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ABSTRACTION BOUNDARIES AND SPEC DRIVEN
DEVELOPMENT IN PURE MATHEMATICS

JOHAN COMMELIN AND ADAM TOPAZ

ABSTRACT. In this article we discuss how abstraction boundaries can help
tame complexity in mathematical research with the help of an interactive the-
orem prover. While many of the ideas we present here have been used implicitly
by mathematicians for some time, we argue that the use of an interactive the-
orem prover introduces additional qualitative benefits in the implementation
of these ideas.

1. INTRODUCTION

Modern research in pure mathematics has a clear tendency toward increasing
complexity. New striking mathematical results may involve complex proof tech-
niques, deep mastery of a subfield within mathematics, or nontrivial input from
several areas of mathematics. All of these play a role in increasing the inherent
complexity of a piece of modern mathematics.

In many respects, such increasing complexity is an indication of progress in
pure mathematics. However, with such complexity comes a significant increase in
cognitive load for both readers and authors. It is now routine to see significant
new papers in pure mathematics with one hundred pages or more. Similarly, the
refereeing process of a complex mathematical result regularly takes multiple years.
This state of affairs is clearly not sustainable.

Mathematicians have long been using the concept of abstraction in order to tame
such complexities. For example, they often break down proofs into more manage-
able steps, such as lemmas, propositions, etc. They also frequently introduce defini-
tions that capture a curated selection of properties satisfied by the objects they wish
to study. More generally, it is often helpful to create “abstractions boundaries”,
which separate the use of a mathematical object from its actual implementation.
Staying within the boundaries of a given abstraction can help reduce cognitive load
to some extent, but inherent complexities may nevertheless remain.

In this article we discuss how the use of abstraction boundaries, in conjunc-
tion with an interactive theorem prover (ITP), can facilitate complex interdisci-
plinary mathematical collaboration. We argue that the implementation of these
ideas within an ITP can have significant qualitative benefits in further reducing
cognitive load for both authors and readers. The application of this methodology
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was a key ingredient in the success of the Liquid Tensor Experiment (LTE), and
we use examples from this project to illustrate our primary points.

Here is a brief outline of the paper. In §2] we review some aspects of condensed
mathematics and LTE, focusing primarily on the topics which are relevant for this
paper. In §3] we give a more precise description of what we mean by an abstraction
boundary along with a discussion on sources of complexity within mathematics. In
g4 we highlight some of the qualitative benefits offered by the use of abstraction
boundaries alongside an I'TP, while illustrating spec driven development with several
examples related to LTE. The issue of aligning formal and informal mathematics
using abductive reasoning is addressed in §5l Finally, we summarize and conclude
our discussion in §6l

2. AN OVERVIEW OF THE LIQUID TENSOR EXPERIMENT

The Liquid Tensor Experiment (LTE) began with a challenge posed by Scholze
[14], whose ultimate goal was to formally verify the proof of the main theorem of
liquid vector spaces:

Theorem A (Clausen and Scholze). Let 0 < p’ < p < 1 be real numbers and let
S be a profinite set. Let V be a p-Banach space, considered as a condensed abelian
group. Write My (S) for the space of real-valued p'-measures on S, also considered
as a condensed abelian group. Then Extéond(Ab) (Mp(S),V) =0 for all i > 1.

This theorem is of utmost foundational importance; it is the technical core of the
assertion that the real numbers, endowed with the collection of so-called p-liquid
vector spaces, forms an analytic ring in the sense of Clausen—Scholze [2|10,1T].
In [T4], Scholze mentions that this might be his “most important theorem to date.”
In this section we will only give a brief overview and motivation for the objects
involved in this theorem along with a general summary of the experiment itself, as
will be relevant for the remainder of this paper. We refer the reader to [14] and
[T, Theorem 9.1] for more details.

2.1. Condensed and liquid mathematics. Condensed mathematics is a new
foundational system which replaces topological spaces with objects called condensed
sets, which are set-valued sheaves on the category Profinite of profinite sets with
respect to the coherent Grothendieck topology. The power of this new theory
shines particularly in algebraic contexts, whereas the classical approaches using
point-set topology have several defects. For example, the category of topological
abelian groups fails (quite badly) to be an abelian category, while the category of
condensed abelian groups, defined either as sheaves of abelian groups on Profinite
or equivalently as the category of abelian group objects in condensed sets, is an
exceptionally nice abelian category. Condensed mathematics and its applications
are still under development by Clausen and Scholze et al. [2L[I0l[11], while a similar
approach, albeit with a different overall focus, was introduced by Barwick and Haine
in [I] under the name pyknotic sets[l]

