$$
F(z)=\sum_{n=0}^{\infty} a^{n} z^{n^{2}}, \quad(|a|<1),
$$

is single-valued, provided $|a|$ is not too large.
The proof is as follows. Evidently

$$
\begin{aligned}
& \quad\left|\frac{f(z)-f\left(z^{\prime}\right)}{z-z^{\prime}}\right|=\left|1+\sum_{n=1}^{\infty} \frac{z^{a^{n}+1}+z^{a^{n}} z^{\prime}+\cdots+z^{\prime a^{n}+1}}{\left(a^{n}+1\right)\left(a^{n}+2\right)}\right| \\
& \geqq 1-\sum_{n=1}^{\infty}|z| \frac{a^{n}+1}{}+|z|^{a^{n}}\left|z^{\prime}\right|+\cdots+\left|z^{\prime}\right| a^{n}+1 \\
& \left(a^{n}+1\right)\left(a^{n}+2\right) \\
& \geqq 1-\sum_{n=1}^{\infty} \frac{1}{a^{n}+1}=1-\frac{1}{a+1}-\left(\frac{1}{a^{2}+1}+\frac{1}{a^{3}+1}+\cdots\right) \\
& >1-\frac{1}{a+1}-\frac{1}{a(a-1)}>0 .
\end{aligned}
$$

Hence

$$
\left|f(z)-f\left(z^{\prime}\right)\right|>0
$$

Harvard University, Cambridge, Mass.

NOTE ON THE PERIODIC DEVELOPMENTS OF THE EQUATION OF THE CENTER AND OF THE
 LOGARITHM OF THE RADIUS VECTOR.
 BY PROFESSOR ALEXANDER S. CHESSIN.

If we put with Professor S. Newcomb*

$$
\begin{gather*}
E=e v_{1}+e^{2} v_{2}+e^{3} v_{3}+\cdots \tag{1}\\
\rho-\log a=e \rho_{1}+e^{2} \rho_{2}+e^{3} \rho_{3}+\cdots
\end{gather*}
$$

where E stands for the equation of the center and $\rho=\log r$, then v_{i} and ρ_{i} will be of the form

$$
\begin{gather*}
i v_{i}=\frac{1}{2} \sum k_{j}^{(i)} \sin j \tag{3}\\
i \rho_{i}=\frac{1}{2} \sum h_{j}^{(i)} \cos j \% \tag{4}\\
(j=i, \quad i-2, \quad i-4, \quad \cdots,-i),
\end{gather*}
$$

[^0]the coefficients $k_{j}{ }^{(i)}$ and $h_{j}{ }^{(i)}$ being rational numerical fractions subject to the conditions
$$
k_{j}^{(i)}=-k_{-j}{ }^{(i)} ; \quad h_{j}^{(i)}=h_{-j}{ }^{(i)} .
$$

We propose to give in this note formulas by which these coefficients can be computed for any value of i and j.

If we put

$$
\begin{gather*}
E=\sum_{i=1}^{i=\infty} H_{i} \sin i_{\zeta} \tag{5}\\
\rho-\log a=\frac{1}{2} A_{0}+\sum_{i=1}^{i=\infty} A_{i} \cos i_{\zeta} \tag{6}
\end{gather*}
$$

then the comparison with formulas (1)-(4) gives

$$
\begin{align*}
& H_{i}=\sum_{m=0}^{m=\infty} \frac{k_{i}^{(i+2 m)}}{i+2 m} e^{i+2 m}, \tag{7}\\
& A_{i}=\sum_{m=0}^{m=\infty} \frac{h_{i}^{(i+2 m)}}{i+2 m} e^{i+2 m} . \tag{8}
\end{align*}
$$

