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i. e., the case in which the function ¢ vanishes at one or
both ends of the interval need not be excluded. The inter-
val on the t-axis would, however, then extend to infinity in
one or both directions, and the fundamental theorem con-
cerning equation (2) from which we started would on
longer be sufficient, but would have to be replaced by a
theorem which states that, if ¢ =0, no solution of (2) which
vanishes at a finite point can approach a finite limit as z
becomes either positively or negatively infinite, and that no
solution of (2) can approach finite limits both when z =
+ o and when = — co.

The extension which our other theorems gain by the use
of (7") in place of (7) is easily seen. In using functions ¢
which vanish at one of the ends of the interval it is useful
to know that if ¢’ also vanishes then ¢ cannot possibly sat-
isfy (8),—a fact whose proof we also omit.

GOTTINGEN, GERMANY,

February 4,1901.

CONCERNING REAL AND COMPLEX CONTINU-
OUS GROUPS.

BY PROFESSOR L. E. DICKSON.
(Read before the American Mathematical Society, February 23, 1901.)

1. Tuis paper aims to illustrate certain differences and
certain analogies between related real and complex continu-
ous groups. Lie’s theory has been developed chiefly for the
latter groups, the modifications necessary for real groups
being treated quite briefly.

In §§2-4 are exhibited a real group in m variables and a
real group in 2m variables, each of m’ parameters, such that
the corresponding complex groups are of like structure.
In §§5-8, it is shown for m = 2 that the two real groups
have different structures. Of the three proofs given, the
first two are analytic and involve little technical knowledge
of group theory, while the third group is geometric and
gives a better insight into the nature of the question.

In §10, it is illustrated for the case m = 2 how the gen-
eral m-ary linear homogeneous complex continuous group
gives rise to an isomorphic 2m-ary linear homogeneous real
continuous group. Similarly, the complex projective groups
lead to groups of birational quadratic transformations.
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The investigation has direct contact with the author’s de-
termination * of the structure of the largest group in the

GF[p™] leaving invariant £, + £, + - + & &  where & is

m>m?

conjugate to & with respect to the GF[p] also with the
paper by Moore T on the universal invariant of finite groups
of linear substitutions.

2. Consider the group G, of all substitutions

S: £ =73 0,5 (i=1,,m),

the coefficients and variables being complex numbers, such
that § leaves formally invariant the Hermitian form

=EE FEE 4 - FEE

The conditions upon the coefficients are seen to be
(1) iz"i;z,.j;;=1, Soag=0 (k=1 m;j%h).
It follows that the inverse of S has the form

s =§lzﬂsj (i=1,,m).

The group @, is evidently continuous. To obtain the
general infinitesimal transformation, set I’ = — 1 and

=14 (a4 Iby) 3, o, = (a,+ Ib,) 0t

(G g=1,,m;j=1).

Substituting these values in the relations (1) and retaining
only the first power of of, we find that

1+ 2a0t=1, (a,+ a,) + I(b,— b,) =0
(), k=1, =, m; j=Fk).

The conditions upon the general infinitesimal transforma-
tion

(2) = == 3 (a o+ Ib) 0§

are therefore the following

* Math. Annalen, vol. 52, pp. 561-581.
t Math. Annalen, vol. 50, pp. 213-219.
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(3) a4, =—aq

Jk

B bjk = bkj (Jy k=1, -, m).

The general infinitesimal transformation of G is therefore
a linear combination with real constant coefficients of

B/ = I gé’
® of L Lo . L
- = - A
B, I‘Eaaf: + I'ae; 4,/ = E:as XETH
Here B, was obtained from (3) by setting b; = b, = land
the remaining constants all zero ; 4,/ by setting a; = — ay

= 1 and the remaining coefficients all zero.

The number of linearly independent transformations (4)
is evidently m’. If complex multipliers were allowed, we
could derive from (4) the m’ transformations

9 .
& "’I (=1, -, m),

and therefore the general transformation of the m-ary lin-
ear homogeneous continuous group.

