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COLLINEATION AS A MODE OF MOTION.* 

BY MAXIME BÔCHER, PH.D. 

I N the following paper I have attempted togiye an account 
of some very simple matters, which, although familiar to 
many, appear to have attracted but little attention in this 
country. The subject, however, has never, as far as I know, 
been presented from precisely the point of view here adopted. 

Perhaps the most important difference between the old and 
the new geometry lies in the extended use made during the 
present century of geometric transformations, f The change 
which has come about in this direction is due in part to the 
influence of certain branches of applied mathematics in 
which one has to deal not merely with geometric configura
tions but also with certain changes which these configurations 
are forced to undergo. There are however two distinct 
ways of looking at a transformation. First we may consider 
the original and the transformed figure as standing side by 
side, or even as occupying portions of the same space, the 
latter being in a certain sense a picture of the former ; or 
secondly, we may consider the original figure to be gradually 
deformed according to a given law into the transformed fig
ure. Each of these points of view can be traced to a physical 
origin. Perspective and allied subjects strikingly illustrate 
the first, while the second will most naturally be adopted in 
hydrodynamics, the theory of elasticity, etc. Now while the 
first of the above mentioned ways of looking at a transforma
tion has the advantage of introducing no unnecessary element 
into the consideration, the second in turn has the advantage 
of making the idea of a transformation lose much of its 
abstracfcness, for by its aid we are enabled to see the points of 
the original figure rearrange themselves by a gradual motion 
into the transformed figure. 

I wish to illustrate this way of looking at a transformation 
as a mode of motion by considering one of the simplest of 
transformations, the so-called linear transformation orcolline-
ation,î and for the sake of simplicity I will confine myself to 
two dimensions. 

* Lecture delivered June 4, 1892, before the New York Mathematical 
Society. 

f The following remarks should be understood to apply only to point 
transformations, i.e., to transformations which carry points over into 
points. 

X The word collineation seems to be by far the best name for this trans
formation, not only because it is as applicable in synthetic as in analytic 
geometry, but also because the ambiguity which arises in speaking of a 
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226 COLLINEATION" AS A MODE OF MOTION. 

Using any system of trilinear coordinates (xl9 xi9 #8), a col-
lineation will be expressed by the linear formulae : 

p xx' = ax xx + a% #2 + a, a?„ (1) 
p < = M i + M . + *,«,» 

(p being an undetermined factor of proportionality). 
It is however well known that in general a collineation 

leaves three points of the plane fixed while all other points 
are carried over into new positions. If now these three fixed 
points be taken as the vertices of the triangle of reference, 
the collineation will evidently be expressed by the very simple 
formulae : 

p xx = axl9 p xj = lx„ p x9' = cxz. (2) 

These formulae tell us into what position each point of the 
plane is carried over by the transformation ; they give us, 
however, no clue as to what path it is advisable to regard as 
traversed by each point in passing from its original to its 
final position. 

To determine this, let us first consider the case in which 
two of the fixed points are the circular points at infinity, the 
third (finite) fixed point being denoted by the letter 0. This 
collineation may be shown by a simple calculation, to consist 
of a rotation of the plane as a whole about the point O 
combined with a uniform stretching of the plane away 
from (or contraction of the plane towards) this same point. 
In the case of a rotation, however, each point will naturally 
be regarded as moving from its. original to its final position 
along the arc of a circle whose centre is at 0; in the case of 
expansion or contraction on the other hand, the lines of mo
tion will be the straight lines through 0, the motion taking 
place away from O in the case of expansion and towards O in 
the case of contraction; the amount of the motion in any 
case being proportional to the distance from 0. If, then, wre 
have a combination of rotation and expansion (or contraction) 
the lines of motion will evidently be equal logarithmic spirals 
with pole at 0. Taking 0 as the origin of a system of polar 
coordinates, the equation of this family of logarithmic spirals 
will be : 

r = Aek* y 

linear transformation without specifying what system of coordinates we 
use is a very real objection, as there are other coordinates besides trilinear 
(for example, Darboux'.s tetracyclic coordinates) in which linear trans
formations are actually considered. The term "homographie trans
formation," introduced by Chasies, is not as expressive as the term col
lineation used some years before by Möbius. It does not seem as though 
Chasies' ignorance of the German language could justify us in adopting 
his poorer names in place of the original better ones. 
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where h is a constant determining the shape of the spirals, 
while A is a parameter varying from one member of the fam
ily to another. We shall nnd it more convenient to write in 
place of 'k the quotient hjlcv 

Let us now introduce a system of trilinear coordinates in 
which the vertices of the triangle of reference are the circular 
points at infinity and the point 0. We will denote these 
coordinates by the letters (<?, r/9 f), the first two referring to 
the imaginary sides of the triangle of reference through 0, 
while the last refers to the line at infinity. In this system 
of homogeneous " circular " coordinates the equation of the 
above mentioned family of logarithmic spirals is readily found 
to be : 

or since hv &2, A are any constants : 

