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SINGULAR POINTS O F FUNCTIONS W H I C H 
SATISFY P A R T I A L D I F F E R E N T I A L E Q U A ­

TIONS O F T H E E L L I P T I C T Y P E . 

BY PROFESSOR. M A X I M E BOCHER. 

(Read before the American Mathematical Society, December 30, 1902. ) 

I N the study of the nature of isolated singular points of har­
monic functions of two variables * the following theorem may 
well be given a fundamental place : 

I . If the harmonic function n becomes infinite for every method 
of approaching the isolated singular point (xQ, y0), then u has the 
form 
(1) G log V\x-xoy + (y - yQ)2 + v (x, y), 

where G is a constant and v is harmonic at (xQ} t/0). 
This theorem follows at once from well known facts concern­

ing functions of a complex variable.f I t is, however, highly 
desirable to obtain some other proof for it in order to be able to 
follow out consistently the method introduced by Riemann of 
deducing the theory of functions of a complex variable from 
the theory of harmonic functions of two real variables. Such 
a proof I have recently found, and it turns out that it can be 
at once applied to large classes of partial differential equations 
which include Laplace's equation in two dimensions as a very 
special case. 

The theorem thus generalized, together with some applica­
tions, forms the subject of the present paper. 

* I speak of a function of the n variables xv— - xn as harmonic at the point 
(%,• • -, an) if throughout the neighborhood of this point it has continuous 
partial derivatives of the first two orders and satisfies Laplace's equation 
2 0% / fa*2-= 0. I speak of it as harmonic throughout a region if it is har­
monic at every point of the region. By an isolated singular point of a har­
monic function I understand a point at which it fails to be harmonic, 
although it is harmonic at every other point in the neighborhood of this 
point. 

tCf. Annals of Mathematics, Second Series, Vol. I (1899), p. 88. The 
proof can be given most readily by noticing that the derivative of the func­
tion of the complex variable x -f yi of which u is the real part is single 
valued in the neighborhood of the point x0 -f y0i and can therefore be devel­
oped about this point by Laurent's theorem. Integrating this series we have 
a development for the function of which u is the real part from which the 
theorem follows without difficulty. 
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1. Laplacés Equation in n Dimensions. 

We shall consider in this section a harmonic function 
u(xv • • -, xn) of n independent variables. If n > 2, theorem I 
takes the form 

I I . If the harmonie function u becomes infinite for every 
method of approaching the isolated singular point {xv • • -, xj, then 
u has the form 

I>*-^)2J2 +v(xv...,xn), 

where O is a constant and v is harmonic at (xv • • -, xn). 
For the sake of simplicity of exposition we will prove this 

theorem for the case n = 3, but the proof for any larger value 
of w,* and also for the case n = 2 (Theorem I) is practically 
identical with that here given. 

We suppose, then, that u(x, y, z) is harmonic throughout the 
neighborhood of P 0 = (x0, y0, z0) and becomes infinite for every 
method of approaching P0 . Describe a sphere 8 about P 0 as 
centre small enough so that u is harmonic everywhere within 
and on the surface of S except at P0 , and let u be the function 
harmonic at every point within and on 8 and having on 8 the 
same values as u. The function 

(3) F(x,y,z) = u-~u 

is then harmonic at every point within and on 8 except at P0 , 
vanishes at every point on 8, and becomes infinite for every 
method of approaching P0 . 

Let P1 = (xv yv zx) be any point within 8 other than P0 , and 
let G(x, y, z), or more explicitly G(x, y, z ; xv yv z^, be the 
Green's function which becomes infinite at this point like 1/r 
but is otherwise harmonic within and on # and vanishes on 8. 

Let us now consider the surface F(x, y, z) = c0 where c0 is a 
numerically large constant which we take to be positive or 
negative according as F becomes positively or negatively infi­
nite at P0 . This surface, which we will denote by S0, is a 
closed analytic surface surrounding P 0 and lying wholly within 

*That all the facts concerning Laplace's equation of which we are about 
to make use admit of immediate generalization to space of n dimensions is 
well known. Cf. Kronecker : Vorlesungen über die Theorie der einfachen 
und der vielfachen Integrale, Leipzig, 1894. In Vorlesungen 16 and 17, 
proofs of many of the theorems are given. 
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89 and within 80 the function F is numerically greater than c0. 
Accordingly if we denote by n the interior normal to this sur­
face, it is clear that dF/dn does not change sign on the surface, 
being nowhere negative if F becomes positively infinite at PQ, 
nowhere positive if J7 becomes negatively infinite. 

