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tions between the parameters defining the system. Finally, 
the conditions determined by three relations form the third 
group and are all conditions of constraint without friction. 

This general theory is followed by numerous applications 
worked out completely, and with the elegance and clearness 
which are characteristic of the two courses of lectures we 
have before us. 

I t is only fair in concluding this review to remark to Mr. 
Hermann's credit that the reading of these two volumes is 
not in the slightest degree trying to the eyes, which unfortu­
nately could not be said with regard to, for instance, Mr. 
Klein's lithographed courses. 

ALEXANDRE S. CHESSIN. 
J O H N S H O P K I N S UNIVERSITY, 

January 24, 1896. 

A GEOMETRIC PROOF OF A FUNDAMENTAL 
THEOREM CONCERNING UNICURSAL CURVES. 

BY PROFESSOR W. F. OSGOOD. 

1. I F ƒ (x,y)=0 is the equation of an irreducible curve of 
deficiency 0, then, as is well known, the coordinates can be 
expressed as rational functions of a parameter A:* 

x^r^X) y=n(X) 

where not only to a given value of A corresponds one and 
only one point of the curve, but conversely to a given point 
(x,y) on the curve corresponds in general one and only one 
value of À. f X can be expressed as a rational function of x 
and y. 

If a multiple-leaved Riemann surface spread out, say, 
over the #-plane be used to represent geometrically the above 
locus, f(x,y) = 0, the deficiency of this surface will likewise 
be 0, and as is shown in the elements of Riemann's theory 
of functions, J there exist single-valued functions on such a 
surface having but a single pole, and that of the first order, 
and taking on every value once and only once on the 
surface. Call such a function À. Being single-valued on 
the surface it will be a rational function of x and y: X=B(x,y), 

^SALMON, Higher Plane Curves, p. 30; CLEBSCH-LINDEMANN, Geometrie 
vol. I., p. 883. 

f CAYLEY has given to such curves the name unicursal. 
j K L E I N , Modulfunctionen, vol. I., p. 493 et seq. P ICARD, Traite 

d? analyse, vol. II . , Ch. XVI. 
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and hence through this equation the multiple-leaved surface 
is transformed conformally into the single-leaved ^-plane. 
Hence x is a rational function of L And similarly for y. 

2. Conversely, let the equations 
tf=ri(/l) I m 

y=r2(X) ) V) 
be given, where rx and r2 are any rational functions of A 
Then the locus of (x, y), if regarded as a plane curve, is an 
algebraic irreducible curve of deficiency 0 ; if represented by 
a multiple-leaved surface spread out over the #-plane, it gives 
rise to an algebraic surface consisting of a single piece, like­
wise of deficiency 0. (In connection with these statements 
see however the last lines of § 5.) But while to every value 
of A there still corresponds one and only one point (#, y) of 
this surface, it is not true conversely that to a point (x, y) 
only one value of A corresponds, as is shown by the exam­
ple x=A2, y= X2. I t is however always possible to replace X by 
a new parameter p, which is a certain rational function of A: 

such that x and y will be rational functions of //, while to a 
given point (x, y) only one value of //. corresponds.* 

3. The essential thought that underlies these theorems 
finds clear expression in the geometric method of conformai 
representation, and reciprocally the value of this method as 
a means of investigation is set in a strong light. 

I t is believed that it will not be without interest to the 
readers of the BULLETIN to see this simple example of the 
method worked out, and it is hoped furthermore that this 
example may be suggestive of a desirable for m of presenta­
tion in instruction in the theory of functions. 

4. Consider first the equation 
x=r1^X) 

To each value of ^ corresponds one and only one value of x 
and the ^-surface consists of the single-leaved A-plane. To 
each value of x correspond m values of A, in general dis­
tinct, and the ^-surface consists of an m-leaved Biemann 
surface connected through junctions along junction-lines. 
Call this surface T. 

Now consider the second equation(l): 
y=r2(À). 

y will be a single-valued function on the surface T, since to 

* An algebraic proof of this latter theorem was given by Lüroth, Math 
Annalen, vol. 9, 1875. 
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every point of T corresponds only one value of X, But it 
may happen that for every value of x two or more of the m 
corresponding values of y coincide ; so that the surface T 
would not represent y as a function of x. 

