
(1740‘) in [©9) is not achieved.

Proof. We note that for all ¢ € R,

2
- fla d?—erN-1 (f’(r)) dr
. { [T d-orN 12y

f(r

¢ (C@nwis@)\ ), [ ar o}
a1 (1))

= inf p) f(r)
{fla d—arN-1 (f = (f{d—erN-tdr)-t [ d*aerlfdr) dr ‘
e (C@nwi@)\ o)
a 92 . N—1 I 2
) mf{ - S eV () + o)) dr [

N—-1 a pN—-1 2
L g (f—l—c— (f] Tgedr)=t [ T (f—i—c)dr) dr
e (C@nwi@)\ 0.
Then it suffices to prove that for f € C1(Q) N WiZ(Q) and f(HT“) =0,
fla d2—a,rN—1(f/)2d,r - (1 _ 04)2
[{dmerN=tf2qr T 4

Defining f(r) =d = (r)h(r), we see that
(70)

—1 a- a—1 2
AN =1 f1)?2 :d27arN71(a2 A dh +d°= h’)

—1\2
= &Nt {(—O‘ 5 ) d* R+ d*H(W')? + (a = 1)d*2hd'h

_ (04 ; 1>2rN—1d—1h2 FdrNTL )2 a; 17AN—1d/(h2)/.
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By (Z0), we obtain that
(71)
/ (a—r)zfaerl(f’)er

+a
2

a _ 2 -
:/ (O‘ 1) N a — )7 A2 4 (a — r)rN (R - aTeril(hz)/dr
14a

2 2
Since
r " 30 (" 1 3
— ! < N—-1/,6 ’ 2
h(r) /Lh (tydt < ( /Lt (a— D (1)dt)” ( /L PR (a_t)dt> ,
we have
¢ N-2,2 “ N N co riv—2
_ < 1
[3“ rTEhA(r)dr < [3“ r™ " (a—r)(h")=dr /HTLL [? N T(a = t)dtdr
<ewa [PV ) Pr
14a

2
where cy o > 0 is a constant depending only on N and a. Thus, we see that
¢ Notgnz , @—1 N—2}2
/ (a—7)r (h") —G—T(N—l)r h<dr
1

+a
2

a

Z( ! —1;C)[(]\f—1))/1 rN=2h2dr.

CN.a g

From this and (7Il), there exists as = aa(N,a) € (0,1) and Cy > 0 such that for
a € (ag,1),

/li (1 _ 7,)27047,N71(f/)2d7,

a—1\2 [° N—1 —172 /a N-272
> —
(72) > (“5-) /lgar (1— )" 'R%dr + Cy W
_1 2 a a
= (a ) / PN = )T f2dr + 04/ rN=2R2dr.

On the other hand, we see from (Z0) and the fact f(1£%) =0 that
73)

1

/ 2 (r — a)2= N1 (f)2dr
1

—~

2 —1\2 _
:/ (0‘ 1) TN*l(r—a)71h2+(r—a)TNfl(h/)2+aTlTNil(hQ)/dT
1

2 —1\2 1-—
2/ (04_) TN_I(T—G)_th—F(T—G)TN_l(h/)2+ 2a(N—1)TN_2h2d7“.
1

Thus, combining ([[2) and (73), we get ([69). If the equality holds in ([GJ]), we see
from (72)) and (73 that A = 0; thus f = 0. This completes the proof. O
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Now we are ready to complete the proof of Theorem [[.8 As far as it makes
no confusion, we abuse d(z) = d(r), where r = |z|. Let u € C1(Q2) N W;;(Q)
such that fQ (x)udx = 0. We define u(z) = u(z) — ¥o(r), where r = |z| and
Po(r) = SN T fsN L u(rf)df. Then, following the arguments in Theorem (see
(@6 above) we deduce that

[ vuPde 1SV d2—%N—1(z/)6(r))2dr + [, | Val2de
Jod-outde ISN=1| [} g-erN-1y2dr + [, d-oude

where [["d=*rN=lyy(r)dr = 0 and [gy_, u(rf)dd = 0 for r € (1,a). Lastly,
applying Lemma [Tl and Lemma [£32] we conclude to the claim. [
4.7. Proof of Theorem |[] Define

Alul( (01)~ (x - tl)) if 2 €t +510:D
v(z) = —A2u2< (02) "\ (a — tQ)) if 2 € ty + $,0,D2,

0 if e Q\ (t1+510:D") U (t2+5202D75?),
where we take Ay, A2 > 0 so that [, d”*(z)v(z)de = 0. Then, we see that v €
w2 (Q)\ {0} and Jo d™*(x)v(x)dz = 0. Moreover, we see that

a2—a
Ja dg *( )|VU|2d$
Jo do* (x)v2da
B (>\1)2(81 N [, 4, @)V (un) 4 Pda + (M) (s2)V ™ [, 7, (2)
(A)?(s)N = [, dp (@) (ua) 4 [P + (A2)(s2)N = [, dpg (I)\
(1-0a)
1
where dp(z) = dist(x, RY \ D) for any domain D C R¥. This proves Theorem
O

)

IV (uz) + [2de
(uz)+ [Pda

APPENDIX A

In this last section, we study the relationship between W,*(€2) and VVO1 5 58)
and whether H,, g is attained or not.

