A TWO-FOLD GENERALIZATION OF FERMAT'S THEOREM.

Presented to the American Mathematical Society, February 29, 1896. by professor eliakim hastings moore.

Formulation of the generalized Fermat theorem $\operatorname{III}[k+1, n ; p]$. § § 1-4.

1. In Gauss's congruence notation Fermat's theorem is :
$\mathrm{I}_{1} \quad a^{p}-a \equiv 0 \quad(\bmod p)$
where p is any prime and a is any integer : or, otherwise expressed,
I_{2} The two rational integral functions of the indeterminate X with integral coefficients

$$
X^{p}-X, \prod_{u=0}^{a=p-1}(X+a)
$$

are identically congruent $(\equiv)(\bmod p)$:

$$
X^{p}-X \equiv \prod_{u=0}^{a=p-1}(X+a)(\bmod p)
$$

We write I_{2} thus:
I_{3} The two forms in the two indeterminates X_{0}, X_{1},

$$
\begin{aligned}
& D[2,1 ; p]\left(X_{0}, X_{1}\right) \equiv X_{0} X_{1}^{p}-X_{0}^{p} X_{1} \\
& P[2,1 ; p]\left(X_{0}, X_{1}\right) \equiv X_{0} \cdot \prod_{a_{0}=0}^{a_{0}=p-1}\left(a_{0} X_{0}+X_{1}\right),
\end{aligned}
$$

are identically congruent $(\bmod p)$:

$$
D[2,1 ; p]\left(X_{0}, X_{1}\right) \equiv P[2,1 ; p]\left(X_{0}, X_{1}\right) \quad(\bmod p)
$$

2. We proceed in two steps to a two-fold generalization of Fermat's theorem I_{3}.
II. The two forms in the $k+1$ indeterminates $X_{0}, X_{1}, \cdots, X_{k}$, (1) $D[k+1,1 ; p]\left(X_{0}, X_{1}, \cdots, X_{k}\right) \equiv\left|X_{j}^{i}\right|$
$(i, j=0,1, \cdots, k)$,
(2) $P[k+1,1 ; p]\left(X_{0}, X_{1}, \cdots, X_{k}\right) \equiv \Pi^{*} \sum_{g} a_{g} X_{g} \quad(g=0,1, \cdots, k)$,
—where the product Π^{*} embraces the $\left(p^{k^{g}+1}-1\right) /(p-1)$ linear forms $\sum_{g=0}^{g=k} a_{g} X_{g}$ whose coefficients $a_{g}(g=0,1, \cdots, k)$ are integers selected from the series $0,1, \cdots, p-1$, in all possible ways, only
so that for every particular form, first, the coefficients a_{g} are not all 0 , and, second, of the coefficients a_{g} not 0 the one with largest index g is $1 —$ are identically congruent $(\bmod p)$:

$$
D[k+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{k}\right) \equiv P[k+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{k}\right) .
$$

When we collect into a class the totality of integers congruent to one another $(\bmod p)$, and denote the p incongruent classes by p marks, we have in this system of p marks a field $F[p]$ of order p and rank 1. The marks of the field $F[p]$ may be combined by the four fundamental operations of algebra-addition, subtraction, multiplication, division, -the operations being subject to the ordinary abstract operational laws of algebra, the results of these operations being in every case uniquely determined and belonging to the field. Congruences $(\equiv)(\bmod p)$ are in the field equalities ($=$), and identical congruencies (\equiv) are identities (\equiv). The restatement of II in the terminology of the field $F[p]$ is given by setting $n=1$ in its generalization III (§3).
3. The second step of generalization of I_{3} rests upon Galois's generalization of the field $F[p]$ to the Galois-field $G F\left[p^{n}\right]$ of order p^{n}, modulus p, and rank n. This field of p^{n} marks α is uniquely defined for every $p=$ prime, $n=$ positive integer. (I have elsewhere proved that every field of finite order s is a Galois-field of order $s=p^{n}$.)
A form, that is, a rational integral function of certain indeterminates, $X_{0}, X_{1}, \cdots, X_{k}$, is said to belong to the $G F\left[p^{n}\right]$ if its coefficients belong to (are marks α of) the $G F\left[p^{n}\right]$. A linear homogeneous form $\sum_{g=0}^{g=k} \alpha_{g} X_{g}$ belonging to the $G F\left[p^{n}\right]$ is called primitive if not all its coefficients α_{g} are 0 , and if of the coefficients α_{g} not 0 the one with largest index g is 1 .

