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resulting parabola is parallel to the two parallel asymptotes. 
An extension to space of three dimensions is easy ; thus 

the analogue to the first theorem gives 
The three paraboloids contained in the family 8 + IS' = 0 are all 

real j if either of the quadries 8,8' is an ellipsoid. So too, we find : 
If the two quadries 8, 8f are hyperboloids, two of the parab

oloids will be imaginary if (and only if) two cones with a 
common vertex, parallel to their asymptotic cones, intersect 
in two real generators. 

There are five possibilities when two (or three) of the 
paraboloids coincide ; without enumerating them all, it may 
be noted that when 8 or S' is an ellipsoid, the coincidence 
implies degeneration of the paraboloids. All the other cases 
may be obtained by suitable interpretations of Weierstrass's 
algebra ( i l Zur Theorie der bilinearen und quadratischen 
Formen," Monatsberiehte d. k. Akad. z. Berlin, 1868 ; Werke, 
volume 2, page 19). 

Slightly digressing from the line of thought just indicated, 
and reverting to Huntington and Whittemore's paper, I 
note that their result, that the eccentricity is wholly inde
terminate (I c , page 123), suffices to specify the conies con
sidered by them. For, in orthogonal cartesians, the eccen
tricity is determined by the ratio (a + b)2/(ab — Aa), which 
is only indeterminate if 

ab — h2 = 0, a + b = 0, 
i. e., if 

b = — a, h = d= i'a, 

and then the conic reduces to 

a(x ± iy)2 + linear terms = 0. 

QUEEN'S COLLEGE, GALWAY, 
February 22, 1902. 

A SECOND DEFINITION OF A GROUP. 

BY DB. E. V. HUNTINGTON. 

(Read before the American Mathematical Society, April 26, 1902.) 

T H E following note contains a definition of a group ex
pressed in four independent postulates, suggested by the 
definition given in W. Burnside's Theory of Groups of 
Finite Order (1897). The definition presented by the 
writer at the February meeting contained three independent 
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postulates,* and the definition just proposed by Professor 
Moore f contains five independent postulates. The compar
ison of these three definitions is therefore very striking. 

Definition. 

We consider here an assemblage or set of elements in 
which a rule of combination* denoted by o is so defined as 
to satisfy the following four postulates : 

1. If a and b belong to the assemblage, then a o b also belongs to 
the assemblage. 

2. (a o b) o e = a o (b o c), whenever a o b, boe, ( a o J ) o c 
and a o (6 o c) belong to the assemblage. 

3. For every two elements a and b there is an element a' such 
that (a o a') o b = b. 

4. For every two elements a and b there is an element a" such 
that b o (a" o a) = b. 

From 1,2, 3 it follows that for any two elements a and b 
there is an element-a; such that a o x = b. For by 3 take 
a' so that (a o a') o b = b and by 1 take x = a' o b ; then by 
2 a o x = b. 

Similarly, from 1, 2,4 follows the existence, for every two 
elements a and b, of an element y such that y o a = 6. 

Therefore every assemblage which satisfies the postulates 
1, 2, 3, 4 is a group, according to the writer's previous 
definition. 

If we wish to distinguish between finite and infinite 
groups we may add a fifth postulate, either : 

5a. The assemblage contains n elements, where n is a positiv 
integer ;% or 

5b. The assemblage contains an infinitude of elements. 

Independence of Postulates 1, 2, S, 4- ^nd 5a, when n > 2. 

The mutual independence of postulates 1, 2, 3, 4, 5a for 
finite groups may be established, when n > 2, by use of the 
following systems : 

*See BULLETIN, pp. 296-300. 
t An abstract of Professor Moore's paper is given on p. 373 of the pres

ent number of the BULLETIN. 
% The number of elements in a finite group is called the degree of the 

group by H. Weber, Algebra, Vol. II (1899), p. 4, or the order of the 
group by most other writers. Cf, W. Burnside, loc. cit., p. 380. 



3 9 0 DEFINITION OF A GROUP. [ J u n e , 

Mv If n is odd, n = 2k + 1, let Mx be the system of al 
integers from — k to + k, while a o b = a + 6. 

