i. e., the case in which the function φ vanishes at one or both ends of the interval need not be excluded. The interval on the t-axis would, however, then extend to infinity in one or both directions, and the fundamental theorem concerning equation (2) from which we started would on longer be sufficient, but would have to be replaced by a theorem which states that, if $q \leqq 0$, no solution of (2) which vanishes at a finite point can approach a finite limit as x becomes either positively or negatively infinite, and that no solution of (2) can approach finite limits both when $x=$ $+\infty$ and when $x=-\infty$.

The extension which our other theorems gain by the use of (7^{\prime}) in place of (7) is easily seen. In using functions φ which vanish at one of the ends of the interval it is useful to know that if φ^{\prime} also vanishes then φ cannot possibly satisfy (8),-a fact whose proof we also omit.

Göttingen, Germany,
February 4, 1901.

CONCERNING REAL AND COMPLEX CONTINUOUS GROUPS.

BY PROFESSOR L. E. DICKSON.

(Read before the American Mathematical Society, February 23, 1901.)

1. This paper aims to illustrate certain differences and certain analogies between related real and complex continuous groups. Lie's theory has been developed chiefly for the latter groups, the modifications necessary for real groups being treated quite briefly.

In §§ 2-4 are exhibited a real group in m variables and a real group in $2 m$ variables, each of m^{2} parameters, such that the corresponding complex groups are of like structure. In $\S \S 5-8$, it is shown for $m=2$ that the two real groups have different structures. Of the three proofs given, the first two are analytic and involve little technical knowledge of group theory, while the third group is geometric and gives a better insight into the nature of the question.

In $\S 10$, it is illustrated for the case $m=2$ how the general m-ary linear homogeneous complex continuous group gives rise to an isomorphic $2 m$-ary linear homogeneous real continuous group. Similarly, the complex projective groups lead to groups of birational quadratic transformations.

The investigation has direct contact with the author's determination $*$ of the structure of the largest group in the $G F\left[p^{2 n}\right]$ leaving invariant $\bar{\xi}_{1} \bar{\xi}_{1}+\xi_{2} \bar{\xi}_{2}+\cdots+\xi_{m} \bar{\xi}_{m}$, where $\bar{\xi}_{i}$ is conjugate to ξ_{i} with respect to the $G F\left[p^{n}\right]$; also with the paper by Moore \dagger on the universal invariant of finite groups of linear substitutions.
2. Consider the group G_{m} of all substitutions

$$
S: \quad \xi_{i}^{\prime}=\sum_{j=1}^{m} a_{i j} \xi_{j} \quad(i=1, \cdots, m)
$$

the coefficients and variables being complex numbers, such that S leaves formally invariant the Hermitian form

$$
\Phi \equiv \xi_{1} \bar{\xi}_{1}+\xi_{2} \bar{\xi}_{2}+\cdots+\xi_{m} \bar{\xi}_{m} .
$$

The conditions upon the coefficients are seen to be

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{i j} \bar{x}_{i j}=1, \quad \sum_{i=1}^{m} \alpha_{i j} \bar{\alpha}_{i k}=0 \quad(j, k=1, \cdots, m ; j \neq k) . \tag{1}
\end{equation*}
$$

It follows that the inverse of S has the form

$$
S^{-1}: \quad \xi_{i}^{\prime}=\sum_{j=1}^{m} \bar{\alpha}_{j i} \xi_{j} \quad(i=1, \cdots, m)
$$

The group G_{m} is evidently continuous. To obtain the general infinitesimal transformation, set $I^{2}=-1$ and

$$
\begin{gathered}
\alpha_{i i}=1+\left(\alpha_{i i}+I b_{i i}\right) \delta t, \quad \alpha_{i j}=\left(a_{i j}+I b_{i j}\right) \delta t \\
(i, j=1, \cdots, m ; j \neq i)
\end{gathered}
$$

Substituting these values in the relations (1) and retaining only the first power of δt, we find that

$$
\begin{gathered}
1+2 a_{j j} \delta t=1, \quad\left(a_{j k}+a_{k j}\right)+I\left(b_{k j}-b_{j k}\right)=0 \\
(j, k=1, \cdots, m ; j \neq k)
\end{gathered}
$$

The conditions upon the general infinitesimal transformation

$$
\begin{equation*}
\delta \xi_{i} \equiv \xi_{i}^{\prime}-\xi_{i}=\sum_{j=1}^{m}\left(a_{i j}+I b_{i j}\right) \delta t \cdot \xi_{j} \tag{2}
\end{equation*}
$$

are therefore the following

[^0]\[

$$
\begin{equation*}
a_{j k}=-a_{k j}, \quad b_{j k}=b_{k j} \quad(j, k=1, \cdots, m) . \tag{3}
\end{equation*}
$$