Proposition A.1. Let (o, 3) € R%. Then we have
2W*(Q)  if (o, 8) € {(a,b) | a < 2,0 > 0},
Woas(@=Wo(Q) if (@) € {(a.) |a<2b=0},
CWo?(Q)  if (a,8) € {(a,b) | b<0 orb=0,a>2}.

If (0, 8) € {(a,b) | a>2,b> 0}, W2 () \ Wo*(Q) and Wy(Q) \ W, 72 5(9)
are non-empty.

Proof. We note by Hardy’s inequality, for u € Wol’Q(Q) and a < 2,

(74) /u2d*adz:/u2d*2d2*adx§cl/ |Vul|?d,
Q Q Q

where C7 > 0 is a constant. Denote
Ay ={(a,b) | a<2,b>0}, Az ={(a,d) | a<2,b=0}
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and
As ={(a,b) | b<0orb=0,a > 2}.

First, assume that (c, 8) € A;. Then we see that for a constant Co >0, [, d°|Vu|*dx
< Cy [, [Vul?dz. From this and (7d), it follows that W7 5(Q) D Wy*(R2). On the
other hand, if a = 2 and 8 > 0, dsin(d~%) € Wy 3 4(Q), but dsin(d~%) ¢ W;*(Q).
If a < 2and B > 0, for m € (max{251, 152 1} 1) dm(z) € Wy 4(Q), but
d™(x) ¢ Wy*(Q). Thus, we deduce that W77 5(Q) 2 Wy*(Q).

Assume that (o, 8) € Az. Then, by ([74), we see that Wolzﬂ(ﬂ) =W, %().

Assume that (o, 8) € Az. Since [, |Vul*dz < Cj [, d°|Vul*dz for some con-
stant C3 > 0, we see that W&SB(Q) C Wy(€). On the other hand, for m €
(%,max{%,%}), ™ e Wy(Q), but d™ ¢ Wol”iﬁ(Q), which implies that
Wyl 5(9) € Wi ().

If (a,8) € {(a,b) | a > 2,b > 0}, for m € (1,251), d™(z) € W, 2 (),
but d™(x) ¢ Wolsﬁ(Q) On the other hand, for n > 231, d» sin(d—"tz) e

Wol:iﬁ(QL but d"sin(d-"*t2) ¢ W3(€). In fact, note that, since I COSdet >

2
3 sin () 3¢, we have

7
/1 COSQ(t*T”%)dt _ (n B 1)*1 /°° cos2(t)dt o
Then, from this and the facts that § > 0 and n > O‘T_l > %, we see that
2
/ ’V(d" sin(d%—"))‘ dz
Q

1 1 1 1 2
= / ‘nal"_1 sin(d2~")Vd + (— - n)d_5 cos(d~""2)Vd| dx
Q 2

1 1 2 1
= / n2d*" 2 sin?(d= ") + (— - n) d~tcos?(dz™™)
Q 2

1 1 1
+ 2n<§ - n) a3 sin(dz ") cos(d2 " ")dx

= +OQ,

1 2 1
/dﬁ‘V(dnsin(dE*"))’ dx <oo and d2"7asin2(d§7")dx§/d2"7adx<oo.
Q

Q Q

This completes the proof. (Il

Proposition A.2. H, 3(2) is achieved by an element v, g € Woljﬁ(ﬂ) if (o, B) €
{(a,;b) | a+b<2,b< 1}

Proof. We assume (a, 8) € {(a,b) | a +b < 2,b < 1}. Note that, by Proposition
24 H,p(2) > 0. Let {un}io_; C C5°(2) be a minimizing sequence of H, g(£2)
with
/ d *(z)udr =1 and lim d%(2)|Vum|*dr = Hy 5(Q).
Q

m—o0 9]

Taking a subsequence if it is necessary, we may assume that as m — 00, un,
. 1,2
converges weakly to u in Wy 5(€2).
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Then, by Lemma 2.8 the same argument in the proof of Theorem and the
fact that H, g(2) > 0 for (o, B) € {(a,b) | a+b < 2,b < 1}, we deduce that u # 0.
Now, it holds that w # 0. Let w,, = u,, — u. Then w,, converges weakly to 0 in
Woljﬂ(Q) as m — oco. Then, we see that
(75)

Hop(Q) +o(1) = / d?(2)|Vum|*dr = / d?(z)(|Vul? + 2Vu - Vw,, + |V, [} de

Q Q

= / d?(z)|Vul*dz + / d° ()| Vwn, [*dz + o(1)

Q Q
and
(76) 1= / d=(z)u’,dx = / d=(z)udx +/ d=(x)w?, dx + o(1).