3. We obtain a continuous group R, on 2w real variables
with real coeflicients by replacing & by X, 4 IY, for
1 =1, ---, m and separating reals and pure imaginaries. Re-
lation (2) gives

X+ IV, — X, — IY, = 3 {(e,X, — b,¥)
+ I(a,¥,+ b,X)} o.

v

Hence the general infinitesimal transformation of R,

5)  0X=3 (a,X,—b,Y))0t, 0¥, = Z(bX—{—aY)

LA

(t=1, -, m).

Denote by B, the transformation obtained by setting
b;=0,=1 and the remaining coefficients equal to zero; by

A that obtained by setting a;, = — a, = 1 and the remaining

coefficients equal to zero. Employing the usual abbrevia-
of of

tions p, = =3x’ q, = =27’ we have

'Bii = ‘Xiqi - Yz‘pv ‘Bij = X,;'Qi - Yjpi + ‘Xiqj - KPJ”
A"E Iqu.' + ‘X;'pi - qu—' Xi.pj'
Since B,=B,, 4,=—4

» there are exactly m’ independent
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transformations, from which the general infinitesimal trans-
formation of R, may be derived as a linear expression
with real coefficients. In view of the identity

P=3E=3 (X} + T,

the group R, is an orthogonal group. As a check it may
be verified that the transformations B, A leave ¢ abso-
lutely invariant.

4. The following commutator (Klammerausdruck) rela-
tions are readily formed :
(6) (B,.BJ,) 0, (BHBU) Ay, (B,Azj)— —B, (B;B)=A4,
(Au zk) 'B (A” 1k) - j}g) ('B Ay‘) 2B 2Bjj7
fore,j, k=1, ..., m, with ¢, /, k distinet. If both subscripts of
one symbol be different from the subscripts of the other,
their commutator is zero.

It is readily verified that the transformations B;/, 4, of
§2 satisfy the commutator relations (6). This property
would be expected to follow from the connection between
G, and R, . We may conclude that the continuous group
with complex coefficients which is generated by the trans-
formations By, 4, is isomorphic with the continuous com-
plex group generated by B,/

Denote by B, the symbol obtamed upon dropping the fac-
tor I from the symbol B/. In the domain of real numbers,
the transformations B, ” A s generate the continuous group
@G,/ of all real linear homoweneous transformations in m
variables. The symbols B, 2 , 4,/ do not satisfy the commu-
tator relations (6). It is “shown in §§ 5-8 that there does
not exist in the real group G, (m = 2) a set of four inde-
pendent infinitesimal transformations which satisfy the
commutator relations (6), so that G, and E, are non-
isomorphic real continuous groups of four parameters each.

5. For m = 2, the relations (6) are the following :

(BHB'H) =0, (BnBu) = Am ('BHAIZ) = Bm
(BpB,) =— 4, (B,4,)=21B (B,4,,) =2B, — 2B,

127

The first derived group is therefore the three-parameter
group generated by A4, B,,, B,, — B,,. The only (ausge-

zeichnete) transformation whose commutator with B, B,

B, A,, is zero is seen to be B, + B,,, aside from a constant
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factor. Hence, if R, be isomorphic with G,, B,, + B,, must
3f of

correspond with & . oz + &, oz, and the above three-parameter

group with the first derived group of ¢,/. To normalize R,,
set

Zx = ’%(Bu - B22)> Zz = %Am Zs = - %Bm Z4 = Bn + Bzz'

The above commutator relations then give

) (ZZ) = Zy, (Z2Z3) = Zv <Z3Z1) = 7,
(8) (Z2)=0, (44)=0, (Z;Zs) = 0.

The first derived group of @, is generated by

°) 9 of 9
““a{ V2=5,af 23»&’ V,= E‘*’affl’
subject to the commutator relations

O NV =-=27, (V,Vy==2V, (\,V)=-V,

To establish the non-isomorphism of R, and G, it suffices
to prove that their first derived groups are non-isomorphic
when considered as real continuous groups.