Let us construct the surface that does represent y as 
a function of x. For this purpose first cut the leaves of T 
along the junction lines, thus obtaining m separate leaves, 
each containing one or more slits. Consider the first of 
these leaves. To each of its points corresponds a value of yy 
ylf and it forms the first leaf of the surface to be constructed, 
8. Next let x leave this first leaf and crossing one of the 
slits, pass into a second leaf of T. Call the corresponding 
value of y in this second leaf y2. Two cases can arise. 
Either y2 is, in general, different from yx or y2 is identical 
with yx. In the first case this second leaf of T is to be con­
nected with the first leaf along this slit and thus forms the 
second leaf of 8. In the second case the two edges of the 
slit in the first leaf are to be joined with each other and 
this slit thus disappears from 8; * the second leaf of T does 
not belong to 8. The example already cited will serve here 
as illustration : x=À2

7 y=X\ The surface I7 consists of 
two leaves with junctions at 0 and 00 ; the junction-line may 
be taken as the positive axis of reals. The points of the first 
leaf shall represent those pairs of values (x, A) that flow 
continuously out of the pair x= — 1 , X=i when x describes 
this leaf; yx is thus equal to x. When x crosses the slit and 
thus passes into the second leaf of T, yx goes over into y2. 
But y2=yi, both being equal to x, and hence in the construc­
tion of 8 this slit disappears from the first leaf. In this 
example this is the only slit in the first leaf and thus the 
surface that represents y as a function of x is the single-
leaved #-plane. 

Returning now to the general case, we treat the other 
slits in the first leaf, if there be any, in the same way and 
thus finally either all the slits are closed and the first leaf 
forms the whole surface S, or else this first leaf is connected 
with other leaves along at least one slit. Such leaves will 
surely belong to the surface 8. These leaves may be al­
ready connected along their slits with the first leaf, as in 
the case 

x=X\ y=X*; 

or perhaps it remained merely to join certain pairs of them 

* I t may happen that a slit, beside abutting on the two junctions at its 
extremities, passes through one or more junctions in its course. In that 
case I shall consider each of the segments of the slit as a separate slit. 
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along certain slits, as in the case 

or it may be that one of these leaves contains a slit such 
that when the point(x, y) crosses this slit, y takes on still 
new values. Then these two leaves are to be joined along 
this slit and another leaf is added, as in the case 

x=X% y=X. 
Proceeding in this way we finally obtain a closed surface 

8. This surface may or may not be the same as T. If it 
is, then it is of deficiency 0, being conformally related to 
the single-leaved A-surface. A is a single-valued function 
on this surface having no essentially singular points, and 
hence it is a rational function of x and y : * 

À=R(x,y). 
Thus all the statements made in § 2 are proven. 

5. If, however, only a part of the leaves severed from T 
have been incorporated into 8, then it must be that in the 
construction of 8 as described above, a leaf Lf was found in 
which the values of y were identical, for the same values of 
x, with values in another leaf L already belonging to 8; 
and hence L' was not joined to S, the connection along the 
corresponding slit being between the leaves already in 8. 

Consider now the leaf U. The values of y in this leaf are 
the same for the same values of x as in L. lf we proceed 
to construct the Eiemann surface for y as a function of », 
starting with the leaf L', we shall obviously be led to a sur­
face S' identical with 8; thus 8 is repeated. If the leaves 
severed from T are not yet exhausted, it will be possible to 
construct from them still a third surface 8", likewise iden­
tical with 8. And so on. Thus finally the leaves of T will 
have been combined in a set of p surfaces, 8, 8', #"—/S^""1^ 
each identical with the first, 8. p will divide m. Let m = 
m'p. Then m' is the number of leaves in 8. The examples 
already cited illustrate clearly what has just been said. 

So much for the surface T and the surfaces 8. Let us 
turn now to the corresponding regions of the ^-plane. To 
each of the m leaves of the surface T corresponds a region 
of the y^-plane, regions corresponding to leaves that are 
connected bordering on each other. If we recall the way 
in which the /S-surface was generated by the successive ad­
dition of new leaves, we see that the counterpart of this 
process in the A-plane consists in starting with the region 

* H A R K N E S S and MORLEY, Theory of Functions, \ 174 ; K L E I N - F R I C K E , 
Modulfunetionen, vol. I., p. 499. 
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corresponding to the first leaf of 8 and then adding on bor­
dering regions corresponding to the subsequent leaves of 8, 
the final result being a connected region JV", made up of ml 
of the former regions, which corresponds point for point and 
conformally to 8. To S' will correspond a second such re­
gion JV7, to 8" a third, JV",.--to fl^1', N^1*, and these p re­
gions will just cover the ^-plane. 

