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where px and f\ denote the principal radii of S. For the 
second of the conditions (5) this gives p1 = />2, that is, S is a 
sphere, when real. Combining these results we have that 
minimal surfaces and spheres are the only real surfaces for which 
the spherical representation of lines of length zero is the system of 
rectilinear generatrices of the sphere. 

In order to determine what surfaces have the lines of 
length zero on the sphere for spherical representation of its 
asymptotic lines we note that for the parameters used pre­
viously the equation of the asymptotic directions is* 

rdu2 + 2(s + z)dudv + tdv2 = 0. 

Hence, in order that the u and v lines may be asymptotic for 
the surface, the condition is 

r = t = 0, 

which as we have seen characterizes the sphere. Again, in 
order that the parametric lines may form a conjugate system 
we get from the above equation the condition 

s + z = 0, 

that is minimal surfaces. Recalling the above theorem we 
have the following : 

In order that the asymptotic lines or a conjugate system on a sur­
face may he represented upon the sphere by its imaginary genera­
trices , they must be lines of length zero on the surface. 

PRINCETON, 
November, 1901. 

SOME PROPERTIES OF POTENTIAL SURFACES. 

BY DR. EDWARD KASNER. 

(Read before the American Mathematical Society, April 27, 1901.) 

IN a previous paper, published in the BULLETIN, volume 7, 
pages 392-399, the author studied the algebraic curves 
<p(x y) = 0 defined by the condition <pxx + <pyy = 0. Two 
classes of characteristic properties were obtained, the first 
translating directly the differential equation and the second 
arising from the well-known connection between harmonic 

*Darboux, Leçons, I, p. 246. 
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functions and functions of the complex variable. The present 
paper extends some of the results to the corresponding type 
of surfaces,* i. e., to the surfaces expressed in rectangular 
coordinates by an equation ?>(#, y, z) = 0 where <p is a 
rational integral solution of the potential equation 

3V 3V 3V „ 
(1) A ^ - ^ + ^ + g ^ - O . 

The results obtained in §3 , however, apply not merely to 
algebraic but to all analytic potential surfaces. 

§ 1. Apolar Properties. 

The algebraic potential surfaces are characterized most 
simply by their relation to the imaginary circle at infinity, f 
Considering the latter as a degenerate class quadric, its 
equation in rectangular plane coordinates may be written 

(2) Qsw2 + ^ + wa = 0. 

In homogeneous coordinates the condition that a quadric 

uP
2 = 2 PaPth = ° (t, k = 1, 2, 3, 4) 

is apolar to a surface 
0 == a* = 0 

is expressed by the identical vanishing of the covariant 

d20 
8=aP>ar*mXPa dxi3xk 

Applying this to rectangular coordinates and assuming the 
quadric to be Q, this covariant takes the form 

3V , 3V , 3'V 

Comparing this with the defining equation (1) we have 

* The focal properties of the curves do not seem capable of direct gen­
eralization. The w-dimensional extensions of the results obtained in this 
paper are in general obvious. 

t That there must be such a relation is seen a priori from the fact that 
the defining differential equation is invariant under the conform group, 
which contains the group of euclidean geometry as a subgroup. 



1902.] PROPERTIES OF POTENTIAL SURFACES. 245 

I . All potential surfaces are apolar to the imaginary circle at 
infinity considered as a degenerate quadric; conversely, any sur-
face apolar to this circle is a potential surface. 

T h e imaginary element which enters in to this character­
ization may be eliminated by considering the polar quadrics 
of the surface, which, from the definition of the apolar re­
lation, mus t themselves be apolar to Q. If a quadric sur­
face is apolar to Q i t mus t intersect the plane a t infinity in 
a conic which, as a curve of second order, is apolar to the 
imaginary circle considered as a curve of second class, and 
therefore contains triples of points mutua l ly conjugate wi th 
respect to the circle. I t follows t ha t the asymptotic cone 
of the quadr ic contains among its generators tr iples of mu­
tual ly orthogonal lines. The potential quadrics a re t h u s 
identical wi th wha t may be termed the rectangular or equi­
la teral hyperboloids* from their analogy to the rectangular 
hyperbolas. Theorem I may now be restated 

I I . The polar quadric of any point with respect to a potential 
surface is a rectangular hyperboloid ; conversely, if all the polar 
quadrics of a surface are of this species, it is a potential surface. 

