THE DECOMPOSITION OF MODULAR SYSTEMS OF RANK *n* IN *n* VARIABLES.

(Presented to the Chicago Section of the American Mathematical Society, April 24, 1897.)

BY PROFESSOR ELIAKIM HASTINGS MOORE.

I.

THEOREM A. If in the realm \mathfrak{R} of integrity-rationality $\mathfrak{R} = [x_1, \dots, x_n] \ (\mathfrak{R}'_1, \dots, \mathfrak{R}_{\nu}')$, where the $x_1 \cdots x_n$ are independent variables and the realm $\mathfrak{R}' = (\mathfrak{R}'_1, \dots, \mathfrak{R}_{\nu}')$ is independent of the $x_1 \cdots x_n$, the modular system

(1)
$$\mathfrak{Q} = \begin{bmatrix} L_1[x_1, \cdots, x_n], \cdots, & L_m[x_1, \cdots, x_n] \end{bmatrix}$$

is contained in the coefficient modular system F

(2)
$$\mathfrak{F} = \left[\cdots, \mathfrak{f}_{k_1, \dots, k_n}, \cdots \right]$$

of the form

(3)
$$F[u_{1}, \dots, u_{n}] = \sum_{k_{1} \dots k_{n} + t} f_{k_{1} \dots k_{n}} u_{1}^{k_{1}} \dots u_{n}^{k_{n}}$$
$$= \prod_{h=1, s} (\sum_{i=1, n} (x_{i} - \xi_{hi}) u_{i}^{s})^{h} \qquad (t = \sum_{h=1, s} e_{h})$$

where the $f_{k_1...k_n} = f_{k_1...k_n} [x_1, \cdots, x_n]$ belong to \mathfrak{R} and the ξ_{ni} belong to \mathfrak{R}' or to a family-realm containing \mathfrak{R}' , and where the s linear forms $\sum_{i=1,n} (x_i - \xi_{ni}) u_i (h = 1, 2, \cdots, s)$ are distinct, then in the realm $\mathfrak{R}^* = [x_1, \cdots, x_n] (\mathfrak{R}'_1, \cdots, \mathfrak{R}'_{\nu}, \xi_{ni} \stackrel{h=1,2}{\leftarrow} \ldots \stackrel{s}{\rightarrow})$ the system \mathfrak{L} decomposes (in the sense of equivalence) into relatively prime factors $[\mathfrak{L}, \mathfrak{D}_n^{\circ h}]$,

(4)
$$\mathfrak{L} \sim \prod_{h=1, s} [\mathfrak{L}, \mathfrak{D}_{h}^{e_{h}}],$$

where $\mathfrak{D}_{h} = [x_1 - \xi_{h1}, \cdots, x_n - \xi_{hn}]$, so that

(5)
$$[\mathfrak{D}_{h}, \mathfrak{D}_{h'}] \sim [1] \ (h + h'; h, h' = 1, 2, \cdots, s).$$

Every such modular system
$$\Omega$$
 is of rank n in n variables.

Every modular system 2 of rank n in n variables decomposes in this way in particular with respect to its resolvent form

$$\mathbf{F}[u_1, \cdots, u_n].$$

1. Kronecker * in connection with his general theory of elimination effected (*l. c.*, § 20) the decomposition of modular systems of rank *n* in *n* variables with non-vanishing discriminant.

In elucidation and extension of certain of the Kronecker Festschrift theories Mr. *Molk* † wrote the elaborate paper, *Sur une notion* …

In Ch. IV., § 1 (*l. c.*, pp. 79–107) Mr. Molk discusses the general modular system \ddagger

(6)
$$\mathfrak{L} = \begin{bmatrix} L_1 [x, y], \cdots, L_m [x, y] \end{bmatrix}$$

of rank 2 in 2 variables [x, y]. The resolvent form F[u, v] of this system \mathfrak{L}

(7)
$$F[u, v] = \sum_{i=0, f_i} f_i u^i v^{i-i} = \prod_{h=1, s} ((x - \xi_h) u + (y - \eta_h) v)^{e_h}$$

 $(t = \sum_{h=1, s} e_h)$

is a certain homogeneous form in the adjoined indeterminates uv, which factors into s distinct linear factors $((x - \xi_h)u + (y - \eta_h)v)$ each to its proper multiplicity e_h . The $\xi_h \eta_h$ are independent of the xy. These factors correspond to the distinct solution systems $(x, y) = (\xi, \eta)$ of the system of equations $L_j[x, y] = 0$ $(j = 1, 2, \dots, m)$, and their multiplicities are the multiplicities of those solution systems.