Any topological space (resp., group, ring, module, etc.) can be considered as
a condensed set (resp., group, ring, module, etc.) via a Yoneda-like construction.
One may thus speak about condensed modules over condensed rings, which are the

IThe actual definition of a condensed set involves cardinality bounds, which we have omitted
from the discussion, while the only distinction between condensed and pyknotic objects is in such
set-theoretic issues.
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condensed incarnation of topological modules over topological rings. But in order to
capture the building blocks of analytic geometry, one needs a notion of completeness
for such modules that behaves well algebraically. This is exactly what the notion
of an analytic ring entails: it is a condensed ring with a notion of “completeness”
for condensed modules which behaves well in a suitable derived sense.

Examples of analytic rings include Z™, whose underlying condensed ring is Z
endowed the discrete topology, where the notion of completeness for modules is
modeled on Z[S]® := Jim, Z[S;] for profinite sets S = lim_ 5; expressed as cofiltered
limits of finite sets S;. A similar construction makes Z,, with the p-adic topology,
into an analytic ring denoted Z;. The field Q, can be considered as an analytic
ring as well, essentially by base-changing from Z,,.

The prototypical complete Q,-module in the last case turns out to be M(S,Q,),
the space of (bounded) Q,-valued measures on a profinite set S. However, the
analogous assertion fails if one replaces QQ, with R. The theory of p-liquid vector
spaces solves this issue, by replacing the prototype M(S,R) by a smaller space
Mo, (S, R).

Theorem [A] eventually translates to the assertion that R, endowed with the col-
lection of such p-liquid vector spaces, forms an analytic ring, thus providing a family
of analytic rings parameterized by 0 < p < 1, whose underlying condensed ring is
R. This result shows real and complex geometry can be studied in the context
of analytic spaces alongside objects from algebraic and nonarchimedean geometry,
see [2[I1]. At the same time, classical objects from functional analysis, such as
Banach spaces (or more generally, p-Banach spaces for 0 < p < 1), can fit in this
framework as well, and thus many facets of functional analysis can now be studied
algebraically with the necessary analysis essentially encapsulated in Theorem [Al
This work has already resulted in generalizations and new algebraic proofs of clas-
sical results from algebraic geometry which were originally analytic in nature, such
as Serre’s GAGA. Many additional applications will surely come in the future.

At this point, it should be quite clear that the proof of Theorem [A] involves
significant amounts of category theory, topos theory, and homological algebra, as
well as analysis and topology. Surprisingly, a key step in the proof (see [12[13])
brings combinatorics and (discrete) convex geometry into the picture as well.

2.2. Verifying the theorem on a computer. The LTE was completed on July
14, 2022 [4] with a complete formal verification of Theorem [Al using the Lean proof
assistant [5] and its mathematics library Mathlib [3]. The formalization project—
which was led by Commelin and Topaz—was a collaboration involving about a
dozen mathematicians and several computer scientists. A detailed exposition of
the project itself will appear elsewhere.

To conclude this section, we would like to highlight again that the proof of The-
orem [Al involves many disparate subfields of pure mathematics, and at the same
time, many relatively complicated mathematical objects. This significant source of
complexity in the proof would have posed serious challenges in a traditional referee-
ing process. Indeed, this is one of the main reasons Scholze sought a formalization
of the proof of Theorem [Al as explained in [I4]. In [12], he writes:

The Lean Proof Assistant was really that: An assistant in navi-
gating through the thick jungle that this proof is. Really, one key
problem I had when I was trying to find this proof was that I was
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essentially unable to keep all the objects in my “RAM”, and I think
the same problem occurs when trying to read the proof.

The Lean ITP helped wrangle this complex proof, and, as we explain below, ab-
straction boundaries played a key role in the process.

3. MANAGING COMPLEXITY WITH ABSTRACTION BOUNDARIES

Complexity in mathematical research projects can come from various sources.
We distinguish between two kinds. The first is inherent complezity, by which we
mean the raw complexity of the Platonic ideal of a piece of mathematics. While this
notion is hard to quantify, an approximate measure of inherent complexity could
be the amount of time it takes a generic mathematician to understand the proof or
definition in question starting from scratch.

The second form of complexity we call accidental complezity. This encompasses
all sources of complexity that are not essential to the mathematics but rather
imperfections that could be removed given enough time and energy.

Both inherent and accidental complexity contribute to the total complexity of a
piece of mathematics. It is this total complexity which can overwhelm both authors
and readers.

