1903.] THE LOGARITHM AS A DIRECT FUNCTION.

includes many corrections not given by Schering in his appendix to Gauss's volume, or by Perott.

	For.	Read.		For.	Read.
468	Reg.	<i>Irr.</i> 2	2331	Reg.	Irr. 2
485	IV 4	IV 5	2196	Reg.	<i>Irr.</i> 2
544	Reg.	Irr. 2	2180	Reg.	<i>Irr</i> . 2
547	Reg.	Irr. 3	2304	Reg.	<i>Irr.</i> 2
557	II 11	II 13	2320	Reg.	<i>Irr.</i> 2
647	I 25	I 23	2624	* 3 *	*2*
894	IV 6	IV 7	2336	Reg.	Irr. 2
931	Reg.	Irr. 3	2900	Reg.	<i>Irr.</i> 2
933	IV 3	IV 4	2188	Reg.	Irr. 3
972	Reg.	Irr. 3	2085	VIII 5	VIII 4
993	IV 4	IV 3	2096 in IV 6	2096	2097
1116	IV 9	IV 6	2204	IV 11	IV 13
1261	II 10	IV 5	2221 in IV 9	2221	2224
1367	I 27	I 25	2376 in IV 12	2376	2366
1396	IV 7	II 14	2448	Irr. 2	Reg.
1508	Reg.	Irr. 2	6032	Reg.	Irr. 2
1598	Reg.	<i>Irr.</i> 2	6068	Reg.	<i>Irr.</i> 2
1660	IV 4	Omit	6084	Reg.	Irr. 2
1683	II 9	II 6	6148	Reg.	Irr. 2
1700		IV 12	6176	Reg.	<i>Irr.</i> 2
1701	Reg.	Irr. 3	9104	<i>Irr.</i> 2	Reg.
1725	Reg.	Irr. 2	9108	Reg.	Irr. 2
1796	IV 10	II 20	9156	Reg.	<i>Irr.</i> 2
1836	Reg.	Irr. 3	9216	Reg.	Irr. 2
1872	Reg.	<i>Irr.</i> 2	9324	Reg.	<i>Irr.</i> 2
1937		IV 12	9513	<i>Irr.</i> 2	Reg.
1982	IV 12	Omit	9554	Reg.	Irr. 2
1940	IV 8	IV 10	6075	Irr. 3	Irr. 9
			1		

THE LOGARITHM AS A DIRECT FUNCTION.

BY DR. EMORY MCCLINTOCK.

(Read before the American Mathematical Society, February 28, 1903.)

IN a paper of the same title published in the Annals of Mathematics for January, 1903, Mr. J. W. Bradshaw defines $\log x$ as a direct function of x, namely,

$$\log x = \int_1^x x^{-1} dx.$$

467

Attention being thus drawn to the subject, I think the time opportune to repeat and amplify a proposition of my own for the same general purpose.

In 1879 (American Journal of Mathematics, II, 101, etc.) I spoke of "the difficulty of comprehending logarithms," and quoted De Morgan's dictum that "the only definition of $\log x$ used in analysis is y, where $e^y = x$." After discussing this definition I said, "Another and, when duly weighed, most satisfactory definition may be derived from any one of an unlimited number of vanishing fractions, special cases of the general form $\log x = h^{-1}(x^{(1-a)h} - x^{-ah})$, where h is infinitely reduced. * * * This fraction is doubtless novel, though one case of it, where a = 0, is known. Even that case has not, I presume, been suggested heretofore as a definition. * * The various theorems pertaining to logarithms may be derived with the utmost facility by the aid of these vanishing-fraction definitions. Thus, if a = 0, we have by expansion

$$\log (1+x) = \frac{(1+x)^h - 1}{h} [h=0] = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots$$

To develop this proposition more fully, let us consider the function $y = h^{-1}(x^{h} - 1)$. Let k be positive, and, first, let h = k. When x = 1, y = 0; when $x = \infty, y = \infty$; and as x increases continuously from 1 towards ∞ , there is one and only one corresponding value of y, which increases accordingly from 0 towards ∞ . Secondly, let h = -k. Here again, when x = 1, y = 0; and, in the function $y = k^{-1}(1 - x^{-k})$, as x increases continuously from 1 towards ∞ , there is one and only one corresponding value of y, which increases accordingly from 0 to k^{-1} , a limit which tends towards ∞ if k tends towards 0. When h = -k, $y = k^{-1}(x^k - 1)x^{-k}$, which differs only by the factor x^{-k} from the value of y when h = k. The smaller k is taken, the nearer this factor is to 1, so that the limit of the value of y, for h = 0, is the same whether h is positive or negative, while

$$y_{[h<0]} < \lim_{h=0} y < y_{[h>0]}$$
.

The limit is therefore a 1 to 1 function of x > 1. When x = 1, the limit is 0. When 0 < x < 1, let $x = u^{-1}$, where u > 1; then we have $h^{-1}(x^{h} - 1) = h^{-1}(1 - u^{h})x^{h}$, and, since $\lim_{h = 0} x^{h} = 1$, $\lim_{h = 0} h^{-1}(x^{h} - 1) = -\lim_{h = 0} h^{-1}(u^{h} - 1)$.

Let us define the logarithm of x (positive) as $\lim_{h=0}^{\lim} h^{-1}(x^h - 1)$, and denote it by log x. We have just found that log (x^{-1}) $= -\log x$. Since $\lim_{h=0}^{\lim} b^h = 1$,

$$\log a = \lim_{h=0}^{\lim} h^{-1}(a^h b^h - b^h) = \log (ab) - \log b.$$

This is the chief property of logarithms. Hence, $\log (a^2) = 2 \log a$, $\log (a^n) = n \log a$, and if $b = a^n$, $\log (b^{1/n}) = 1/n \log b$, which might be used, as by Mr. Bradshaw from another definition of log x, to show that for every positive number b there exists one and only one positive nth root. Here n is a whole number. It follows that $\log b^{m/n} = m \log (b^{1/n}) = m/n \log b$. If we take n incommensurable, let $a = b^m$, where m is an integer, b = 1 + c, and -1 < c < 1. Employing the binomial expansion,

$$\log (b^n) = \lim_{h=0}^{\lim} h^{-1} \left[(1+c)^{nh} - 1 \right] = n(c - \frac{1}{2}c^2 + \frac{1}{3}c^3 - \cdots)$$
$$= n \log (1+c) = n \log b.$$

Hence

$$\log (a^n) = \log (b^{mn}) = m \log (b^n) = nm \log b = n \log a.$$

That the continuous function log x has a continuous derivative x^{-1} may be shown thus, with $\Delta x < x$:

$$\frac{d \log x}{dx} = \lim_{\Delta x=0} \lim_{h=0} h^{-1} (\Delta x)^{-1} [(x + \Delta x)^h - x^h].$$

If we expand the part within the brackets and divide the resulting series throughout by $h\Delta x$, we have

$$\frac{d\log x}{dx} = \lim_{\Delta x=0} \lim_{h=0} \left[x^{h-1} + \frac{1}{2}(h-1)(\Delta x)x^{h-2} + \frac{1}{2\cdot 3}(h-1)(h-2)(\Delta x)^2 x^{h-3} + \cdots \right].$$

If we first put h = 0, the part within brackets becomes $x^{-1} - \frac{1}{2}(\Delta x)x^{-2} + \frac{1}{3}(\Delta x)^2x^{-3} - \cdots$, which is x^{-1} when $\Delta x = 0$. If we first put $\Delta x = 0$, the part within brackets becomes x^{h-1} , which is x^{-1} when h = 0.