Now in all cases the coefficient modular system \mathfrak{F} contains the system \mathfrak{L} ,

(8)
$$\mathfrak{F} = [f_0, f_1, \cdots, f_t] \equiv 0 \qquad [\mathfrak{L}],$$

and conversely, if the system \mathfrak{L} has a non-vanishing discriminant, that is, if every multiplicity e_{h} is 1, then \mathfrak{L} contains \mathfrak{F} ,

$$(9) \qquad \qquad \mathfrak{L} \equiv 0 \qquad [\mathfrak{F}],$$

so that \mathfrak{L} and \mathfrak{F} are equivalent,

$$(10) \qquad \qquad \mathfrak{L} \sim \mathfrak{F}.$$

Mr. Molk's highly involved algebraic proof (l. c., pp. 91–97)

^{*} KRONECKER: Grundzüge einer arithmetischen Theorie der algebraischen Grössen, Festschrift ... (1882; reprinted, Journal für Mathematik, vol. 93, pp. 1–122, 1882).

⁺ † MOLK : Sur une notion qui comprend celle de divisibilité et sur la théorie générale de l'élimination (Acta Mathematica, vol. 6, pp. 1–166, 1885).

[‡] I use the notations of this paper.

of this converse is not above criticism. Then the decomposition of $\mathfrak A$

(11)
$$\mathfrak{L} \sim \mathfrak{F} \sim \prod_{h=1, s} [x - \xi_h, y - \eta_h]^{\epsilon_h \neq 1}$$

follows (l. c., p. 104) by resolvent considerations.

Similarly Kronecker for the general n makes the decomposition of the system \mathfrak{L} with non-vanishing discriminant depend upon the equivalence of \mathfrak{L} with the resolvent system \mathfrak{F} .

It is, however, possible, by pure-arithmetic process, for the general n and whether the discriminant vanish or not, to effect first a decomposition of \mathfrak{F} and then a corresponding decomposition of \mathfrak{L} , from which, if the discriminant does not vanish follows the equivalence of \mathfrak{L} and \mathfrak{F} . I proceed to prove the caption theorem A, from which these results follow easily.

2. A realm \mathfrak{R} of integrity-rationality* $\mathfrak{R} = [\mathfrak{R}_1, \dots, \mathfrak{R}_{\mu}]$ $(\mathfrak{R}_{\mu+1}, \dots, \mathfrak{R}_{\mu+\nu})$ consists of all functions $F[\mathfrak{R}_1, \dots, \mathfrak{R}_{\mu}]$ $(\mathfrak{R}_{\mu+1}, \dots, \mathfrak{R}_{\mu+\nu})$ integral in $\mathfrak{R}_1 \dots \mathfrak{R}_{\mu}$ and rational in $\mathfrak{R}_{\mu+1} \dots \mathfrak{R}_{\mu+\nu}$, the coefficients being integers. The realm is closed under addition, subtraction, and multiplication, and likewise under division by any function not 0 of $\mathfrak{R} = (\mathfrak{R}_{\mu+1} \dots, \mathfrak{R}_{\mu+\nu})$.

Any set of functions F_1, \dots, F_m , of a realm \mathfrak{R} constitutes a modular system $\mathfrak{F} = [F_1, \dots, F_m]$ of that realm. The whole theory of such modular systems relates to this underlying realm.

Any set of modular systems $\mathfrak{F}_i = [F_{i1}, \cdots F_{im_i}] \ (i = 1, 2, \cdots, n)$ determines a modular system $[F_{ij_i j_i = 1, 2, \cdots, n_i}]$ for which we use the notation $[\mathfrak{F}_1, \cdots, \mathfrak{F}_n]$.