3.1. Inherent complexity. The main source of inherent complexity for a piece
of mathematics comes from the scope of its prerequisites. This can be measured
along the two axes of breadth and depth: a piece of mathematics may combine
ingredients from many different areas of mathematics, or it may be a pinnacle
within some subject, or a combination of both.

Note that the complexity of a theorem statement can be unrelated to the com-
plexity of its proof. Fermat’s last theorem is an excellent example in this regard.
The statement can be understood by anyone who understands the usual operations
on natural numbers, but understanding of the proof requires mastery of several
subfields of mathematics. Conversely, an elementary property of a complicated def-
inition may have a simple proof. In this case, the statement has a high inherent
complexity, but the proof does not.

Moreover, two different approaches to a proof of a given theorem may differ in
their inherent complexities, even if both are written in an ideal manner. Thus, in-
herent complexity does not measure the minimal complexity of any possible proof
or argument, but rather the complexity of a particular argument or proof strat-
egy. An excellent proof strategy that is executed poorly may have low inherent
complexity and high accidental complexity (see §3.2)). Vice versa, a poorly chosen
proof strategy that is executed perfectly may have high inherent complexity and
low accidental complexity.

Complexity may also arise from the applications of proof techniques as opposed
to applications of theorems. By this we are referring to proofs that apply varia-
tions of a common technique, but where it is unreasonable to capture all applicable
variations in single general theorem statement. This happens frequently in parts
of analysis, probability theory, and combinatorics, to name some examples. A spe-
cific example, provided to us by Peter Nelson, is “connectivity reduction,” where
one proves theorems about combinatorial objects such as graphs, matroids, hyper-
graphs, etc., by reducing to certain “connected” objects. There are many variations
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in the objects involved, such as the notion of connectivity, the way connected ob-
jected are glued together, etc. While such connectivity reductions are common, it
does not seem reasonable to unify them in a precise theorem statement.

While it may appear as if this is more a form of accidental complexity, we argue
that these proof techniques should be rather viewed as inherent complexity of the
subfield of mathematics in which the proof takes place. Although it might be
possible to rephrase such a proof technique as an actual theorem for the purpose
of a given proof or mathematical argument, the theorem will not be sufficiently
broadly applicable: only the proof strategy generalizes.

3.2. Accidental complexity. We illustrate accidental complexity by some well-
known examples that occur as part of the reading and writing of mathematical
texts.

Referring to the proof of a lemma, instead of its statement. This may occur in the
rather common situation where the proof of Lemma X.Y.Z in reference [AB] actually
proves something stronger than what the statement of Lemma X.Y.Z claims. In this
case we might write something like, “We now see that our quasi-perfect gadget G
is strongly separated by the proof of [Lemma X.Y.Z, AB]. Indeed, it is not hard to
check that the proof shows G is not only separated, but even strongly separated”.

Using modifications of source material. Sometimes in the mathematical writing
process we need a verbatim copy of some source material modulo a handful of
completely algorithmic modifications. A mild example of this might be: “In the
following proof, we will rely on a slightly modified version of the material in section 5
of [CD], but with the condition that the field k has characteristic 0 replaced by the
condition that k is perfect.” This can often occur in combination with the preceding
point, where a modification of a proof of some result applies while the statement
itself does not.

Unwritten assumptions. Sometimes statements of theorems or lemmas can omit
assumptions. In the good cases, these assumptions were listed at the beginning of
the section (“in this section we assume that G is infinite”) or at the beginning of
the paper in a section on notation. But there might also be assumptions that are
common practice within certain communities (“all rings are commutative”) which
might be hard to discover for the uninitiated reader.

Unclear definitions or terminology. A related point is that it may be hard to
understand definitions or terminology. For example, definitions may change over
time. In the early literature on scheme theory, all schemes were separated. In
Whitney’s excellent book on geometric integration theory [I7), p.15], a function is
called smooth if it is C'. Such changes occur naturally over time, but can lead
to significant confusion when studying older works, and even to a second degree
when contemporary sources quote older works without properly warning about the
change in terminology.

Keeping track of side conditions. When a lemma is applied, we verify the main
assumptions of the lemma. But it would be burdensome and distracting to verify
all the “trivial” side conditions (that some number is positive, or less than ¢, or
that some map is continuous, etc). At the same time, requiring the reader to keep
track of these conditions implicitly increases the cognitive load.

Editing a paper. Making changes to a paper in its final stages can be tricky, be-
cause of all the possible ramifications downstream. Moving a lemma from section 2
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to section 3 might require changing the statement, because the standing assump-
tions on X differ between the two sections. And yet it is all too easy to make such
changes in a careless manner, possibly even shortly before publication and after a
refereeing process took place.

