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complementary with respect to n of the given combina­
tion. Suppose now we form the nm combinations of any n 
numbers m at a time and consider the set of combinations 
formed by combining each of these nm combinations with 
their complementaries in such a way that the numbers in 
any combination arranged in their natural order are imme­
diately followed by the numbers in the complementary 
combination arranged in the same way. The paper then 
gives an expression for the number of inversions in any 
combination of this set and also the excess of the number 
of combinations in the set which have an even number of 
inversions over those which have an odd number. 

F . K COLE. 
COLUMBIA U N I V E R S I T Y . 

THE THEOREMS OF OSCILLATION OF STURM 
AND KLEIN. ( F I R S T PAPER.) 

BY PROFESSOR MAXIME BÔCHER. 

( Read before the American Mathematical Society at the Meeting of De" 
cember 29, 1897.) 

I N the first volume of Liouville's Journal (1836) Sturm 
has deduced certain properties of the real solutions of linear 
differential equations of the second order which are of 
fundamental importance both in pure and in applied mathe­
matics. The opinion has been expressed* that Sturm's 
work cannot be regarded as rigorous and that other methods 
must be substituted for his, for instance the method of suc­
cessive approximations recently employed by Picard for 
establishing some of these theorems. In one sense it is true 
that Sturm's work is not rigorous, as hardly any work in 
analysis done during the first half of the present century 
shows an appreciation of the difficulties connected with the 
conception of continuity. The work of Sturm may, how­
ever, be made perfectly rigorous without serious trouble and 
with no real modification of method. In the first two sec­
tions of the present paper I have proved such of Sturm's re­
sults as are necessary to establish his theorem of oscill­
ation, f In doing this I have departed somewhat from his 

* Cf. the first paragraph of Picard's note in the Comptes Bendus for 
February, 1894, and also Klein, Lineare Differential gleichungen der 
zweiten Ordnung (lithographed 1894) p. 266 : " I n der That genügen die 
Existenzbeweise, wie sie Sturm und Liouville führen, keineswegs den 
heutigen Anforderungen d r Strenge. Man wird verlangen alle die von 
ihnen gegebenen Entwickelungen in neuer Weise abzuleiten." 

f This name is due to Klein. 
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order of presentation (although even this is a matter of con­
venience rather than necessity) but his methods are essen­
tially preserved. 

I have not thought it desirable to complicate the pres­
entation by preserving at all points the generality of 
Sturm's memoir.* I have not, however, thought it well to 
restrict the functions with which we deal to being analytic, 
for although the proofs would then have appeared simpler 
this simplicity would have been gained at the expense of 
their elementary character. On the other hand, I have re­
stricted all the functions with which we deal to being con­
tinuous, this being, I suppose, what Sturm intended to do. 
The questions, some of them very important, which refer to 
cases in which these functions are discontinuous either 
within or at an extremity of the intervals in which we con­
sider them, I hope to return to on a future occasion. 

Sturm's theorem of oscillation relates to a differential 
equation which involves a variable parameter. This theorem 
has been extended by Klein to certain equations involving 
more than one parameter. We shall confine ourselves in 
§ 3 to Lame's equation and even then shall consider only 
the simplest, but, at the same time, the most important case 
of Klein's theorem of oscillation as Klein himself originally 
did ( Mathematische Annalen, vol. 18, 1881). Klein's proof 
rested entirely on geometric intuition and the form in which 
I have since presented the proof f is, although the different 
steps are somewhat more sharply defined, of the same sort. % 
I have given the proof here in what I hope will be found to 
be a perfectly rigorous analytical form which however rests, 
as I have briefly indicated in foot notes, upon the same kind 
of geometric considerations as Klein's original proof. 

For the convenience of such readers as are not thoroughly 
familiar with the methods of exact analysis or with the ele­
ments of the theory of linear differential equations, I recap­
itulate here a few facts of which we shall have to make use. 

(A) If throughout and on the boundary of a certain fi-

* Thus a and a' are here regarded as constant in §2, instead of being 
functions of A. Cf. also footnote, p. 300. 

f Cf. my dissertation : Ueber die Reihenentwickelungen der Potential-
theorie, Göttinger Preisschrift, 1891, and a book published under the same 
title (to which I shall refer in § 3 as Reihenentwickelungen) in 1894 by 
Teubner. Bee also Klein : Lineare Difïerentialgleichungen der zweiten 
Ordnung, 1894. 

% An analytic form of proof is also given by Pockels in which, how­
ever, questions of continuity are disregarded. See p. 118 of his book : 
Ueber die Dififerentialgleichung Au -f k2u = 0. Leipzig, Teubner, 1891 „ 
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nite region ƒ(#, y, z,...) is a continuous function of (x, y, z, ...) 
it will be uniformly continuous there.* From this it follows 
immediately that if when a = x Êi 6 and c"ëy = d ƒ(#, y) is a 
continuous function of (a?, y) and if when y — y0 (c==y0=d) 
ƒ(#, y) does not vanish when a'Êâ x = b then it is possible to 
find a positive quantity e so small that when \y — y0\ < e (and 
also e = y^d) /(a?, y) does not vanish when a =§ a? = 6. 

