The necessary condition that (1) and (2) have two integrals in common is that, in the following matrix obtained by successive differentiation,

$$
\left\{\begin{array}{cccccc}
\alpha_{0} & \alpha_{0}^{\prime}+\alpha_{1} & \alpha_{1}^{\prime}+\alpha_{2} & \alpha_{2}^{\prime}+\alpha_{3} & \alpha_{0}^{\prime}+\alpha_{4} & \alpha_{4}^{\prime} \\
0 & \alpha_{0} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\
\beta_{0} & 2 \beta_{0}^{\prime}+\beta_{1} & \beta_{0}^{\prime \prime}+2 \beta_{1}^{\prime}+\beta_{2} & \beta_{1}^{\prime \prime}+2 \beta_{2}^{\prime}+\beta_{3} & \beta_{2}^{\prime \prime}+2 \beta_{3}^{\prime} & \beta_{3}^{\prime \prime} \\
0 & \beta_{0} & \beta_{0}^{\prime}+\beta_{1} & \beta_{1}^{\prime}+\beta_{2} & \beta_{2}^{\prime}+\beta_{3} & \beta_{3}^{\prime} \\
0 & 0 & \beta_{0} & \beta_{1} & \beta_{2} & \beta_{3}
\end{array}\right\},
$$

the determinant consisting of the first five columns, and also that consisting of the first four columns and the sixth, shall vanish identically.
F. N. Cole.

Columbia University.

TWO SYSTEMS OF SUBGROUPS OF THE QUATERNARY ABELIAN GROUP IN A GENERAL GALOIS FIELD.

by PROFESSOR L. E. DICKSON.
(Read before the American Mathematical Society, August 31, 1903.)

1. Consider first the group G_{ω} composed of the

$$
\omega=p^{4 n}\left(p^{2 n}-1\right)\left(p^{n}-1\right)
$$

operators of the homogeneous quaternary abelian group in the $G F\left[p^{n}\right], p>2$, which multiply the variable η_{1} by a constant. Those of its operators which leave ξ_{1} and η_{1} unaltered are given the notation

$$
\left[\begin{array}{ll}
a & \gamma \\
\beta & \delta
\end{array}\right]: \begin{aligned}
& \xi_{2}^{\prime}=a \xi_{2}+\gamma \eta_{2}, \\
& \eta_{2}^{\prime}=\beta \xi_{2}+\delta \eta_{2}
\end{aligned} \quad(a \delta-\dot{\beta} \gamma=1)
$$

Certain other operators of G_{ω} are given the notation

$$
[k, a, c, \gamma]=\left(\left.\begin{array}{cccc}
1 & k & a & c \\
0 & 1 & 0 & 0 \\
0 & c-\gamma a & 1 & \gamma \\
0 & -a & 0 & 1
\end{array} \right\rvert\,\right.
$$

They form a group of order $p^{4 n}$, as shown elsewhere by the writer.* The general operator of G_{ω} may now be exhibited as either of the products
$T_{1, \tau}[k, a, c, 0]\left[\begin{array}{ll}a & \gamma \\ \beta & \delta\end{array}\right], \quad T_{1, \tau}\left[\begin{array}{ll}a & \gamma \\ \beta & \delta\end{array}\right][k,-\beta c+\delta a, a c-\gamma a, 0]$. Now $T_{1, \tau} T_{2, \sigma}$ transforms [$\left.k, a, c, \gamma\right]$ into $\left[k \tau^{2}, a \tau \sigma^{-1}, c \tau \sigma, \gamma \sigma^{2}\right]$. The operators [$k, a, c, 0]$ are seen to form a group $G_{p^{3 n}}$. The $T_{1, \tau}$ extend the latter to $G_{p^{3 n\left(p^{n}-1\right)}}$. Hence the groups $G_{p^{3 n}}$ and $G_{p^{3 n\left(p^{n}-1\right)}}$ are self-conjugate under G_{ω}.