£« rfß ty = 0, 

provided that a -f ß 4* y = 0. 
We can now write out at once the equations of the lines of 

motion in the general case where we have as fixed points any 
three points of the plane, for we have merely to project the 
point 0 and the circular points at infinity in the special case 
we have just considered into any other three points in order 
that the logarithmic spirals should go over into the lines of 
motion of a general coUineation. The equation of the family 
of lines of motion, referred to the triangle of reference whose 
vertices are the fixed points* is then : 

x* xf xy = 0, 

where 0 is the variable parameter of the family while the 
constants a, ß, y (which are connected by the relation 
a + ß 4- y = 0) depend upon the coefficients a, I), c of the 
linear transformation (2) above.* 

The fixed points of a coUineation may be all real, or one 
of them may be real and the other two conjugate imaginary. 
The last of these two possibilities need not detain us long, as 
it may be obtained by a real projection from the special case 
considered above where two of the fixed points were the cir
cular points at infinity. In it we shall have in our triangle 
of reference one vertex and the side opposite real, while the 
remaining vertices and sides are imaginary. The lines of 
motion will have a spiral form, each consisting of an infinite 

* It is easily found that a, fi, y are proportional respectively to 
log e log « log L 
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number of coils about tbe real fixed point. As these coils 
become larger they will become more and more elongated 
in the direction farthest from the real side of the triangle of 
reference, until each coil finally assumes a hyperbolic form, 
running out on the side of the fixed point farthest from the 
real side of the triangle of reference through infinity, and 
completing itself on the other side of the real line in question. 
These hyperbolic coils ultimately approach the real side of the 
triangle of reference asymptotically. 

When all of the fixed points are real, however, the lines of 
motion will have completely lost their spiral character. Here 
again there are two cases to consider, according as the three 
coefficients a, I, c of the transformation have all the same 
sign, or one of them a different sign from the other two. 
The three indefinitely extended sides of the triangle of refer
ence divide the plane into four parts, one finite and the other 
three infinite. We may speak of each of these parts as " tri
angles, " in spite of the fact that each of the three infinite 
triangles appears to be divided into two distinct portions by 
the line at infinity. Using this terminology we may say that 
when all three coefficients a, b, c have the same sign, the 
interior of each of these four triangles is transformed into 
itself ; but when one of the three coefficients has a different 
sign from the other two the triangles are interchanged in 
pairs. We will begin with the simpler of the two cases, in 
which each triangle is transformed into itself. The lines of 
motion in this case will be found to lie as follows :—* 

Within the finite triangle the lines of motion all start from 
the vertex corresponding to the smallest of the three coeffi
cients, f and run without singularity to the vertex correspond
ing to the largest of them ; at each of their extremities these 
curves are tangent to the side of the triangle joining that 
extremity with the vertex corresponding to the coefficient 
which lies in magnitude between the other two. The side of 
the triangle joining the vertices which correspond to the 
greatest and the smallest coefficient is, of course, itself a line 
of motion, and the same is true of the broken line consisting 
of the other two sides of the triangle. 

* One way of seeing this is to consider first the special case in which 
the triangle of reference consists of two lines at right angles to one 
another and the line at infinity, and then to project this into the general 
case. In the special case just mentioned we have to deal with the same 
transformation which occurs in the theory of small irrotational strains 
(see for instance MINCHIN, Uniplaner Kinematics, chap. v.). It is inter
esting to notice that this is a case in which the idea of lines of motion 
is naturally suggested by a physical application. 

f The coefficients a, b, c are said to correspond to the vertices opposite 
the sides Xi = 0, x2 = 0, x* = 0 respectively. 



COLLINEATION AS A MODE OF MOTION. 229 

The lines of motion within each of the other three triangles 
will be precisely like those just described, the difference in 
appearance being due to the fact that these triangles them
selves extending through infinity, some of the lines of motion 
in one of these three triangles and all of the lines of motion 
in the other two will run through infinity on their way from 
the vertex corresponding to the smallest of the coefficients to 
the one corresponding to the largest. 

It should be noticed that while these curves are in general 
transcendental and extend only between two fixed points of 
the collineation where they suddenly stop, we can find special 
collineations for which the curves are algebraic and all of any 
degree we please. The family of curves will not look partic
ularly different in these cases from what it does when the 
curves are transcendental, but the curves themselves will have 
a different shape. They will now no longer stop at the two 
fixed points just mentioned, but will continue beyond them 
into another triangle, having singularities in these points 
when their degree is higher than the second (in the case of 
cubics, a cusp in one point, and a point of inflection in the 
other). The case where the lines of motion are conies all 
tangent at the extremities of one of the sides of the triangle 
of reference to the other two sides deserves special mention 
owing to its frequent occurrence in projective geometry.* 

Coming now to the case where one of the coefficients of 
the transformation has a different sign from the other two, it 
is readily seen that the lines of motion are here imaginary 
although each contains an infinite number of real points. 
Every point of the plane is therefore carried over from its 
original to its final position through an imaginary path. We 
are therefore unable to follow the motion of the points of the 
plane. It is however possible to break up the transformation 
into two parts, one very simple, the other more complicated 
but having real lines of motion. Thus for instance we can 
break up the collineation : 

pxx' = —• 2xx, p#2' = 3#2, p#3' = 5#3, 

into the two collineations : 

pxx~--xx, px^x^ p#8 = 03; 
pxx = %xx, p#2 ' = 3S2, p#3 ' = 6x%. 

