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turned the long controversy on the nature of force and energy 
between Descartes, Leibnitz, and their followers.* 

The closing section contains some interesting general re
marks on the nature of the three laws and the ways of testing 
their truth. 

ALEXANDER ZIWET. 

ANN ARBOR, MICHIGAN, January 1, 1892. 

WEIERSTKASS AND DEDEKIND ON GENERAL 
COMPLEX NUMBERS. 

WEIERSTRASS f—Zur Theorie der aus n Haupteinheiten gebildeten com
plexen Grössen. Göttingen Nachrichten, 1884. 

DEDEKIND—Zur Theorie der aus n Haupteinheiten gebildeten complexen 
Grössen. Göttingen Nachrichten, 1885. 

DEDEKIND—Erläuterungen zur Theorie der sogenannten allgemeinen com
plexen Grössen. Göttingen Nachrichten, 1887. 

I N closing his second memoir on biquadratic residues J Gauss 
makes this remark: " Our general arithmetic, which goes so 
far beyond the limits of the geometry of the ancients, is entirely 
the creation of recent times. Starting with the notion of whole 
numbers its field has widened little by little. To whole num
bers came fractions, to rational numbers the irrational ones; 
to the positive came the negative and to the real came the 
imaginary/' 

Once convinced that y ' ^ T was properly an algebraical 
quantity and that it had a meaning, mathematicians began to 
look for other quantities of a similar nature. "Why/* they 
asked themselves, " should algebra yield an imaginary unit 
which makes it possible to represent two dimensions of space 
analytically ; and fail to yield a second imaginary unit which 
can be used to represent the third dimension? " The thing 
needed only to be sought for apparently, and at first they 
looked amongst the functions of ^/ — l. Unfortunately it 
turned out that even the most promisingly irrational of tnese 
could all be broken up into a real part and y ^ l times a 
second real quantity; algebra had done her best ; if mathe
maticians wanted more imaginaries they must invent them. 
Prom the time of Gauss, then, until the present day the 
architects and the masterbuilders have turned occasionally 

* See for instance E. MACH, Die Mechanik in ihrer Entwicklung', Leip
zig, Brockhaus, 1889, pp. 254-259. 

f Extract from a letter to Schwarz. 
% Werke, IL, p. 175. 



GENERAL COMPLEX LUMBERS. 151 

from their labors upon the theory of functions, that monu
ment which of all that human hands have built will rise the 
highest and stand the longest, to try their skill in construct
ing systems of imaginary, or complex, numbers. 

Gauss himself was of the opinion that no complex numbers 
except those of type x -f ^^~ï y would be found admissible 
into arithmetic,* but does not state his reason for the opinion. 
The occasion of the articles cited above was an inquiry into his 
most probable reason, an inquiry which involved a funda
mental investigation into the properties of the hyper-complex 
[über-complex] numbers, as Dedekind calls them. After full 
and interesting researches, of which this paper aims to give a 
sketch, these great mathematicians came to opposite conclu
sions. The fact that in the field of complex numbers the 
product xy may vanish when neither x nor y is zero, a fact 
made public by Peirce long before, f seemed to Weierstrass so 
unlike anything in ordinary mathematics that he concluded 
this must have been Gauss's reason for excluding hyper-com
plex quantities from arithmetic. On the other hand Dedekind 
asserts that it is quite a common thing in ordinary arithmetic 
for such a product to vanish, and concludes that Gauss's rea
son for excluding quantities of a nature different from x + iy % 
was the fact that such quantities, conditioned as they must be, 
do not exist. 

To construct a complex number Weierstrass writes down a 
system of n units ex, e^ . . . en and multiplies each by an 
ordinary real number Sr ; then the expression x = £xe, + . . . 
+ %nen is a number of the kind considered. His first under
taking is so to define the fundamental operations of arithmetic 
for quantities of this kind that x H- y, x — y, xy, x/y may all 
be linear expressions of the same form as x ; and that the com
mutative, associative and distributive laws of addition and 
multiplication may hold good for them. It appears that the 
multiplication table for the units may be constructed in an 
infinite number of ways so as to satisfy all these requirements. 
Of course the fundamental condition is the first one, which 
comes to the same thing as this, that every rational function 
of the units shall be expressible in the form 

g & + . . . + Srfin-

Division is defined by the equation 

- == yxe, + . • . + ynen = y. 

* Werke, IL , p. 178. 
\Am. Journ. Math., vol. IV. (1881), p. 97. 
t x and y real ; i = ^ _ i. 
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Multiplying both members by b and equating the coefficients 
of el9 . . . en on both sides, a set of n equations is obtained, 
linear in yl9 . . . yn. If their determinant vanishes identi
cally, it is impossible to determine yx9 . . • yn9 and therefore 
all multiplication tables are excluded which would bring this 
to pass. But even then there will be certain values of b for 
which this determinant will vanish. Suppose such a value 
chosen ; we can then find a value of y such that by shall 
vanish, both b and y being different from zero ; for by = 0 
leads to a system of n equations linear and homogeneous in 
yl9 . » „ yn whose determinant vanishes. The quantities b 
having this unique and wonderful property are called by 
Weierstrass " divisors of zero" [Theüer der NulT\. 