6. The most natural method of proof consists in showing
that it is impossible to determine linear combinations of
V, V,, V, with real constant coefficients

Z/Eai'[fl_*_bi[/;_l_civ:% (’l:=1, 2, 3),

of determinant 4 = Ya,b,c, &= 0, which satisfy relations (7).
‘We observe that

(lezzl) =—2 V1(a1bz- bla’z) + Vz(alcz_ claz) —2 V:’.(blcz - c1b2)'
The conditions that the right member shall equal Z/ are
(10) ab, — bja, = — %ay, .6, — ¢,a, = by, bye, — ¢;b,= — e,

By advancing the subscripts of a;, b;, ¢, we obtain the con-
ditions for the identities (Z 'Z)NY =7, (Z/Z!) = Z)

1) ab, — bya, = — Fy a,0, — ca, = bv b,e, — c,by = — }e,,
(12) “3[)1 - bsax = — }a, a3cl — Gy = bw bscl csbl = - %02-
In view of the relations (11) and (12),
s

Applying the first relation (10), te,= a,4. In a similar
manner, or by advancing the subscripts (which does not
alter 4), we find
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ta, = a4, ?]faz = a,4.

Since a,, a,, @, are not all zero, it follows that 4 = }.
Multiplying equations (12) by ¢, — b,, a, respectively
and adding the resulting equations, we find

(13) d=—b}— a,c

272°

Employing the multipliers ¢,, — b,, a,, we find
(14) 0= —bb, — }a,e, — }asc,

In a similar manner, or by advancing the subscripts,
(15) = —0’—apc,.
By (14) and the second equation of set (10),
b = (a,0, — ¢,a,)" = 4b°D,} — 4a,c,a,c,.
Eliminating a,¢, and a,¢, by (15) and (13), and setting 4 =1,
bl 4+ b} +b'= — L.

But this equation is impossible for real values of the b,.

7. A second proof is derived from the following investi-
gation which gives certain interesting properties of the
group I’ generated by Z,, Z,, Z,, subject to the relations (7).
Set

Zl=a](]1+a2U2+a3U3, oy &y Oy
Zz=ﬁ1U1+fer2+ﬁ3Us7 4= ﬂlﬁzﬁa + 0.
Zs=71U1+7'2(]2+73l]37 1737

‘We obtain by solution the most general set of independent
infinitesimal transformations U,, U,, U,, of the group I. We
seek the commutator relations of the U, Denote by «/ the
first minor (without prefixed sign) of o, in 4, B/ the first
minor of 3, y/ the first minor of y,. Form (Z,Z,) and equate
the result to Z, ; expand similarly (Z£,Z,) = Z,, (Z,Z,) = Z,.
The results are

= /(U —a/(UU,) + o/ (UU,),
z,=— (' (G,U,) + 6/ (U,U,)) — /(U U,),
Z,= r/'(GU) — 71/ (GU,) +r/'(UU,).

The determinant of the coefficients equals 4°, being equal
to the determinant of the first minors of 4. Moreover,

AN

= Q. A.
7T !
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The solution of the above relations therefore gives

4(0,0,) = oy + ﬁI’Z2 + 1.4y
A(G,0,) = o, 2, + 5,2, + Tzzs?
A(OU,) = a2 + ByZyy + 132

The matrix of the coefficients on the right is the trans-
posed of the matrix of the coefficients of the U; in the ex-
pressions for the Z. TEliminating the Z,, we have

U U, A
ACGU)= \o+5 41" ao+b8+nr, wu+EE+rn
A( U3 [};)= a1a2+ﬁlﬁ2+7lr2 a2z+ﬁ22+7/22 a2a3+ﬁz‘33+7’27’2
40,0y = o +BAtry,  entBbtrys o'+
The symmetry of the matrix of coefficients is in accord
with a known property of the group.*

In order that the transformations U; should satisfy the
same commutator relations (9) as the transformations V; it
is necessary that (U, U;) = — 2U,, so that o’ 4+ 8> + 7> = 0.
For real values of a, f,, 7, this requires «, = =y, =0,
contrary to hypothesis. Hence the real group I'of the Z;
is not isomorphic with the real group of the V..