On the other hand it can be shown* that

$$
\begin{equation*}
H_{i}=\frac{2 \sqrt{1-e^{2}}}{i} \sum_{j} \sum_{q} \frac{i^{q}}{q!}\left(\frac{e}{2}\right)^{j+q} N_{-i, j, q} \tag{9}
\end{equation*}
$$

where j and q assume all integral positive values (zero included) such that

$$
j+q=i, \quad i+2, \quad i+4, \cdots
$$

If we develop $\sqrt{1-e^{2}}$ and put

$$
\begin{equation*}
H_{i}^{(2 m)}=\sum_{j} \sum_{q} \frac{i^{q}}{q!} N_{-i, j, q} \quad(-i+j+q=2 m) \tag{10}
\end{equation*}
$$

then formula (9) becomes

$$
\begin{gather*}
H_{i}=\frac{2}{i}\left(\frac{e}{2}\right)^{i_{m=\infty}} \sum_{m=0}^{\infty}\left(\frac{e}{2}\right)^{2 m}\left[H_{i}^{(2 m)}-2 H_{i}^{(2 m-2)}-\cdots\right. \tag{11}\\
\left.-\frac{1.3 \cdots(2 m-3)}{m!} 2^{m} H_{i}^{0}\right]
\end{gather*}
$$

Comparing this formula with (7) we conclude that

[^1]\[

$$
\begin{align*}
& k_{i}^{(i+2 m)}=\left(\frac{i+2 m}{i}\right) \cdot \frac{1}{2^{i+2 m-1}}\left[H_{i}^{(2 m)}-2 H_{i}^{(2 m-2)}\right. \tag{12}\\
& \left.-\frac{1}{2!} 2^{2} H_{i}^{(2 m-4)}-\cdots-\frac{1.3 \cdots(2 m-3)}{m!} 2^{m} H_{i}^{0}\right]
\end{align*}
$$
\]

By this formula the computation of the coefficients $k_{j}^{(i)}$ is reduced to the computation of Cauchy's numbers for which the author has given a general formula.*

In order to obtain a similar expression for the coefficients $h_{j}^{(i)}$ we must first derive a development in powers of the eccentricity for the coefficients A_{i}. To this end we remark that

$$
\frac{d \rho}{d e}=\frac{d \log r}{d e}=\frac{d r}{r d e}=\frac{1}{e}\left(\frac{a}{r}\right)-\frac{1-e^{2}}{e}\left(\frac{a}{r}\right)^{2} .
$$

On the other hand we have \dagger

$$
\begin{gathered}
\frac{a}{r}=1+2 \sum_{i=1}^{i=\infty} J_{i}(i e) \cos i_{\zeta} \\
\left(\frac{a}{r}\right)^{2}=\frac{1}{\sqrt{1-e^{2}}}+\sum_{i=1}^{i=\infty} G_{i}^{(2)} \cos i_{\zeta}
\end{gathered}
$$

where $J_{i}(i e)$ is a Bessel's function and

$$
\begin{equation*}
G_{i}^{(2)}=2 \sum_{j} \sum_{q} \frac{i^{q}}{q!}\left(\frac{e}{2}\right)^{j+q} N_{i, j, q} \quad(j+q=i, i+2, i+4, \cdots) \tag{13}
\end{equation*}
$$

Hence we may write that

$$
\frac{d \rho}{d e}=\frac{1-\sqrt{1-e^{2}}}{e}+\frac{1}{e} \sum_{i=1}^{i=\infty}\left[2 J_{i}(i e)-\left(1-e^{2}\right) G_{i}^{(2)}\right] \cos i \zeta
$$

Now, it follows from (6) and (8) that

$$
e \frac{d \rho}{d e}=\frac{1}{2} e \frac{d A_{0}}{d e}+\sum_{i=1}^{i=\infty} \sum_{m=0}^{m=\infty} e^{i+2 m} h_{i}^{(i+2 m)} \cos i \zeta
$$

which, compared with the preceding formula, shows that

$$
2 J_{i}(i e)-\left(1-e^{2}\right) G_{i}^{(2)}=\sum_{m=0}^{m=\infty} e^{i+2 m} h_{i}^{(i+2 m)}
$$

and we only need to find the coefficient of $e^{i+2 m}$ in the left hand side to obtain the required expression for $h_{i}^{(i+2 m)}$.