Since t he poiar quadrics of a polar surface coincide with 
t h e polar quadrics of the original surface, we have 

III. The polar surfaces of a potential surface are also poten­
tial surfaces. 

§ 2 . Special Potential Surfaces. 

A relation between the potential curves and surfaces pre­
sents itself when the surface considered is cylindrical. The 
equation of such a surface may be assumed in the form 
<p(x, y) = 0, so t h a t àw reduces to <p + <p . Since the 
vanishing of th is expression is the condition for a potent ia l 
curve, the resul t may be stated 

I V . A cylindrical surface belongs to the class of potential sur­
faces when, and only when, its right section is a potential curve. 

This relat ion may be generalized by projecting the imag­
inary circle Q in to an arbi t rary conic and referring to theo­
rem I V of t he article cited above on potential curves. 

I V ' . If a conical surface with its vertex V in the plane of a 
conic G is apolar to the latter (considered as a degenerate class 
quadric), then any plane passing through the polar line of V with 
respect to G intersects the conical surface in a curve apolar to the 
point pair cut out upon C; conversely, etc. 

* An equation of the second degree in x, y, z represents such a quadric 
when the sum of the coefficients of #2, y2, and z2 equals zero, as may be 
verified directly from the condition A 0 = 0. For a complete discussion 
of these quadrics cf. H. Vogt, " Ueber ein besonderes Hyperboloid. " 
Crelle, vol. 86 (1879), pp. 297-316. 
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If a potent ial cylindrical surface degenerates into a set of 
planes, t he r ight section will consist of a set of lines form­
ing a potential curve. Applying the theorem* concerning 
the asymptotes of potential curves, i t follows t ha t the lines 
mus t be concurrent and disposed symmetr ical about the i r 
common point. 

V. A set of planes having a common perpendicular plane 
constitute a potential surface when, and only when, the planes in­
tersect in a common line and are disposed symmetrically about it. 

Another typef of degenerate potential surfaces formed of 
a number of planes is obtained by adding to the above set 
t he common perpendicular plane. For if </>(x, y)==0 repre­
sents the original set of planes, the new set may be repre­
sented in the form z<p(x, y) = 0, and the Laplacian of the 
first member is z(<pxx + ^ J . 

Among the potential functions, those which are homo­
geneous play an impor tan t rôle. The corresponding surfaces 
a re cones whose characterist ic property may be deduced from 
the following 

L E M M A . If a cone 8n of nth order is apolar to a plane curve 
Ch of hth class, considered as a (degenerate) surface Ck of kth 
class, then Sn intersects the plane of Ck in a curve Sn' which is 
apolar to Ck; the converse also holds. 

I n t he proof any system of homogeneous coordinates may 
be assumed since the relat ions considered are projective. 
T a k e then the vertex of the cone as one vertex of the funda­
menta l t e t rahedron and let t he other th ree be taken in thé 
p lane of Ck. T h e equation of Sn is then of the form 
S(xv x2, x%) = 0, and t ha t of Ck is C(uv u2, w8) = 0. T h e 
equat ions of the related curves Sn' and Ck a r e the same as 
those of t he surfaces, since xv x2, x9 and uv u2, u% may be 
interpreted, independent ly of x4 and uv as t r i l inear coordi­
na tes in t he plane it4 = 0 which is t he p lane of Ck. T h e 
condit ion of apolar i ty between the surfaces Sn, Ck is t h u s 
identical wi th the condit ion of apolari ty between the curves 
Sn', Ck. Th i s is the resul t expressed in the lemma. 

Applying th is to the case when Ck becomes Q, t he imagi­
n a r y circle at infinity, we h a v e j 

X I . A conical surface is a potential surface when, and only 

* Briot and Bouquet, Théorie des fonctions elliptiques, p . 227. 
t Cf. the types referred to in Thomson and Tait 's Natural Philosophy, 

2d éd., §781. 
X This is equivalent to Clifford's theorem concerning nodal curves, 

" On the canonical form of spherical harmonics," Works, p. 234. Cf. 
W. Thomson, " O n the general canonical form of a spherical harmonic 
of wth order," Report 41st Meeting Brit. Assoc. Adv. Scitnce, 1871, p. 10. 
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when, it intersects the plane at infinity in a curve apolar to the 
imaginary circle. 

