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= W — (4 + J5.+ C). 

The theorem is thus proved for a right triangle, and is 
readily extended to an oblique triangle by dividing it into 
two right triangles by a perpendicular from any vertex. 

In the foregoing pages no attempt is made to give an ex
haustive statement of Lobachevsky's methods and results 
on the plane nor to indicate his extension of his methods to 
space. FREDERICK S. WOODS. 

MASSACHUSETTS INSTITUTE 
OF TECHNOLOGY, May, 1900. 

BURKHABDT'S ELLIPTIC FUNCTIONS. 

Functionentheoretische Vorlesungen. Von HEINRICH BTJRK-
HARDT. Zweiter Theil : Elliptische Functional. Leipzig, 
Veit and Company, 1899. 8vo., x + 373 pp. 
T H E theory of elliptic functions has developed so rapidly 

and in so many different directions in recent years that an 
elementary treatise of moderate compass which would afford 
a rapid survey of its many and heterogeneous parts has been 
a long felt want. The admirable little treatise by Appell and 
Lacour is perfect in its way, but it addresses itself only to 
students who do not care to go very far into the theory of 
functions. I t makes no pretentions to satisfy the needs of 
another large class of students, namely those who regard 
the theory of elliptic functions as merely one division of a 
greater theory and who thus study the elliptic functions not 
only on account of the interesting properties they offer per 
se, but also as a means of becoming more familiar with the 
principles and methods of the theory of functions, or as a 
stepping stone to the more abstruse theories of the abelian 
transcendents and automorphic functions. 

The present volume meets the wants of this latter class 
most successfully. We are so impressed with its many 
merits that we do not hesitate to predict for it a rapid and 
widespread popularity. 
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The characteristic feature of the book is the predomi
nance it gives to the ideas of Riemann. I t is indeed re
markable, as Professor Burkhardt observes, that up to the 
present time no work on the elliptic functions has treated 
the theory from Riemann's standpoint. In several works 
on this subject we find reference to some of Riemann's 
ideas ; but with the exception of Thomae's Abriss they are 
cursory and inadequate. We feel sure that this novel and 
valuable feature will be widely appreciated. 

Another feature of the work is its comprehensiveness, ac
companied by very moderate proportions. There is some
thing so encouraging to the student in a text book of mod
erate size. The main divisions of the theory have received 
attention in accordance with their relative importance. By 
seeking everywhere the simplest form of treatment, Profes
sor Burkhardt has succeeded in compressing a great deal into 
a very small compass. The student who reads this book 
with care will gain a very good idea of the modern theory 
of elliptic functions, in spite of the gigantic size this theory 
has assumed. 

We indicate rapidly the contents. At the very outset an 
embarrassing question presents itself to the author of an 
elementary treatise on this subject : how are the elliptic 
functions to be introduced ? Historically they arose in in
verting the integral 

Cx dx 
u= I — - , 

ƒ being a polynomial of fourth degree. 
The attempt to obtain analytic expressions of x considered 

as function of u led Abel and Jacobi to the theta functions, 
and these were used by the latter in his later university 
lectures as the fittest elements upon which to build up the 
theory. Already, then, in the infancy of this theory two lines 
of approach offered themselves, the one starting with an 
implicit, the other with an explicit definition. I t was found 
that each had its advantages and disadvantages, and thus no 
traditional way of developing the theory has ever gained 
ground, In the last generation the two classic works were 
without doubt those by Briot and Bouquet and by Königs-
berger. The former starts with the thetas, the latter with 
the integral. Today we find the same lack of uniformity. 
Halphen's great treatise introduces the elliptic function by 
means of the integral definition ; Weber and Krause, on 
the other hand, employ the thetas; finally the classic 
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treatise of Tannery and Molk begin with Weierstrass's 
equivalent for the thetas, viz., the sigmas. 

The advantages of starting with the integral definition 
seems to be chiefly these. First, it permits us to use Bie-
mann's theories for which the elliptic integrals are merely a 
special, though extremely interesting, case. Secondly, in 
the physical applications it is as integrals that these trans
cendents appear. The objections are two-fold. For the 
student of pure mathematics who does not care to go beyond 
the elliptic functions, as well as for the student of physics, 
Riemann's theories form an unnecessary baggage. The sec
ond objection lies in the difficulty of establishing the one-
valuedness of the inverse function at any early part of the 
course. 

The advantage of beginning the elliptic functions with 
the thetas or sigmas is again two-fold. First, it defines 
them as explicit analytic expressions, which the student can 
see and from which he can deduce readily their principal 
elementary properties. Secondly, the existence theorem 
just mentioned falls away of itself. The disadvantage of 
this procedure is the unsatisfactory position it assigns the 
integrals. 