Similarly let cx be a large positive constant and consider the 
surface (which as it happens will in this case be a sphere) 
G(x, y, z) = ov This surface, which we will call 8V lies within 
8} surrounds Pv and on it dGjdn does not change sign. We 
suppose the absolute values of c0 and cx to be so great that 80 

and 8X lie wholly outside of one another. 
Now apply Green's theorem to the region bounded by S, S0, 

and 8V Since F and G both vanish on 8 this gives 

<*> {('*-*£)-£(«£-'£)-
Accordingly, by applying the law of the mean for integrals, we 
have 

rdG rdF rdF r< 
(5) '«£*«*-U* , , 8-<HK*-\C 
where GSo and FSl denote the values which the functions G and 
F take on at certain points of the surfaces 80 and 8X respectively. 
The second integrals on both sides of this equation have the 
value zero since G and F are harmonic at P 0 and Px respec­
tively. The values of the first integrals are independent of the 
surfaces over which we integrate provided merely that we in­
tegrate over small closed surfaces surrounding the points Px 

and P0 respectively. By taking the first of these surfaces as 
a small sphere with centre at Px we find at once 

—- dS = 47T. 
on 

(6) f 
«/-Si 

If, then, we write 
CdF 

we have 
(8) 4TTFSI = aGSo. 

Now let the quantities c0 and cx become infinite, so that the sur-
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faces 80 and Sx shrink down towards the points P 0 and P1 re­
spectively. We get as the limit of the last equation 

F(xv Vv 2i) = 4 ^ °ixv Vo> 2o) = 4^. G(xo> Vw zo > xv Vv zi) 

= i ^ G(xv Vv h > xo> V» \)* 

In this formula we now regard the point P 0 as fixed, but P x as 
variable. I t is important to notice that a is independent of xv 

yv zv as is obvious from its definition (7). Accordingly (9) in 
combination with (3) and the well known formula 

Q{xv yv «! ; ar„, y0, z0) = [fo - x0f + {y1 - yaf 

where g is a harmonic function of xv yv zx at P0? gives us pre­
cisely the formula (2) for u which we wished to establish.f 

Let us now consider the behavior of a harmonic function at 
infinity. We will assume n > 2. 

Let 
r2 = x\ + \-x\ 

* We make use here of a fundamental theorem concerning Green's func­
tions, the ordinary proof of which is merely the special case of the work just 
done in which we take for the function F the Green's function (x(x, y, z; % 
V01 zo)' Cf. Green's original Essay, § 6. 

f The proof here given may easily be so modified as to avoid the use of 
Green's functions. For this purpose we apply Green's theorem to the two 
functions u and l/r1? where rx is the distance from (xly ylf zx) to (x, y, z). We 
use the same region as above except that Sl is now a small sphere having its 
centre at Px ; and get in place of (4) 

from which follows, if we let I „ —dS= a, 
J Si du 

4™(xD 2/i, * i ) = a [ K — a0)2+(2/i — 2/o)2+(% — so)2]-** 

The integral which here remains is easily shown to be a harmonic function 
of (xj, ylt %) throughout S. 
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and suppose that u (xv • • ;xn) is harmonic when r > R, where R 
is some positive constant. I t follows from a theorem due to 
Lord Kelvin * that if we let 

' = -f r' = -

7n-2 = ^ ( ^ l * ' * %) Xn) 

r 

is a harmonic function of a?(, • • -, x'n at all points for which 
r' < 1 / R except at the point x[ = • • • = x'n = 0. 

Let us now consider the different ways in which u may be­
have as the point P = (xv • • -, xn) moves off to infinity. I t 
may become positively infinite for some ways in which P goes 
to infinity, negatively infinite for others. Let us, however, 
suppose that this is not the case. Then there exists a constant 
a such that u + a does not vanish at any point for which r > R. 
Accordingly by (11) the function 

/n—2 

r 
is a harmonic function of x'v • • -, x'n which becomes infinite for 
every method of approaching the point r' = 0, and which can, 
therefore, by theorem I I , be expressed in the form 

b 

r 

where v is harmonic at the point r' = 0. We thus get 

(12) u(xv • • -, xn) = (b-a) + r'n~2 v(x[f •. -, < ) . 