All of the examples above, among others, are well-known pitfalls in mathematical
writing, and are often warned against (see [7L[8l[I5]). Nevertheless, these issues are
still commonplace in the mathematical literature, increasing the accidental com-
plexity of the work.

3.3. What is an abstraction boundary? An abstraction boundary is a formal
separation between the implementation details of a concept from its extrinsic prop-
erties and behaviour. This involves introducing a specification (or interface) which
describes how the object interacts with the outside environment. By using such
specifications, one can work with the concepts they capture without relying on any
actual implementation details.

This concept is prevalent in software engineering, with prominent examples in-
cluding C header files, public methods in object-oriented programming, and type-
classes in functional programming. In mathematics, abstraction boundaries play a
fundamental role as well, with the mathematical concept of a definition being the
principal example. For example, the definition of a “group” allows us to develop
group theory, and apply results from it in the most varying circumstances, instead
of only working with particular examples such as permutation groups and matrix
groups. In this context, the specification is provided by the group axioms. Another
example of abstraction boundaries in mathematics includes “black box” theorems,
such as Cauchy’s residue theorem, the existence of a Néron model, the law of large
numbers, Theorem [A] etc. Such theorems can be effectively applied in particular
situations without requiring an understanding of the argument.

3.4. Abstraction boundaries in interactive theorem provers. Interactive
theorem provers (ITPs) enforce certain abstraction boundaries rigidly. While this
can be restraining at times, it also relieves the user from cognitive load arising from
several sources of complexity.

ITPs differ in the features that they offer, and certainly in the implementation
details of those features. But most of this section applies to all modern ITPs, even
though we use the Lean theorem prover as a running example. Lean is the system
that we used for LTE, and it is the ITP that we are most familiar with.

The most well-known feature offered by ITPs is proof checking, often as an
instance of type checking. This means that the ITP ensures that lemmas and
theorems are always applied correctly, and that all side conditions are satisfied.
Certain side conditions that are amenable to automation, such as continuity proofs,
functoriality proofs, etc., can often be handled in a way that is transparent to the
user.

Another feature that most ITPs offer is proof irrelevance This notion can
be seen as an analogue of the common mathematical practice of treating certain
theorem statements as black boxes. Essentially, this means that after an ITP

2ITPs built on a foundation of homotopy-type-theoretic nature will often not have proof irrel-
evance for explicit reasons arising from the foundational theory. The particular reasons for this
choice are not relevant to this paper, and a discussion of homotopy type theory would lead us too
far astray.
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finishes checking the proof of a lemma or theorem, it remembers only one bit of
information: that the proof is valid. Any constructions performed within the proof
become inaccessible as soon as the proof is complete. If it is necessary to refer to
such a construction later on, it must be factored out of the proof into a standalone
definition. In doing so, the construction becomes an object in its own right, that
can be named, referred to, and reasoned about. Conversely, if a construction is
local to a proof, it implicitly comes with the strict promise that it will not be used
outside of the proof.

4. SPEC DRIVEN DEVELOPMENT

Spec driven development is an approach for “doing mathematics” which aims
to both use and capture the abstraction boundaries of the mathematical objects
involved. For our purposes, by “doing mathematics” we mean the process of making
mathematical objects such as definitions, constructions, etc., and proving theorems
about these objects. As we explain below, the use of an ITP in conjunction with
spec driven development provides substantial benefits in taming the various sources
of complexity, particularly in complex and collaborative projects.

While this approach arose naturally during the LTE, it is quite commonplace,
although implicit, in usual mathematical practice. For example, an informal proof
may assume some properties up front with the promise of a justification in a later
section. The main difference here is that organizing a proof in this way usually
increases the accidental complexity and hence the cognitive load. For example, the
reader may feel inclined to check that there is no circular reasoning in the final
argument. The use of an ITP completely eliminates this source of complexity, and,
as explained below, even encourages such uses of mathematical debt.

Spec driven development can be summarized as the following recursive process:

(1) Isolate a desired mathematical definition, construction, theorem, etc., as a

“target”.

(2) When appropriate, isolate an initial specification (“spec” for short) of the
target.

(3) Break down the object and its specification into parts with lower com-
plexity.

(4) Repeat the above, with each new part acting as the target.

Furthermore, at each step, definitions and/or theorems, including the targets and/or
their specs, may be refactored as necessary. Refactoring refers to the process of re-
structuring the implementation of an existing object without changing its external
behaviour. As long as these implementation details and external properties of the
object are properly separated by an abstraction boundary, other parts of the envi-
ronment will not be affected by such a restructuring.