Professor Burkhardt has followed a middle course. In 
chapter I. he has used the integral definition in connection 
with Riemann's surface. A simple proof of the uniformity 
of x(u) for the case of real branch points is given by em
ploying conformai representation. The general case is re
served for a later chapter. 

In chapter I I . an entirely new start is taken and we see 
no more of the elliptic functions as inverse of an integral 
until four chapters later, barring one or two fleeting refer
ences. The four chapters I I . , I I I . , IV., V., occupying a 
little less than one hundred pages, give an account of double 
periodic functions in general, the ^-function in particular, 
the functions <r, #, C, and the functions of Hermite. The 
treatment follows the path opened up by Liouville and de
veloped later by Hermite and Weber. There is not much 
chance here for an author to develop anything very novel 
when such masters have passed over the same route, but an 
attentive examination shows many minor merits. 

The reviewer regrets that the historic functions of Jacobi, 
sn, en, dn, are given an altogether inferior position. We 
touch here one of the serious difficulties which students 
encounter as soon as they begin to consult the literature of 
elliptic functions. They find to their dismay that there are 
two theories, running side by side, which, while but two 
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aspects of the same thing, are yet so different as to make 
it impossible to pass from one to the other without con
siderable study. Now if students, when they first take 
up the elliptic functions, are taught almost altogether one 
theory, they are sure to experience a serious hindrance in 
their work later, since some mathematicians employ habitu
ally the one, and some the other theory. I t seems to us 
exclusive to maintain that either theory is the better ; as 
well maintain that one system of coordinates always lends 
itself most simply to all problems. The ideal way is to 
have both theories equally in one's control. To this end it 
seems advisable, in an introductory course, to teach both 
simultaneously, pointing out as one goes along their inter
relations. In this way the student does not acquire such a 
superior dexterity in one theory as to make it distasteful to 
him to employ the other. Such a course has not been fol
lowed here. 

In chapter VI. , which takes up the problem of inversion 
left unfinished in chapter I., we enter again the circle of 
ideas proper to Biemann. From now on they are our con
stant companions. This chapter treats, besides the prob
lem of inversion, which is here brought to a close, various 
properties of integrals of the first, second, and third species ; 
e. </., Abel's theorem, the theory of Biemann-Roch, Legen-
dre's relation, the interchange of argument and parameter 
in integrals of the third species, etc. 

Chapters VII . to X. treat the following topics ; reduc
tion of elliptic integrals of the first species to canonical 
forms, the linear transformation, degeneration of the ellip
tic functions, and reality. In treating the linear transforma
tion, an eighth root of unit}^ enters as function of the co
efficients of transformation. This was first determined by 
Hermite by making use of the sums of Gauss. Enneper 
and Thomae have shown how this root may be determined 
very simply apart from a plus or minus sign. Professor 
Burkhardt has been content to leave the problem at this 
point. For the more advanced parts of the theory this 
sign is simply indispensable. We take this occasion to re
mark that it may be determined à priori* by using no 
more of the theory of numbers than the simple law of 
reciprocity of quadratic residues. 

True to his purpose to give Biemann's theory full sweep, 
Professor Burkhardt has not failed to show the relation be-

* Weber gives an à posteriori demonstration ; but such verifications are 
always unsatisfactory. 
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tween linear transformation of the periods and alterations 
in the system of cuts which make Biemann's surface simply 
connected. Unless we are very much mistaken, this subject 
is treated here for the first time in any treatise on the ellip
tic functions. The effect of varying the branch points 
along certain curves, closed or not, so that the surface re
turns to its original shape, is also studied and the notion of 
the monodromy of the branch points introduced. 

In chapter XI . we reach another grand division of the 
modern theory of elliptic functions, viz, the elliptic modu
lar functions. The 51 pages which make up the chapter 
form one of the most interesting and instructive parts of 
the book. In the older theory the elliptic functions were 
studied almost uniquely as functions of a single variable, 
namely the argument u. But besides the argument, they 
involve certain parameters, the modulus x, the periods (o19 
w2, and the invariants g2, gr With these, many important 
quantities are formed which do not contain u at all. As 
soon as the theory of functions became somewhat developed 
it must have occurred to many to investigate these quanti
ties from a function-theoretical standpoint. 

For example, what is the relation between x, which defines 
iK' 

sn(u, x) from the integral standpoint, and r = -=^, which 

we use to build the corresponding thetas. This question 
forces itself on one almost imperatively even in an elemen
tary treatment. 