Q Q Q

Then, since u # 0, it follows that
(77) limsup [ d~“(z)w? de < 1.

m—0o0 Q

Thus, by (8)-(T1) and the fact that w,, € Wolj 5 We obtain

Ho () < Jod? () |Vu\2da: _ H,5() — [, dB ) Vw,|?dz + o(1)
= [od ¥ (x)uldx 1—fQ x)w2,dz + o(1)
HaB(Q fQ 2d$+0( )
=H,3(Q 1

= 1_fg wzdx—l—o() 8(€2) +o(1)

as m — oo. This implies that u attains H, (). O
We recall
2= ()| Vul2d

(78) HopolQ) = Jo & (@)|Vul dx

in
weWy 2 o (0} Jo lu(@ I2d *(z)da’
Lemma A.3. Let a € (1,2]. For small 6 > 0, it holds that

—1\2
a 1) /Q d~“u*dx for all u € W0 w2—alS2),
s

(79) / 42| Vul2de > (
Qs

where Q5 = {x € Q | d(x) < §} and d(z) = dist(x, RN \ Q).

Proof. By the density of C§°(Q2) in W017’a272_a(9), it suffices to prove (79) for func-
tions u € C§° (). Since

/ d2_°‘|Vu|2dac2/ /t2 a 6“ *(1 - C)dtdo
Qs C

5
/ d™“u?dx < / / t=*u?(t)(1 + Ct)dtdo,
Qs a0 Jo

and
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where C' > 0 is a constant, we see that

/95 42|V — (O‘ = 1>2d’°‘u2dx
g —
oG - ) e

—Ct (tz_”‘ (%)2 + (QT_l)zt‘“uz(t)) dtdo.

Then, by a scaling, it suffices to prove that for v € C°°([0, 1]) such that v vanishes
in a neighborhood of the origin,

/01 27 (v")% — (a ; 1)215*%2(15) — t(ﬁ*a(v’)2 + (a ; 1)2t*av2(t))dt > 0.

. a—1 4 a-3 a—1
Defining v = ¢tz w, we see that v = 252t 2 w+t"2 W/,

1
2—a(, 12 a—1\2,_,
/Ot (v") (2)tv(t)dt
1
—1\2 .
:/ t2a<(a ) ta3w2_|_tocl(w/)2+(a_1)toc2ww/)
0 2

N
= /01 t(w')? 4 (@ — Dww'dt = /01 t(w')?dt + O‘T_luﬂ(l)
and
/01 t(Eo ) + (QT_l)2t_o‘v2(t))dt
(81) = /01 t2(w')? + @wz + (@ — 1)tww'dt
= /01 2(w')? + wuﬂdt + aT_le(l).

Thus, by (80), (BI) and the assumption « € (1, 2], we see that
1
— 172 —1\2
/ 27 ()? - (QT) ou(t) — t(tQ_“(v’)z + (a 5 ) t—%(t))dt
0

= /1 t(1—t)(w')? - la=l(e=2) 2y > 0. 0
0

2

For the inequality in Lemma [A-3 on Ahlfors regular domains, refer to [16].

Proposition A.4. Assume a > 1. Then Hy 2o () < %, and if Hy 2 () <
%, then Hy o o(Q) is achieved. Moreover, for oo € (1,2], if Ha2-a(Q) is
achieved, then Hy 2—o(£2) < %.