(B) If when a =: x ÉE &, ^ § ^ = A2, /^ = M = /*2 ƒ(#, >*, /*) is 
a single valued continuous function of (a?, A, ^) then in the 

same intervals I /(a?, A? /A) cfo will be a continuous function 

of (a?, A, //).f 
(C) If when a Ëü # = 6 jj(a?) and q(x) are single valued 

continuous functions of x one and only one function y(x) 
exists, which at every point of the interval ab satisfies the 
differential equation : 

g + po g+*<«*-<>, 
(and which, therefore, has continuous first and second deriv­
atives throughout ab) and which at the point x0(a = x0 ËE6) 
satisfies the relations y{xQ) = a, y'(xQ) = a' (a and a' arbi­
trary real constants).! 

In particular if a = a ' = 0, i/ is identically zero. 
(D) If the functions p and g in (C) involve a param­

eter A in such a way that when a = # = 6 and A ^ A ^ ^ 
they are continuous functions of (#, A) then the function y 
determined in (C) will be in the same region a continuous 
function of (x, A). § 

(E) The function y determined in (C) cannot have an 
infinite number of roots in the interval ab unless a = a '= 0. 
For if it had, these roots would have at least one limiting 
point xY(a ^xx = b) and since y is continuous at xx y(xx) = 0. 
Moreover by Eolle's theorem there will be in the neighbor-

*Cf. Jordan: Cours d'Analyse, 2d edition, vol. I, p. 48 ; Harkness 
and Morley: Theory of Functions, §64; or Picard: Traité d'Analyse, vol. I, 
p. 3 and p. 90 (where, however, the term uniform continuity is not 
mentioned). In the last two works the important condition that the 
boundary must belong to the region of continuity is not explicitly stated. 

11 am not able to give a reference to a proof of this theorem. Such a 
proof may be given in a manner precisely similar to that in which it is 
ordinarily proved that the above integral is a continuous function of 
(^, JU) and also of a?. See Harnack's Calculus ?,146, VIII, and §151. 

J Cf. Picard : Traité d'Analyse vol. IL, Chap. 11 ; or Jordan : Cours 
d'Analyse, vol. I l l , p. 88. 

\ This follows immediately from the method of successive approxima­
tions. See for a special case Picard : Traité d'Analyse, vol. I l l , p. 93. 
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hood of #, an infinite number of points a t which y' = 0, a n d 
therefore since y'(x) is cont inuous y'^) = 0 .* F r o m t h e 
r e m a r k a t t h e end of (C) we see t h a t y and y' cannot bo th 
vanish a t xv 

( F ) If x0 is a root of the function y de termined in (C) 
(a ~ x0 = b), t h e n for sufficiently small values of £ y(x0 + e) 
a n d y(x0 — e) have opposite signs since y'(xo) 4 s 0 ; and if 
%o', %i" a re two successive roots, y'(x0') a,ndy'(x0") have oppo­
site signs. 

( G ) By the change of dependent variable : 

~y = e1/2fpdx' y 

or by the change of independent var iable : f 

t= f e~fpdxdx 

t h e differential equat ion in (C) may be reduced to t he bino­
mial form : 

d2y , N 

W e shall confine our a t ten t ion to equations of th is form in 
t h e following §§ 1, 2. 

§1 . The Comparison of Corresponding Solutions of Two 
Differential Equations, 

W e will begin by establishing the following fundamenta l 
Theorem of Comparison : 

I . If in the differential equations : 

a) g - * ( * ) • * 

(2) £ - * ( * ) • * 
<PX (x) and <p2(x) are single valued continuous functions when 
a~x = b and if throughout this interval (px (x) ÈË <p2 (x) {the equal-

*This follows more simply still from the fact that [j/(#i + A ») — 
y{%i)] IA » keeps vanishing as A » approaches zero. The proof given in 
the text is however more convenient than the one just'indicated in the 
case of equations of higher order tha \ the second. 

f It should be noticed that since dt / dx > 0, an interval ab of thea?-axis 
throughout which p is continuous corresponds in a one to one manner to 
an interval of the £-axis, and that any set of points in the first interval fol­
low each other in the same order as the corresponding points in the second 
interval. 



1 8 9 8 . ] THE THEOREMS OF OSCILLATION. 2 9 9 

ity sign not holding for all values of x in the neighborhood of a); if 
moreover yx and y2 denote solutions of (1) and (2) respectively 
which satisfy the conditions y1 (a) = y9 (a) = a, yx' (a) = y2' (a) 
= a' and if yx has n roots xv x2, •••, xn such that a < xx < x2 ••• < xn 
= b ; then y2 will have at least n roots between a and b and the 
iih (i = 1, 2, •••, n) of these roots measured from a is less than xv 

Let us consider the differential equation : 

(3) -S=&(x)+x ^(x) ~̂  (x)Ky-
This equation reduces when X = 1 to (1) and when À = 0 to 
(2). Let y (x, X) be the solution of (3) which satisfies the 
conditions : 

y(a,X)=*a, y' (a,X) = a', 

so that y (#, 1 ) = yx (x) and y (x, 0) = y2 (#). 
For what follows it is important to see that we can always 

find a constant a! which exceeds a by so little that when 
a < # = a'andO = AÉil y (re, X) =^=0. This is at once obvious 
from (A) when a is not zero. When a = Q we get our re­
sult in a similar manner by considering y\x, X). 

