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ON SINGULAR POINTS OF LINEAR D I F F E R E N 
TIAL EQUATIONS W I T H REAL 

COEFFICIENTS.* 

BY PROFESSOR MAXIME BÔCHER. 

(Read before the American Mathematical Society at the Meeting of Oc
tober 29, 1898. ) 

L E T US consider the equation 

dny , dn~ly . dn~2y , 

in which the coefficients pv p2, ••• ,pn are throughout a certain 
interval a < x < b continuous real (but not necessarily ana
lytic) functions of the real variable x. By a solution of 
(1) we shall understand any function of x which together 
with its first n — 1 derivatives is single valued and contin
uous throughout the interval a < x < b and at every point 
of this interval satisfies (1). I t is well known that there 
is one and only one solution of (1) which at an arbitrarily 
chosen point of the interval in question has together with 
its first n — 1 derivatives arbitrarily chosen values. The 
object of the present paper is to consider the behavior of 
these solutions as we approach one end of the interval. I t 
will clearly be sufficient if we confine our attention to the 
point a. 

The simplest case would be that in which all the coeffi
cients pv p2, -" , pn approach finite limits as x approaches a. 
Then would come the case in which, although this is not 
true, none of these coefficients become infinite as x ap
proaches a. Without considering separately these possibil
ities we will go on at once to a more general case which 
includes them as special cases. 

"We will say of a function f(x) that it is integrable up to 

the point a if I f(x)dx (where a < c < b) converges ; i. e., if 

*The only investigations with which I am acquainted concerning the 
singular points of linear differential equations whose coefficients are not 
assumed to be analytic, are contained in two papers by Kneser, Crelle, 
vols. 116, 117. These papers deal with a certain class of irregular points, 
to use the terminology suggested in the present paper. The singular 
point in question is taken at infinity. 
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I f(x)dx approaches a finite limit as s approaches zero. We 

can now state the following theorem : 
I. If the absolute values \p.\ (i = 1, 2, •••, n) of all the coeffi

cients of ( 1 ) are integrable up to the point a, there exists one and 
only one solution of (1) such that it and its first n — 1 deriva
tives approach arbitrarily chosen finite limits a, a'', a"', •••, « (n-1) as 
x approaches a. This solution may be written in the form 

a + a'(x — a) + - j ( > - - a ) 2 + 

7 ( n - l ) 

+ (n —1)1 
(x — a)""1 + O — a)n-VO) 

where <p(x) is single valued and continuous when a~x <^b and 
?(a) = 0. 

As this proposition is merely a special case of theorem 
I I I we omit its proof here. 

If we assign to the n quantities a{i)(i = 0, 1, —, n — 1) in 
succession the values a^\ a2

(i), •••, an
{i) we determine by theo

rem I in succession n solutions of (1) which we will call 
Vv V2i '"> Vn- Now it is readily seen (just as in the case in 
which a is a non-singular point *) that the necessary and 
sufficient condition that yv y2, •••, yn are linearly indepen
dent is that the determinant 

, (w-l) 

is different from zero. I t is, therefore, possible to give to 
the n2 quantities a such values that yv y2, •••, yn are linearly 
independent of each other, so that any solution of (1) can 
be expressed in the form 

y=Cj,1+C4,t + - + Cj/%. 

From this we infer at once the following theorem : 
I I . If all the functions \p.\ (i = 1, 2, •••, n) are integrable up 

to a, every solution of (1) approaches, as does also each of its first 
n — 1 derivativesj a finite limit as x approaches a. 

I t will be seen that the class of singular points we have 
just considered has all the characteristics of non-singular 

*Cf. for instance Schlesinger's Handbuch, vol. 1, part 1, chap. 2. 
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points. We pass now to another class of singular points 
and we will begin with the following theorem: 

I I I . If the functions 

I Pi \> | A U '"> I Pk \> O — °0 I P*+l\, 0 - °02 I Pk + 2 I, 

«re integrable up to the point a, ./.ere ea.is.s- (me emc. on.?/ one 
solution of (1) which, together with its first n — & — 1 derivatives, 
approaches the limit zero as x approaches a, while the h succeeding 
derivatives approach arbitrarily assigned finite limits 

This solution may be written in the form 

_ _ _ _ _ <* - ^ + •+ TW=T)1 <• " a ) n - 1 

+ (x — a)n~l <p (x) 

where <p(x) is single valued and continuous when a = x<ib and 
<p (a) = 0. 