Proof. We first prove that Hy 20 (02) < %. Define

@ ifte(0,0),
f(t)_{2_t/5 if ¢t € (6,20)
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and

u(z) =

fld(x)) if 2 € Qos,
0 if . € Q\ Qos,

where m > 2z, Then it holds that u € Wolv’azg_a((l). Moreover, we see that
Vu = f'(d(x))Vd,

/Qd2-a(x)\vu|2dx: /Q 42 () (f’(d(x))) dz

IN

(14 €509 /026 2o (f’(t))2dt
and

/Q A (2)lde = | d=°(2) f2(d(2))de

Qas
25
> (1—C9)|09| / t=f2(t)dt,
0
where C' > 0 is a constant independent of §. Since

2 ) 5 28 25—a+1
/ tQ*“(f’(t)) dt:m25’2m/ tQm*adtM*?/ edi= "0 0y(6).
0 0 d

2m —a+1
26 , , 5 26 N2 §oatl
¢ t)dt=§""°"" Tt t7 (2 - =) dt=——— 1)
/0 f2(t) /O +/5 ( 5) m—ar1 20

where C4(d),C2(d) > 0 are constants independent of m, we see that

Jo @ (2)|Vul*dx
fQ d=(z)uldx

_ (1 +C§) m2+ (2m — a+1)6*1C1(6) . 1+O§(a— 1)2
1-C67 14 (2m—a+1)62"1Cy(9) 1-C6\ 2

Ha,Q—a(Q) S

asm | O‘T_l, which implies that Hy 2 () < (O‘T_l ’

Next, by the same arguments in the proof of Theorem [[L3] we can prove that
H,2-0(2) is achieved if Hy 20 (2) < % (See also []). Indeed, let {um 5o, C
C°(€2) be a minimizing sequence of Hy 2- () with

/ d~*(z)u?,dz =1 and lim d?=(2) |V |2dz = Hao o).
Q

m—00 Q
Taking a subsequence, if it is necessary, we may assume that as m — 00, Unm,
converges weakly to some u in Wolﬁ’i%a(fl). If w = 0, by Lemma 28, we deduce
that u,, concentrates near 9. Then by Lemma 23] the argument in Theorem [[.3]
we see that Hy 2o (£2) > %, which is a contradiction to the assumption that

Hyo-0(Q) < %. Now, it follows from u # 0 and the argument in (75) below,

that u attains Hg o—(£2).
Finally, we prove that for a € (1,2], if Hy2-4() is achieved, Hy2-4(02) <

(1_0’)2 S . . - (1—(1)2
. Suppose that Hy o «(f2) is achieved and Ha 2« (£2) = *=—. Then there

exists a nonnegative function u € Wolﬁz_a(ﬂ) such that
(1-a)?

K 2—« _
div(d“"*Vu) 1

d”“u in Q.
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By the maximum principle, u > 0 in Q. Based on the idea of [3], we define
Y(t) =t"T X5(t) and wy(z) = Y (d(z)),

1-Int)™' fo<t<1
where s > 1 and X(t) = ( nt) o <t<1,

2 1 if 1 <t

§ € (0,1) such that d € C%(Qs) and the statement of Lemma[A:3]holds in 5. Then

1,2 .
we see that wy € Wi’y 5o () for s > £. Moreover, since

We take sufficiently small

—1 a-
Y'(t) = aTthXs(t)

a—1

st X () = (o X0(0) + X () for te (0,1)

and for x € Qs,
div(d>~*Vw,) = div (dQ*aY'(d(x))Vd)

= div (d‘é“ (Vd)(

a—1 —aa /a—1
- A s s+1
= 5 d—2 ( 5 X°(d)+sX (d)) +d

N LX) + s(s + X))

a—1

X5(d) + 5X8+1(d))>

—ott (a—l

3 (Ad) TXS(d)+sX8+1(d))

—a

_ 2 a1 -1
:—(“Tl) 4 X0 (d) + s(s + 1)d=T X+2(d)

—atl a—1

+d7% (Ad)(

X*(d) + sX (),

it follows that for small d,

a—1

2
a1 —atl

= —s(s + D)d T X2(d) —d~F (Ad)

— div(d* °Vuw,) — ( )Qd_“ws

a—1

X3(d) + sXS“(d))

—a—1

— 47T X5T2(4) (s(s +1)+ (Ad)dX‘2(d)(aT_1 + sX(d))) <0.

Take € > 0 such that for all s € (3,1), ews < won {z € Q | d(z) = 6} and define
vs = ews — u. Then (vg)4 € Woli _o(©) and

_1N2
—div(d* *Vu,) — (QT) d“vs <0 in Qs,

where u; = max{u,0}. Then, multiplying (vs)+ to the above inequality and then
integrating over (g,

a—1
2

V() 2~ (25 0) (w0 < 0.

Qs
On the other hand, by Lemma [A3]

/95 d* |V (ve)4* — (a - 1)2d*a((vs)+)2d~f > 0.
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We deduce that ew, < u in Qs for every s € (3,1). Hence, edaT_lX%(d) < w in Qy,

which is a contradiction to the fact the d=*/?u € L?(Q2). Thus we conclude that if
2

H,2-4(9) is achieved, Hy 2-0(f2) < %. O

1

B

[9

10

[11

[12

[13

[14
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