\]

The general infinitesimal transformation of G_{m} is therefore a linear combination with real constant coefficients of

$$
\begin{gather*}
B_{i i} \equiv I \xi_{i} \frac{\partial f}{\partial \xi_{i}} \\
B_{i j}^{\prime} \equiv I \xi_{j} \frac{\partial f}{\partial \xi_{i}}+I \xi_{i} \frac{\partial f}{\partial \xi_{j}}, \quad A_{i j}^{\prime} \equiv \xi_{j} \frac{\partial f}{\partial \xi_{i}}-\xi_{i} \frac{\partial f}{\partial \xi_{j}} \tag{4}
\end{gather*}
$$

Here $B_{i j}{ }^{\prime}$ was obtained from (3) by setting $b_{i j}=b_{j i}=1$ and the remaining constants all zero ; $A_{i j}{ }^{\prime}$ by setting $a_{i j}=-a_{j i}$ $=1$ and the remaining coefficients all zero.

The number of linearly independent transformations (4) is evidently m^{2}. If complex multipliers were allowed, we could derive from (4) the m^{2} transformations

$$
\xi_{j} \frac{\partial f}{\partial \xi_{i}} \quad(i, j=1, \cdots, m)
$$

and therefore the general transformation of the m-ary linear homogeneous continuous group.
3. We obtain a continuous group $R_{2 m}$ on $2 m$ real variables with real coefficients by replacing ξ_{i} by $X_{i}+I Y_{i}$ for $i=1, \cdots, m$ and separating reals and pure imaginaries. Relation (2) gives

$$
\begin{aligned}
X_{i}^{\prime}+I Y_{i}^{\prime} & -X_{i}-I Y_{i}=\sum_{i=1}^{m}\left\{\left(a_{i j} X_{j}-b_{i j} Y_{j}\right)\right. \\
& \left.+I\left(a_{i j} Y_{j}+b_{i j} X_{j}\right)\right\} \delta t .
\end{aligned}
$$

Hence the general infinitesimal transformation of $R_{2 m}$ is

$$
\begin{gather*}
\delta X_{i}=\sum_{j=1}^{m}\left(a_{i j} X_{j}-b_{i j} Y_{j}\right) \delta t, \quad \delta Y_{i}=\sum_{j=1}^{m}\left(b_{i j} X_{j}+a_{i j} Y_{i j}\right) \tag{5}\\
(i=1, \cdots, m) .
\end{gather*}
$$

Denote by $B_{i j}$ the transformation obtained by setting $b_{i j}=b_{j i}=1$ and the remaining coefficients equal to zero; by $A_{i j}$ that obtained by setting $\alpha_{i j}=-\alpha_{j i}=1$ and the remaining coefficients equal to zero. Employing the usual abbreviations $p_{i} \equiv \frac{\partial f}{\partial X_{i}}, q_{i} \equiv \frac{\partial f}{\partial Y_{i}}$, we have

$$
B_{i i} \equiv X_{i} q_{i}-Y_{i} p_{i}, \begin{array}{ll}
B_{i j} \equiv X_{j} q_{i}-Y_{j} p_{i}+X_{i} q_{j}-Y_{i} p_{j} \\
& A_{i j} \equiv Y_{j} q_{i}+X_{j} p_{i}-Y_{i} q_{j}-X_{i} p_{j} .
\end{array}
$$

Since $B_{i j} \equiv B_{j i}, A_{i j} \equiv-A_{j i}$, there are exactly m^{2} independent
transformations, from which the general infinitesimal transformation of $R_{2 m}$ may be derived as a linear expression with real coefficients. In view of the identity

$$
\Phi \equiv \sum_{i=1}^{m} \xi_{i} \bar{\xi}_{i}=\sum_{i=1}^{m}\left(X_{i}{ }^{2}+Y_{i}{ }^{2}\right)
$$

the group $R_{2 m}$ is an orthogonal group. As a check it may be verified that the transformations $B_{i j}, A_{i j}$ leave Φ absolutely invariant.
4. The following commutator (Klammerausdruck) relations are readily formed :

$$
\begin{align*}
& \left(B_{i i} B_{i j}\right)=0,\left(B_{i i} B_{i j}\right)=A_{i j},\left(B_{i i} A_{i j}\right)=-B_{i j},\left(B_{i j} B_{i k}\right)=A_{j k}, \tag{6}\\
& \left(A_{i j} B_{i k}\right)=B_{k j}, \quad\left(A_{i j} A_{i k}\right)=A_{j k}, \quad\left(B_{i j} A_{i j}\right)=2 B_{i i}-2 B_{j j},
\end{align*}
$$

for $i, j, k=1, \ldots, m$, with i, j, k distinct. If both subscripts of one symbol be different from the subscripts of the other, their commutator is zero.