Now consider the differential equations satisfied by 
y (x, X^ and y (x, X2) respectively. Multiply the first of 
these equations by y (x, X2) the second by y (x, Xx) and sub­
tract. This gives : 

y O, *a) y" (x> Ai) - y (^ K) y" 0> K) = 

( ^ i - ^a) Oi ( O — ?2 ( « ) ] y («j Ai) 2/ 0> ^ ) -

Let us integrate this equation from x = a to # = x : 

» (s, *2) 2/' (»> Ai)— y (*> K) y' (x, \) = 

^ ' (*,— ô) I [^0*0 — p , 0 * 0 ] y ( M i ) y ( M a ) dx-

The integral which on the right hand side of this equation 
is multiplied into Xx — X2 is by (B) a continuous function of 
(x, Xv X2) when a' Ê= x Êü b, 0 = Xx ̂  1, 0 = â = 1. Moreover 
when ^ = A2 it is positive within the limits above indicated 
(it cannot be zero since it is at least as great as the integral 
from a to a'). Accordingly, it follows from (A) that it is 
possible to find a positive quantity e independent of x, Xv and 
X2 and so small that when | Xl — X2 | < s the above integral is 
positive throughout the region mentioned. Let us then in­
sert between the values X=l and X = 0 a number of other 
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values kvk2, ••• ,km in such a way that all the differences 
1— kv k1— k2, k2— &3, •••, km— 0 are less than e. Then if we let 
Ax and X2 be two successive values taken from the set 1, kv 
k2, •••, km, 0 the integral just discussed will be positive when 
a'^x^b. 

Let us begin .by letting ^ = 1, X2 = kv x = xt. Then since 
y(xt, 1) « 0 the second term on the left hand side of (4) 
drops out, while the right hand side is positive. We see 
then that y(xu k^ and yf(xiy 1) have the same sign. In the 
same way y(x^_^ kx) and £/'(#*_!, 1) have the same sign. But 
yf(Xi, 1) and y' (#<_i, 1) have opposite signs (see ( F ) ) , and 
therefore y{x^ &x) and y{xt_^ \) have opposite signs. Ac­
cordingly y(x, &x) has at least one root between xt_x and x{. 
By similar reasoning y(x, kx) has at least one root between 
a! and xx (since y (a', 1) and y (a', kx) have the same sign 
while y'(xv 1) and therefore y(xv kx) has the opposite sign 
from them).# 

There cannot be more than one root in any one of the 
intervals just considered. For if there were let // and v be 
two successive roots of y(x, kx) between which no root of 
y(x, 1) lies. We see then by using (4) as before that 
y(/x, 1) and y(\>, 1) have respectively opposite signs from 
V (tJiK) and y'(v, kY) while these last two quantities have 
opposite signs from each other. y(/i, 1) and y(v, 1) must 
then have opposite signs. But this is impossible since 
y(x, 1) has no root between /J. and v. 

Our theorem now follows at once. For we have just 
proved that y(x, \) has at least n roots between a and 6 and 
that if xl (i — 1, 2, •••, n) denotes the ith. of these roots from 
a xl < xt. In precisely the same way it follows that y(x, k2) 
has at least n roots between a and b and that if 

a*"(i = l , 2 , . - . , n ) 

denotes the ith of these roots from a x" < x{ < x* Proceed­
ing in this way we finally get the theorem concerning the 
roots of y(x, 0) above stated. 

To the theorem just established may be added a second 
Theorem of Comparison : 

I I . The notation and conditions* being the same as in Theorem 
J, if neither yY(b) nor y2(b) is zero and if yx (x) and y2 (x) each 
has just n roots between a and b (n may be zero), then : 

y l 'W/»,W>»,'W/y,W. 
* It is easy to show that the restriction we made in Theorem I, that the 

equality sign in the relation <px (x) ^ </>2 (x) shall not hold for all points in 
the neighborhood of a may here be replaced by the condition that it must 
not hold for all points of the interval ab. 
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I n the following proof we will use the same notation as 
in the proof of Theorem I. 

In the first place it is clear that each of the functions 
y (#, &j), y (#, k2), ", y (x, km) has just n roots between a and 
b and does not vanish when x = b. For by Theorem I 
it must have at least n roots greater than a and less than b 
since this is true of y (x, 1) ; and it cannot have more than 
n such roots nor can it vanish when x = b since then by 
Theorem I y (#, 0) would have at least n + 1 roots between 
a and b. I t follows then from (F) that the functions 
y (x, 1), y O, \), - , y (x, JcJ, y (x, 0) have changed sign the 
same number of times in passing from x = a1 to x = b, and 
since they all have the same sign when x = a' they must all 
have the same sign when x = b. 