The function x of r was found to possess the most remark
able properties. The most striking at first sight was that 
it had a natural boundary. Weierstrass' s theory of functions, 
by starting with the notion of analytical continuation, had 
made the existence of such functions possible ; and indeed 
isolated examples were discovered quite early. Thus it was 
known that the function 

1 + 2q + 2q' + 2q9 + - , 

which occurs already in the Fundamenta Nova,* possessed 
the unit circle as natural boundary. But here was a whole 
class which had this peculiarity. Another characteristic 
property is this ; it is a one valued function remaining in
variant for a subgroup of the general modular group 

T ( a + br \ 

* Jacobi's Works, Vol. I., p. 235, \ 65 (6). 
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a, 6, c, d being integers and ad — be = 1. The group in 
question, call it L2, is, as Hermite first showed in his cele
brated memoir ' ' Sur la théorie des équations modulaires ' ' 
(1859), defined by the congruences 

a = 0, 6 = 1, c s s l , d==0 (mod. 2). 

Such groups are called congruence groups ; their order is 
given by the modulus, which is here 2. The conformai 
representation of z b y r brings us to the important notion 
of fundamental domain. The points 0 and 1 divide the 
real x axis into three segments 4- oo, 1 ; 1, 0 ; 0, — oo. In 
the T plane these are represented respectively by the upper 
half of the circumference of a unit circle and the right lines 
yi, 1 + iy, (y > 0), which may be considered as the three 
sides of a circular triangle T whose vertices lie at + 1, 
0, oo. If x move now so as to cover every point once and 
only once in the upper half of the x plane, r passes over 
every point of this triangle once and only once. 

Suppose now that % passes into the negative half of its 
plane ; it must cross over one of the three segments just 
mentioned. Then r passes out of T crossing that side of 
the triangle which corresponds to the segment x crossed. 
Let x now cover all points of the negative Jialf plane with
out going back into the positive half plane ; we find that 
T sweeps over a region which is got from T by reflection 
with respect to that side of T which r crossed.' This can 
therefore be nothing but a circular triangle, say Tv If x 
crosses back to the positive half plane and then covers again 
all its points, the same reasoning shows that r passes out 
of Tj and generates a new triangle T2 also got from Tx by 
reflection. As this process can go on indefinitely, we gradu
ally cover the upper half of the r plane by circular triangles 
as in the adjoined figure. 

/ T = PLANE T - PLANE 
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Any two successive triangles, as T, Tv form a region within 
which * (r) takes on every value once and once only. For 
this reason it is called a fundamental region. The triangles 
T, Tv - w e observe are of two kinds, those like the one we 
first considered spreading out from left to right and having 
all the same size, and secondly those which approach nearer 
and nearer the real axis, constantly diminishing in size. 
This shows at once that the real r axis is a natural boundary. 
Suppose x describes a circuit about * = 0 in the positive di
rection ; we find is r subjected to the transformation S = 
(r, T -f 2). If r describe a circuit about * = 1, r undergoes the 

transformation 2 = J T, J . As every circuit * can 

make is made up of these two, we see that the group L2 
mentioned above is identical with the group generated by 
the repeated combinations of S*1, 2±1 . 

Now the elliptic function presents an unlimited number 
of such functions and we are thus led to ask what are their 
properties and mutual relations. The attempt to answer this 
question has given birth to the theory of elliptic modular 
functions which today has become an independent branch 
of mathematical science. The present chapter will prove a 
very valuable introduction to the classic treatise by Klein 
and Fricke on this subject. 

Closely related with the theory of modular functions are 
the problems of transformation and division ; these occupy 
chapter XI I . The linear transformation was discussed in 
an earlier chapter. Here a rapid orientation of the general 
transformation problem is given. The theory of this prob
lem might alone easily fill a book. Historically it arose in 
trying to find commodious methods of computing the ellip
tic integrals of the 1° species 

J <*x (to /»* dcp 
o v / i T T ^ T i - x V " Jo s/\ - x* sin2 <p ( ) 

where x = sin ç>, and 0 < % < 1. The transformation of 
Landen and Gauss showed that it was possible to transform 
(1) into an integral of the same form, aside from a factor, 
viz., 

Jo V\ — y2 • 1 — X2y2 Jo V\ — X2 sm 2 <p 

on making a simple change of the variable x. By repeat
ing these transformations the moduli A, Xv X2 ••• may be 
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made to approach 0 or 1 as a limit. That is, the approxi
mate value of u is made to depend on a degenerate elliptic 
integral, viz., either 

f * " d * - * . or K ^ l o g t a n / J + l ' V Jo T Jo cos (p ö \ 4 2 / 

When x is near J it is necessary to repeat the algorithm sev
eral times before a fair degree of approximation can be ob
tained. In attempting to get transformations of greater 
rapidity Jacobi was led to his celebrated theory of transfor
mation which he later made the basis of his Fundamenta 
Nova. He proposed and solved the problem : Determine 
the coefficients a, 6, the new modulus A, and the multiplier i f 
so that 