This reduces to theorem I when k = n. 
In proving this theorem it will clearly be sufficient if we 

confine our attention to any portion ac, however small, of 
the interval ab. In order to facilitate the proof we will then 
take c so near to a that 

1. c — a < l ; and 
2. il_T< 1, where I f is the greatest value which the func

tion 
F(x) = f "[I ft I + - + IAI + O - a) \pk + l\ 

+ ... + (a?-a)"-*l i>J]d& 

takes on when a ̂  x = c. That this is possible is clear from 
the fact that F(x) is continuous and that F(a) = 0. 

In order to prove our theorem let us use the method of 
successive approximations. We start with the function 

a' (n-ft) 
0 (n — &)'. (n — 1)1 

and compute the functions F1? Y2, ••• by means of the 
formulae 

ea.is.s-
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rm<"-" =-£ [fcF.ii-ï" + P,Y£r1*> + - +PnYm_1-]dx, 

(2) rj«-2> = f r .< -« dr, rM<-3> = P r j - 2 ' &, 

, r.-frjdx. 
We must first of all prove that these integrals converge. In 
order to do this let us introduce a quantity C so chosen that 
when a^x = c 

\Y0\<C(x- a)n~\ I F0' l < C(x - a)—*"1 , , 
ir0<—*>i< c, i r0

(—*+«i< o, , i r0
( w- ] ) i< a 

We will now prove the convergence of the integrals (2) and 
at the same time show that they satisfy the following in
equalities 

I Ym\<(x — a)n~kCMm
9 | Ym'\<(x—a)»-k-lCMm, 

(3) - , l YJn-k-^\<(x-a)CMm, \YJn-k>\<CMm, 

- , I YJn~1)\< CMm. 

These inequalities hold when m = 0 and the integrals (2) 
converge when m = 1. Now let m1 be a positive integer and 
assume that the integrals (2) converge when m = mx and 
that the inequalities (3) hold when m = m1— 1. From this 
assamption it follows at once, when we remember that at 
every point of ae we have x — a < 1, that the inequalities 
(3) hold when m = mi and that therefore the integrals (2) 
converge when m = ml + 1. Thus the convergence of (2) 
and the truth of (3) are established by the method of math
ematical induction. 

We can now prove at once by means of the inequalities 
(3) that the series 
(4) ¥,+ ¥,+ ¥, + ••• 

converges throughout the interval ae and represents the de
sired solution of (1). As the proof to be used does not differ 
from that always used in such cases it seems unnecessary to 
give it here. 

In order to prove that the series (4) really gives a func
tion of the form mentioned in the closing lines of theorem 
I I I , * it will clearly be sufficient to prove that each of the 

* This also follows at once from the formula for the remainder in Tay
lor's theorem. 
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functions Y. (* = 1, 2, ••• ) is of the form (a?—- a)w""V4(») 
where ?>,(#) *s continuous throughout the interval a = x^==c 
and <p^a) = 0. This follows at once when we remember 
that Y£n~l) is continuous throughout the interval ac and 
vanishes when x— a and that Y. is obtained from Y£n~l) by 
means of n — 1 integrations from a to #.* 

In order then to establish theorem I I I completely, it re
mains merely to show that (1) cannot have two different 
solutions satisfying the conditions there stated. This, as 
in other similar cases, will be accomplished if we can prove 
that a solution of (1) which together with its first n -— 1 de
rivatives approaches the limit zero as x approaches a must 
be identically zero. This can be proved by the method of 
Lindelof (LiouvilWs Journal, 1894, p. 118). For let y be 
such a solution, and consider the functions 

y(n~J\ y(n~2), - , y(n~k\ (* - a ) - y - * - » , 
(5) 

O — a)-Yn-*-2), - O - a)*~ Y 
I t is readily seen that all these functions approach zero as 

x approaches a. We will denote by m the greatest value 
which the absolute value of any of these functions takes on 
in the interval ac. If we can prove that m = 0, it will 
evidently follow that y is identically zero, as was to be 
proved. Now we have 

y{n~l) = - jTfoy 0 1 ^ +p2y
(n~2)+ - +pj]dx9 

and therefore denoting by F(x) the same function as is thus 
denoted on p. 277, and by M, its greatest value in ae 

I y*»-1* I ^ mF(x) ^ mM, I y^~2) I ^ mM (x — a) ^ mM, 

- , | y(n-k) I ^ mJf, | y^-k-v | ^ mJlf (« — a), 

\y(m~k-2)\^mM(x — a)2, - , \y\^mM (x — a)n~k. 