* Annals of Mathematics, vol. 10, p. 1.
\dagger Tisserand, Mécanique Céleste, vol. 1, pp. 224 and 242.

From (9) and (13) follows that

$$
\begin{aligned}
& \left(1-e^{2}\right) G_{i}^{(2)}=i \sqrt{i-e^{2}} H_{i} \\
= & 2\left(\frac{e}{2}\right)^{i}\left(1-e^{2}\right) \sum_{m=0}^{m=\infty} H_{i}^{(2 m)}\left(\frac{e}{2}\right)^{2 m} \\
= & 2\left(\frac{e}{2}\right)^{i} \sum_{m=0}^{m=\infty}\left[H_{i}^{(2 m)}-4 H_{i}^{(2 m-2)}\right]\left(\frac{e}{2}\right)^{2 m}
\end{aligned}
$$

so that the coefficient of $e^{i+2 m}$ in $\left(1-e^{2}\right) G_{i}^{(2)}$ is found to be

$$
\frac{1}{2^{i+2 m-1}}\left[H_{i}^{(2 m)}-4 H_{i}^{(2 m-2)}\right]
$$

while the coefficient of the same power of e in $2 J_{i}(i e)$ is

$$
(-1)^{m} \frac{1}{2^{i+2 m-1}} \cdot \frac{i^{i+2 m}}{m!(i+m)!}
$$

Hence, we conclude that

$$
\begin{equation*}
h_{i}^{(i+2 m)}=\frac{1}{2^{i+2 m-1}}\left[4 H_{i}^{(2 m-i)}-H_{i}^{(2 m)}+\frac{(-1)^{m} i^{i+2 m}}{m!(i+m)!}\right] \tag{14}
\end{equation*}
$$

which is the desired expression for the coefficients $h_{j}{ }^{(2)}$.
To conclude we will express the coefficients $h_{j}{ }^{(i)}$ by means of the $k_{j}{ }^{(i)}$. To this end we multiply formula (7) by $\sqrt{1-e^{2}}$ and develop the right hand side in powers of e. Thus we obtain

$$
\begin{aligned}
\sqrt{1-e^{2}} H_{i} & =\sum_{m=0}^{m=\infty} e^{i+2 m}\left[\frac{k_{i}^{(i+2 m)}}{i+2 m}-\left(\frac{1}{2}\right) \frac{k_{i}^{(i+2 m-2)}}{i+2 m-2}-\cdots\right. \\
& \left.-\frac{1.3 \cdots(2 m-3)}{m!}\left(\frac{1}{2}\right)^{m} \frac{k_{i}^{i}}{i}\right]
\end{aligned}
$$

d, therefore,

$$
\begin{aligned}
& {h_{i}^{(i+2 m)}}^{=} \frac{2(-1)^{m}\left(\frac{i}{2}\right)^{i+2 m}}{m!(i+m)!}-\frac{i k_{i}^{(i+2 m)}}{i+2 m}+\frac{1}{2} \frac{i k_{i}^{(i+2 m-2)}}{i+2 m-2} \\
& +\frac{1}{2!}\left(\frac{1}{2}\right)^{2} \frac{i k_{i}^{(i+2 m-4)}}{i+2 m-4} \cdots+\frac{1.3 \cdots(2 m-3)}{m!}\left(\frac{1}{2}\right)^{m} \frac{i k_{i}^{i}}{i}
\end{aligned}
$$

which formula enables us to compute the values of the $h_{j}^{(i)}$ directly from the $k_{j}{ }^{(i)}$.

New York,
July 4, 1898.

[^0]: * " Development of the perturbative function," Astronomical Papers prepared for the use of the American Ephemeris and Nautical Almanac, vol. 5, part I., p. 12.

[^1]: * Tisserand: Mécanique Céleste, vol. 1, p. 243.