The method we will use to prove our theorem is to estab­
lish the continued inequality : 

y' (*>, i ) ^ y'CM.) ^ 2/_(M2) -. ^ y' (*, Q) 
y(6,1) ^ y{b,\)^ y(b,\)^ ^y(b,0)-

The first step of this inequality will be established if we can 
prove that the difference between the two first terms : 

y (b, fc.)y'(M)- y (*>, i)y'(b,K) 
y(b,l)y(b,K) 

is positive. We have just seen that y (6,1) and y (b, k^) 
have the same sign, so that the denominator is positive while 
the numerator is at once seen to be positive when we let 
Ax = 1, X2 = \ in (4). In precisely the same way we prove 
the other inequalities above written. 

The two preceding theorems enable us to compare an 
equation we wish to investigate with one about which 
something is known. The equation most frequently taken 
as standard of comparison is : 

/Kx d2y 

where c is a constant. We give now some theorems which 
can be obtained by such a comparison and which we shall 
need in the following sections. 

When c is positive the solution of (5) which satisfies the 
conditions y (a) = a, y' (a) = a' is : 

y —— 7 = — 6 -f- - = — 6 • 
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I t is easily seen that when a = 0 y vanishes only when 
r2 

x = a, and that when a =|= 0 and c ÈË —¥ y does not vanish at 

all. We may then deduce the following proposition from 
Theorem I : 

III. If <p (x) is single valued and continuous when a = x~b 
and if y is the solution of: 

d2y , . 

which satisfies the conditions y (a) = «, yf (a) = a' then, provided 
that throughout the interval ah <p (x) ÈË a' /a2 (or if a = 0 pro­
vided that <p (x) = 0), y (x) will not vanish when a <, x = b. 

By applying Theorem I I we get : 
IV. If y is determined as in Theorem III and if <p (x) = c 

(the equality sign not holding for all values of x in the neighborhood 
of a) then provided that e=a'2/a2 (or if a = 0 provided that 
c = 0) we have when a <^x=.b : 

y'(x) (a Vc~+ a ' )el / T ( a :- a ) — (a Vc~— af)e-^^x~a) 

y O ) C (as/~c + ar)e^T(x-a) + (a s/~c~— af)e~^T(x-a) 

We may add to Theorems I I I and IV as a corollary whose 
truth may also be seen directly : 

If <p (x) = 0 and either a = 0 or a! = 0, then when a < x = b 
y(x) does not vanish and y' /y> 0. 

If on the other hand c is negative, any solution of (5) may 
be written in the form : 

y=C1 cos V — ex + C2 sin V — ex, 

and since this function has an infinite number of roots sit­
uated at intervals of n / V — c we get the theorem : 

V. If y is determined as before and if throughout the inter­
val ab : 

<p(x) < — 
(b - a ) 2 

then y will have at least n roots in the interval ab. 

§2. On the Solutions of Differential Equations involving 
one Parameter. 

We have been dealing so far with differential equations 
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which do not involve parameters.* We come now to some 
theorems concerning the solutions of the equation : 

(6) g-KM)y 

in which we will suppose that <p is a continuous function of 
(#, A) when a = xHâb and X1 ~ A ÈÈË A2. Let us denote by 
y(x, A) the solution of (6) which satisfies the conditions 
y(a, A) = «, y'(a, A) = a! (a and a' independent of A). We 
get then the theorem : 

YT. Ifwhena^x^bandX1^Xf>Xf^X2 <p(x, A') ^ <p(x,X") 
{the equality sign not holding for all values of x in the neighborhood 
of a) and if y(x, /\) has n roots in the interval a < x = b then 
y(x, A) (AjiÈË A =È? A2) will have at least n roots in this interval. 
Moreover, if we call these roots (or if there are more than n the first 
n of them) x^X), x2(X)y ..., xn(X) where a < #x< #2< ... <œnÊi& 
£/im x.{X) is a single valued and continuous f unction of X when 

Everything here stated follows at once from Theorem I 
except the continuity of #<(A). In order to establish this 
continuity it is sufficient (and necessary) to show that, A' 
being any value of A in the interval A^, no matter how 
small a positive quantity d we may take it is possible to find 
a positive quantity s so small that when 

| A - A' \<e , | <A) - Xt(k') | < * (t = 1, 2, .-, n) . 

To show this let 5 be taken so small that in the intervals 

I *,(*') - x | ^ a (< = l , 2 , . . . , w) 2/'0*> *') + o . 
These intervals we will denote by Iv I2, —, In. The possi­
bility of this choice of d is obvious from the fact that 

y'(xt(X'), A ' ) + 0 

and from the continuity of ƒ(#, Ar ). Let us now notice that 
just as on p. 299 it is possible to find a quantity a! such that 
when a < x ^ a' and Aj ^ A ^ A2 t/(#,A) =f= 0 ; and consider the 
intervals a' ^x^xx{X') — d, xx{X') + d-^x-^x2{X') •— d, •••, 
aV-i(A') + à-^x-^xn(X

f) — a which we will call JV J2y", Jn> 
Since y(x, X') does not vanish in any of these intervals 
while y'{x, A') does not vanish in any of the intervals 1^ •••, 
In it is possible, (see (A) ) to choose s so small that when 