Accordingly, no matter how P moves off to infinity, u ap­
proaches the finite limit b — a. Hence the theorem 

I I I . The function u being harmonic when r > R, it either 
becomes both positively and negatively infinite for different ways 
of going to infinity, or it approaches one and the same finite limit 
for every method by which the point P recedes to infinity.f 

*LiouvilMs Journal, vol. 12 (1847), p. 259. 
t We note in passing the following consequence of this theorem : 
Jf for all values of xx,- • •, xn the function u is harmonic and u < M (or if u^> m) 

then u is a constant. 

then 

( i i ) 
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If in particular u vanishes at infinity, we see from (12), in 
which now b = a, that 

(13) r^u{xv . . . ,0 

approaches a finite limit at infinity. Furthermore, by differ­
entiating (12) with regard to r we see that 

approaches a finite limit at infinity. This behavior of the 
functions (13) and (14) is often postulated as an additional 
restriction on the function u, whereas we see that it follows as 
a consequence of the mere requirement that u vanish at infinity. 

Let us now leave the consideration of the point at infinity 
and look again at a finite isolated singular point P0 . 

I V . If a harmonic function u of two or more variables be­
comes infinite for no method of approaching an isolated singular 
point P0 , then by suitably changing the definition of the function at 
this point it can be made harmonic there as well as elsewhere. 

In the case of two independent variables this theorem is sug­
gested at once by a similar theorem for functions of a complex 
variable, and can be readily proved by the method suggested in 
the second footnote on page 455. I owe to a remark of Pro­
fessor Osgood the following method by which the theorem can 
in all cases be established as an immediate consequence of 
theorems I and I I . 

For this purpose let us add to u the function 

f~ n ""12—n 

or in the case n = 2 the function 

log V{x-x$+{y-y,)\ 

We thus have a harmonic function having P 0 as an isolated 
singular point and becoming infinite for every method of ap-

For in this case by I I I u approaches a finite limit c at infinity. Let P 0 
be any point and describe a sphere with P 0 as centre. The average value of u 
on this sphere is known to be equal to the value of u at P0 . But by taking 
the sphere large enough, the average value of u on the sphere can be made to 
differ from c by as little as we please. Therefore the value of u at P 0 must be 
precisely c. But P 0 was any point. Therefore u has the value c everywhere. 
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proaching this point. I t therefore has the form (2), or if n = 2 
the form (1). Accordingly we have 

u = (0-l)l^(xk-xkf]^+ v ( » > 2 ) 

u = (C- 1) log V(x- x0f +{y- ytf + v (n = 2) 

But since u does not become infinite as we approach P0, we 
have 0 = 1 and therefore u = v. Accordingly u is harmonic 
at P0 . 

I will add that precisely the same method may be applied to 
prove the following theorem : 

V . If a harmonic function u of two or more variables becomes 
infinite for some but not for all methods of approaching an isolated 
singular point P0 , then it can be made to become both positively 
and, negatively infinite (and therefore also to take on every real 
value an infinite number of times) by suitably approaching P0 . 

2. The Elliptic Equation with two Independent Variables. 

We will consider in this section the differential equation 

, . d2u d2u du _ du 
<15) dx> + etf + aà» + bdy + GU=0> 

where a, b, and c denote real functions of the two independent 
real variables x, y analytic at every point of a region T of the 
x, y plane. We shall find it convenient to speak of a function 
u as being harmonic with regard to (15) at a given point, if at 
this point and throughout its neighborhood it has continuous 
first and second partial derivatives and satisfies (15). We will 
say that u is harmonic throughout a region with regard to (15) 
if it is harmonic at every point of this region with regard to 
(15). According to a remarkable theorem of Picard,* a func­
tion harmonic with regard to (15) at a point is analytic at that 
point. 