3. The very useful theorem : If $[\mathfrak{F}_1, \mathfrak{F}_2, \mathfrak{F}] \sim [1]$, then $[\mathfrak{F}_1, \mathfrak{F}] [\mathfrak{F}_2, \mathfrak{F}] \sim [\mathfrak{F}_1, \mathfrak{F}_2, \mathfrak{F}]$: may readily be proved by the use of the fundamental theorems concerning the composition and the equivalence of modular systems.

4. The decomposition (4) of theorem A depends upon the decomposition (12) in the same realm \Re^* ,

(12)
$$\mathfrak{F} \sim \prod_{h=1,s} \mathfrak{D}_h^{e_h}.$$

[This is indeed a particular case of (4), viz., for $\mathfrak{L} = \mathfrak{F}$: for $\mathfrak{F} \equiv 0$ [\mathfrak{F}] and $\mathfrak{F} \equiv 0$ [$\mathfrak{D}_{h}^{e_{h}}$] and so [$\mathfrak{F}, \mathfrak{D}_{h}^{e_{h}}$] $\sim \mathfrak{D}_{h}^{e_{h}}$ $(h = 1, 2, \dots, s)$]. This decomposition (12) will appear below as the third corollary to the theorem $B(\mathrm{II}, \S7)$.

We have (5) $[\mathfrak{D}_h, \mathfrak{D}_{h'}] \sim [1] (h+h'; h, h'=1, 2, \dots, s),$ and hence (§3)

^{*} A convenient refinement of Kronecker's realm of rationality.

1897.] DECOMPOSITION OF MODULAR SYSTEMS.

(13) $[\mathfrak{D}_{h^{e_{h}}}, \mathfrak{D}_{h'^{e_{h'}}}] \sim [1] \quad (h+h'; h, h'=1, 2, \cdots, s).$

Further since by hypothesis

(14)
$$\mathfrak{F} \equiv 0 \quad [\mathfrak{L}]$$

we have from (14, 12, 13) by §3 the desired decomposition (4)

(15)
$$\mathfrak{L} \sim [\mathfrak{L}, \mathfrak{F}] \sim [\mathfrak{L}, \prod_{h=1, s} \mathfrak{D}_h^{e_h}] \sim \prod_{h=1, s} [\mathfrak{L}, \mathfrak{D}_h^{e_h}].$$

The *s* factor systems $[\mathfrak{L}, \mathfrak{D}_{h^{e_{h}}}]$ $(h = 1, 2, \dots, s)$ are by pairs relatively prime (13).

The system $\mathfrak{D}_{h}^{e_{h}}$ consists of the totality of homogeneous products of degree e_{h} of the *n* differences $x_{1} - \xi_{h1}, \cdots, x_{n} - \xi_{hn}$. If the *m* functions $L_{i}[x_{1}, \cdots, x_{n}]$ of \mathfrak{L} be arranged each according to these *n* differences, then the system $[\mathfrak{L}, \mathfrak{D}_{h}^{e_{h}}]$ is equivalent to the system obtained by retaining in each function of \mathfrak{L} only those terms of degree less than e_{h} . Hence, in particular $[\mathfrak{L}, \mathfrak{D}_{h}^{e_{h}}] \sim [1]$, unless $\mathfrak{L} \equiv 0$ $[\mathfrak{D}_{h}]$. On another occasion I shall develop the theory of modu-

On another occasion I shall develop the theory of modular systems capable of such decomposition into relatively prime factors.

5. A modular system \mathfrak{L} of rank n in n variables has (Kronecker, *l. c.*, § 20) a form $F[u_1, \dots, u_n]$ —its resolvent form —of the kind called for by the hypothesis of theorem A, and indeed every system \mathfrak{L} to which theorem A applies is of rank n. For this form F we have further

(16)
$$\mathfrak{L} \equiv 0 \quad [\mathfrak{D}_h] \qquad (h = 1, 2, \cdots, s).$$

Thus the system \mathfrak{L} decomposes with respect to the resolvent F according to theorem A.