It is readily verified that the transformations $B_{i j}{ }^{\prime}, A_{i j}{ }^{\prime}$ of $\S 2$ satisfy the commutator relations (6). This property would be expected to follow from the connection between G_{m} and $R_{2 m}$. We may conclude that the continuous group with complex coefficients which is generated by the transformations $B_{i j}, A_{i j}$ is isomorphic with the continuous complex group generated by $B_{i j}{ }^{\prime}, A_{i j}{ }^{\prime}$.

Denote by $B_{i j}{ }^{\prime \prime}$ the symbol obtained upon dropping the factor I from the symbol $B_{i j}{ }^{\prime}$. In the domain of real numbers, the transformations $B_{i j}{ }^{\prime \prime}, A_{i j}^{\prime \prime}$ generate the continuous group $G_{m}{ }^{\prime}$ of all real linear homogeneous transformations in m variables. The symbols $B_{i j}{ }^{\prime \prime}, A_{i j}{ }^{\prime}$ do not satisfy the commutator relations (6). It is shown in $\S \S 5-8$ that there does not exist in the real group $G_{2}{ }^{\prime}(m=2)$ a set of four independent infinitesimal transformations which satisfy the commutator relations (6), so that G_{2}^{\prime} and R_{4} are nonisomorphic real continuous groups of four parameters each.

5 . For $m=2$, the relations (6) are the following :

$$
\begin{gathered}
\left(B_{11} B_{22}\right)=0, \quad\left(B_{11} B_{12}\right)=A_{12}, \quad\left(B_{11} A_{12}\right)=-B_{12} \\
\left(B_{22} B_{12}\right)=-A_{12}, \quad\left(B_{22} A_{12}\right)=B_{12}, \quad\left(B_{12} A_{12}\right)=2 B_{11}-2 B_{22} .
\end{gathered}
$$

The first derived group is therefore the three-parameter group generated by $A_{12}, B_{12}, B_{11}-B_{22}$. The only (ausgezeichnete) transformation whose commutator with B_{11}, B_{22}, B_{12}, A_{12} is zero is seen to be $B_{11}+B_{22}$, aside from a constant
factor. Hence, if R_{4} be isomorphic with $G_{2}{ }^{\prime}, B_{11}+B_{22}$ must correspond with $\xi_{1} \frac{\partial f}{\partial \xi_{1}}+\xi_{2} \frac{\partial f}{\partial \xi_{2}}$ and the above three-parameter group with the first derived group of $G_{2}{ }^{\prime}$. To normalize R_{4}, set
$Z_{1} \equiv \frac{1}{2}\left(B_{11}-B_{22}\right), \quad Z_{2} \equiv \frac{1}{2} A_{12}, \quad Z_{3} \equiv-\frac{1}{2} B_{12}, \quad Z_{4} \equiv B_{11}+B_{22}$.
The above commutator relations then give

$$
\begin{array}{cc}
\left(Z_{1} Z_{2}\right)=Z_{3}, & \left(Z_{2} Z_{3}\right)=Z_{1}, \\
\left(Z_{4} Z_{1}\right)=0, & \left(Z_{4} Z_{1}\right)=Z_{2}, \tag{8}\\
\left.Z_{2}\right)=0, & \left(Z_{4} Z_{3}\right)=0 .
\end{array}
$$

The first derived group of $G_{2}{ }^{\prime}$ is generated by

$$
V_{1} \equiv \xi_{1} \frac{\partial f}{\partial \xi_{2}}, \quad V_{2}=\xi_{1} \frac{\partial f}{\partial \xi_{1}}-\xi_{2} \frac{\partial f}{\partial \xi_{2}}, \quad V_{3} \equiv \xi_{2} \frac{\partial f}{\partial \xi_{1}},
$$

subject to the commutator relations
(9) $\left(V_{1} V_{2}\right)=-2 V_{1}, \quad\left(V_{2} V_{3}\right)=-2 V_{3}, \quad\left(V_{3} V_{1}\right)=-V_{2}$.