= ao + aiX + a ^ + ' " + a ^ m 

y bo + h^x + b2x
2 + . . . + bnx

n 

converts (1) into (2). 
From the standpoint of today the problem presents itself 

more naturally thus: Given two elliptic functions 

f(u, a>v Û>2), g(u9 wv w3), 

constructed respectively on the networks 

JV'(wv 5 a ) , N(üv w2); 

what is their relation to one another ? The most general re
lation we can assume between JV and JV is that they have 
a network M in common. Jacobi's problem is a special 
case of this, namely the case when one of the networks 
JV, JV becomes identical with M. In this case we have 

a,x=aZx+bp, iad-bc=n), 
w2 = cw1 + da>2,

 v y 7 

and the transformation is said to be order n. For such 
a transformation the Jacobian formula (3) gives g as 
rational function of degree n in ƒ. The case where JV = JV" 
gives the linear transformation n = 1. 

To treat the transformation in full requires us to pass to 
the thetas or their equivalents the sigmas. The most exten
sive and modern treatments are found in the works of Weber, 
Krause, and Tannery and Molk. In the elements, only the 
linear and quadratic transformations are useful and these 
are given with sufficient detail. The short sketch of the 
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general theory which Professor Burkhardt gives will help the 
student to place these special transformations in their proper 
relation to the general theory. 

The problem of division is this : The addition theorem 
shows that, for integral n, <p(nu) is rational in <p(u) and 
<Pr(u). This relation may however be regarded from another 

standpoint, viz., as defining ^ i - I as an algebraic function 

of <p(u), <p'(u). The problem is : what is the nature of this 

algebraic function ; in particular express explicitly <p I - I 

in <p(u), <pf(u). To solve completely either the problem of 
division or transformation we are led to certain algebraic 
equations called equations of transformation between modu
lar functions which are of extraordinary interest. Profes
sor Burkhardt has given an excellent account of these from 
a function-theoretical standpoint. They are also of equal 
interest from an algebraic and arithmetical point of view. 
For example, in algebra they define new algebraic irration
alities in terms of which the roots of a large class of alge
braic equations can be expressed. Thus the equation be
tween the old and new modulus *, * corresponding to a 
transformation of order 5was used by Her mite (1858) to 
solve the general equation of fifth degree. 

From the point of view of the higher arithmetic, they are 
chiefly interesting when complex multiplication takes place. 
This brings us to another great division of the modern 
theory of elliptic functions. What is complex multiplica
tion ? The answer lies in the following considerations : 
Up to the present point the periods of our elliptic functions 
have been left entirely free, with the sole restriction that 

*(f)>°- ( 4> 
But an immense field is opened up when we require r to 

satisfy a quadratic equation of a certain kind. Suppose, in 
fact, we ask with Abel : Is it possible to determine p. other 
than an integer, so that <p(p.u) is rational in <p(u) and <p'(u) 
as in ordinary multiplication ? The key to this question lies 
in the elementary theorem : In order that an elliptic func
tion <p(u) may be rational in <p(u, wv w2) and its derivative, it 
is necessary and sufficient that <f> admits <*>v w2 as periods. 
Applying this condition to <p = <p(/m) we have at once 
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p.co2 = ccu1 + dw2) ^ J 

which gives a condition for T, viz., 

br2 + r(a - d) - c = 0. (6) 

If r is an independent variable, (6) requires that 6 = c = 0, 
a = d, which put in (5) makes ti an integer. If, however, 
we suppose r is not variable, but on the contrary satisfies 
an equation of the type (6), equations (5) show that fx 
satisfies the equation 

/j? — fj.(a + d) + n = 0, 

setting n = ad — be as usual. This gives 

a + d =b \S J 
(7) 

where /I = (a — d)2 + 46c = (a + d)2 — 4w is the discrimi
nant of (6). The condition (4) shows that A < 0 ; hence 
(7) shows that ^ is never real, whence the name complex 
multiplication. We see then that, when <p(u, a>v w2) admits 
complex multiplication, r is root of a quadratic equation 
with integral coefficients and negative discriminant. The 
converse is obviously true. Modular functions built up on 
such r 's are called singular. The corresponding equations 
of transformation enjoy the most remarkable properties. 
The simplest case of complex multiplication arises in con
nection with the lemniscate. In fact, the length u of an 
arc is given by 

• 4 P 8 — 

The value of r is here given by r2 + 1 == 0, hence [±=* ±i. 
Already in the Disquisitiones Arithmetics (1801) Gauss 
calls attention to the fact that the equations of transforma
tion for this case can be solved algebraically, a theorem which 
Abel generalized to all cases in the Recherches. 