Spec driven development is also deeply intertwined with the notion of an ab-
straction boundary discussed in §3l In broad terms, the relationship between the
two can be broken up into two interconnected categories:

(1) Spec driven development uses abstraction boundaries in order to control
complexity.

(2) New abstraction boundaries arise naturally in the process of spec driven
development.
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Of course, these two categories are far from disjoint. For instance, as item (2) pro-
duces abstraction boundaries, they naturally feed into item (1). At the same time
there are situations where spec driven development can straddle both categories.

In the following subsections we discuss the idea behind spec driven development
in more detail by going through a series of examples based on constructions that
were necessary in the LTE. We will present a few snippets of Lean code, although
experience with the language or any other ITP will not be necessary. The precise
meaning of the code we present and the mathematics involved will not be important,
and are only meant to illustrate the implementation of spec driven development in
an ITP. The only important concept needed from Lean’s syntax is that of a sorry;
this is a keyword which should be thought of as a placeholder that needs to be filled
in later. A sorry can be used as a placeholder for both data and proofs, which is
crucial for this approach

4.1. Using and extending abstraction boundaries. The simplest use-case of
spec driven development is in using previously established abstraction boundaries
in order to reduce complexity for the overall objective at hand. As an example,
consider the assertion that the category of condensed abelian groups is an abelian
category, a property that is used in numerous places in LTE. In Lean, this might
be initially formulated as follows:

instance : abelian (Condensed Ab) := sorry

In this example, the sorry appearing should be considered as our initial target: it
is a unit of mathematical debt that must be accounted for at some point in the
future. At this point, all collaborators can immediately start using the assertion
that the category Condensed Ab is abelian, even before providing a proof of this fact.
For example, we can now speak about kernels and cokernels of morphisms, exact
sequences, etc. The abstraction boundary here is the notion of an abelian category.

There are instances where we wish to extend the boundary in some way, and
at the basic level, this can be accomplished by adding additional spec lemmas/the-
orems. For instance, in the example above we may want to use the fact that
morphisms of condensed abelian groups are morphisms of presheaves on Profinite
taking values in Ab, and that sums of such morphisms are computed “object-wise”.
In practice, this assertion would be true by definition, but since the actual defini-
tion has yet to be provided, we cannot formally rely on this. Instead, we add this
property with a spec lemma, which becomes an additional target that can again be
used immediately:
lemma val_app_add {F G : Condensed Ab} {X : Profinite®"}

(fg:F—G) : (f+g).val.app X = f.val.app X + g.val.app X :=
sorry

In the code above, if £ is a morphism of condensed abelian groups, then f.val.app
X denotes the corresponding morphism on sections over the profinite set X. Note
that if we use the targets above at this point, then we are forced to remain within
their associated abstraction boundary. We can’t rely on an implementation detail
because there is no implementation yet!

In order to start repaying the existing debt, we can break down each target and
its associated spec into smaller parts, and repeat the process until the individual

3In type-theoretic terms, a sorry can be used as a placeholder for an arbitrary term of an
arbitrary type, including propositions.
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targets can be handled directly. The initial target and its spec may thus become
a collection of several parts, each of which becomes an additional target. In our
example, recall that an abelian category is a preadditive category satisfying some
additional conditions. After we do this for the abelian category instance in the
example above, we are left with the following which summarizes all the current
targets:

instance : preadditive (Condensed Ab) := sorry

instance : abelian (Condensed Ab) :=
{ normal_mono_of_mono := sorry,
normal _epi_of_epi := sorry,
has_finite_products := sorry,
has_kernels := sorry,
has_cokernels := sorry,
..(infer_instance : preadditive (Condensed Ab)) }

lemma add_val_app {F G : Condensed Ab} {X : Profinite®"}
(fg:F—G) : (f+g).val.app X = f.val.app X + g.val.app X :=
sorry

At each step, a contributor may fill in some target(s) by replacing the sorry
with an actual construction/proof. For example, one contributor may construct
the preadditive structure on Condensed Ab in such a way that the spec lemma
add_val_app above is true by definition, resulting in a reduction of debt:

instance : preadditive (Condensed Ab) := /- actual proof omitted -/

lemma add_val_app {F G : Condensed Ab} {X : Profinite®’}
(fg: F—G) : (f + g).val.app X = f.val.app X + g.val.app X :=
rfl

At this point, the remaining debt in our running example consists of
normal_mono_of_mono, normal_epi_of_epi, etc., which appear as components of
the proof that Condensed Ab is an abelian category. These targets may again
be handled directly, or further broken down as necessary.