To establish the non-isomorphism of R_{4} and $G_{2}{ }^{\prime}$, it suffices to prove that their first derived groups are non-isomorphic when considered as real continuous groups.
6. The most natural method of proof consists in showing that it is impossible to determine linear combinations of V_{1}, V_{2}, V_{3} with real constant coefficients

$$
Z_{i}^{\prime} \equiv a_{i} V_{1}+b_{i} V_{2}+c_{i} V_{3} \quad(i=1,2,3)
$$

of determinant $\Delta \equiv \sum a_{1} b_{2} c_{3} \neq 0$, which satisfy relations (7). We observe that
$\left(Z_{1}^{\prime} Z_{2}^{\prime}\right) \equiv-2 V_{1}\left(a_{1} b_{2}-b_{1} a_{2}\right)+V_{2}\left(a_{1} c_{2}-c_{1} a_{2}\right)-2 V_{3}\left(b_{1} c_{2}-c_{1} b_{2}\right)$. The conditions that the right member shall equal Z_{3}^{\prime} are
(10) $a_{1} b_{2}-b_{1} a_{2}=-\frac{1}{2} a_{3}, a_{1} c_{2}-c_{1} a_{2}=b_{3}, b_{1} c_{2}-c_{1} b_{2}=-\frac{1}{2} c_{3}$. By advancing the subscripts of a_{i}, b_{i}, c_{i}, we obtain the conditions for the identities $\left(Z_{2}^{\prime} Z_{3}^{\prime}\right)=Z_{1}^{\prime},\left(Z_{3}^{\prime} Z_{1}^{\prime}\right)=Z_{2}^{\prime}$
(11) $a_{2} b_{3}-b_{2} a_{3}=-\frac{1}{2} a_{1}, a_{2} c_{3}-c_{2} \alpha_{3}=b_{1}, b_{2} c_{3}-c_{2} b_{3}=-\frac{1}{2} c_{1}$,
(12) $a_{3} b_{1}-b_{3} a_{1}=-\frac{1}{2} a_{2}, a_{3} c_{1}-c_{3} a_{1}=b_{2}, b_{3} c_{1}-c_{3} b_{1}=-\frac{1}{2} c_{2}$.

In view of the relations (11) and (12),

$$
-\frac{1}{2}\left|\begin{array}{ll}
l_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=a_{3} \Delta .
$$

Applying the first relation (10), $\frac{1}{4} a_{3}=a_{3} \Delta$. In a similar manner, or by advancing the subscripts (which does not alter 4), we find

$$
\frac{1}{4} a_{1}=a_{1} \Delta, \quad \frac{1}{4} a_{2}=a_{2} \Delta .
$$

Since a_{1}, a_{2}, a_{3} are not all zero, it follows that $\Delta=\frac{1}{4}$.
Multiplying equations (12) by $c_{2},-b_{2}, a_{2}$ respectively and adding the resulting equations, we find

$$
\begin{equation*}
\Delta=-b_{2}^{2}-a_{2} c_{2} \tag{13}
\end{equation*}
$$

Employing the multipliers $c_{1},-b_{1}, a_{1}$, we find

$$
\begin{equation*}
0=-b_{1} b_{2}-\frac{1}{2} a_{2} c_{1}-\frac{1}{2} a_{1} c_{2} . \tag{14}
\end{equation*}
$$

In a similar manner, or by advancing the subscripts,

$$
\begin{equation*}
\Delta=-b_{1}^{2}-a_{1} c_{1} \tag{15}
\end{equation*}
$$

By (14) and the second equation of set (10),

$$
b_{3}^{2}=\left(a_{1} c_{2}-c_{1} a_{2}\right)^{2}=4 b_{1}^{2} b_{2}^{2}-4 a_{1} c_{1} a_{2} c_{2} .
$$

Eliminating $\alpha_{1} c_{1}$ and $\alpha_{2} c_{2}$ by (15) and (13), and setting $\Delta=\frac{1}{4}$,

$$
b_{1}{ }^{2}+b_{2}{ }^{2}+b_{3}{ }^{2}=-\frac{1}{4} .
$$

But this equation is impossible for real values of the b_{i}.
7. A second proof is derived from the following investigation which gives certain interesting properties of the group I^{\prime} generated by Z_{1}, Z_{2}, Z_{3}, subject to the relations (7). Set

$$
\begin{aligned}
& Z_{1}=\alpha_{1} U_{1}+\alpha_{2} U_{2}+\alpha_{3} U_{3}, \\
& Z_{2}=\beta_{1} U_{1}+\beta_{2} U_{2}+\beta_{3} U_{3}, \quad \Delta \equiv\left|\begin{array}{l}
\alpha_{1} \alpha_{2} \alpha_{3} \\
\beta_{1} \beta_{2} \beta_{3} \\
\gamma_{1} \gamma_{2} \gamma_{3}
\end{array}\right| \neq 0 . . \gamma_{1} U_{1}+\gamma_{2} U_{2}+\gamma_{3} U_{3},
\end{aligned}
$$