We have then :
III. The two forms in the $k+1$ indeterminates, $X_{o}, X_{1}, \cdots, X_{k}$,

$$
\begin{array}{ll}
D[k+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{k}\right) \equiv \mid X_{j}^{j^{m i}} & (i, j=0,1, \cdots, k), \tag{3}\\
P[k+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{k}\right) \equiv \Pi^{*} \sum_{g} \alpha_{g} X_{g} & (g=0,1, \cdots, k),
\end{array}
$$

-where the product Π^{*} embraces the $\left(p^{n(k+1)}-1\right) /\left(p^{n}-1\right)$ distinct primitive linear homogeneous forms $\sum_{g=0}^{g=k} \alpha_{g} X_{g}$ belonging to the $G F\left[p^{n}\right]$ - are identical:
$D[k+1, n ; p]\left(X_{0}, X_{1}, \cdot \cdots, X_{k}\right) \equiv P[k+1, n ; p]\left(X, X_{1}, \cdots, X_{k}\right)$.
The forms D, P whose identity theorem III affirms have the three characteristic positive integers or characters $k+1$, n, p. It is convenient to attach these characters to the no-
tation III for the theorem, and thus to speak of the theorem III $[k+1, n ; p]$. This theorem requires proof only for $k \geqq 1$, since for $k=0, D \equiv X_{0}, P \equiv X_{0}$.
4. For the proof of $\operatorname{III}[k+1, n ; p]$ we need Galois's onefold generalizations of the Fermat theorems I:
II_{1}^{\prime} Every mark a of the GF[$\left.p^{n}\right]$ satisfies the equation

$$
a^{p^{n}}-\alpha=0 .
$$

whence,
$\mathrm{II}_{2}{ }^{\prime}$ The two forms in the indeterminate X

$$
X^{p^{n}}-X, \quad \prod_{\alpha \mid p^{n}}(X+\alpha)
$$

belonging to the GF[$\left.p^{n}\right]$ are identical:

$$
X^{p^{n}}-X \equiv \prod_{\alpha \mid p^{n}}(X+\alpha)
$$

(where, as always, the subscript-remark $\alpha \mid p^{n}$ means that the mark α is to run over the p^{n} marks of the $G F\left[p^{n}\right]$), and further,
$\mathrm{II}_{3}{ }^{\prime}$ The two forms in the two indeterminates $X_{0} X_{1}$,

$$
\begin{aligned}
& D[2, n ; p]\left(X_{0}, X_{1}\right) \equiv X_{0} X^{n}-X_{0}^{p^{n}} X_{1} \\
& P[2, n ; p]\left(X_{0}, X_{1}\right) \equiv \Pi^{*}\left(\alpha_{0} X_{0}+\alpha_{1} X_{1}\right),
\end{aligned}
$$

- where the product Π^{*} embraces the $p^{n}+1$ distinct primitive linear homogeneous forms $a_{0} X_{0}+a_{1} X_{1}$ belonging to the $G F\left[p^{n}\right]$ are identical:

$$
D[2, n ; p]\left(X_{0}, X_{1}\right) \equiv P[2, n ; p]\left(X_{0}, X_{1}\right)
$$

A (known) corollary to $\mathrm{II}_{1}{ }^{\prime}$ is also needed. We denote by \wedge_{n} the substitution on the p^{n} marks α of the $G F\left[p^{n}\right]$ which replaces every mark α by $a^{p^{p}}$; obviously $\Lambda_{c} \Lambda_{d}=\bigwedge_{c+\alpha}$ while by $\mathrm{II}_{1}{ }^{\prime}, \wedge_{n}=\wedge_{0}=1$. We denote by $F_{n}\left(X_{0}, X_{1}, \cdots, X_{k}\right)$ the result obtained by applying the substitution Λ_{h} to the mark-coefficients of a form $F\left(X_{0}, X_{1}, \cdots, X_{k}\right)$ belonging to the $G F[p]$, so that $F_{n}\left(X_{0}, X_{1}, \cdots, X_{k}\right) \equiv F_{0}\left(X_{0}, X_{1}, \cdots, X_{k}\right)$ $\equiv F\left(X_{0}, X_{1}, \cdots, \bar{X}_{k}\right)$. Since in the involution of a multinomial to the $p^{t h}$ power the say intermediate multinomial coefficients are all divisible by p, we have in the $G F\left[p^{n}\right]$ of modulus p,
whence

$$
F_{h}\left(X_{0}, X_{1}, \cdots, X_{k}\right)^{p} \equiv F_{k+1}\left(X_{0}^{p}, X_{1}^{p}, \cdots, X_{k}^{p}\right),
$$

$\mathrm{II}_{1}^{\prime} \quad$ Cor. $\quad F\left(X_{0}, X_{1}, \cdots, X_{k}\right)^{\nu^{n}} \equiv F\left(X_{0}^{p^{n}}, X_{1}^{p^{n}}, \cdots, X_{k}^{p^{n}}\right)$, where $F\left(X_{0}, X_{1}, \cdots, X_{k}\right)$ is any form of the $G F\left[p^{n}\right]$.

The theorem III $[k+1, n ; p]$ bears the same relation to Galois's Fermat's theorem $\mathrm{II}^{\prime}: \mathrm{II}_{3}{ }^{\prime} \equiv \operatorname{III}[2, n ; p]$: that the theorem II $\equiv \mathrm{III}[k+1,1 ; p]$ bears to Fermat's theorem I : $\mathrm{I}_{3} \equiv \operatorname{III}[2,1 ; p]$. I am communicating then one-fold generalizations II, III of the known theorems I, II'; of these II may be looked at as a theorem in the ordinary Gauss-congruence theory, while its generalization III is a theorem in the Galois-field theory.