From this it follows that the absolute val ues of none of the 
functions (5) can exceed the value mM in the interval 
a Ë=É x = c, while by hypothesis one of them, at least, has the 
value m at a point of this interval. Now, since we know 

* We have here merely to use the easily established formula 

J™ [ o^I^-^-'^H==o 

where & is a positive integer while V(#) is continuous throughout ac and 
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that I f < 1, it is seen at once that we have a contradiction, 
unless m = 0. 

"We will now confine our attention to differential equa
tions of the second order 

and we will assume that 

r x~a x 1V ' * (x — ay *1V ' 

where //. and v are real constants and px and ^ are continuous 
throughout the interval a < x < 6 and I jox I and (a; — a) \ qx \ 
are integrable up to a. When these conditions are satisfied 
we will speak of a as a regular point of (1) from analogy 
with the case in which p and q are single valued analytic 
functions of the complex variable x. We may note that 
the case here considered includes as a special case (viz. 
[x = v = 0) the case considered in theorem I I I in so far 
as that theorem refers to equations of the second order. 
Let us now form the equation 

P 0> — 1) + tip + v = 0 

which (from analogy as before) we will call the indidal 
equation of the point a. The roots of this equation we will 
denote by *' and *" and we will call them the exponents of 
the point a. The following theorems may now be estab
lished by computation so simple that it is unnecessary to 
give it here : 

IV. If a is a regular point of the equation (6) with exponents 
yd and x", and if we introduce a new dependent variable by means 
of the relation y = (x — <&Y y, then y will satisfy a homogeneous 
linear differential equation of the second order for which a is a 
regular point with exponents x' — c and /!r — c. 

V. If a is a regular point of the equation (6) with exponents 
/! and x", and if we introduce the new independent variable x 
by means of the relation % — a = x where c is a real positive con
stant, the new linear differential equation of the second order thus 
obtained will have the point x = 0 as a regular point with expo
nents ex' and ex". 

We shall now leave out of consideration the case in which 
the exponents of a regular point a of (6) are conjugate 
imaginaries and also the case in which they are real and 
equal. There remains then merely the case in which the 
exponents x' and x" are real and unequal. Let x' be the 
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larger of these two exponents so that * = x' — x" is positive. 
Let us then introduce into (6) the new dependent variable 
y by means of the relation y = (x — a)K"y. The equation 
(6) thus obtained has by theorem IV the point x = a as a 
regular point with exponents 0 and *. Let us now intro
duce into (6) the new dependent variable x by means of the 
relation x — a = xllK. The equation (6) thus obtained has 
the point x = 0 as a regular point with the exponents 0 and 
1. I t must therefore have the form 

= d2y — dy 

<6) _ __ -&+*-Jt+*»-0 

where p and x q are integrable up to the point 0. 
Now we know from theorem I I I that (6) has a solution 

of the form 
Vi =sx Ei 0*0 

where E1(x) approaches a finite limit different from zero as 
x approaches zero. By using the formula 

ƒ
— fpdx 

Vi 
we readily see that every solution of (6) which is linearly 
independent of yx approaches a finite limit different from 
zero as x approaches zero.* Let y2 = E2(x) be such a so
lution. Going back now to equation (6) we get at once the 
following theorem : 

"VI. If a is a regular point of (6) with real unequal exponents 
x' and x", then (6) has two linearly independent solutions of the 
form 

Vl=(x- ay'E^x), y2 = (a? - a)-" E2{x) 

where the functions Ex and E2 are continuous throughout the inter-
val a — x «< b and where Ex(a) and E2(a) are different from zero. 

This theorem fully justifies us in applying the term expo
nent to the quantities *' and xn. 

In conclusion I will mention that this paper may be re
garded as an amplification and generalization of some of the 
results contained in my third paper on " The Theorems of 
Oscillation of Sturm and Kle in / ' cf. in particular pp. 25-32 
of the present volume of the BULLETIN. 

HARVARD UNIVERSITY, CAMBRIDGE, MASS. 

For further details cf. p. 32 of the present volume of the BULLETIN. 