Let ^ be any point lying in the region N. To Xx corre­
sponds the point (x, y) of each of the surfaces S, £V*'$(p-1) 

and to these points correspond in turn values A/> V>,,,^i(p~1> 

belonging respectively to N', N'^—N^v. Let us from now 
on, discarding the surfaces 8, S'^—S^^, restrict ourselves 
to 8, so that A'1? VV"VP_1) will now be regarded as functions 
of (#, y) on 8. Thus any region of 8 that does not contain 
any part of one of the slits that has been closed up or along 
whose edges the sheets have been connected differently in 8 
from in T will be transformed conformally on a region of 
each of the domains N, N'j—N^K If the point (x, y), mov­
ing on 8, cross one of the slits just excepted, then, since this 
slit corresponds to the boundary between iV(0 and N{k\ V*} 

will cross this boundary and enter the region N{jc\ another 
one of the X^s entering at the same time the region N{i) just 
vacated by V:)- And if (#, y) describe any closed path on 
S, the Vs will either describe closed paths or be permuted. 
Now form the symmetric product 

^ W V ' . . . ^ 1 ) . (3) 
This function is in general monogenic on 8, since this is true 
of each of the factors (on account of the conformai corre­
spondence), and furthermore it is single-valued. I t has no 
essentially singular point and is therefore a rational func­
tion of x and y, 

,,= R{x,y). (4) 
The point X= oo will lie in general entirely within one of the 
regions N, so that only one factor will ever become infinite, 
and this factor will afford a pole of the first order. No 
other factor becoming 0 simultaneously,* /i has but one pole 
and that of the first order, so that it takes on every value 
once and only once on 8. 

I t thus appears that the surface S is transformed con­
formally on a single-leaved plane, the //-plane. Hence we 
infer (1) that the deficiency of 8 is 0 ; (2) that x is a rational 
function of /*; for, because of the conformai relation between 

* If these conditions, in a special case, should not happen to be ful­
filled, "k may be replaced through a suitable linear transformation by \ so 
that they will now be fulfilled. 



1 8 9 6 ] EXPRESSION FOR VELOCITY-POTENTIAL. 1 7 3 

the surface 8 and the //-plane, x behaves in every region of 
the /x-plane like a rational function; (3) that y is likewise a 
rational function of n ; for the Biemann surface that repre­
sents x as a function of y is conformally related to 8 and 
hence to the //-plane, and y behaves therefore in every region 
of the //-plane like a rational function ; (4) that // is a ra­
tional function of X ; this can also be inferred easily from the 
conformai representation, but as it follows immediately from 
equations (1) and (4), we will not insist on this method. 

Thus all of the statements of § 2 have been proven. 

Example. 
(^+A-4+14)3

 = 4 ( / . 2 - / * + l ) 3 

X 108 (A4+A-4-2)2 27 O - l ) 2 

See Klein-Fricke, Modulfunctionen, vol. I. p. 75, for the divi­
sion of the i-plane. The />=4 regions JSf,Nf ,N" ,N'" appear in 
the figure on p. 80. The notation A, // is there j ust the reverse 
of that in this paper. 

HARVARD UNIVERSITY, 
CAMBRIDGE, MASS., December, 1895. 

NOTES ON T H E EXPRESSION FOE A VELOCITY-
POTENTIAL IN TERMS OF FUNCTIONS OF LA­
PLACE AND BESSEL. 

BY PROFESSOR JAMES MCMAHON. 

1. Differential equation for (p. The partial differential 
equation to be satisfied by a velocity-potential in an elastic 
fluid is, in rectangular coordinates,* 

bx2 + by2 + W ~~ a2 b?? W 

in which a2 =pressure/ density, and <p (#, y, z, t) is a func­
tion whose derivatives as to x, y, z give the velocity-compo­
nents of the fluid particle that occupies the position (a?, y, z) 
at time t. 

2. Particular solution in polar coordinates. When (1) is 
transformed to polar coordinates r, 0, <p, it can, as shown in 

* RAY LEIGH, Theory of Sound, vol. II., p. 15. 