I give three proofs A, B, C of the general theorem $\operatorname{III}[k+1, n ; p]$. The proof A depends upon considerations involving the $G F\left[p^{n}\right]$ of rank n alone, and accordingly for $n=1$ this proof A of $\operatorname{III}[k+1,1 ; p] \equiv \operatorname{II}$ may be exhibited in the terminology of the ordinary Gauss-congruence theory. The proofs B and C however depend upon considerations involving the wider $G F\left[p^{m n}\right]$ of rank $m n$ ($m \geqq 2 k^{2}$); they throw a sharper light upon the essential meaning of the theorem III $[k+1, n ; p]$ for every n.

$$
\text { Proof } A \text { of the theorem III }[k+1, n ; p] . ~ § 5 .
$$

Proof by two-based induction. We know that III[1, $n ; p]$ and III $[2, n ; p] \equiv \mathrm{II}_{3}{ }^{\prime}$ are true. On the supposition that $\operatorname{III}[l-1, n ; p]$ and $\operatorname{III}[l, n ; p](l>1)$ are true we prove that $\operatorname{III}[l+1, n ; p]$ is true.
5. In the determinant $U=\left|u_{i j}\right|(i, j=0,1 \cdots \cdots, l)$ we denote by $U_{i j}$ the minor complementary to $u_{i j}$, and have *

$$
(-1)^{l+1}\left|\begin{array}{c}
U_{u 1}, U_{l 0} \tag{5}\\
U_{01}, U_{00}
\end{array}\right| \equiv U .\left|u_{i j}\right| \quad\binom{i=1,2, \cdots, l-1}{j=2,3, \cdots, l}
$$

We set now

$$
u_{i j}=X_{i}^{\rho_{i}^{n i}} \quad(i, j=0,1, \cdots, l),
$$

so that we have

$$
\begin{align*}
& D[l+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{l}\right) \equiv+U \\
& D[l-1, n ; p]\left(X_{2}^{p^{n}}, X_{3}^{j^{n}}, \cdots X_{l}^{n^{n}}\right) \equiv\left|u_{i j}\right|\binom{i=1,2, \cdots, \cdots,-1}{j=2,3, \cdots, l}, \\
& D[l, n ; p]\left(X_{0}, X_{2}, \cdots, X_{l}\right) \equiv(-1)^{l+1} U_{l l}, \\
& D[l, n ; p]\left(X_{1}, X_{2}, \cdots, X_{l}\right) \equiv(-1)^{l} U_{l 0} \tag{6}\\
& D[l, n ; p]\left(X_{0}^{j_{0}^{n}}, X_{2}^{n^{n}}, \cdots, X_{l}^{n^{n}}\right) \equiv-U_{01} \\
& D[l, n ; p]\left(X_{1}^{j^{n}}, X_{2}^{n^{n}}, \cdots, X_{l}^{n^{n}}\right) \equiv+U_{00} .
\end{align*}
$$

Then by substituting the values (6) in the identity (5) and remembering $\mathrm{II}_{1}{ }^{\prime}$ Cor. and the definition (3) of $D[2, n ; p]$ (Y_{0}, Y_{1}), we have the fundamental identity

[^0](7) $D[2, n ; p]\left(D[l, n ; p]\left(X_{0}, X_{2}, \cdots, X_{l}\right), D[l, n ; p]\left(X_{1}, X_{2}, \cdots X_{l}\right)\right)$
$$
\equiv D[l+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{l}\right) \cdot D[l-1, n ; p]\left(X_{2}, X_{3}, \cdots X_{l}\right)^{p^{n}} .
$$

Now, using always the Π^{*} in the sense defined in the enunciation of III, we have by hypothesis :
$\left(8_{1}\right) \operatorname{III}[2, n ; p]: D[2, n ; p]\left(Y_{0}, Y_{1}\right) \equiv P[2, n ; p]\left(Y_{0}, Y_{1}\right) \equiv$ $\Pi^{*}\left(\beta_{0} Y_{0}+\beta_{1} Y_{1}\right) \equiv Y_{0} \cdot \prod_{\beta \mid p^{n}}\left(\beta Y_{0}+Y_{1}\right)$,
$\left(8_{2}\right) \operatorname{III}[l-1, n ; p]: D[l-1, n ; p]\left(Y_{0}, Y_{1}, \cdots, Y_{l-2}\right) \equiv$ $P[l-1, n ; p]\left(Y_{0}, Y_{1}, \cdots, Y_{l-2}\right) \equiv \Pi^{*} \sum_{n=0}^{n=l-2} \beta_{h} Y_{h}$,
$\left(8_{3}\right) \operatorname{III}[l, n ; p]: D[l, n ; p]\left(Y_{0}, Y_{1}, \cdots, Y_{l-1}\right) \equiv$

$$
P[l, n ; p]\left(Y_{0}, Y_{1}, \cdots, Y_{l-1}\right) \equiv \Pi^{*} \sum_{h=0}^{k=l-1} \beta_{l} Y_{l}
$$