* The introduction which we found it convenient to make of a param­
eter 'À, in the proof of Theorems I and I I does not affect this statement. 
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| A —- A' | < s y(x, A) does not vanish in any of the inter­
vals J nor at the point xn(X') + â and y'(%, A) does not van­
ish in any of the intervals J. This being done it is clear 
that when | A — A' | < s y(x,X) has one and only one root in 
each of the intervals J. For if it had more than one root in 
any of these intervals y'(x,X) would have, by Kolle's theo­
rem, to vanish in this interval. And it must have at least 
one root in each interval I{ since y(x, A') and therefore 
y(x,X) has opposite signs in the intervals J{ and Ji+1 (or 
when i = n in the interval Jn and at the point #n(A') + d). 
Moreover since y(x, A) has no roots in the intervals J or in 
the interval a<x-^af it follows that the root which we 
have just seen lies in the interval It is the root x{(X). Our 
theorem is thus proved.* 

VI I . If in (6) when a^x^b and X^ X'> X" ^ X2 

?(M') = * ( M " ) 
(the equality sign not holding for all points in the neighborhood 
of a) f and if y (x, Ax) has just n roots (n may be zero) when 
a < x = b and y (x, A2) has just n + m roots in this interval then 
there will be one and only one value of A (At > A = A2) for which 
y (x% A) vanishes when x = b and has just n + h roots (0 <C k < ni) 
between a and b. 

In order to prove this let us define the function <p(x, A) 
when x > b by the formula <p(x, A) = <p(b,X) — (x — 6). The 
function as thus defined is a continuous function of (#,A) 
when XX^X^X2 and a =ix ; and throughout this whole region 
it satisfies the relation <p (x, A' ) =Ë <p (x, A" ) when A' > A". More­
over when x increases beyond b <p(x,X) decreases indefinitely 
so that by Theorem V y(x,X) has for all values of X(XX ÈË A =Ë A2) 
an infinite number of roots greater than b. Let us call the 
first m + n roots of y(x,X) which are greater than a 

x1(X),x2(X)r-,xm + n(X). 

Then by Theorem V I xm+k (A) is a single valued and con­
tinuous function of A which constantly decreases as A varies 
from Ax to A2. Therefore since xm+k (Ax) > b 8biidxm+k (A2) ^b 
there must be one and only one value of X(XX> ^ = ^2) ^o r 

which xm + k(X) = b. 
We come now to Sturm's theorem of oscillation : 
* Compare the proof just given with the treatment of implicit functions 

in Jordan's Cours d'Analyse 2d edition, vol. I., p. 80. 
t Here, as in the proof of Theorem II, all that need be required is that 

the equality sign shall not hold for all values of x in the interval ah. This 
remark applies to the next theorem also. 
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V I I I . If when a~x = b and L> X>1 <p(x,X) is a single 
valued continuous function of (x, X) and if when a~x=àb and 
L > X' > X" > I <p(x, X') = <p (x,X") (the equality sign not hold­
ing for all values of x in the neighborhood of a) ; * and finally if 
no matter how large the quantity M and how small the quantity m 
may be chosen it is possible to take X on the one hand so near to L 
that, for all values of x in the interval ab <p(x1X')^> M, and on 
the other hand so near to I that for all valves of x in the interval 
ab<p(x,X) < m ; then there is one and only one value of X (L > A 
> I) for which the differential equation : 

has a solution which has n roots greater than a and less than b and 
which satisfies the conditions : 

(1) a!y (a) - ay' (a) = 0, 

(2) ft'y (b) ^ fty'(b) = 0. 

Here n is an arbitrarily chosen integer positive or zero, 
and a, a', ft, ft' are arbitrarily chosen real quantities restricted 
merely by the fact that « and a! must not both be zero and 
ft and ft' must not both be zero. Moreover, it is not neces­
sary to require that L and I should be finite ; we may have 
L = + oo or ? = — oo or both of these cases may occur at 
once. 

In the special case in which ft == 0 the truth of this 
theorem follows at once from Theorems I I I , V, and VI I . 
From this special case the general theorem may be deduced 
as follows : 

By means of the special case of the theorem just referred 
to it is possible to find two values of X (Ar and X") for each of 
which a solution of the differential equation exists which 
satisfies condition (1) and which vanishes when x = 6 while 
the solution corresponding to X' has just n — 1 roots and the 
solution corresponding to X" just n roots greater than a and 
less than b. From Theorem I it is clea.r that X' > X" and 
that when X' > A H Ë A " and only then the solution y (x, X) 
which satisfies condition (1) has just n roots greater than a 
and less than b. If then we can prove that in this interval 
there is one and only one value of X for which condition (2) 
is satisfied our theorem will be proved, 

Now when A'>A>A , r2/(6?A)4=Oas otherwise by Theorem 

* See the preceding footnote. 