§ 3. Nodes and Multiple Curves. 

The preceding results relating to algebraic potential sur­
faces may be applied to the more general class of analytic 
potential surfaces. Eeferred to a system of rectangular co­
ordinates with the origin situated on the surface, the equa­
tion an analytic surface is of the form 

where vk is a homogeneous function of degree k in x, y, z. 
Since 

Acp = Avx + Av2 + -. + Avk + -

and since no two terms in the second member are of the 
same degree, it follows that for a potential surface dvk must 
vanish identically for every value of h. 

If now the origin is a node of order h — 1, 

VjSsO, v2 = 0, • - , Vj - iSsO, 

and vh = 0 is the equation of the tangent cone. But from 
the above Avk = 0, i. e., the cone must be a potential surface. 

VII. If a potential surface has a node of order h— 1, the 
tangent cone is a potential cone of hth order. When the node is 
simple the cone is of the second order and contains triples of mutu­
ally orthogonal generators. 

If the analytic surface considered has a multiple curve of 
order >b — 1, and the origin is taken anywhere on the curve, 
vh = 0 represents the k planes tangent to the different sheets 
of the surface. Since these planes all pass through the line 
tangent to the multiple curve, theorem IV may be applied ; 
therefore* 

VIII. If a potential surface has a multiple curve of order 
k — 1, then the k sheets passing through the curve intersect each 
other at angles equal to 2n/k ; when k = 2, the two sheets are ortho­
gonal. 

The decomposable surface <p4> = 0, formed by two poten­
tial surfaces <p = 0, </' = 0 is not in general a potential sur­
face. The Laplacian of a product may be developed 

* For the corresponding theorem concerning the multiple points of po­
tential curves, see Briot and Bouquet, I. c , p. 225 ; Thomson and Tait, 
Natural philosophy, 2d éd., \ 780, where reference is made to an earlier 
paper by Rankine, 4l Summary of the properties of certain stream lines," 
Phil. Mag., 1864. 
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A{if(p) = (pAip + (pA<p + 20, 
where 

dx dx dy dy ' dz dz 

As is well known, £ vanishes only when the two families 
<p = const (p = const, are orthogonal. Therefore 

IX. If a pair of potential surfaces <p = 0, <p = 0 combined 
form a potential surface, the families <p = const, <p = const, are 
orthogonal. 

The projective generalization of this result is 
IX' . If a surface apolar to a conic decomposes into two surfaces 

apolar to the same conic, then the tangent planes to the latter sur­
faces at any point in their intersection cut the plane of the conic in 
a pair of lines conjugate with respect to the conic. 

A MODERN ENGLISH CALCULUS. 

An Elementary Treatise on the Calculus, with Illustrations 
from Geometry, Mechanics and Physics. By GEORGE A. 
GIBSON, M.A., F.E.S.E., Professor of Mathematics in the 
Glasgow and West of Scotland Technical College. Lon­
don, Macmillan & Co., 1901. 12mo, pp. xix + 459. 
I N the year 1891 Harnack's Elements of the Differential 

and Integral Calculus, which appeared in Leipzig in 1881, 
was translated into English. This book gave the first sys­
tematic presentation in the English language of the leading 
principles of modern analysis in their relation to the foun­
dations of the infinitesimal calculus. While not wholly 
free from errors, and sometimes difficult to read, owing to 
inadequate exposition of details, the book is nevertheless 
conceived in the spirit of modern mathematics and it lays 
stress on those principles of analysis which are essential for 
a rigorous development of the calculus. 

The first book of English origin to treat the calculus from 
a modern standpoint was Lamb's Infinitesimal Calculus,* 
published in 1897. This is an excellent treatise and any 
later work on the calculus, of modern tendencies, must have 
many points of contact with it. 

* A notice of this book by the present writer appeared in Science, new 
series, vol. 7 (1898), No. 176, p. 678. 