By $\left(8_{2}\right)$ the left side of the identity (7) is
(9) $D[l, n ; p]\left(X_{0}, X_{2}, \cdots, X_{l}\right) \cdot \prod_{\beta \mid p^{n}}\left(\beta D[l, n ; p]\left(X_{0}, X_{2}, \cdots, X_{l}\right)\right.$

$$
\left.+D[l, n ; p]\left(X_{1}, X_{2}, \cdots, X_{l}\right)\right)
$$

which, using $\mathrm{II}_{1}{ }^{\prime}$ and $\mathrm{II}_{1}{ }^{\prime}$ Cor. in the addition of the determinants, is

$$
\begin{gather*}
D[l, n ; p]\left(X_{0}, X_{2}, \cdots, X_{l}\right) \cdot \tag{10}\\
\prod_{\beta \mid p^{n}} D[l, n ; p]\left(\beta X_{0}+X_{1}, X_{2}, \cdots, X_{l}\right),
\end{gather*}
$$

which by $\left(8_{3}\right)$ is
(11) $\Pi^{*}\left(\delta_{0} X_{0}+\delta_{2} X_{2}+\cdots+\delta_{t} X_{l}\right) \cdot \Pi_{\beta} \Pi_{p^{n}} \Pi^{*}\left(\gamma_{1}\left(\beta X_{0}+X_{1}\right)\right.$

$$
\left.+r_{2} X_{2}+\cdots+r_{l} X_{l}\right)
$$

We compare the product (11) with the product (12),

$$
\begin{align*}
& P[l+1, n ; p]\left(X_{o}, X_{1}, \cdots, X_{l}\right) \equiv \tag{12}\\
& \Pi^{*}\left(\alpha_{0} X_{0}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+\cdots+\alpha_{l} X_{l}\right) .
\end{align*}
$$

The factors of (12) are the primitive linear homogeneous forms $\sum_{g=0}^{g=1} \alpha_{g} X_{g}$ with no omissions and no repetitions. Every factor of (11) is likewise such a form. And in (11) every such form $\sum_{g=0} \alpha_{g} X_{g}$ occurs at least once; any such form $\sum_{g=0}^{g=l} \alpha_{g} X_{g}$
with $a_{1} \neq 0$ occurs (since $l>1$) once and only once, viz., under that Π^{*} of the second set in (11) whose forms have $\beta=\alpha_{0} / \alpha_{1}$; any such form $\sum_{g=0}^{g=l} \alpha_{g} X_{g}$ with $\alpha_{1}=0, \alpha_{0} \neq 0$, occurs once and only once, viz., under the single $\Pi *$ of the first set in (11); any such form $\sum_{g=0}^{g=l} \alpha_{g} X_{g}$ with $\alpha_{1}=0, \alpha_{0}=0$, occurs in all $1+p^{n}$ times, viz., once and of course only once under every Π^{*} of (11). Thus the product (11) is:

$$
\begin{equation*}
P[l+1, n ; p]\left(X_{0}, X_{1}, \ldots, X_{l}\right) \cdot\left(\Pi * \sum_{g=2}^{g=l} \alpha_{g} X_{g}\right) p^{p^{n}} \tag{13}
\end{equation*}
$$

When we substitute (13) for the left side of the identity (7) and divide out* the second factors, which are identical by the hypothesis (82), we have the desired identity
(14) $\operatorname{III}[l+1, n ; p]$:
$P[l+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{l}\right) \equiv D[l+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{l}\right)$.
Proof B of the theorem $\operatorname{III}[k+1, n ; p] . ~ § \S 6-11$.
Direct proof of the identity III $\begin{array}{ll} \\ {[k+1, n ; p]}\end{array}$
III ${ }^{\prime} D[k+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{k}\right) \equiv$

$$
D[k, n ; p]\left(X_{0}, X_{1}, \cdots, X_{k-1}\right) \cdot \prod_{\substack{a_{r}, p^{n} \\(r=0, \cdots, \cdots-1)}}\left(\sum_{r=0}^{r=k-1} a_{r} X_{r}+X_{k}\right)
$$

6. From the identity $\operatorname{III}[l+1, n ; p]$ for $l=1,2, \cdots, k$, and in view of the definition (3) $D[1, n ; p]\left(X_{0}\right) \equiv X_{0}$, we have

$$
\begin{equation*}
D[k+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{k}\right) \equiv X_{0} \cdot \prod_{\substack{l=1 \\ l=1 \\\left(r=0,, \cdots, \cdots, a_{l-1)}\right.}}^{\prod_{p^{n}}}\left(\sum_{r=0}^{r=l-1} \alpha_{r} X_{r}+X_{l}\right), \tag{15}
\end{equation*}
$$

viz., the identity called for by the theorem $\operatorname{III}[k+1, n ; p]$.
7. We introduce the $G F\left[p^{m n}\right]$ of modulus p and rank $m n$ where m is any integer $m \geq 2 k^{2} \geq k+1$. The $G F\left[p^{m n}\right]$ contains the $G F\left[p^{n}\right]$. The forms entering the theorems III $[k+1, n ; p]$, III $4[k+1, n ; p]$ belong to the $G F\left[p^{n}\right]$, and the theorems then to the $G F\left[p^{n}\right]$-theory, but the forms belong also to the wider $G F\left[p^{m n}\right]$, and the proofs B, C of III月 and III make use of this fact.