306 THE THEOREMS OF OSCILLATION. [ A p r i l , 

I y (#, A") would have at least n + 1 roots greater than a and 
less than b. Accordingly y' (6, A) / y (6, A) is a continuous 
function of A between these limits. Moreover by Theorem 
I I this ratio continually increases as A varies from A" to A', 
and it must increase from — GO to + o> since its numerical 
value clearly becomes infinite as A approaches either A' or A". 
The above mentioned ratio must therefore take on every 
value, and in particular the value /3'/ /?, once and only once 
in the interval in question. 

The case n = 0 is not covered by the above proof. Here 
however we may as before find a value A" such that y (6,A") 
= 0 while*y (#, A") does not vanish when a < x < 6, and it 
is clear as before that when L > A ÈÈË A" and only then 
y (#, A) =|=0 when a < x < 6, and that y (b, A) =[=0 when 
2J > A > A", Accordingly y' (6,A)/i /(6,A)is continuous and 
constantly increases as A varies from A" to I>. Moreover its 
numerical value becomes infinite when A approaches A" and 
by the formula in Theorem IV the same is true when A ap­
proaches L, so that as before it takes on the value /5r/ /3 for 
one and only one value of A. 

A special case of the last theorem deserves mention as i t 
is the one which is of by far the greatest use, viz., the case 
in which a = 0 or a' = 0 and p = 0 or /3' = 0. Here, as is at 
once seen by reference to the corollary stated after Theorem 
IV, we may replace the condition stated in V I I I concerning 
i f by the condition that it must be possible to take A so near 
to L that for all values of x between a and b <p (x, A) = 0. 

"We added finally the theorem (whose truth is immedi­
ately obvious from Theorems I and I I ) : 

IX . If two values (Ax and A2) of A are determined by Theorem 
VIII by using in each case the same values of a and a! and if the 
values of n, /5, ft' corresponding to Ax are nv pv fi\ and the values 
corresponding to A2 are n2, /52, /22' then : 
(1) if nx> n2 we shall have Aj < A2 ; 
(2) if nx = n2 and ftx = 0 while ft2 =)== 0 then Ax < A2 ; 
(3) if nx = nv IS, + 0, /?2 + 0 and /5/ / £ < pt' / P2 then Xl < A2.* 

We have assumed throughout this and the preceding sec­
tion that a < b. The contrary assumption might have been 
treated in the same way although many of the theorems 

* I t is upon this theorem that Klein's determination of the relative 
magnitude of the 2n-\-l values of B which in the theory of Lame's poly­
nomials correspond to one and the same valueoî A •= n (n-\-1) rests. Cf. 
Lineare Difïerentialgleichungen der zweiten Ordnung, p. 341-346. I 
take this occasion of mentioning the fact, which I pointed out to Professor 
Klein in June, 1893, that the theorem just referred to follows at once from 
the discussion of Poincaré, Acta Mathematica, vol. 7, p. 306. 
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would then require slight modification. The easiest way of 
getting the theorems in this case is perhaps to change the 
independent variable x by the formula x' = — x. 

§ 3. Lame's Equation. 

We will write Lamé's equation in the form : 

x2 A \ x —- e1 x — e2 tx — e3 / 

Ax + B 
4 O — «i) O — eù (x — eù 

y = 0 . * 

We shall regard the singular points ev e2, e3 as real and un­
equal (ex < e2 < e3) and constant, while A and B will be re­
garded as rea] parameters. The equation can be reduced to 
the binomial form : 

by the change of independent variable (see (Gr)) : 

J <*x dx 
= . 

c 2 \'(x — ex) (x — e2) (x — e8) 

The lower limit of integration c is arbitrary. Let us first 
consider a finite segment ab of the #-axis where either 
ex = a < b Ëi e2 or e3 ËÉÉ a < 6.f If we let in the first case 
el = e = e2 and in the second case e3 = c the integral ^ will be 
finite and real for all points of the segment ab. The seg­
ment ab corresponds then in a one to one manner to the 
segment of the £-axis from t (a) to t (b). If then we notice 
that when we assign to A an arbitrary value the function 
Ax + B increases with B for all points of the segment t (a) 
to t (b) and (to put it roughly) increases from — oo to + oo 
as B varies from — oo to + oo we get at once from Theorem 
V I I I : 

X. If we assign to A an arbitrary value there will be one and 
only one value of B (B = F (A)) for which Lame's equation 

* For the relation between the notation here used and Lamé's notation 
see Reihenentwickelungen, p. 113, footnote. 

f The following discussion applies equally well to the case in which the 
segment ab covers a part or the whole of the interval ex e2 or c3 oo in 
which it lies more than once (provided merely that it remains of finite 
length), cf. Eeihenentwickelungen, p. 123 and following. Only slight 
verbal alterations would be necessary in the text to include this case. 
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has a solution y which has n roots in the segment a <^x < 6 and 
at the ends of the segment satisfies the relations : 

(1) ^ ( a ) -3g ) .o 

(2) ^ O O - y S ^ - O . * 

Here n may be any integer positive or zero while a, a', 
ft, ft are any real quantities provided that we have neither 
a = a! = 0 nor /3 = /3' = 0. The function F (A) depends, of 
course, upon all of these quantities, and if we indicate the 
argument A only it is because in the questions which we 
shall take up the other quantities are regarded as fixed, f 
We proceed now to the deduction of some properties of the 
function F (A) concerning which we, as yet, know only that 
it is defined and single valued for all values of A. 