If 7i is even, n = 2& -f 2, let ifj be the system of all in
tegers from — k to + k with an additional element z, while 
the rule of combination is defined as follows : When a 4= s 
and b =ip z, aob = a+ b ; further, zo0 = 0oz = z, and 
z o z = 0 ; but when a 4= 0> a o 2 = 2 o a = & + l which does 
not belong to the assemblage. 

Mr Let M2 be the system of positive integers from 1 to n, 
with the rule of combination defined as follows : 

a ob = a + b when a + b ^ n, 
= a + 6 — n when a + 6 >• n, 

except that a o b = 2 when c& + & = l o r t i + l , 
and a o 6 = 1 when a + 6 = 2 o r n + 2. 

Jf3. The system of positive integers from 1 to n, with 
a o b = a. 

iüf4. The system of positive integers from 1 to n, with 
a o b = b. 

ilt/g. Any infinite group. 
Since the system Jfft is found to satisfy all the other pos

tulates but not theMh (k = 1, 2, 3, 4, 5) we see that no one 
of these five postulates is a consequence of the remaining 
four. 

Independence of Postulates 1, #, 3, 4- and 5b. 
Similarly, the mutual independence of postulates 1, 2, 3, 

4, 56 for infinite groups may be established by the use of 
the following systems : 

Nv The system of all integers except + 1 and — 1, with 
a o b = a + b. 

N2. The system of all rational numbers, with a o i = 
(a + 6)/2. 

JV8. The system of all positive integers, with a o b = a. 
JV4. The system of all positive integers, with a ob = b. 
N6. Any finite group. 
Thus no one of these five postulates is a consequence of 

the remaining four. 

Weberh Definition of a Finite Group. 

In conclusion we may notice that if, in the definition of 
a finite group, we replace postulates 3 and 4 by the follow
ing : 

3'. If a o b = a o b' then 6 = b' ; 
4'. If a o b = af o b then a = a' ; 
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we shall have the definition given by H. Weber, loo. cit. 
That these postulates 1, 2, 3', 4', 5a are mutually indepen
dent (when n > 2) has already been shown in the writer's 
previous paper (page 300). 

I t should be noticed, however, that postulates 1, 2, 3', 4', 
56 would not be sufficient to define an infinite group, since 
the system of positive integers, with a o b = a + 6, satisfies 
them all, and is not a group. 

H A R V A R D UNIVERSITY, 
CAMBRIDGE, MASS. 

DETERMINATION OF ALL THE GROUPS OF 
ORDER jT, p BEING ANY PRIME, WHICH 
CONTAIN THE ABELIAN GROUP OF 

ORDER p™-1 AND OF TYPE 
(1, 1, 1, - ) . 

BY PROFESSOR G. A, MILLER. 

(Eead before the San Francisco Section of the American Mathematical 
Society, May 3, 1902.) 

LET tv t2, •••, tm_i represent a set of independent generators 
of the abelian group H of type (1 ,1 ,1 ,—). I t is well known 
that the order of the group of isomorphisms ft of H is 

(m—1) (TO—2) 

p * ( p - 1 ) (p2 - 1 ) - (pm~l - 1). One of its sub-
(TO—1) (TO—2) 

groups i\ of order p 2 is composed of all the opera
tors of & which correspond to the holomorphisms of H in 
which £a (a = 2, 3, •••, w — 1) corresponds to itself multi
plied by some operator in the group generated by tv t2J •••, 
ta_lt The number of conjugates of *\ under # is clearly 

(m—1) (m—2) 

equal to the order of # divided by p 2 (p— l ) m ~\ 
We shall first determine the number of sets of subgroups of 
#, which are conjugate under #. I t may be observed that 
even characteristic subgroups of #, may be conjugate under 
#. For instance, the octic group has a characteristic sub
group of order two and four other subgroups of this order, 
yet all of these subgroups are conjugate under # when the 
latter is the simple group of order 168. 

All the holomorphisms of H may be obtained by estab
lishing isomorphisms between H and its subgroups and 
letting the product of two corresponding operators in these 
isomorphisms correspond to the original operator of H.* 

* BULLETIN, vol. 6 (1900), p. 337. 