[^1]8. The small Greek letters $\alpha, \sigma, \gamma, \cdots$, as heretofore designate marks of the $G F\left[p^{n}\right]$, and the large Greek letters A, B, $I ', \cdots$, marks of the $G F\left[p^{m n}\right]$.

Any t marks $A_{r}(r=1,2, \cdots, t)$ of the $G F\left[p^{m n}\right]$ determine in the $G F\left[p^{m n}\right]$ an additive-group $\left[A_{1}, A_{2}, \cdots, A_{t} \mid G F\left[p^{n}\right]\right]$ with the basis-system $A_{1}, A_{2}, \cdots, A_{t}$ and field of reference $G F\left[p^{n}\right]$ containing all possible marks A expressible in the form

$$
\begin{equation*}
A=\sum_{r=1}^{r=t} \alpha_{r} A_{r} \tag{16}
\end{equation*}
$$

where the $\alpha_{r}(r=1,2, \ldots, t)$ are marks of the field of reference $G F\left[p^{n}\right]$.

The $p^{t h}$ marks $A(16)$ are distinct if the particular mark $A=0$ occurs only once, viz., with the coefficients α_{r} all 0 . In this case, when of course $t \leq m$, the additive-group has the order $p^{t n}$ and rank t, and the t marks A_{r} are linearly independent with respect to $*$ the $G F\left[p^{n}\right]$, and obviously any t^{\prime} of the t marks are likewise linearly independent. If $t<m$, not all the marks of the $G F\left[p^{m n}\right]$ are in this additive-group of rank t, and any external mark A_{t+1} forms with the t marks A_{r} a system of $t+1$ linearly independent marks, and thus extends the additive-group of rank t to one of rank $t+1$. We take as a start any mark $A_{1} \neq 0$, and by the preceding remarks may affirm: (a) There exist systems of l marks $A_{1}, A_{2}, \cdots, A_{l}$ of the $G F\left[p^{m n}\right]$ linearly independent with respect to the $G \mathbf{F}\left[p^{n}\right]$ for every $l, l=1,2, \cdots, m$; (b) every additivegroup $\left[A_{1}, A_{2} \cdots, A_{t} \mid G F\left[p^{n}\right]\right]$ may be exhibited as an ad-ditive-group of some rank $l \leqq t$ based upon such a system of l linearly independent marks chosen from amongst the original t basal marks A_{r}.
9. We take now any system of $k+1$ (not necessarily distinct) marks $B_{g}(g=0,1, \ldots, k)$ of the $G F\left[p^{m n}\right]$ and consider the two marks

$$
\begin{gather*}
\Delta \equiv D[k+1, n ; p]\left(B_{0}, B_{1}, \ldots B_{k}\right) \equiv\left|B_{j}^{n^{n i}}\right| \tag{17}\\
(i, j=0, \ldots, 1, k), \\
\Pi \equiv P[k+1, n ; p]\left(B_{0}, B_{1}, \cdots, B_{k}\right) \equiv \Pi^{*} \sum_{g} \alpha_{g} k_{g} \tag{18}\\
(g=0,1, \ldots, k)
\end{gather*}
$$

Clearly $\Pi=0$ if and only if the marks B_{g} are linearly dependent. And further, since from an equation,

$$
\sum_{j=0}^{j=k} a_{j} B_{j}=0,
$$

[^2]we have, by $\mathrm{II}_{1}{ }^{\prime}$ Cor., the $k+1$ equations,
$$
\left(\sum_{j=0}^{j=k} \alpha_{j} B_{j}\right)^{p^{n i}} \equiv \sum_{j=0}^{j=k} \alpha_{j} j_{j}^{n n^{n i}}=0 \quad(i=0,1 \ldots, k)
$$
we see that if the marks B_{g} are linearly dependent, then $\triangle=0$.
(In passing we notice that the remark just made concerning Π and the theorem III $[k+1, n ; p]$ yield the theorem:

A necessary and sufficient condition that $k+1$ marks k_{g} $(g=0,1, \cdots, k)$ of a $G F\left[p^{m n}\right]$ (m any integer) shall be linearly dependent with respect to the $G \vec{F}\left[p^{n}\right]$ is the vanishing of the determinant $\triangle \equiv\left|k_{j}^{p^{n i}}\right|(i, j=0,1 \cdots, k)$. (If $m<k+1$, then \triangle vanishes for every system of $k+1$ marks B_{g}). This yields its still more important corollary :

The rank of the additive-group $\left[B_{o}, B_{1} \cdots, B_{k} \mid G F\left[p^{n}\right]\right]$ is the same as the rank of the matrix ($l_{j}^{p^{n i}}$) $(i, j=0,1, \cdots, k)$, where a matrix $\left(u_{i j}\right)\binom{i=0,1, \ldots, k}{j=0,1, \ldots, l}$ is said to have the rank r if its every sub-determinant of order $r^{\prime}>r$ vanishes while at least one sub-determinant of order $r^{\prime}=r$ does not vanish.