XI. Ax and A2 being any two different values of A : 

For if we call the middle term of this inequality xQ we 
have: 

[A? + -F (A) ] - [A2x + F(A,)-] = (A, - A,) (x - *,) 

and if the above inequality did not hold we should have : 

either Atx + F(AJ ^ A2x + F(A2) (a^x^b) 

or A^ + FiA^^A.x + FCA,) (a<x<b) 

the equality sign holding at most when x = a or when x = 6. 
Either of these inequalities is seen to be impossible when we 
compare the equations : 

g «. [Atx + FW]y ~l = [Ap + F(At)-]y 

by means of Theorems I and I I . 

* Except when a or b coincides with eu e2, e3 we may clearly replace 
dyjdt in these conditions by dy\dx. 

f A question in which this is not the case is the one referred to in the 
footnote on p. 306. 

t This is nothing but an analytical statement of the fact that the two 
lines y = Arx + F^AJ and y = A2x

J
rF(A2) intersect within the infinite 

strip bounded by the ordinates erected at a and &. Cf. Reihenentwieke-
lungen, p. 128, 1st line. The proof we here give is also nothing but an 
analytical statement of the proof there suggested. 
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X I I . F (A) is continuous for every value of A. 
Let Ax be the value of A for which we wish to prove F(A) 

continuous. Then we must prove that no matter how small 
the positive quantity ô may be chosen we can find a positive 
quantity e such that when 

l ^ - ^ K e \F(Ai)—F(Al)\<d. 

Now consider the quantities | a | and I b I and call the largest 
of the two h. Then the last theorem shows that : 

\F(A2)^F(AX)\ 
\A^A2\ " < / l 

and therefore if we let e = ô / h the inequality we wish to 
establish is satisfied.* 

We proceed now to four lemmas. 
LEMMA 1. It is possible to find a positive quantity M so large 

that when A> M Ab + F (A) > 0. 
For instance we may let 

M== 2 (»+!)'** 

( * - < 0 P ( ^ ) - * ( « ) ] 

For if there were a value of A greater than this value for 
which Ab + F (A) = 0 we should have for this value of A : 

< < a + b 
and therefore when 

2 

(a+b\ 
i. e., when t (a) =t = t I l , 

O+l) 2 * 2 

Ax + F(A) < — 
p(!+-6)-« (.)]. 

* We have here proved that F (A) is uniformly continuous ( since the 
value found for e is independent of A) for all values of A. This would 
not follow from the mere continuity, since the interval in question is 
infinite. 



310 THE THEOREMS OF OSCILLATION. [April , 

Every solution of the equation : 

^-tAx + FWly 

must therefore by Theorem V have at least n + 1 roots in 
the segment t (a) < t < t (6) while by hypothesis one solu­
tion of this equation has only n roots in this segment. 

LEMMA 2. It is possible to find a positive quantity M so large 
thatwhenA< — M Aa+ F(A)>0. 

Letting 

M 2 ( n + 1 ) , M , . 6 , 

the proof is precisely similar to the proof just given. 
Up to this point we have placed no restriction on the con­

stants a, a', /2, P' except that neither a and a' nor p and pf 

shall both be zero. Now, however, in order to avoid all 
complication in the proofs and also because the cases to 
which we thus restrict ourselves are by far the most im­
portant we will assume that either a = 0 or a' = 0 and either 
p = 0 or P' = 0, i. e., we assume aa' = 0 and pp' = 0. I t is 
not hard to show that this restriction is not necessary for 
the truth of Theorem X I I I (and therefore for the truth of 
Klein's theorem of oscillation) but the following two 
Lemmas would have to be slightly changed in form* and 
would be decidedly less easy to prove without this restric­
tion. 

LEMMA 3. If aa' = 0 and pp' = 0 then when A > 0 

Aa + F(A) < 0. 

For otherwise we should have when a < x = b 

Ax + F(A) > 0 

and this is seen to be impossible from the Corollary to The­
orem I V on account of the conditions at a and b. 

LEMMA 4. If aa' = 0 and pp' = 0 then when A < 0 

Ab + F(A) < 0 . 

* The inequalities there given would then be true only when A^> M 
and A < — M respectively when if is a certain positive quantity. They 
are, however, true as stated, even without the restrictions on a, a', /?, /3' 
when n ̂  2, and here the proof given in the text applies. 
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For otherwise we should have when a = x < b 

Ax + F(A)>0 

and this is seen to be impossible as before. 
X I I I . If aa! = 0 and pft' = 0* it is possible to find a positive 

quantity M such that when A> M and also when A < — M : 

a< ^ < b. 

This follows at once from the preceding Lemmas. 
"We have so far supposed the segment ab to lie either in 

the interval from el to e2 or in the interval from e% to + oo. 
Consider now a segment ab where a and b satisfy one of the 
relations : a < b = ex or e2 Ëü a < b = eB. If then we take c so 
that in the first case c = e1 in the second case e2 = c = ez the 
integral t will be pure imaginary throughout the segment 
ab. If we bring in the real variable T by the relation t*=ir 
we get as the binomial form of the equation : 

^=-{Ax+B)y. 