We obtain by solution the most general set of independent infinitesimal transformations U_{1}, U_{2}, U_{3}, of the group Γ. We seek the commutator relations of the U_{i}. Denote by α_{i}^{\prime} the first minor (without prefixed sign) of a_{i} in $\Delta, \beta_{i}^{\prime}$ the first minor of $\beta_{i}, \gamma_{i}^{\prime}$ the first minor of γ_{i}. Form $\left(Z_{2} Z_{3}\right)$ and equate the result to $Z_{1} ;$ expand similarly $\left(Z_{3} Z_{1}\right)=Z_{2},\left(Z_{1} Z_{2}\right)=Z_{3}$. The results are

$$
\begin{aligned}
& Z_{1}=\alpha_{1}^{\prime}\left(U_{2} U_{3}\right)-\alpha_{2}^{\prime}\left(U_{3} U_{1}\right)+\alpha_{3}^{\prime}\left(U_{1} U_{2}\right), \\
& Z_{2}=-\beta_{1}^{\prime}\left(U_{2} U_{3}\right)+\beta_{2}^{\prime}\left(U_{3} U_{1}\right)-\beta_{3}^{\prime}\left(U_{1} U_{2}\right), \\
& Z_{3}=r_{1}^{\prime}\left(U_{2} U_{3}^{\prime}\right)-\gamma_{2}^{\prime}\left(U_{3}^{3} U_{1}\right)+\gamma_{3}^{\prime}\left(U_{1} U_{2}\right) .
\end{aligned}
$$

The determinant of the coefficients equals Δ^{2}, being equal to the determinant of the first minors of Δ. Moreover,

$$
\left|\begin{array}{l}
\beta_{2}^{\prime} \beta_{3}^{\prime} \\
\gamma_{2}^{\prime} \gamma_{3}^{\prime}
\end{array}\right|=a_{1} \Delta .
$$

The solution of the above relations therefore gives

$$
\begin{aligned}
& \Delta\left(U_{2} U_{3}\right)=\alpha_{1} Z_{1}+\beta_{1} Z_{2}+\gamma_{1} Z_{3}, \\
& \Delta\left(U_{3} U_{1}\right)=\alpha_{2} Z_{1}+\xi_{2} Z_{2}+\gamma_{2} Z_{3}, \\
& \Delta\left(U_{1} U_{2}\right)=a_{3} Z_{1}+\beta_{3} Z_{2}+\gamma_{3} Z_{3} .
\end{aligned}
$$

The matrix of the coefficients on the right is the transposed of the matrix of the coefficients of the U_{i} in the expressions for the Z_{i}. Eliminating the Z_{i}, we have

$$
\begin{aligned}
& \Delta\left(U_{2} U_{3}\right)=\begin{array}{ccc}
U_{1} & U_{2} & U_{3} \\
\hline a_{1}^{2}+\beta_{1}^{2}+\gamma_{1}^{2} & \alpha_{1} \alpha_{2}+\beta_{1} \beta_{2}+\gamma_{1} \gamma_{2} & a_{1} \alpha_{3}+\beta_{1} \beta_{3}+\gamma_{1} \gamma_{3}
\end{array} \\
& \Delta\left(U_{3} U_{1}\right)=\begin{array}{lll}
\alpha_{1} \alpha_{2}+\beta_{1} \beta_{2}+\gamma_{1} \gamma_{2} & a_{2}{ }^{2}+\beta_{2}{ }^{2}+\gamma_{2}{ }^{2} \quad \alpha_{2} \alpha_{3}+\beta_{2} \beta_{3}+\gamma_{2} \gamma_{2}
\end{array} \\
& \Delta\left(U_{1} U_{2}\right)=\begin{array}{lll}
\alpha_{1} \alpha_{3}+\beta_{1} \beta+\gamma_{1} \gamma_{3} & \alpha_{2} \alpha_{3}+\beta_{2} \beta_{3}+\gamma_{2} \gamma_{3} & \alpha_{3}^{2}+\beta_{3}^{2}+\gamma_{3}^{2}
\end{array}
\end{aligned}
$$

The symmetry of the matrix of coefficients is in accord with a known property of the group.*

In order that the transformations U_{i} should satisfy the same commutator relations (9) as the transformations V_{i} it is necessary that $\left(U_{2} U_{3}\right)=-2 U_{3}$, so that $\alpha_{1}^{2}+\beta_{1}^{2}+\gamma_{1}^{2}=0$. For real values of $a_{1}, \beta_{1}, \gamma_{1}$, this requires $\alpha_{1}=\beta_{1}=\gamma_{1}=0$, contrary to hypothesis. Hence the real group 1 ' of the Z_{i} is not isomorphic with the real group of the V_{i}.