To obtain the most general set of three infinitesimal
transformations U, of I"' which satisfy the same commutator
relations (7) as the transformations Z; themselves,

(G,U) =0, (GU)=10, UU)=1U,
it is necessary and sufficient to take solutions e, 8, y; of
d=a’+ B + 7} d=0o 487+, d=0a} 4+ B+ 7]

O=oaa,+ B8 +rr, O0=00+ 68+ 11y

0= a0 + 52ﬁ3 + 7al's:
These are the conditions for an orthogonal substitution,
the invariant relation being
2P+ 274 2= 4 (U7 + U+ UD).

8. To give a third proof, based upon geometric consider-
ations, it suffices to consider the adjoint groups of the three-
parameter groups in question. The adjoint of the group of
the V; is

of _, o o g, 0f O 0

2623;1_883;;’ —261821'*‘26355;7 1”8’21—2623637

having as its only invariant curve the real conic

*Lie-Scheffers, Vorlesungen iiber continuierliche Gruppen, p. 567.
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(16) ees+ e’ =0
The adjoint group of the group of the Z, is
e, of o of Lo o _ U
Oe, % de,’ 336 ’ae 3 Qe, laez’
having as its only invariant the imaginary conic
a7 e+ e’ + ¢’ =0.

Now the replacement of one complete set of independent
infinitesimal transformationsof a group by a second complete
set merely gives rise to a linear homogeneous transformation
upon the variables e; of the adjoint group. The latter will
be a real transformation if the second set is expressed in
terms of the first by real coefficients. Since the equations
(16) and (17) can not be transformed into each other by a
real ternary substitution, it follows that the transformations
V. are not expressible as real linear functions of the Z,.

The method of reduction of three-parameter non-integrable
groups to a normal type given in Lie-Scheffers, Vorlesungen,
pp. 566-568 is immediately applicable only to complex
groups. For real groups there are two (and, indeed, only
two*) distinet cases, according as the invariant conic
(necessarily non-degenerate) is real or imaginary. The two
methods there given as optional for complex groups are to
be differentiated for real groups to correspond to the cases
of real and imaginary conies, yielding respectively the nor-
mal types (I) and (I') of p. 568, or types (9) and (7)
respectively of this paper.

9. The real four-parameter groups G, and R, have been
proved to have different structures. Applying the imaginary
transformation of variables

X =2, Y=y, X,=I, Y,=I  (I'=-—1),

the infinitesimal transformatlons B, B, B, A,, of R, be-
come

_,of _ 9o of of
bl =xléy' ylai’ bz zay yzax

5 of of of of

bu a yzag& 1ay + 1ax
- f o _ o o
Uy =Y, ayl + Ty axl + Y ayz +x1 axz’

* An irreducible ternary quadratic form with real coefficients is re-
ducible either to b(e,2 + €,2 + e2) or t0 b(e;2 + €,2 — e;2).
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They satisfy the commutator relations

(bbyy) =0, (bubi) = a1y (b)) = — by,
(b"”b“) =Ty (bﬂalz) = bm (bwaw) = - 2bn + 2621'

Except for the last relation, these are identical with the
commutator relations of B, B,,, B,,, 4,, (§6). Setting

W1 = gy m = - bm Ws = bu - bzz) W4 = bu + bm
we have the commutator relations

(mw, = —2W, (W2‘/Vs)=2W17 (W, W) =2W,
(W.W) =0, (W Wy)=0, (W, W;)=0.