4.2. Related targets and specs. In practice, the targets appearing in spec driven
development may depend on others in nontrivial ways. To illustrate this, let us
consider a more interesting example that came up during the LTE. In order to
state Theorem [Al formally, we must be able to talk about Ext-groups, and a natural
context for this construction is using an abelian category with enough projectives.
For each natural number n, Ext"(—,—) is a bifunctor taking values in abelian
groups, which is contravariant in the first variable. We may thus consider the
following as our target:

-- The arrow ‘="' is used to demote functors.
def Ext {A : Type"} [category A] [abelian A] [enough_projectives Al (n : N
)
A® = A = Ab :=
sorry

In this case, it makes sense to immediately introduce specifications describing
the intended behavior of this definition. For example, we may want to ensure that
Ext? is naturally isomorphic to Hom, and to speak about long exact sequences of
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Ext-groups, say in the first variable. This can all be accomplished by adding the
following:
-- ‘preadditive_yoneda.flip' is the bifunctor ‘X — (Y + Hom(X,Y))",
-- where ‘Hom(X,Y)' is considered as an abelian group.
def Ext_zero_iso_Hom {A : Type*} [category Al

[abelian A] [enough_projectives Al

(Ext 0 : A®® = A = Ab) X preadditive_yoneda.flip :=

sorry

def d {A : Type™} [category A] [abelian A]
[enough_projectives A] (n : N) (X Y : A) :
((Ext n).obj (op X)).obj Y — ((Ext (n+1)).obj (op X)).obj Y :=
sorry

lemma Ext_LES {A : Type®} [category Al
[abelian A] [enough_projectives A] (n : N)
(X1X2X3Y:A) (f : X1 — X2) (g:XQHX;g)
(ses : short_exact f g)
exact_seq Ab
[((Ext n) .map g.op).app Y, ((Ext n).map f.op).app Y, d n X; Y] :=
sorry

The definitions Ext_zero_iso_Hom, d and spec lemma Ext_LES are additional targets,
while Ext_LES relates to all three targets Ext, Ext_zero_iso_Hom and d.

As additional targets and/or preexisting definitions/theorems are introduced into
the context, the situation can quickly become unwieldy. It is at this stage where the
use of an ITP really shines. Essentially, the ITP keeps track of all the connections
between the targets and existing definitions/theorems while ensuring consistency
at all times. One enormous qualitative benefit of using an ITP with this approach
is that a contributor working on a given target only needs to keep track of the
immediately relevant portions of this dependency graph of targets/definitions/the-
orems, thereby substantially reducing cognitive load. This approach also facilitates
collaboration, as it is no longer necessary to remember (or even understand) the
context of the project as a whole when working on individual targets. In collabora-
tive projects involving various mathematical subfields, each contributor may thus
choose to only work on targets within their own area(s) of expertise.

4.3. Refactoring. Another major benefit of using abstraction boundaries, which
is highlighted in the process of spec driven development, is that refactoring be-
comes easier in most cases. For instance, in the example from §4.1] the actual
implementation of the fact that Condensed Ab is an abelian category is irrelevant,
as long as one only needs results which hold true in an arbitrary abelian category.
Changing the implementation details will therefore not interfere with the validity
of such results.

Continuing with the example of Ext groups from 4.2 in LTE there was a point
where we had a working definition of Ext, similar to the one described in §4.2] which
had to be refactored to accommodate Ext-groups of (bounded above) complezes
as opposed to just objects. In other words, at one point we introduced targets
resembling the following:
def bounded_above_complex.Ext {A : Type'} [category Al

[abelian A] [enough_projectives Al (n : Z)

(bounded_above_complex A)® = (bounded_above_complex A) = Ab :=
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sorry

def bounded_above_complex.single_zero {A : Type'} [category A] [abelian A]
A = bounded_above_complex A :=
sorry

and redefined the Ext from §4.2] using these roughly as follows:

def Ext {A : Type"} [category Al
[abelian A] [enough_projectives Al (n : N)
A® = A = Ab :=
(bounded_above_complex.single_zero A).op >>
(bounded_above_complex .single_zero A >>
(bounded_homotopy_category.Ext n).flip).flip

By relying on the given abstraction boundaries, as one is essentially required to do
in the context of spec driven development, the process of resolving errors arising
as a consequence of such a refactor becomes significantly easier. While this change
in Ext may indeed cause certain other targets/specs/definitions/theorems to fail,
this failure will be localized to those constructions and proofs that depend on the
implementation. Crucially, the ITP will catch all such errors! Any results elsewhere
in the project that rely on the abstraction boundary in question, such as proofs that
only rely on the lemma Ext_LES from §4.2] should still work without any further
modification.