To obtain the most general set of three infinitesimal transformations U_{i} of I which satisfy the same commutator relations (7) as the transformations Z_{i} themselves,

$$
\left(U_{2} U_{3}\right)=U_{1}, \quad\left(U_{3} U_{1}\right)=U_{2}, \quad\left(U_{1} U_{2}\right)=U_{3},
$$

it is necessary and sufficient to take solutions $\alpha_{i}, \beta_{i}, \gamma_{i}$ of

$$
\begin{gathered}
J=\alpha_{1}^{2}+\beta_{1}^{2}+\gamma_{1}^{2}, \quad \Delta=\alpha_{2}^{2}+\beta_{2}^{2}+\gamma_{2}^{2}, \quad \Delta=\alpha_{3}^{2}+\beta_{3}^{2}+\gamma_{3}^{2} . \\
0=\alpha_{1} \alpha_{2}+\beta_{1} \beta_{2}+\gamma_{1} \gamma_{2}, \quad 0=\alpha_{1} \alpha_{3}+\beta_{1} \beta_{3}+\gamma_{1} \gamma_{3}, \\
0=\alpha_{2} \alpha_{3}+\beta_{2} \beta_{3}+\gamma_{2} \gamma_{3} .
\end{gathered}
$$

These are the conditions for an orthogonal substitution, the invariant relation being

$$
Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2} \equiv \Delta\left(U_{1}^{2}+U_{2}^{2}+U_{3}^{2}\right) .
$$

8. To give a third proof, based upon geometric considerations, it suffices to consider the adjoint groups of the threeparameter groups in question. The adjoint of the group of the V_{i} is

$$
2 e_{2} \frac{\partial f}{\partial e_{1}}-e_{3} \frac{\partial f}{\partial e_{2}}, \quad-2 e_{1} \frac{\partial f}{\partial e_{1}}+2 e_{3} \frac{\partial f}{\partial e_{3}}, \quad e_{1} \frac{\partial f}{\partial e_{2}}-2 e_{2} \frac{\partial f}{\partial e_{8}},
$$

having as its only invariant curve the real conic

[^1]\[

$$
\begin{equation*}
e_{1} e_{3}+e_{2}^{2}=0 . \tag{16}
\end{equation*}
$$

\]

The adjoint group of the group of the Z_{i} is

$$
e_{3} \frac{\partial f}{\partial e_{2}}-e_{2} \frac{\partial f}{\partial e_{3}}, \quad-e_{3} \frac{\partial f}{\partial e_{1}}+e_{1} \frac{\partial f}{\partial e_{3}}, \quad e_{2} \frac{\partial f}{\partial e_{1}}-e_{1} \frac{\partial f}{\partial e_{2}}
$$

having as its only invariant the imaginary conic

$$
\begin{equation*}
e_{1}^{2}+e_{3}^{2}+e_{3}^{2}=0 \tag{17}
\end{equation*}
$$

Now the replacement of one complete set of independent infinitesimal transformationsof a group by a second complete set merely gives rise to a linear homogeneous transformation upon the variables \dot{e}_{i}^{-}of the adjoint group. The latter will be a real transformation if the second set is expressed in terms of the first by real coefficients. Since the equations (16) and (17) can not be transformed into each other by a real ternary substitution, it follows that the transformations V_{i} are not expressible as real linear functions of the Z_{i}.