It would not be difficult to establish this theorem and its corollary independently of the theorem $\operatorname{III}[k+1, n ; p]$.
10. Next we consider a system of $k(k+1 \leqq m)$ linearly independent marks $A_{r}(r=0,1, \cdots, k-1)$, and select from the $p^{k n}$ marks A of the additive-group $\left[A_{1}, A_{2} \cdots, A_{k} \mid G F\left[p^{n}\right]\right]$ any $k+1$ marks $b_{g}(g=0,1, \cdots, k)$. These marks b_{g} are linearly dependent, for otherwise the additive-group based on them would have the order $p^{(k+1) n}$, whereas it is contained in the additive-group of order $p^{k n}$ based on the k marks A_{r}. For these marks β_{g} then $(\S 9) \triangle=0, \Pi=0$, and so

$$
\begin{equation*}
D[k+1, n ; p]\left(B_{0}, B_{1}, \cdots, B_{k}\right)=P[k+1, n ; p]\left(B_{0}, B_{1}, \cdots, B_{k}\right) . \tag{19}
\end{equation*}
$$

11. We take now any system of $2 k^{2}\left(2 k^{2} \leqq m\right)$ linearly independent marks $E_{r s}\binom{r=0,1, \ldots, k-1}{s=1,2, \ldots, 2 m}$ and split it up at once into k systems of $2 k$ linearly independent ($\S 8)$ marks.

The system $E_{r s}(s=1,2, \cdots 2 k)$ determines the addi-tive-group $\left[E_{r 1}, E_{r 2}, \cdots, E_{r 2 k} \mid G F\left[p^{n}\right]\right]$ containing besides the mark $0 p^{2 k n}-1$ marks A_{r} of the form $A_{r} \xlongequal[s=1]{s=2 k} \varepsilon_{r s} E_{r s}$, where the $\varepsilon_{r s}$ are marks of the $G F\left[p^{n}\right]$ not all 0 . We select from each additive-group any mark $A_{r}\left(A_{r} \neq 0\right)(r=0,1, \cdots, k-1)$. These k marks A_{r} are linearly independent, and determine the additive-group $\left[A_{0}, A_{1}, \cdots, A_{k-1} \mid G F\left[p^{n}\right]\right]$ containing
$p^{k n} \operatorname{marks} A$ of the form $A=\sum_{r=0}^{=k-1} \alpha_{r} A_{r} . \quad$ By $\S 10$ we have for every such mark A

$$
\begin{equation*}
D[k+1, n ; p]\left(A_{0}, A_{1}, \cdots, A_{k c-}, A\right)=0 . \tag{20}
\end{equation*}
$$

Hence the equation for X_{k}

$$
\begin{equation*}
D[k+1, n ; p]\left(A_{0}, A_{1}, \cdots, A_{k-1}, X_{k}\right)=0 . \tag{21}
\end{equation*}
$$

which is of degree $p^{k n}$ in the unknown X_{k} with the leading coefficient $D[k, n ; p]\left(A_{0}, A_{1}, \cdots, A_{k-1}\right)$ has as roots the $p^{k n}$ marks A of the form $A=\sum_{r=0}^{r=k-1} \alpha_{r} A_{r}$. Since the marks A are given equally well in the form $A=-\sum_{r=0}^{r=k-1} a_{r} A_{r}$, we have the identity in the indeterminate X_{k} :

$$
\begin{align*}
& D[k+1, n ; p]\left(A_{0}, A_{1}, \cdots, A_{k-1}, X_{k}\right) \equiv \tag{22}\\
& \left.D[k, n ; p]\left(A_{0} A_{1}, \cdots A_{k-1}\right) \cdot \prod_{\substack{a \\
\left(r=0,1, \ldots, p^{n} \\
p_{k-1}^{n},\right.}}^{\substack{r=k-1}} \sum_{r=0} \alpha_{r} A_{r}+X_{k}\right) .
\end{align*}
$$

Now consider the two forms in the $k+1$ indeterminates $X_{0}, X_{1}, \cdots, X_{k}$:

$$
\begin{equation*}
D[k+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{k-1}, X_{k}\right), \tag{23}
\end{equation*}
$$

$$
\left.D[k, n ; p]\left(X_{0}, X_{1}, \cdots, X_{k-1}\right) \cdot \prod_{\substack{a_{r}, \ldots p^{n} \\\left(r=0, \ldots, k_{k-1}\right)}} \sum_{r=0}^{r=k-1} \alpha_{r} X_{r}+X_{k}\right) .
$$