For the particular case of non-vanishing discriminant we have Kronecker's decomposition and equivalence,

(17)
$$\mathfrak{L} \sim \prod_{h=1,s} [\mathfrak{L}, \mathfrak{D}_h] \sim \prod_{h=1,s} \mathfrak{D}_h \sim \mathfrak{F}.$$

6. Let *e* denote the largest multiplicity e_h . Let *D* denote any function $D[x_1, \dots, x_n]$ of \Re^* for which

(18)
$$D \equiv 0 \quad [\mathfrak{D}_h] \qquad (h = 1, 2, \dots, s).$$

Then, from (5, 18) and § 3,

(19)
$$[D, \prod_{h=1, s} \mathfrak{D}_h] \sim \prod_{h=1, s} [D, \mathfrak{D}_h] \sim \prod_{h=1, s} \mathfrak{D}_h.$$

375

[July,

Hence

376

(20)
$$D \equiv 0 [\prod_{h=1,s} \mathfrak{D}_h], \quad D^s \equiv 0 [\prod_{h=1,s} \mathfrak{D}_h^s], \quad D^s \equiv 0 [\prod_{h=1,s} \mathfrak{D}_h^{s,h}].$$

Then from (20, 12, 14) we have

$$(21) D^{s} \equiv 0 [\mathfrak{L}]$$

This theorem for the case n = 2 is due to Mr. Netto.*

II.

THEOREM B. In any realm \Re of integrity-rationality the product \Im of the coefficient modular systems \mathfrak{D} , \mathfrak{E} of two homogeneous *n*-ary forms $D[u_1, \cdots, u_n]$, $E[u_1, \cdots, u_n]$ of the realm \mathfrak{R} is equivalent to the coefficient modular system of their product form F=DE, if for any certain system of *n* integers $\dagger a_1, \cdots, a_n$ whose greatest common divisor is 1 in the realm \mathfrak{R}

$$\begin{bmatrix} D[a_1, \cdots, a_n], E[a_1, \cdots, a_n], \mathfrak{F} \end{bmatrix} \sim \begin{bmatrix} 1 \end{bmatrix}.$$

1. We set, calling m_d , m_e the degrees respectively of D, E,

(1)
$$D[u_{1}, \dots, u_{n}] = \sum_{i_{1}, \dots, i_{n} \mid m_{d}} d_{i_{1}, \dots, i_{n}} u_{1}^{i_{1}} \cdots u_{n}^{i_{n}},$$

$$E[u_{1}, \dots, u_{n}] = \sum_{j_{1}, \dots, j_{n} \mid m_{d}} e_{j_{1}, \dots, j_{n}} u_{1}^{j_{1}} \cdots u_{n}^{j_{n}},$$
(2)
$$F[u_{1}, \dots, u_{n}] = \sum_{k_{1}, \dots, k_{n} \mid m_{f}} f_{k_{1}, \dots, k_{n}} u_{1}^{k_{1}} \cdots u_{n}^{k_{n}},$$

$$= D[u_{1}, \dots, u_{n}] \cdot E[u_{1}, \dots, u_{n}] \quad (m_{f} = m_{d} + m_{e})$$

so that

(3)
$$f_{k_1 \dots k_n} = \sum_{\substack{i_1, \dots, i_n \mid m_d \\ \frac{j_1, \dots, j_n \mid m_d}{k_1, \dots, k_n \mid m_f}} d_{i_1 \dots i_n} e_{j_1 \dots j_n} \qquad (k_1, \dots, k_n \mid m_j)$$

where the summation remarks of (1, 2; 3) have the definitions (4; 5)

(4)
$$h_1, \dots, h_n | m_c \sim h_1, \dots, h_n = 0, 1, \dots, m_c; h_1 + \dots + h_n = m_c$$

^{*} NETTO: Zur Theorie der Elimination (Acta Mathematica, vol. 7, pp. 101-104, 1885).

[†] Or, more generally, the $a_1, ..., a_n$ may be any column of an unimodular matrix $(a_{ss'})$ (s, s'=1, 2, ..., n) of the realm \Re , $|a_{ss'}|=1$. The proof then needs change only in & 3.