Let us indicate in as few words as possible the rôle com
plex multiplication plays in the higher arithmetic, namely, 
in the theory of binary quadratic forms, with negative deter
minant, 

Ax2 + 2Bxy + Cf = (A, B, C). 

Such forms Gauss always took with even middle coefficient. 
The modern theory shows that this was unfortunate, as 
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most material simplifications arise when we allow the mid
dle coefficient to be either odd or even. As no elementary 
account of the new theory has yet been given,we follow here 
the classical notation. We saw that the necessary and suf
ficient condition for complex multiplication was that r be 
root of an equation 

rr2 + ST + t = 0 (8) 

with negative discriminant A = s2 — ért The coefficients 
we can suppose relative prime. According, then, as s is 
odd or even, we associate with (8) either the form 

(2r, 8, 20 or (r, a/2, t). 

The determinant D of this form is also negative. Con
versely to every primitive form F = (i£, S, T) with nega
tive determinant will correspond an equation of the type 
(8) which will give a singular r. 

Consider now the absolute invariant J(r) built on the sin
gular r defined by (8) or the corresponding form F. Then 
to one form F with negative determinant corresponds one 
singular J ( T ) . Apply to r a linear transformation, giving 
r. Then J(r) = J(j). But the form F which corresponds 
to T is got from F by the same transformation ; L e., F and 
F belong to the same class of quadratic forms. Thus not 
only does F give rise to a particular singular invariant J"(r) 
but every form in the same class as F gives rise t J the same 
invariant. Let now Fu F2J — , FH be properly primitive 
forms one from each of the H(D) classes belonging to a 
given determinant D, and 

J(TI),J(.T>) - , J ( T * ) (9) 

the corresponding singular invariants. The equations of 
transformation between J and its transformed show that 
the quantities (9) are roots of an irreducible equation with 
integral coefficients. This equation defines thus a numer
ical algebraic body, which on account of this intimate rela
tion with the classes of binary quadratic forms is called a 
class body. The theory of these bodies is interwoven in 
the most wondrous and fascinating manner with the theory 
of composition of quadratic forms of negative determinant 
and their division into genera. 

The present work, being only one volume in a course on 
the theory of functions, quite rightly does not even touch 
these questions. Indeed only three pages are devoted to 
complex multiplication. We have however felt justified in 
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going out of our way to speak of these questions partly be
cause of their intrinsic interest and partly because the re
viewer deplores how little the higher arithmetic is culti
vated in America. The theory of complex multiplication 
with its intimate relation to binary quadratic forms and 
algebraic numerical bodies offers a promising field for young 
men who seek to gain distinction as original investigators. 

Leaving this subject, continue with our review. The 
next chapter, the thirteenth, treats the question of numer
ical computation. This vexatious subject, so important in 
all practical applications, is very satisfactorily handled here. 
Care is taken to give limits of error, a point often neglected. 

The last three chapters are devoted to applications, one 
being selected from each of the three broad fields of geom
etry, analysis, and mechanics. For geometry it is the 
theory of elliptic curves, L e., curves defined in homoge
neous coordinates by the equations 

pxx = 2 \ 0 0 , Px2 = T*W> '" > 

the TJ8 being conjugate intermediate functions of Hermite, 
i. e., functions of the form 

eaw<j{u — bi)(T(u — ô2) ••• <T(U — bn) . 

Curves of the third and fourth orders receive especial atten
tion. The application to analysis is the discussion of Picard's 
equation of the second order, in particular Lame's equation 

2 = { » ( » + l ) P u + 6 } y . (10) 

The application to mechanics is the spherical pendulum. In 
discussing the horizontal motion of the bob, the author 
passes to polar coordinates, thereby missing a pretty appli
cation of Lame's equation discussed in the chapter just pre
ceding. In fact, keeping rectangular coordinates x9y, it is 
easily shown that x + iy and x —- iy are two solutions of 
(10) for 7 i= 2. 

The rapid survey we have here made shows most clearly 
that we have in the present volume a text book which is 
rich to an uncommon degree in the latest results and points 
of view in the subject it treats. I t fills most timely a place 
unoccupied by any other work and will, we are sure, prove 
itself invaluable to the large class of readers for which it is 
intended. 

JAMES PIERPONT. 
YALE UNIVEKSITY. 