In a recent dissertation f E. R. Hedrick has confirmed and 
made more precise a guess of Sommerfeld % by proving the fol­
lowing theorem : 

* Journal de V École Polytechnique, Cah. 60 (1890). 
f "Ueber den analytischen Character der Lösungen von Differentialgleich-

ungen," Göttingen, 1901. 
% Encyclopédie, I l A 7 c, pp. 515 and 570. 
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If P0 = (xQ, y0) is any point of T} there exists a function har­
monic with regard to (15) throughout the neighborhood of P0, ex­
cept at P 0 itself and having the form 

(16) w = log V(x-xoy+(y-%f • U(x, y) + V(x, y) 

where U is harmonic with regard to (15) at P0, U(xQ, y0) = 1, 
and V is analytic at P0 . 

Now the theorem we wish to prove is this : 
V I . If the function u harmonic with regard to (15) has an iso­

lated singular point at P 0 * and if u becomes infinite for every 
method of approaching P0 , then u has the form 

(17) u= Cw + v 

where C is a constant, w is the function (16), and v is a function 
harmonic with regard to (15) at P0 . 

To prove this theorem let us begin by considering the special 
case of (15) in which c = 0. Draw a circle 8 about P0 as 
centre and so small that not only the function w (formula (16)) 
is harmonic with regard to (15) within and upon 8, except at 
P0 , but that a Green's function f G(x, y ; xv yx) exists for 
every point PY = (xv yx) within 8. Let û be the function 
which takes on the same values as u on S and is harmonic 
with regard to (15) throughout the interior of 8, and form the 
function 

F(x, y) = u — ü. 

Let us now surround the points P 0 and Px (these points be­
ing supposed distinct) by small closed curves 80 and 8X respec­
tively on which the functions F and G have the numerically 
large values c0 and cx respectively ; and let us suppose these 
values to be taken so large that 80 and 8X lie wholly outside of 
each other. Now apply the Kiemann-Darboux extension of 

* I t must be clearly understood that we assume a, b, c to be analytic at P0 . 
That is we consider not the fixed isolated singular points of the differential 
equation, but the movable singular points of its solutions. 

fTha t is a function of (x,yj which vanishes on S, becomes logarithmically 
infinite at P l 5 and is harmonic with regard to the equation adjoint to (15) 
within and upon S except at Pv Cf. Sommerfeld, Encyclopaedic, Vol. I I , 
p. 570, where it is stated that the existence of this Green's function follows 
from Mr. Hedrick's theorem. This is in fact the case, but only after Mr. 
Hedrick's work has been completed by an investigation of the dependence of 
w (formula (16)) on the parameters {x0, y0) ; an investigation which is also 
necessary for the purposes which Mr. Hedrick had in view. 
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Green's theorem (cf. Encyclopâdie, Volume I I , page 513), to the 
region bounded by S, 80> 8V When we remember that through­
out this region .F satisfies (15) and G satisfies the adjoint of (15), 
while both of these functions vanish on 8, we see that Green's 
theorem reduces to 

J [ i ^ - - G^ - (a cos <£ + b sin 4>)FG^ ds 

CY dF dG 1 
= A i^~~ F~^ +(aG0S(t> + b sin 4>)FG\ds> 

where n denotes the normal to the curves 8Q and SY which 
points away from the points P 0 and Pv and cj> denotes the 
angle which this normal makes with the axis of x. Using 
formula (9) on page 515 of Sommerfeld's article* (Encyclo­
paedic, Volume I I ) we see that the first member of this equa­
tion has the value 2irF(xv y^. We have then 

X dF 
G~dnds 

+ C°J I ^̂  + ^ C0S * + b Sln ̂  J *' 
The last integral here is zero as we see at once by applying 
Green's theorem to the two functions G and 1, and to the 
region bounded by 80.f Applying the law of the mean to the 
first integral, as we have a right to do since dF/dn does not 
change sign on SQ, we can write 

2irF{xvyx) = G^J -^d*. 

Let us now allow the numerical value of c0 to increase indefi­
nitely, so that 80 shrinks down toward the point P0 . The 
quantity GSo then approaches G(x0, y0 ; xv yx) as its limit ; and, 
since this is diflferent from zero, X we see that the integral in 

* There is a mistake of sign in this formula, as is easily seen by comparing 
it with the familiar formula for Laplace's equation which is a special case of it. 

t Our restriction up to this point to the case c = 0 was in order to make 1 
a solution of (15), this being essential for the step here taken. 