It turns out that when b is a divisor of zero there are an 
infinite number of quantities y such that by = 0, and thence 
it is an easy inference that the equation 

Tea + Tcbx + hex2 + . . . + Hxm = 0 

has an infinite number of roots if Tc is a divisor of zero. We 
have, in fact, only to make 

a + bx + . . . + lxm = g 

where g is any one of the infinite number of quantities satis
fying the relation leg = 0. 

"The existence of these divisors of zero which are not 
themselves zero, seems," says Weierstrass, " t o make a real 
distinction between ordinary arithmetic and the arithmetic of 
hyper-complex * numbers " ; but ordinary algebraic equations 
exist which have an infinite number of roots, namely those 
whose coefficients are all zero. As to this point then there is 
a good enough correspondence between the numbers of our 
common arithmetic and hyper-complex numbers. 

The author now obtains a multiplication table of beautiful 
simplicity by the following process. He expresses the first, 
second, . . . , (n + l)-th powers of x9 where 

x = Slel + . . . + £nen 

linearly in terms of el9 . . . en ; then, excluding the case when 
the determinant of the right members of the first n equations 
vanishes, we can express el9 . . . en in terms of the first n 
powers of x ; and substituting these values in the last equation, 
obtain a relation among the powers of x of the form 

J0x
n+l + . . . + Anx = 0 

where z/0 is the determinant just mentioned. 

* Weierstrass does not use this term. 



GENERAL COMPLEX LUMBERS. 153 

t Dividing by A^x this becomes, if we replace x by the par
ticular value g, 

gn + exg
n-1 + . . . + eneQ = 0 =f(g). 

Here eQ is a quantity which satisfies the conditions 

e0z = ze0 = z 

for any number of the system. Its value is in î^aïg/g ; which 
is determinate so long as g is not a divisor of zero. We are 
now in a position to put every number a in the form 

a = aQeQ + axg + a^f + . . . + ang
n~l = a(g)* 

and the product of any two numbers takes the same form. 
Consider now the algebraic equation ƒ (£) = 0 formed by 

replacing g in f(g) by B, ; form also the function a (£) by 
replacing g by B, in a (g). There is no difficulty in seeing 
that the product a (£). b (<?) will vanish if it contains the 
factor ƒ (<?). If ƒ (S) = 0 has a root of multiplicity A, it can 
be indicated by writing 

ƒ (4;) =ƒ,*(*)• W ) 
and the arbitrary function cp (£) =f fë). F(g) . <px (£) will 
be of such a nature that <pk(5) is divisible by ƒ (\?) and there
fore vanishes ; but if B, be replaced by g in cp (H) we obtain a 
hyper-complex quantity # whose A-th power is obtained by 
replacing è by g in <pA (£). The A-th power of x will therefore 
vanish. Hence, if ƒ (<?) has a multiple root, the equation 

xk~0 

can be satisfied in as many ways as there are different choices 
of the function cp (<?) ; but this number is infinite. It is our 
intention, however, to allow an algebraic equation an infinite 
number of roots only when each of its coefficients is a multiple 
of the same divisor of zero f ; matters must consequently be so 
arranged that ƒ (5) = 0 shall have no multiple roots. To 
effect this, the original multiplication table must be so con
stituted that the discriminant of ƒ(<$") shall not vanish. This 
imposes another restriction upon the freedom of choice of the 
coefficients am in the equations 

e& = . p eiJkek. {i, j = 1, 2, . . . n). 

The simplified multiplication table is now in sight. Take 
any function cp (£) of degree n — 1 and with real coefficients 

* This is a departure from the notation of Weierstrass. 
f Weierstrass, loc, cit., p. 399. 
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and break up into partial fractions the quotient of cp (g) by 
ƒ (g). This yields the equation 

CP (S) _ AX , _ _ A ^ , , ax + A g 
ƒ ( 5 ) ^ - J ^ ^ - J , * • • • + g* + 2hxg + kj ' • *' 

the quadratic denominators corresponding to pairs of conju-
A fig) 

gate imaginary roots of ƒ (g) = 0.* The quantity g _ ^ i s 

a polynomial in g of degree n — 1 and may be changed into a 
hyper-complex quantity, cx, by replacing g by g as above. In 

the same way -?r ^h' leads to another quantity <?a. The prod-

f (g) fig) 
uct 0j02 is obtained by replacing g by # in AxA^r-J\ \(g—h y 

but this product vanishes and, in consequence, cxc^ = 0. If 
then ƒ (g) = 0 has the m real roots bl9 . . . JTO, we may con
struct m hyper-comp.ex quantities cl9 c9, . . . £w such that the 
product of any two of them vanishes. Moreover we can 
obtain 

•^) -=»m/w + *^ , 

where Bx is a constant. This reduces to Bx ^ P H r and we infer 

that cx is equal to cx times a real quantity. Moreover this 
real multiplier cannot be 0. 