We affirm their identity: this is the theorem III $\vDash[k+1$, $n ; p]$. Denoting by $C\left(X_{0}, X_{1}, \cdots, X_{k-1}\right), C^{\prime}\left(X_{0}, X_{1}, \cdots, X_{k-1}\right)$ the coefficients of any certain same power of X_{k} in the respective forms (23), we prove the identity in the k indeterminates $X_{0}, X_{1}, \cdots, X_{k-1}$:

$$
\begin{equation*}
C\left(X_{0}, X_{1}, \ldots, X_{k-1}\right) \equiv C^{\prime}\left(X_{0}, X_{1}, \cdots, X_{k-1}\right) \tag{24}
\end{equation*}
$$

In the first place these forms are of degree $\leqq p^{k n}$ in each indeterminate. Further by (22)

$$
\begin{equation*}
C\left(A_{0}, A_{1}, \cdots, A_{k-1}\right)=C^{\prime}\left(A_{0}, A_{1}, \cdots, A_{k-1}\right) \tag{25}
\end{equation*}
$$

where for $r=0,1, \ldots, k-1 A_{r}$ is any of the $p^{2 k n}-1\left(p^{2 k n}-1>p^{k n}\right)$ marks $A_{r} \neq 0$ of the additive-group $\left[E_{r 1}, L_{r_{2}}^{\prime}, \ldots, E_{r 2 k}^{\prime} \mid G F\left[p^{n}\right]\right]$. The desired identity (24) follows then by the identity-theorem (which is proved in the Galois-field theory just as is the corresponding theorem in the theory of the ordinary general algebraic field):

Identity-theorem. If the two forms of the $G F\left[p^{m n}\right]$

$$
C\left(Y_{1}, Y_{2}, \cdots, Y_{l}\right), \quad C^{\prime}\left(Y_{1}, Y_{2}, \cdots, Y_{l}\right)
$$

contain the lindeterminates $Y_{1}, Y_{2}, \ldots, Y_{l}$ to degrees respectively less than the numbers $y_{1}, y_{2}, \cdots, y_{l}$, and if to each indeterminate Y_{n} ($h=1,2, \cdots, l$) a certain system of y_{n} distinct marks A_{h} may be associated in such a way that the two marks obtained from the two forms by substituting for each indeterminate Y_{l} any mark A_{n} of its associated set are equal:

$$
C\left(A_{1}, A_{2}, \cdots, A_{l}\right)=C^{\prime}\left(A_{1}, A_{2}, \cdots, A_{l}\right):
$$

then the two forms are identical:

$$
C\left(Y_{1}, Y_{2}, \cdots, Y_{\imath}\right) \equiv C^{\prime}\left(Y_{1}, Y_{2}, \cdots, Y_{\imath}\right)
$$

Proof C of the theorem III $[k+1, n ; p]$. $\S \S 12-14$.
Proof by one-based induction. We know that $\operatorname{III}[2, n ; p] \equiv \mathrm{II}_{3}{ }^{\prime}$ is true. On the supposition that III $[l, n ; p](l>1)$ is true we prove that $\operatorname{III}[l+1, n ; p]$ is true.
12. By interchanging two adjacent columns of the determinant $\left|X_{j}^{p^{n i}}\right|(i, j=0,1, \cdots, l)$ we have:

$$
\begin{align*}
& D[l+1, n ; p]\left(\cdots, X_{h}, X_{n+1}, \cdots\right) \equiv \tag{26}\\
& -D[l+1, n ; p]\left(\cdots, X_{h+1}, X_{h}, \cdots\right) .
\end{align*}
$$

13. To prove the corresponding property for the product $P[l+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{l}\right)$ we need the Galois-field generalization of Wilson's theorem:
$\mathrm{II}_{2}{ }^{\prime}$ Cor. 1

$$
\prod_{a \mid p^{n}}^{\prime} \alpha=-1 \quad(\alpha \neq 0)
$$

whence
$\mathrm{II}_{2}{ }^{\prime}$ Cor. 2

$$
\left.\Pi_{a}^{\prime}\right|_{p^{n}} ^{\alpha^{p^{n n}}}=-1 \quad(\alpha \neq 0)(h \text { any integer })
$$

even for $p=2$, since in a Galois•field of modulus $p=2$ the marks $+1,-1$ are equal.