The fact that Ax + B has the negative instead of the posi­
tive sign will make some changes in the proofs of the fore­
going propositions and in particular the statements of the 
four Lemmas will have to be somewhat changed, but it is easy 
to see that Theorems X, XT, XII, XIII remain true if r is sub­
stituted for t in them. 

We are now in a position to prove Klein's Theorem of 
Oscillation (in its simplest form) : 

XIV. Let ax bx and a2 b2 be any two segments of the x-axis 
such that al<,b1~a2<C b2 and such that none of the inequalities 
«! < e{ < bx (i = 1, 2, 3) or a2 < et < b2 (ï = 1, 2, 3) are true, 
and let us assign to each of the points av bv a2l b2 one of the con­
ditions y = 0 or -~ = 0 ; and let nx and n2 be any two integers 

OJC 

positive or zero. Then there exists one and only one pair of values 
A, Bfor which Lame'') s equation has a first solution which satisfies 
the prescribed conditions at ax and bx and has nx roots in the seg­
ment aY <C x < bv and a second solution which satisfies the pre­
scribed conditions at a2 and b2 and has n2 roots in the segment 
a2<x< b2. 

* These restrictions, as above stated, are not essential to the truth, but 
merely to the proof here given of the theorem. 
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Let us call the values of B determined by applying Theo­
rem X to the segments ax bx and a2 b2 respectively Fx(A) and 
F2(A). Our theorem will be established if we can prove 
that there is one and only one value of A for which 

That there cannot be more than one such value is obvious 
at once from Theorem XI . For if Ax and A2 are two such 
values we find by applying Theorem X I in succession to the 
segments ax bx and a2 b2 : 

a ^ ( A ) ~ ^ ( A ) ^ < a ^F2(A2)-F2(AX) 
ax < JT^J l ~ 2 A —A r 

But these inequalities contain a contradiction, since the sec­
ond and fifth terms are equal.* 

In order to show that there does exist one value of A for 
which Fx (A) = F2 (A) let us apply Theorem X I I I in suc­
cession to the segment axbx and a2br We thus see that 
when A has a sufficiently large positive value : 

FX(A) . < F2(A) . 
a x < - - ± ^ < b x ^ a 2 < - ^ ^ < b „ 

and therefore : Fx (A) > F2 (A). On the other hand, when 
A is negative and its numerical value is sufficiently large 
we see in the same way that : Fx (A) < F2 (A). Accord­
ingly Fx (A) — F2{A) is positive when A has a large posi­
tive value and negative when A has a numerically large 
negative value and must, therefore, since by Theorem X I I it 
is continuous for all values of A, be zero for some value of 
A4 

As has already been mentioned the theorem of oscilla­
tion still holds if for the simple conditions at av bv a2, b2 we 
substitute more complicated ones of the form a'y — a dy / dt 
= 0, and in fact the proof of the negative part of the 
theorem applies immediately to this case as does also the 
proof of the positive part when nx = 2 and n2 = 2 ; and even 
in the special cases in which nx or n2 has the value 0 or 1 the 
proof requires no change when once Theorem X I I I has been 

*For a geometrical statement of this proof see Reihenentwickelungen, 
p. 130, second footnote 

f Geometrically this proof means that since the line y = Ax + B will, 
when sufficiently steep, cut the axis of # in the segment a± lx or a2 fe2 ac­
cording as one or the other of these segments is used to determine it, th e 
line determined by ax \ will when A is large and positive liea bove, when 
A is numerically large and negative lie below, the line determined by 
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established for these cases. On the other hand the theorem 
of oscillation for other differential equations which like 
Lame's involve two parameters* may be established by 
reasoning almost identical with that here used, the difference 
again coming in only in the four Lemmas. I hope soon to 
return to these and other similar questions. 

HARVARD UNIVERSITY, CAMBRIDGE, MASS. 

SOME EXAMPLES OF DIFFERENTIAL 

INVARIANTS. 

BY CHARLES L. BOUTON. A.M., 
Parker Fellow of Harvard University. 

(Read before the American Mathematical Society at the Meeting of De 
cember 29, 1897. ) 

I N the following paper certain invariants for projective 
transformations are given. The derivation, according to 
Lie's methods, is given in full for the plane, and the method 
for the corresponding problem in space of three dimensions 
is sketched in, and the results of the solution are given. I t 
is believed that all the invariants given are new. 

For an infinitesimal point transformation of the xy plane 
x and y receive the increments 

ôx = Ç(x,y) ôt, ôy —y (x, y) dt, 

respectively, where dt is an infinitesimal independent of x 
and y. This infinitesimal transformation is represented by 
the symbol 

The increment of any function <p (x, y) is then 

If, then, <p is to be invariant for the transformation Xf, we 
have as a necessary and sufficient condition X<p = 0. Lie 

*For instance Lamé's generalized equation. See Reihenentwickelungen, 
p. 125. 