Again the product W V i r r ^ r r ^ïü, when g is replaced 
£ + Atix c; + fcx 

by #, yield two hyper-complex quantities, cm+lf cr
m+1 since 

C\ and />x are both arbitary. These quantities form the 
doubly extended manifoldness Oxcm+1 + Dxc'm+1 ; and each pair 
of conjugate imaginary roots of ƒ (g) = 0 enables us to form a 
similar manifoldness. Repeating the reasoning already given 
we find that the product of any two quantities belonging to 
different manifoldnesses vanishes ; thus 

( Or cm+r + Uv c OT+r) ( Os cm+3 + JJ8 c m+a) = U 
whether Dr and D3 be different from zero or not ; and that the 
product of two quantities belonging to the same manifoldness 
also belongs to that manifoldness. Suppose the whole num
ber of partial fractions to be r ; each fraction yields a simple 
or complex quantity ax, . . . ar and any hyper-complex quan
tity whatever can be expressed in the form 

x = gxa. -f . . . + grar. 

* The notation of Weierstrass is here altered for simplicity. 
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If y be any other quanti ty 

y = Viax + • • • + Vr ®r 

then the rule for multiplication is 

xy = Sxrii ax + £a*7a < + . . . + £• W 
If now in x the coefficients <§*x, 4*2, . . . <?* all vanish, and in 
y the coefficients ^ , Vk+u > . . V* ftU vanish, then #y will 
vanish while neither x nor y is zero. 

An equation of the form 

a + ßx 4- ^^2 4- . . . 4- ctf#A = 0 

breaks up into r equations of the form 

(B) a^ 4- ßvPp. 4- . . . 4- GOpX^ = 0 

where aM ß^, . . . , %n are ordinary quantities. Equation (i?) 
can have an infinite number of roots—only in case av-, ß^, 
. . . GO p. all vanish. Suppose they do vanish : then 

a = axax-\- . . . 4- ay-i ^ _ i 4- av+i tf^+i 4- • , • + <*,//,. 

Taking any quantity 

i = J1Ä1 + . . . 4- ^ - i a^-i 4- *v+i aM+i 4- . . . 4- &,/*„ 

we can put <# in the form 

a = *a' where < 6 0 = J J = J £0 or ax' = J ; 

similarly for ar'a, and so on. But a\ = 0/0 ; that is it may 
be anything we please. Proceeding in this way, the equation 
can be put in the form 

ha' 4- hß'x 4- . . . + JCGO'X* — 0 

where fc, having one coefficient zero, is a divisor of zero. 
Equation (B) having an infinite number of roots, of course xy 
of which each root of (B) forms a part, has an infinite num
ber of values. We thus see why it is that in this system an 
equation must have an infinite number of roots when each co
efficient is a multiple of the same divisor of zero. 

Closing this section of his letter the distinguished author 
remarks that very likely Gauss's only reason for excluding 
from arithmetic these hyper-complex quantities was that he 
regarded the vanishing of xy when neither x nor y is zero as 
an insurmountable difficulty ; otherwise " it could hardly have 
escaped him that an arithmetic of these quantities can be con
structed in which all the theorems are identical with those 
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concerning ordinary complex quantities, or at least analogous 
to them." " I n fact/ ' he continues, " the arithmetic of 
hyper-complex quantities can lead to no result which could 
not be reached by processes known in the theory of ordinary 
complex quantities." 

The views of Dedekind upon this last point quite coincide 
with those of Weierstrass ; but for an account of his beau
tiful method of generating systems of complex quantities, the 
reader is for the present referred to the memoirs cited above. 

C. H. CHAPMAN. 
JOHNS HOPKINS UNIVERSITY, February 3, 1892. 

EMILE MATHIEU, HIS LIFE AND WORKS.* 

I F it were asked what tyranny in this world has least foun
dation in reason and is at the same time most overbearing and 
capricious, none could be found to answer better to this de
scription than fashion ; that fashion which makes us admire 
to-day what but yesterday would have excited astonishment, 
and which may provoke ridicule to-morrow. We all know 
that this sovereign whose iron rule is so much more keenly 
felt on account of its injustice governs the thousand and one 
details of every-day life ; that it is supreme in literature and 
in the arts. But those who have not watched closely the life 
of the scientific world may perhaps be surprised to hear that 
even there if you would please you must bend the knee to 
fashion. What ? might exclaim the stranger to the world of 
science, can it be true that the mathematician knows other 
laws than the inflexible rules of logic ? Does he care to obey 
other orders than the invariable commands of reason ?—Well, 
yes. Of course, to have a mathematical production accepted 
as correct, it is sufficient that it conform to the precepts of 
logic ; but to have it admired as beautiful, as interesting, as 
of importance, to gain honor and success by it, more is re
quired : it must then satisfy the manifold and varying exac
tions imposed by the prevailing taste of the day, by the prefer
ences of prominent men, by the preoccupations of the public. 

Thus it comes to pass that, in mathematics as elsewhere, 
fashion will sometimes award the laurels to those who have 
not deserved the triumph and make victims of men whose 
lack of success is an injustice. In every country there are 
such victors and such victims ; but nowhere perhaps are they 

* Translated from the MS. of the author by Professor ALEXANDER 
ZIWET. 