1897.] DECOMPOSITION OF MODULAR SYSTEMS.

(5)
$$\frac{i_1, \cdots, i_n | m_d}{\frac{j_1, \cdots, j_n | m_e}{k_1, \cdots, k_n | m_f}} \sim \frac{i_1, \cdots, i_n | m_d; \ j_1, \cdots, j_n | m_e;}{i_s + j_s = k_s \ (s = 1, 2, \cdots, n)}$$

For the corresponding coefficient modular systems we write

(6)
$$\mathfrak{D} = \left[\cdots, \underbrace{d_{i_1 \cdots i_n}, \cdots}_{i_1, \cdots, i_n \mid m_d} \right], \mathfrak{G} = \left[\cdots, \underbrace{e_{j_1 \cdots j_n}, \cdots}_{j_1, \cdots, j_n \mid m_s} \right],$$
$$\mathfrak{F} = \left[\cdots, \underbrace{f_{i_1 \cdots, i_n}, i_n, \cdots}_{i_1, \cdots, i_n \mid m_f} \right];$$

and in general we denote the coefficient modular system of any form $G[u_1, \dots, u_n]$ of the realm \Re by the corresponding Gothic capital letter \mathfrak{G} .

We are to prove that under a certain hypothesis H

(7)
$$\mathfrak{D} \mathfrak{C} \sim \mathfrak{F}$$

2. Under an unimodular linear homogeneous substitution

(8)
$$u_s = \sum_{s'=0, n} a_{ss'} u'_{s'}$$
 $|a_{ss'}| = 1$ $(s, s' = 1, 2, \dots, n)$

whose coefficients $a_{ss'}$ belong to the realm \Re , the form $G[u_1, \dots, u_n]$ of the realm is transformed into the form $G'[u_1', \dots, u_n']$, and the corresponding coefficient modular systems are equivalent, $\mathfrak{G} \sim \mathfrak{G}'$.

Since identities in the u's transform into identities in the u's in order to prove for the two forms D, E under the hypothesis H the equivalence (7) $\mathfrak{D} \mathfrak{C} \sim \mathfrak{F}$ it is sufficient to prove for the two transformed forms D', E' under the transformed hypothesis H' the corresponding equivalence (7) $\mathfrak{D}' \mathfrak{C}' \sim \mathfrak{F}'$.

3. By hypothesis H there exists a system of n integers a_1, \dots, a_n of greatest common divisor 1 such that in \Re

(9)
$$\begin{bmatrix} D [a_1, \cdots, a_n], E [a_1, \cdots, a_n], \mathfrak{F} \end{bmatrix} \sim [1].$$

There exists * then a substitution (8) with integral coefficients in which

$$\left(\begin{smallmatrix}1&0&\ldots&0\\0\ldots&0&1\\\vdots\\0&0&\ldots&1\end{smallmatrix}\right)$$

carries us to the matrix $(a_{ss'})$ desired.

This determination of $(a_{ss'})$ is suggested by Kronecker's Reduction der Systeme von n^2 ganzzahligen Elementen (Journal für die Mathematik, vol. 107, pp. 135–136, 1891).

^{*} We can pass from $(a_1, a_2, ..., a_n)$ to (1, 0, ..., 0) by a sequence of elementary transformations, *i. e.*, interchange of two elements with change of sign of one and addition to one element of another element. The application of the reverse sequence simultaneously to the *n columns* of the identity matrix

(10)
$$a_{s_1} = a_s$$
 $(s = 1, 2, \cdots, n)$

For this substitution (8), since

(11)
$$(u_1, u_2, \dots, u_n) = (a_1, a_2, \dots, a_n) \sim (u_1', u_2', \dots, u_n') = (1, 0, \dots, 0),$$

the transformed hypothesis H' affirms the equivalence in \Re (12) $\begin{bmatrix} D' [1, 0, \cdots, 0], E' [1, 0, \cdots, 0], \mathfrak{F} \end{bmatrix} \sim \begin{bmatrix} D' [1, 0, \cdots, 0], E' [1, 0, \cdots, 0], \mathfrak{F}' \end{bmatrix} \sim \begin{bmatrix} d'_{m_d, \dots, 0}, \mathfrak{F}' \end{bmatrix} \sim \begin{bmatrix} 1 \end{bmatrix}$.