The method of reduction of three-parameter non-integrable groups to a normal type given in Lie-Scheffers, Vorlesungen, pp. $566-568$ is immediately applicable only to complex groups. For real groups there are two (and, indeed, only two *) distinct cases, according as the invariant conic (necessarily non-degenerate) is real or imaginary. The two methods there given as optional for complex groups are to be differentiated for real groups to correspond to the cases of real and imaginary conics, yielding respectively the normal types (I) and (I^{\prime}) of p. 568, or types (9) and (7) respectively of this paper.
9. The real four-parameter groups $G_{2}{ }^{\prime}$ and R_{4} have been proved to have different structures. Applying the imaginary transformation of variables

$$
X_{1}=x_{1}, \quad Y_{1}=y_{1}, \quad X_{2}=I x_{2}, \quad Y_{2}=I y_{2} \quad\left(I^{2}=-1\right)
$$

the infinitesimal transformations $B_{11}, B_{22}, B_{12}, A_{12}$ of R_{4} become

$$
\begin{aligned}
& b_{11} \equiv x_{1} \frac{\partial f}{\partial y_{1}}-y_{1} \frac{\partial f}{\partial x_{1}}, \quad b_{22} \equiv x_{2} \frac{\partial f}{\partial y_{2}}-y_{2} \frac{\partial f}{\partial x_{2}}, \\
& b_{12} \equiv x_{2} \frac{\partial f}{\partial y_{1}}-y_{2} \frac{\partial f}{\partial x_{1}}-x_{1} \frac{\partial f}{\partial y_{2}}+y_{1} \frac{\partial f}{\partial x_{2}}, \\
& a_{12} \equiv y_{2} \frac{\partial f}{\partial y_{1}}+x_{2} \frac{\partial f}{\partial x_{1}}+y_{1} \frac{\partial f}{\partial y_{2}}+x_{1} \frac{\partial f}{\partial x_{2}}
\end{aligned}
$$

[^2]They satisfy the commutator relations

$$
\begin{aligned}
& \left(b_{11} b_{22}\right)=0, \quad\left(b_{11} b_{12}\right)=a_{12}, \quad\left(b_{11} a_{12}\right)=-b_{12}, \\
& \left(b_{22} b_{12}\right)=-a_{12}, \quad\left(b_{22} a_{12}\right)=b_{12}, \quad\left(b_{12} a_{12}\right)=-2 b_{11}+2 b_{22} .
\end{aligned}
$$

Except for the last relation, these are identical with the commutator relations of $B_{11}, B_{12}, B_{22}, A_{12}$ (§5). Setting

$$
W_{1} \equiv a_{12}, W_{2} \equiv-b_{12}, W_{3} \equiv b_{11}-b_{22}, W_{4} \equiv b_{11}+b_{21},
$$

we have the commutator relations

$$
\begin{array}{ll}
\left(W_{1} W_{2}\right)=-2 W_{3}, & \left(W_{2} W_{3}\right)=2 W_{1}, \\
\left(W_{4} W_{1}\right)=2 W_{2}, \\
\left(W_{1}\right)=0, & \left(W_{4} W_{2}\right)=0, \quad\left(W_{4} W_{3}\right)=0 .
\end{array}
$$

These relations are also satisfied by the transformations

$$
w_{1} \equiv x q+y p, w_{2} \equiv x p-y q, w_{3} \equiv x q-y p, w_{4} \equiv x p+y q,
$$

which generate the general binary group $G_{2}{ }^{\prime}$. By an imaginary transformation of variables, R_{4} may be given a real form having the same structure as $G_{2}{ }^{\prime}$.
10. Consider the group G of all binary transformations

$$
S: \quad\left\{\begin{array}{l}
X^{\prime}=\alpha X+\gamma Y \\
Y^{\prime}=\beta X+\delta Y
\end{array} \quad(\alpha \delta-\beta \gamma=1)\right.
$$

upon complex variables X, Y with complex coefficients of determinant unity. Let $I^{2}=-1$ and set

$$
X=x+I x_{1}, Y=y+I y_{1}, \alpha=a+I a_{1}, \beta=b+I b_{1}, \text { etc. }
$$

Then S corresponds to the quaternary transformation

The relation $\alpha \delta-\beta \gamma=1$ gives

$$
a d-b c-a_{1} d_{1}+b_{1} c_{1}=1, \quad a d_{1}+a_{1} d-b c_{1}-b_{1} c=0 .
$$

The determinant of Σ is seen to equal

$$
\left(a d-b c-a_{1} d_{1}+b_{1} c_{1}\right)^{2}+\left(a d_{1}+a_{1} d-b c_{1}-b_{1} c\right)^{2}=1 .
$$

To the product $S_{1} S_{2}$ of two substitutions of the form S, corresponds the product $\Sigma_{1} \Sigma_{2}$ of the corresponding substitutions Σ. Hence the group G is isomorphic with the
group Γ of the substitution Σ. But Σ reduces to the identity only when S is the identity. Hence the isomorphism is holoedric.