* We may of course have conies as lines of motion when two of the 
fixed points of the collineation are imaginary, rotation of the plane 
about a point being a special case of this. In fact, whenever the lines of 
motion are conies, whether the fixed points are real or imaginary, the 
collineation will be merely a non-euclidian rotation if we take one of 
these conies as the absolute. 
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The second of these has as its lines of motion the real tran
scendental curves discussed above, while I may perhaps be 
allowed to describe the first as a "projective reflection " with 
regard to the side x1 = 0 and the opposite vertex. The na
ture of the transformation brought about by this projective 
reflection is so simple that it need not be discussed here, and 
that we do not need the assistance of lines of motion to get a 
perfectly clear idea of it.* It is of course merely the pro
jective generalization of ordinary reflection ; reflection with 
regard to the axis of X, for instance, in a system of rectan
gular coordinates, being merely a projective reflection with 
regard to this line and. the infinitely distant point on the axis 
of T. 

It remains to mention some of the literature connected 
with this subject. The transcendental curves, which we have 
called the lines of motion of the collineation, occur incident
ally in a paper by Olebsch and Gordan in the Mathematische 
Annalen, vol. I. They were however first systematically con
sidered by Klein and Lie in vol. iv. of the same journal 
(1871). The reader is referred to this paper for the modifica
tion of the lines of motion which occur in the various special 
cases (when the collineation has two coincident fixed points, 
etc.). The very brief indications there given can readily be 
amplified as has been done in this paper for the general case. 
The reader will also find in this beautiful paper an account 
of some of the remarkable properties of these curves, which 
thus gain an interest far above that attaching as yet to most 
other transcendental curves, owing to the fact that their prop
erties form to some extent a systematic whole, not a mass of 
facts more or less ingeniously proved. More important still 
however is the connection of these lines of motion with Lie's 
now famous theory of differential equations,! some of the 
very earliest of Lie's investigations in this direction being 
contained in the paper just mentioned. By the introduction 
of infinitesimal transformations it is possible to obtain the 
lines of motion directly without first considering the special 
case in which the circular points at infinity are two of the 
fixed points. We thus find the equation of the lines of motion 
as the solution of a differential equation. 

In still another way must Klein's name be connected with 

* It should however be noticed that a projective reflection (and there
fore any ordinary reflection) may be regarded as having real lines of 
motion, viz , conies. This will be most readily seen if we consider that 
the projective reflection with regard to the line at infinity and a finite 
point is equivalent to a rotation through an angle of 180° about that 
point. 

f See Lie's recently published book on this subject edited by Scheffers. 
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this subject. A few preliminary remarks are necessary to ex
plain this. The linear transformation of a single straight line 
into itself may be studied from precisely the same point of 
view as we adopted above in the case of two dimensions. 
Three cases would again present themselves : one in which the 
two fixed points are imaginary, and two in which they are 
real. In one of these last the transformation cannot be re
garded as a real motion, while in the other two it can. Now 
the extension of our theory which suggests itself to us here 
depends upon the fact that the complex points of a straight 
line can be conveniently represented in a plane of which 
the line is the axis of reals. The linear transformation of the 
line will then give us a corresponding transformation of 
the plane which of course should not be confounded with the 
collineation discussed above. The coefficients here need no 
longer be real to give us a real transformation. This new 
transformation of 'the plane may also be regarded as a mode 
of motion and has been so treated by Klein in his lectures for 
a number of years (see an article by Prof. Cole in the Annals 
of Mathematics for June, 1890, and part II. chap. I. of the 
recently published Modulfunctionen of Klein-Fricke). The 
idea cannot fail to suggest itself that the transformation of 
the plane which we have called collineation should be general
ized in a similar way by representing the complex as well as 
the real points of the plane. I do not know of this subject 
having been treated; it would of course lead us into four 
dimensional space. 

HARVARD UNIVERSITY, June, 1892. 

NOTES. 

A REGULAR meeting of the N E W YORK MATHEMATICAL 
SOCIETY was held Saturday afternoon, June 4, at half past 
two o'clock, the president in the chair. The following per
sons having been duly nominated, and being recommended by 
the council, were elected to membership : Dr. James Whit-
bread Lee Glaisher, Trinity College, Cambridge, England ; 
Mr. Ferdinand Shack, New York, N. Y. The following 
papers were read : " An expression for the total surface of an 
ellipsoid in terms of (T- and p- functions, including an appli
cation to the surface of a prolate spheroid/' by Professor J. 
H. Boyd ; " On collineation as a mode of motion," by Dr. 
Maxime Bôcher ; " On Peters' formula for probable error," by 
Professor W. Woolsey Johnson. 