4. Thus the theorem holds if it holds for the special case $(a_1, a_2, \cdots, a_n) = (1, 0, \cdots, 0)$, when

(13)
$$[d_{m_d \ 0 \ \dots \ 0}, \ e_{m_e \ 0 \ \dots \ 0}, \ \mathfrak{F}] \sim [1],$$

so that, by I. §3,

(14)
$$[d_{m_d \, 0 \, \cdots \, 0}^{m_e+1}, e_{m_e \, 0 \, \cdots \, 0}^{m_d+1}, \mathfrak{F}] \sim [1].$$

The equivalence

(15)
$$\mathfrak{D} \mathfrak{C} \sim \mathfrak{F}$$

in **M** is nothing but the two congruences

(16)
$$\mathfrak{D}\mathfrak{G}\equiv 0$$
 $[\mathfrak{F}], \ \mathfrak{F}\equiv 0$ $[\mathfrak{D}\mathfrak{G}].$

Of these the second holds by (3), and the first holds by (14) if

(17)
$$\mathfrak{D} \mathfrak{S}[d_{m_d}^{m_e+1}, e_{m_e}^{m_d+1}, \mathfrak{F}] \equiv 0 \quad [\mathfrak{F}],$$

and this holds if simultaneously

(18)
$$\mathfrak{D}[e_{m_e^0\dots 0}^{m_d+1}] \equiv [\cdots, d_{i_1\,i_2\dots i_n} e_{m_e^0\dots 0}^{m_d+1}, \cdots] \equiv 0 \quad [\mathfrak{F}],$$

(19)
$$\mathfrak{S}[d_{m_d 0 \dots 0}^{m_e+1}] \equiv [\cdots, e_{j_1 j_2 \dots j_n} d_{m_d 0 \dots 0}^{m_e+1}, \cdots] \equiv 0 \quad [\mathfrak{F}].$$

We prove that (18) holds; the similar proof applies to (19). We have from (3) for $d_{i_1 i_2 \dots i_n}$, $i_1 = m_d$ (20), $i_1 < m_d$ (21):

(20)
$$d_{m_d \, 0 \, \dots \, 0} \, e_{m_e \, 0 \, \dots \, 0} = f_{m_f \, 0 \, \dots \, 0} \equiv 0 \quad [\mathfrak{F}],$$

(21)
$$d_{i_1 i_2 \dots i_n} e_{m_e 0 \dots 0} = f_{i_1 + m_e i_2 \dots i_n} - \sum d_{h_1 h_2 \dots h_n} e_{j_1 j_2 \dots j_n}$$

378

1897.7

$$\begin{pmatrix} * \sim \frac{h_1, h_2, \cdots, h_n m_d}{j_1, j_2, \cdots, j_n \mid m_e}, & h_1 > i_1 \\ \frac{j_1, j_2, \cdots, j_n \mid m_e}{i_1 + m_e, i_2, \cdots, i_n \mid m_t}, & j_1 < m_e \end{pmatrix}$$

(21')
$$d_{i_1 i_2 \dots i_n} e_{m_e 0 \dots 0} \equiv -\sum^* d_{h_1 h_2 \dots h_n} e_{j_1 j_2 \dots j_n}$$
 [\mathfrak{F}].

Hence, applying (21') $m_d - i_1$ times and (20) once, we see that

(22)
$$d_{i_1 \, i_2 \dots i_n} \, e^{m_d - i_1 + 1}_{m_e \, 0 \, \dots \, 0} \equiv 0 \quad [\mathfrak{F}],$$

and so that (18) does hold.