5. ALIGNING THE FORMAL WITH THE INFORMAL

Every mathematician has to make an ongoing effort to align internal mental
models of mathematics with the pen-and-paper representations found in the lit-
erature. This alignment goes both ways: mental models have to be updated and
adjusted, and expositions of mathematics can be streamlined and improved. This
alignment is an integral part of the creative process. It happens at the blackboard,
during seminar talks, at the writing table, or during a walk in the park. Further-
more, it cannot be captured in formal rules: one cannot prove that a mental model
aligns well with a pen-and-paper representation of some piece of mathematics.

5.1. The alignment problem. With the use of ITPs, this alignment issue is ex-
tended in a new direction: besides mental models and the pen-and-paper represen-
tations, there are the additional digital representations. To illustrate the alignment
problem, consider the statement of Theorem [Al as it was formalized in LTE.

variables (p’ p : R>0) [fact (0 < p)] [fact (p’ < p)] [fact (p < 1)]

theorem liquid_tensor_experiment (S : Profinite.{0}) (V : pBanach.{0} p) :
Vi>o0, Ext i (M_{p}S) V=o0:=

/- proof omitted -/

At a superficial level, this code snippet shows similarity to the statement of Theo-
rem [Al However, there is a possibility that the definition of the symbols Profinite,
pBanach, Ext, and so forth, do not mean what they should mean according to estab-
lished mathematical tradition. In other words: do their formal definitions align with
the pen-and-paper representations and/or with the mental model of anyone looking
at the source code of LTE? If the contributors to LTE were evil, the symbol Ext
might be defined as the zero functor, trivializing the statement in the code snippet
above. More innocently, there may be some subtle mistake in the definition of Ext
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that implies the statement for completely uninteresting reasons. Even this is quite
rare in practice, as a formal proof written by an honest human mathematician still
relies on the mathematician’s mental models of the objects involved. Nevertheless,
the alignment issue still needs to be addressed in order to efficiently communicate
the results of a formalization to the greater mathematical community.

5.2. Abductive reasoning. Although there is no formal system for verifying
alignment of different representations of mathematics, we argue that abductive rea-
soning, along with purposefully designed abstraction boundaries, can be fruitfully
applied to provide convincing evidence of alignment. Abductive reasoning is the
technical term for a mode of reasoning that seeks to explain a set of facts or ob-
servations in the simplest way possible, and is also called inference to the best
explanation. Unlike with deductive reasoning, an abduction is not a formal logical
consequence of its premises. The method is concisely captured by the colloquial
“Duck Test”:

If it looks like a duck, swims like a duck,
and quacks like a duck, then it probably is a duck.

We provide a curated selection of examples and lemmas, somewhat analogous to
“test suites” in software developments, that exhibit the ways in which a particular
formal definition can be used. This is the input that allows others to abductively
conclude that these formal symbols align with their mental models of the corre-
sponding mathematical notions. In the terminology of §4l this input would be a
carefully crafted “spec” for the formal representation of a mathematical concept.

The crucial aspect of such a spec is that it can be much shorter and easier
to read than the actual definitions themselves. Indeed, typically the definitions
will recursively unwind to a long list of prerequisite definitions{j Furthermore,
definitions might be made using general constructions that the reader is unfamiliar
with.

For LTE we provided such specs for all the objects occuring in the main theo-
rem of liquid vector spaces. We collected these specs in the subfolder examples/ of
the project; see [16] for a detailed discussion. For example, we show that the
real numbers in Lean are a conditionally complete linearly ordered field, that
Ext'(Z/nZ,7/nZ) = 7Z/nZ, and that p-Banach spaces V can be given a norm
that satisfies || Av]| = |A|P||v]| for all A € R and v € V. Such examples are a reality
check, which collectively are meant to provide a large degree of confidence that the
formal representations of mathematical concepts align with corresponding mental
models and pen-and-paper representations.

Abductive reasoning is not unique to LTE or the use of ITPs, and many forms
are often used in the mathematical practice at large. For example, the following
common methods of establishing and/or strengthening belief in a mathematical
argument or proof can be considered as instances of abductive reasoning:

e the ingredients and/or ideas seem strong enough to prove the claim;
e the claims hold up in well-chosen examples or numerical experiments;
e the proof is accepted by the community, including the experts in the field.

