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the surface 8 and the //-plane, x behaves in every region of 
the /x-plane like a rational function; (3) that y is likewise a 
rational function of n ; for the Biemann surface that repre­
sents x as a function of y is conformally related to 8 and 
hence to the //-plane, and y behaves therefore in every region 
of the //-plane like a rational function ; (4) that // is a ra­
tional function of X ; this can also be inferred easily from the 
conformai representation, but as it follows immediately from 
equations (1) and (4), we will not insist on this method. 

Thus all of the statements of § 2 have been proven. 

Example. 
(^+A-4+14)3

 = 4 ( / . 2 - / * + l ) 3 

X 108 (A4+A-4-2)2 27 O - l ) 2 

See Klein-Fricke, Modulfunctionen, vol. I. p. 75, for the divi­
sion of the i-plane. The />=4 regions JSf,Nf ,N" ,N'" appear in 
the figure on p. 80. The notation A, // is there j ust the reverse 
of that in this paper. 

HARVARD UNIVERSITY, 
CAMBRIDGE, MASS., December, 1895. 

NOTES ON T H E EXPRESSION FOE A VELOCITY-
POTENTIAL IN TERMS OF FUNCTIONS OF LA­
PLACE AND BESSEL. 

BY PROFESSOR JAMES MCMAHON. 

1. Differential equation for (p. The partial differential 
equation to be satisfied by a velocity-potential in an elastic 
fluid is, in rectangular coordinates,* 

bx2 + by2 + W ~~ a2 b?? W 

in which a2 =pressure/ density, and <p (#, y, z, t) is a func­
tion whose derivatives as to x, y, z give the velocity-compo­
nents of the fluid particle that occupies the position (a?, y, z) 
at time t. 

2. Particular solution in polar coordinates. When (1) is 
transformed to polar coordinates r, 0, <p, it can, as shown in 

* RAY LEIGH, Theory of Sound, vol. II., p. 15. 
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standard works,* be satisfied by a product-function of the 
form 

<pn = r~y* JMn+H) (kr). Sn(0, <p). Z hat, (2) 

in which Sn is any surface harmonic of order n, and 
JMn+y2) is a Bessel function of order =b(n+-J). Here <pn 
stands for the part of <P that involves nth order harmonics, 
and may be written in a more explicit form as the sum of 
the four terms implied in (2); thus 

rY* 4>n = Jm (kv) [Sn SHI tó + S'n COS kot\ + , q v 

J_m (fcr) [S"n sin to + S"'n cos to], ( 6 ) 

where m=n+^, and the symbols Sn represent arbitrary nth. 
order harmonics. The conditions of a particular problem 
may impose restrictions on these coefficients ; and the chief 
object of this paper is to show how to choose the relations 
between the symbols Sn in order to adapt equation (3) to 
some of the typical problems in fluid motion to which the 
functions of Laplace and Bessel are applicable.! In all 
cases the complete value of </> is to be built up by putting 
n = 0 , 1,2,..., and determining the arbitraries by the initial 
distribution of condensation and velocity. 

3. Phase angles. I t will be sometimes convenient to put 
equation (3) in the form 

r^n= TnJm(kr)mn(hat+en) + rnJ_m(hr) sin (kat+ef
n), (4) 

wherein 
Tn cos ew, Tn sin e'w, Tnœ$ e'n, Tn sin e'n 

take the place of Sn, S'n, S"n, S"f
n ; the phase angles en, e'w, 

being thus functions of 0, <p. 
4. Lemma. To find the relations between the phase 

angles en, e'w, and between the coefficients Tn, T'n, in order 
that the motion of the medium at a great distance from the 
origin may be approximately represented by a single wave, 
either diverging from the pole or converging towards it : 

When r is large put 

J±TO(^r)=r~"^cos (ibr—JTT± JmTr), J 

dropping a numerical factor ; substitute in (4), and change 
trigonometric products into sums, then 

* G R A Y and MATTHEWS, Bessel Functions, pp. 213, 215. Theory of 
Sound, Vol. II . , pp. 205, 229, 230, in which the J functions are replaced 
by two other particular solutions of the equation that r~V2J satisfies. 

f T h e advantage of the form of solution in equation (3) is that it gives 
a ' i realized ' ' result in terms of known functions and without restriction of 
phase. 

$ Bessel Functions, p. 40. 
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r(pn=Tnsin [k(at+r) + en—In—Jmw] + ,~v 
2 \ s i n [fe((rf + r ) + e ' n - i 7 r + Jm7r] W 

+ terms involving at—r. 

This expresses the superposition of a divergent and a con­
vergent wave, represented by the terms in at—r, at+r, re­
spectively. In order that the latter wave may be absent, 
the corresponding terms indicated in (5) must cancel each 
other for all values of the variables. This requires that 
Tn= Tf

n, and also that 

(e'w+£m7r)-- (ew—•Jm7r)=an odd multiple of rc, 

say congruent with ( 2 n + l ) rc, <£. e., with 2m^, 

.\e'n—-£n=m7r, or a congruent. (6) 

Similarly the divergent wave is absent when 

Thus the velocity potential of a wave which at a great dis­
tance from the origin is •! l v e r S e n consists of terms of the 

& ( convergent, 
form 

r ^ n = ^ [ J m ( ^ r ) s i n ( t e + £ n ) + J_TO(^r)sin(to+£w±m7r)]. (7) 