{The equation (15) when c = 0 shares with the special case of Laplace's 
equation the property that a function harmonic with regard to (15) at a 
certain point cannot have a maximum or a minimum there, for otherwise by 
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the last formula also approaches a finite limit a. Thus we 
have 

F{xv VÙ = 2 ^ °ix» Vo *> xv 2/i) = 2TT H ( X V V1 i xo> Vo) 

where H denotes the Green's function for the adjoint of (15) 
(cf. Sommerfeld, p. 516). But H has the form (16) and there­
fore F, and so also u, have the form (17), as was to be proved. 

Having thus proved Theorem V I in the special case c = 0, 
we get the proof in the general case by means of the following 
transformation. 

Let yfr(x, y) be a function harmonic with regard to (15) at 
P 0 and having a value different from zero at this point. Then, 
making the transformation : 

u = yjrt, 

we find that t satisfies an equation of the form 

BH dH dt 7 dt ^ 

where av bx are analytic at P0 . Now if u becomes infinite for 
every method of approaching PQ9 t will do so too, and therefore, 
by what we have just proved, t becomes logarithmically infinite 
at P0 . From this we readily infer that u has the form (17). 

A second theorem concerning equation (15) is the following : 
V I I . If a function harmonie with regard to (15) becomes infi­

nite for no method of approaching an isolated singular point, then, 
by suitably changing the definition of the function at this point, it 
can be made harmonic there as well as elsewhere. 

The proof of this theorem being practically the same as that 
of theorem I V need not be repeated.* 

A theorem analogous to V may also be proved. 

subtracting a suitable constant, we should have a solution of (15) vanishing 
around a contour, which can be made as small as we please, and yet not 
vanishing identically, and this is well known to be impossible. Now 
G(xo> Voi x> y)> when regarded as a function of its last two arguments is, 
harmonic with regard to (15), and, since it vanishes on # a n d becomes nega­
tively infinite at P 0 , it could not vanish within S unless it had a maximum 
at some point within S. 

* We note in passing that theorems VI, V I I admit of immediate extension 
first to the case in which the second member of (15) is a given analytic func­
tion of (x, y), and second, by a change of independent variables, to the general 
linear differential equation with two independent variables and of the elliptic 
type. The statement of V I I would require no modification in this general 
case, while the modification necessary in the statement of V I will be readily 
seen. 
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3. More General Differential Equations. 
There seems little doubt that the results of this paper can be 

extended to all differential equations of the form 
i=n fi2„. i=n A,. 

(18) I ^ + I « | + »=/ (»>2) 
where av • • -, an, c, f are analytic functions of the n independent 
variables (xv • • -, xn). The only difficulty here consists in the 
proof of the existence of a Green's function for a sufficiently 
small region 8, which for the sake of simplicity we may take 
as spherical ; i. e., a function which, except at an arbitrarily given 
point Px in $,is continuous and has continuous first and second 
partial derivatives throughout 8, and satisfies the adjoint equation 

and vanishes on 8, while at P x it has the form 

(20) U-r2~n+ V, 

where r denotes the distance from Pv while £7and Fare analytic 
at Pv and U has the value 1 at this point, and satis fies (19). 

Granting the existence of this Green's function, the methods 
already used give at once the following theorem : 

"VIII. If throughout the neighborhood of a point P 0 at which 
the coefficients of (18) are analytic, a function u is continuous and 
has continuous first and second partial derivatives and satisfies 
{18), but if all these conditions are not satisfied at P0, then 

(a) if u becomes infinite for every method of approaching PQ it 
has the form 

u = U-r2-n + V 
where r is the distance from P0? U and V are analytic at P0, and 
U satisfies the equation obtained from (18) by replacing the second 
member by zero ; 

(b) if u becomes infinite for no method of approaching P 0 it can 
by a suitable change of definition at this point be made continuous 
there, in which case it will also have continuous first and second 
derivatives at P0, and will satisfy (18) there; 

(c) if u becomes infinite for some but not for all methods of ap­
proaching PQ, it takes on every value an infinite number of times 
in the neighborhood of P0 . 

H A R V A R D UNIVERSITY, CAMBRIDGE, MASS., 
January, 1903. 