4The main result of LTE depends recursively on several thousand definitions. Part of these
definitions are made in the project itself, but the majority is imported from Lean’s mathematical
library mathlib.
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With such methods, a reader may obtain some level of trust in the validity of a
piece of mathematics without necessarily digging into every detail of the exposition.
The reader must balance their desired level or trust with the amount of effort they
are willing to exert.

The main differences between such forms of abductive reasoning and the strategy
we put forth in LTE is in the scope to which it is applied. While the three examples
above focus on deciding whether or not to believe the proofs of certain results, in
the case of formalized mathematics, the focus shifts to merely the validity of the
definitions involved. Thus, in formal projects such as LTE, the “surface area” to
which abductive reasoning applies is comparatively small and carefully delineated.
Once the reader is confident that the definitions align with their internal mental
model, which can be done with abductive reasoning as discussed above, they may
choose how far to dig into the associated proofs while remaining confident that the
ITP ensures correctness. Overall, this has the effect of separating the exposition of
the material from the issue of trusting its correctness.

6. CONCLUSION

In 2l we discussed two kinds of sources of complexity in mathematics: accidental
and inherent. We also saw that I'TPs can manage and remove accidental complexity,
essentially by default. On the other hand, in §8lwe saw that spec driven development
and abstraction boundaries, in conjunction with an ITP, can also help in taming
iherent complexity. As discussed in §3] a fundamental feature of spec driven
development is the concept of mathematical debt which can be effectively tracked
using an I'TP. While this debt has to be repaid at some point, it is fundamentally
nonblocking for the project as a whole.

The targets arising in spec driven development, along with other mathematical
objects in question, are frequently interconnected in highly nontrivial ways. With
the use of an ITP, contributors only need to keep track of the objects which are
locally relevant, thereby reducing the cognitive load significantly. At the same time,
these targets can be recursively broken into smaller components until they can be
handled directly. This is particularly useful in collaborations as this allows for the
work to be easily distributed among contributors with potentially varying areas of
expertise.

Another key property of spec driven development is that reliance on abstrac-
tion boundaries becomes effectively required with this approach. As a byproduct,
refactors generally become much easier. As the ITP ensures consistency within the
project at all times, it also keeps track of the changes that must be made as a
consequence of such refactors.

We feel that there is a lot of potential to develop tools to help facilitate spec
driven development in pure mathematics, in conjunction with an ITP. Above we
discussed how an ITP “keeps track” of the complicated dependency graph of objects
(including targets) within a mathematical project. Right now, this is essentially
done in the process of type-checking. However, a tool that does this in a more
explicit manner, by identifying precisely the various objects associated with a given
piece of mathematics within an ITP, would be even more beneficial as it would
tell contributors precisely what they need to focus on when working on individual
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targets. Patrick Massot’s blueprint software [9], which was used in LTER can be
seen an initial approximation to this idea.

Another tool that would be useful in projects such as LTE is a system that would
keep track of the “weights” of targets. Essentially, we envision that each sorry in a
given project would be tagged with a “weight” that is meant to act as a quantitative
approximation for its complexity. Progress in the project as a whole can then be
tracked by computing the total remaining weight. As the history of projects such
as LTE is stored using a version control system (e.g., git), the evolution of the
weights of targets (along with other metadata) could be mined and studied, and
potentially used in machine learning applications.

In this article, we have painted a very positive picture about the current use
of ITPs in pure mathematics. The formal verification of significant results, such
as Hales’s proof of the Kepler conjecture [6] and the Liquid Tensor Experiment,
have clearly demonstrated that ITPs are valuable tools for the verification of hard
proofs. To summarize, we discussed how the use of abstraction boundaries and spec
driven development within the rigid framework of an ITP helps

o facilitate collaboration amongst mathematicians with different expertise;

e manage accidental complexity and thus reduce cognitive load;

e provide a guarantee of formal correctness of proofs, thereby reducing the
amount of material that needs to be trusted.

We envision that these methods can also provide similar benefits in original research.

However, we acknowledge that there are still a number of high costs that come
with the use of ITPs and related tools that pose a barrier to wider adoption within
mathematics. For example, they currently have a steep learning curve, and the dif-
ference between an informal piece of mathematical exposition and its formalization
is still too large. Nevertheless, ITPs and their formalized mathematics libraries
have seen tremendous improvements in the last few years, while the successes in
the field have helped accelerate progress. We are also optimistic that advances in
metaprogramming, artificial intelligence, and type theory itself, will help resolve
some of the remaining issues in the near future.
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