5. Relations between the symbols SnJ for divergence or con-
vergenee. Put, according to Art. 3, 

Sn= Tn cos ©w, S'n= Tn sin en, 
£"„= rn cos (ew=bm7r), S'"n= Tn sin (£n±m7r), 

whence the required relations are 
. •. S"n= =pS'n sin m7r, S'"n— dbSn sin mn. (8) 

6. Resolution of <pn. The expression in (3) can be ex­
hibited as the sum of two parts representing divergent and 
convergent waves. For write 
rH(pn=Tn[Jm(kr) sin (kat+en)+J_m(kr) sin (kat+en+m7z)~] + 
f n [ 4 ( k ) sin (kat+e'n) + J_m(kr) sin (kat+e^—mi:)'], (9) 

the first part representing a divergent wave, and the latter 
a convergent one, by (7) ; compare with (3), equate coeffi­
cients, and solve ; then Tni T

r
n> ew> e'n are determined by 

2 Tn cos en=Sn+S'"n sin m7r, 2 Tn sin en=S,
n—8f,

n sin m?r, 

2 2*n cos e'n=Sn—S'"n sinmTT, 2 T'nsin e'w=,S'w+fl"n sinm*. (10) 
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7. Application to spherical vibrator. The surface of a sphere 
of radius c is maintained in vibration with given frequency, 
and the normal surface-velocity is a given harmonic func­
tion of latitude and longitude of the form 

Vn(°, 9, t)=Sn sin hat+S'n cos kat, (11) 
to find the velocit}^ potential at any point (r, 6, <p) of the 
medium at any time t : 

Use (3), find the radial velocity-function b(f>n/br, and put 
r — c, then 
vn = I-v—--1 —Fm (he) [Sn sin hat+Sf

n cos hat] + 
\ bT / r = o (12) 

F_m (he) [S"n sin kat+S'"n cos hat], 
in which Fm (hr) = r— . r~%A Jm (hr). 

Identifying (11), (12) gives two equations, and the conditions 
for divergence in (8), furnish two others to determine Sn, 
Sf

n) S"n, S"'n in terms of 8n, Sf
n; thus 

Y Sn = aSn+]3 S'n, S"n= - S'n cos WW, 
r £'n = - / ? flfn+a S'n, S'"n = Sn cos nw, (lrf> 

where a = Fm (he), ft = F_m (he) cos nn, ^ = a2+/S2; 
and these values of the symbols Sn substituted in (3) give 
the required velocity-potential at an external point.* 

The internal potential is of different form; for the dis­
turbed region now includes the point r = 0, at which J_m 
(hr) becomes infinite, hence the arbitrary coefiicients of this 
function must be zero. Putting S"w = S'"n = 0, and identi­
fying (11), (12), determines 8n, Sf

n, and gives 

r^cpn = Y~t;^y Jm (hr) I Sn sin hat + ~S'n cos hat . (14) 

8. Free vibrations inside a fixed spherical envelope. Here, as 
in the latter part of Art. 7, the form is 

r*tyn = JJhr) \Sn sin hat + S'n cos hat\, (15) 

but the possible values of the free periods, which depend on 
h, are to be found from the equation Fm(hc) = 0, i. e. 

^ [ ^ J « ( * r ) ] = 0 ; t (16) 

*This solution differs from that given in Theory of Sound, vol. II . , p . 
207, by being expressed in u realized " form by means of Bessel functions, 
and by not restricting vn to be in the same phase over the surface r=c. 

f Annals of Mathematics, vol. 9, No. 1, p. 27. 
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while the symbols Sn are determined by the harmonic ele­
ments of the initial distribution of velocity and condensa­
tion.* 

9. Free vibrations between two eoncentrie spherical surfaces. 
Since the radial velocity at the surface r = rx is zero, then 

Fm(hrx) Sn sin hat + S'n cos kat 

+ F„m(hrx) \sr,
n sin hat +£ '"wcos kai\= 0; 

and there is a similar equation involving r2. 
These must be satisfied for all values of 0, <p, t, 

•:8nFm(hrx)= -&>nF_m (hr±); S'HFm (hrx)= ~S>\F_m{hn), 

with two similar equations in r2, 

. 8"n __ Sf\ __ F^hr,) __ F_m(hr2) _ 
Sn — S'n — Fm(hn) - Fm (Ar,) 

:/o, say. (17) 

The possible values of h, and of the wave length 2 n/Jc, are 
to be found from the third of these equalities ;f and then 
S"n, S"'n are known multiples of Sn, S'w. Thus (3) takes the 
form 

rvH\~ \Jm(Jtr)+pJ_m(hr)~\ (Snsinkat+S'neoshat ) , (18) 

an equation which, extended to the whole of space, gives a 
series of nodal spherical surfaces, of which r = r1? and r = r2 
are a pair. At such surfaces the superposed divergent and 
convergent waves interfere. 

ADDITIONAL NOTE ON DIVERGENT SERIES. 

BY PROFESSOR A. S. CHESSIN. 

In a previous note (pp. 72-75) it has been shown that 
every divergent series oscillating between finite limits can 
by a proper arrangement of its terms be made convergent. 
We will now extend those results to the case when one or 
both limits between which the series oscillates are infinite. 
To this end it suffices to consider, together with regular se-

* The work is exemplified for the case n = 1, Theory of Sound, pp. 236, 
237. 

t Annals of Mathematics, vol. 9, No. 1, pp. 29, 30. 