In view of the definition (4) the two products

$$
\begin{align*}
& P[l+1, n ; p]\left(\cdots, X_{h}, X_{n+1}, \cdots\right), \tag{27}\\
& P[l+1, n ; p]\left(\cdots, X_{h+1}, X_{h}, \cdots\right)
\end{align*}
$$

obviously differ only in the factors $\sum_{g=0}^{g=l} \alpha_{g} X_{g}, \sum_{g=0}^{g=l} \beta_{g} X_{g}$ containing both X_{h} and X_{h+1} and no X_{g} with $g>h+1$, that is, in the products

$$
\begin{align*}
& \underset{\substack{a \mid p^{n} \\
(a \neq 0) \\
\Pi_{0}^{\prime}(g=0, \ldots, k-1)}}{\prod_{\substack{a g \\
\left(p^{n}\right.}}\left(\sum_{g=0}^{g=h-1} \alpha_{g} X_{g}+\alpha X_{h}+X_{h+1}\right), ~} \tag{28}
\end{align*}
$$

Setting, for any $\alpha \neq 0, \beta=1 / \alpha, \beta_{g}=\alpha_{g} / \alpha(g=0,1, \cdots, h-1)$, we find easily that the first product (28) is the second product (28) multiplied by $\prod_{\alpha \mid p^{n}} \alpha^{p^{h n}}(\alpha \neq 0)$, i.e., $\left(\mathrm{I}_{2}^{\prime}\right.$ Cor. 2) by - 1 . Hence indeed :

$$
\begin{align*}
& P[l+1, n ; p]\left(\cdots, X_{n}, X_{n+1}, \cdots\right) \equiv \tag{29}\\
& -P[l+1, n ; p]\left(\cdots, X_{n+1}, X_{k}, \cdots\right) .
\end{align*}
$$

We have from (26) (29):

$$
\begin{array}{r}
D[l+1, n ; p]\left(X_{0}, \cdots, X_{h-1}, X_{l}, X_{h+1}, \cdots, X_{l}\right) \equiv \tag{30}\\
(-1)^{l-h} D[l+1, n ; p]\left(X_{0}, \cdots, X_{h-1}, X_{l+1}, \cdots, X_{l}, X_{h}\right), \\
P[l+1, n ; p]\left(X_{0}, \cdots, X_{h-1}, X_{h}, X_{h+1}, \cdots, X_{l}\right) \equiv \\
(-1)^{l-h} P[l+1, n ; p]\left(X_{0}, \cdots, X_{h-1}, X_{h+1}, \cdots, X_{l}, X_{h}\right) .
\end{array}
$$

14. Now the two forms
(32) $D[l+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{\imath}\right), P[l+1, n, p]\left(X_{0}, X_{1}, \cdots, X_{\imath}\right)$ are of degree $p^{l n}$ in each of the $l+1$ indeterminates X_{b} ($h=0,1, \cdots, l$) ; the respective coefficients of $X_{l^{p^{n l}}}$ are obviously
(33) $D[l, n ; p]\left(X_{0}, X_{1}, \cdots, X_{l-1}\right), P[l, n ; p]\left(X_{0}, X_{1}, \cdots, X_{l-1}\right)$, and hence by $(30,31,33)$ the respective coefficients of $X_{n}^{p^{n l}}$ ($h=0,1, \cdots, l$) are

$$
\begin{align*}
& (-1)^{l-h} D[l, n ; p]\left(X_{0}, \cdots X_{h-1}, X_{n+1}, \cdots, X_{\nu}\right), \tag{34}\\
& (-1)^{l-h} P[l, n ; p]\left(X_{0}, \cdots, X_{h-1}, X_{h+1}, \cdots, X_{l}\right) .
\end{align*}
$$

From (34) and our hypothesis that III $[k+1, n ; p]$ is true for $k+1=l$ it follows that the form
(35) $D[l+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{l}\right)-P[l+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{l}\right)$ is of degree less than $p^{l n}$ in each of the $l+1$ indeterminates $X_{h}(h=0,1, \cdots, l)$. We take in the $G F\left[p^{m n}\right](m \geqq k \geqq l)$ any system of l marks $A_{r}(r=0,1 \cdots, l-1)$ linearly independent with respect to the $G F\left[p^{n}\right]$, and associate with each indeterminate $X_{h}(h=0,1, \cdots, l)$ the $p^{l n}$ marks $A=B_{h}$ of the additive-group based on the marks A_{r}. Then, since by $\S 10$ (19) for every such system of $l+1$ (linearly dependent) marks $B_{h}(h=0,1, \cdots, l)$ we have
(36) $D[l+1, n ; p]\left(B_{0}, k_{1}, \cdots, k_{l}\right)-P[l+1, n ; p]\left(k_{0}, \beta_{1}, \cdots \beta_{l}\right)=0$, by the identity-theorem (§11) we have the desired identity $\operatorname{III}[l+1, n ; p]$:
$D[l+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{l}\right)-P[l+1, n ; p]\left(X_{0}, X_{1}, \cdots, X_{\iota}\right) \equiv 0$.
The University of Chicago, January 30, 1896.

[^0]: * See, for instance, Scott's Determinants, p. 57, No. 6.

[^1]: *As to the fact that the quotient-forms so obtained are identical, see, for instance, the theorem (3) $\overbrace{3} 3$ of the memoir by WEBER: Die allgemeinen Grundlagen der Galoisschen Gleichungstheorie (Mathematische Annalen, vol. 43, pp. 521-549, 1893.)

[^2]: *In the sequel the $G F\left[p^{n}\right]$ is always the field of reference.