By the usual method, the general infinitesimal transformation of I is found to be a linear combination of the following linearly independent transformations:

	$\frac{\partial f}{\partial x}$	$\frac{\partial f}{\partial x_{1}}$	$\frac{\partial f}{\partial y}$	$\frac{\partial f}{\partial y_{1}}$
A	x	x_{1}	-y	$-y_{1}$
A_{1}	$-x_{1}$	x	y_{1}	$-y$
B	0	0	x	x_{1}
B_{1}	0	0	$-x_{1}$	x
C	y	y_{1}	0	0
C_{1}	$-y_{1}$	y	0	0

The real group Γ therefore possesses no invariant. The non-vanishing second minors of the matrix of coefficients are
$P \equiv x^{2}+x_{1}^{2}, \quad Q \equiv y^{2}+y_{1}^{2}, \quad R=x y+x_{1} y_{1}, \quad S=x_{1} y-x y_{1}$.
Upon them the group r gives rise to the following transformations:

	$\frac{\partial f}{\partial \bar{P}}$	$\frac{\partial f}{\partial \bar{Q}}$	$\frac{\partial f}{\partial R}$	$\frac{\partial f}{\partial S}$
A	$2 P$	$-2 Q$	0	0
A_{1}	0	0	$-2 S$	$2 R$
B	0	$2 R$	P	0
B_{1}	0	$-2 S$	0	$-P$
C	$2 R$	0	Q	0
C_{1}	$2 S$	0	0	Q

The determinants of the fourth order of this matrix are all identically zero. To obtain the homogeneous invariants, we annex Euler's homogeneous operator

$$
H \equiv P \frac{\partial f}{\partial P}+Q \frac{\partial f}{\partial Q}+R \frac{\partial f}{\partial R}+S \frac{\partial f}{\partial S} .
$$

The determinant of the coefficients of A, A_{1}, B, H equals $8 P R\left(S^{2}+R^{2}-P Q\right)$. The determinant of A, A_{1}, B_{1}, H equals $-8 P S\left(S^{2}+R^{2}-P Q\right)$. In this way the only homogeneous invariant is seen to be

$$
\psi \equiv S^{2}+R^{2}-P Q
$$

In terms of the initial variables x, x_{1}, y, y_{1}, we see that ψ vanishes identically. Also

$$
\begin{gathered}
P \equiv\left|x+I x_{1}\right| \equiv|X|, \quad Q \equiv|Y| \\
\frac{Y}{X} \equiv \frac{R-I S}{P}, \quad \bar{Y} \equiv \frac{R+I S}{Q} .
\end{gathered}
$$

The group G is hemiedrically isomorphic with the group of linear fractional substitutions

$$
\begin{equation*}
Z^{\prime}=\frac{\alpha+\gamma Z}{\beta+\delta \bar{Z}}, \quad Z \equiv \frac{Y}{\bar{X}} \tag{18}
\end{equation*}
$$

The quaternary group on P, Q, R, S is isomorphic with a ternary fractional group on $Q / P, R / P, S / P$. But

$$
\frac{Q}{P} \equiv\left(\frac{R}{P}\right)^{2}+\left(\frac{S}{P}\right)^{2}
$$

Eliminating Q / P, we obtain a group of birational quadratic transformations in the plane. It may evidently be obtained more directly from the transformations (18).

The University of Chicago,
January, 1901.

ON HOLOMORPHISMS AND PRIMITIVE ROOTS.

BY DR. G. A. MILLER.
(Read before the American Mathematical Society, February 23, 1901.)
In an earlier note $*$ it was observed that every holomorphism of an abelian group with itself can be obtained by establishing an isomorphism between the abelian group and one of its subgroups (which may sometimes be the entire group) and associating the product of corresponding operators with the original operator of the group. The present note is devoted to some additional developments along this line and especially to some elementary results in the theory of numbers which may be derived by this method.

Let s_{1} represent an operator of order p^{m} (p being any prime number) and let P, the group generated by s_{1}, be

[^3]
[^0]: * Math. Annaten, vol. 52, pp. 561-581.
 \dagger Math. Annalen, vol. 50, pp. 213-219.

[^1]: *Lie-Scheffers, Vorlesungen über continuierliche Gruppen, p. 567.

[^2]: * An irreducible ternary quadratic form with real coefficients is reducible either to $b\left(e_{1}{ }^{2}+e_{2}{ }^{2}+e_{3}{ }^{2}\right)$ or to $b\left(e_{1}{ }^{2}+e_{2}{ }^{2}-e_{3}{ }^{2}\right)$.

[^3]: * Bulletin, Vol. 6 (1900), p. 337.