These relations are also satisfied by the transformations
w, = %9 + Yp, W, = P — Yq, Wy = ¥q — Yp, w, = 2p + Yq,

which generate the general binary group G,. By an imagi-
nary transformation of variables, K, may be given a real form hav-
ing the same structure as G,

10. Consider the group G of all binary transformations

. X =aX+ 7Y _
S: {Y’=ﬁ_X—I—3Y (a6 —pr=1)

upon complex variables X, Y with complex coefficients of
determinant unity. TLet I*= — 1 and set

X=ao+41In, Y=y+ Iy, a=0a+ Ia, f =0+ Ib, ete.

Then 8 corresponds to the quaternary transformation

v oY N

= ' @ —a ¢ —c

> . A @ G ¢
20yl b —b 4 —d
y/=| b b d, d

The relation ad — fy =1 gives

ad —be—ad + be =1, ad + ad—be, —be=0.
The determinant of 3 is seen to equal
(ad — be — ad, + b,e)* + (ad, + a,d — be, — be)* = 1.

To the product §, S, of two substitutions of the form &,
corresponds the product .3, of the corresponding substi-
tutions 3. Hence the group G is isomorphic with the
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group I' of the substitution 3. But 3 reduces to the
identity only when § is the identity. Hence the isomorph-
ism is holoedric.

By the usual method, the general infinitesimal transforma-
tion of I'is found to be a linear combination of the follow-
ing linearly independent transformations :

of of o o
ox oz, Qy o9y,

A % Ty -y %
4, - z % -y
B 0 0 z z,
B, 0 0 —ux x
C Yy % 0 0
01 Y% Y 0 0

The real group I' therefore possesses no invariant. The
non-vanishing second minors of the matrix of coefficients
are

P=o+a', Q=y+y’, R=wy+ay, S=zy—ay.
Upon them the group I’ gives rise to the following transfor-

mations :
of of of o
oP 2@ oOR 28

4] 2P —29 0 0
4, 0 0 —28 2R
B| o0 2R P 0
B| 0 —28 0 —P
c| 2r o0 Q 0
o,/ 28 o0 0 Q

The determinants of the fourth order of this matrix are all
identically zero. To obtain the homogeneous invariants,
we annex Euler’s homogeneous operator

H= Paf+Q a{2+R ~f+s i.
The determinant of the coefficients of 4, 4,, B, H equals
8PR(S8*+ R'—PQ). The determinant of 4, 4,, B,, Hequals
—8PS(8*+ R* — P@). In this way the only homogeneous
invariant is seen to be
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=8+ R — PQ.

In terms of the initial variables =, =, v, y,, we see that ¢
vanishes identically. Also
P=jas+In|=|X|, @=]|Y],

X= P YT @

The group G is hemiedrically isomorphic with the group
of linear fractional substitutions

_ttrz ,_ Y
YA X
The quaternary group on P, @, R, S is isomorphic with
a ternary fractional group on @/P, R/P, S/P. But

p=(7)+(3)
»=\p7)*t\p):
Eliminating @/P, we obtain a group of birational quad-
ratic transformations in the plane. It may evidently be
obtained more directly from the transformations (18).

THE UNIVERSITY OF CHICAGO,
January, 1901.

(18) z

ON HOLOMORPHISMS AND PRIMITIVE ROOTS.
BY DR. G. A. MILLER.
(Read before the American Mathematical Society, February 23, 1901.)

Ix an earlier note* it was observed that every holomor-
phism of an abelian group with itself can be obtained by es-
tablishing an isomorphism between the abelian group and
one of its subgroups (which may sometimes be the entire
group) and associating the product of corresponding oper-
ators with the original operator of the group. The present
note is devoted to some additional developments along this
line and especially to some elementary results in the theory
of numbers which may be derived by this method.

Let s, represent an operator of order p™ (p being any
prime number) and let P, the group generated by s,, be

* BULLETIN, Vol. 6 (1900), p. 337.