5. Cor. 1. The product \mathcal{F} of the coefficient modular systems $\mathcal{D}_1, \dots, \mathcal{D}_r$ of t *n*-ary forms D_1, \dots, D_r of the realm \mathfrak{R} is equivalent to the modular system of their product-form F, if for any certain system of *n* integers a_1, \dots, a_n with greatest common divisor 1

(23)
$$\begin{bmatrix} D_g [a_1, \cdots, a_n], D_{g'} [a_1, \cdots, a_n] \end{bmatrix} \sim \begin{bmatrix} 1 \end{bmatrix}$$
$$(g + g'; g, g' = 1, 2, \cdots, t)$$

6. Cor. 2. The s linear forms

(24)
$$D_h[u_1, \cdots, u_n] = \sum_{i=1, n} d_{hi} u_i \quad (h = 1, 2, \cdots, s)$$

belong to the realm \Re and have leading coefficients by pairs relatively prime

(25)
$$[d_{h1}, d_{h'1}] \sim [1] \quad (h+h'; h, h'=1, 2, \cdots, s).$$

Then, setting

(26)
$$D_h[u_1, \cdots, u_n]^{\circ_h} = F_h[u_1, \cdots, u_n], \quad (h = 1, 2, \cdots, s),$$

(27)
$$\prod_{h=1,s} F_h [u_1, \cdots, u_n] = F [u_1, \cdots, u_n],$$

we have the equivalence in **M**

(28)
$$\prod_{h=1,s} \mathfrak{D}_h^{s_h} \sim \prod_{h=1,s} \mathfrak{F}_h \sim \mathfrak{F}$$

This appears from Cor. 1 for $(a_1, a_2, \dots, a_n) = (1, 0, \dots, 0)$ since obviously for any linear form D_h and its power $D_h^{e_h} = F_h$ we have $\mathfrak{D}_h^{e_h} \sim \mathfrak{F}_h$ and since from (25) by I § 3 $[d_{hh}^{e_h}, d_{hh}^{e_h}] \sim [1] (h+h'; h, h' = 1, 2, \dots, s).$

379

7. Cor. 3. We consider the realm \Re of integrity-rationality

(29)
$$\Re = [x_1, \cdots, x_n] \; (\xi_{hi} \stackrel{h=1, 2, \dots, s}{i=1, 2, \dots, n})$$

where the x_1, \dots, x_n are indeterminates and where the ξ_{hi} belong to a realm \mathfrak{N}^* not containing the indeterminates x and in that realm are such that the *s* forms

(30)
$$D_h[u_1, \dots, u_n] = \sum_{i=1, n} (x_i - \xi_{hi}) u_i$$
 $(h=1, 2, \dots, s)$

are distinct linear forms. Then we have (in the notations of Cor. 2) the equivalence (28).

The particular case, in which

(31)
$$\xi_{h1} + \xi_{h'1}, \quad \therefore [x_1 - \xi_{h1}, x_1 - \xi_{h'1}] \sim [1]$$
$$(h + h'; \ h, h' = 1, 2, \cdots, s),$$

follows at once from Cor. 2.

The general' case is reduced to this particular case by transformation of the $u_1 \cdots u_n$ by a properly chosen unimodular substitution in the realm [1]

(32)
$$u_i = \sum_{i'=1,n} a_{ii'} u'_{i'}$$
 $(i = 1, \dots, n)$

and simultaneously of the $x_1 \cdots x_n$ and the $\xi_{hi} \cdots \xi_{hn}(h=1, \dots, s)$ by the substitutions contragredient to (32)

(33)
$$x_i' = \sum_{i'=1,n} a_{i'i} x_{i'} \qquad (i = 1, \dots, n),$$

(34)
$$\xi_{hi}' = \sum_{i'=1, n} a_{i'i} \xi_{hi'}$$
 $(i = 1, ..., n).$

Since the forms D_{h} (30) are distinct we can determine integers $a_{1} \cdots a_{n}$ with greatest common divisor 1 such that $\sum_{i'=1,n} \xi_{hi'} a_{i'} + \sum_{i'=1,n} \xi_{h'i'} a_{i'} (h+h'; h, h'=1, \cdots, s)$. Then any unimodular matrix $(a_{ii'})$ in [1] having $a_{i'1} = a_{i'}$ ($i' = 1, \cdots, n$) will yield satisfactory reducing substitutions (32, 33, 34).

THE UNIVERSITY OF CHICAGO, April 20, 1897.