The quotient group $G_{\omega} / G_{p^{3 n}\left(p^{n-1)}\right.}$ may be taken concretely as the group $\Gamma_{p^{n\left(p^{2 n-1)}\right.}}$ of the binary substitutions $\left[\begin{array}{c}\alpha \\ \beta\end{array} \gamma\right]$. To a subgroup of order μ of the latter corresponds a subgroup of order $\mu p^{3 n}\left(p^{n}-1\right)$ of G_{ω}. We obtain subgroups of order $d \mu p^{3 n}$ of G_{ω}, where d is any divisor of $p^{n}-1$, by restricting τ in $T_{1, \tau}$ to marks which define a cyclic subgroup of order d of the cyclic group of all the $p^{n}-1$ operators $T_{1, \tau^{*}}$. If the subgroup of order μ is self-conjugate under Γ, the corresponding subgroup is self-conjugate under G_{ω}. This follows from the theory of isomorphism, or directly, since $[k, a, c, 0]$ transforms $\left[\begin{array}{ll}a & \\ \beta & \gamma\end{array}\right]$ into
$\left[\gamma a^{2}-\beta c^{2}+\delta a c-a \alpha c, \beta c+a a-a, \gamma \alpha+\delta c-c, 0\right]\left[\begin{array}{ll}a & \gamma \\ \beta & \delta\end{array}\right]$.
2. As the first example, let $p^{n}=3$. Then Γ is of order 24. Now Γ_{24} contains a self-conjugate Γ_{2}, a self-conjugate Γ_{8}, one set of 3 conjugate cyclic Γ_{4}, one set of 4 conjugate Γ_{3}, one set of 4 conjugate cyclic Γ_{6}, but no further subgroups. \dagger Hence G_{ω} contains subgroups $G_{54 \mu}, \mu=1,2,3,4,6,8$. Within $G_{\omega}, G_{54}, G_{54.2}$ and $G_{54.8}$ are, therefore, self-conjugate, while $G_{54.3}$ and $G_{54.6}$ are self-conjugate only under $G_{54.6}$, and $G_{54.4}$ only under $G_{54.8}$.
3. Let next $p^{n}=5$. Denote the general substitution of F_{120} by

$$
S=\left[\begin{array}{ll}
a & \gamma \tag{1}\\
\beta & \delta
\end{array}\right], \quad a \delta-\beta \gamma \equiv 1(\bmod 5)
$$

If the characteristic determinant $D(k) \equiv k^{2}-(a+\delta) k+1$ of S is irreducible modulo $5, S$ is conjugate within Γ_{120} with one of the canonical forms \ddagger

[^0]\[

S_{3}=\left[$$
\begin{array}{ll}
-1 & 1 \tag{2}\\
-1 & 0
\end{array}
$$\right], \quad S_{6}=\left[$$
\begin{array}{rr}
0 & 1 \\
-1 & 1
\end{array}
$$\right]
\]

The only substitutions of Γ_{120} commutative with S_{6} are its powers

$$
\left[\begin{array}{cc}
a & \gamma \tag{3}\\
-\gamma & a+\gamma
\end{array}\right], \quad\left(a^{2}+a \gamma+\gamma^{2} \equiv 1\right)
$$

The only ones commutative with S_{3} are (3). If $D(k)$ is reducible modulo $5, S$ is conjugate within Γ_{120} with one of the canonical forms

$$
\begin{align*}
& I, \quad S_{2}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right], \quad S_{4}=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right], \quad S_{5}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \\
& S_{10}=\left[\begin{array}{rr}
-1 & 0 \\
-1 & -1
\end{array}\right], \quad S_{10}^{\prime}=\left[\begin{array}{rr}
-1 & 0 \\
-2 & -1
\end{array}\right], \quad S_{5}^{\prime}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] . \tag{4}
\end{align*}
$$

Indeed, S_{10} is conjugate with $\left[\begin{array}{cc}-1 & 0 \\ -1 & -1\end{array}\right]$ within Γ_{120} if and only if t is a quadratic residue of 5 . Further,

$$
\begin{equation*}
S_{10}^{2}=S_{5}^{\prime}, \quad S_{10}^{5}=S_{2}, \quad S_{10}^{6}=S_{5}, \quad S_{10}^{7}=S_{10}^{\prime}, \quad S_{10}^{\prime 6}=S_{5}^{\prime} \tag{5}
\end{equation*}
$$

Now S_{4} is commutative only with its powers, and

$$
\left[\begin{array}{cr}
\pm 1 & 0 \\
\pm t & \pm 1
\end{array}\right] \text { only with }\left[\begin{array}{ll}
a & 0 \\
\beta & a
\end{array}\right], \quad\left(a^{2} \equiv 1\right)
$$

Theorem: The group Γ_{120} of all binary substitutions of determinant unity modulo 5 contains, in addition to the identity and the self-conjugate substitution S_{2}, one set of 20 conjugate substitutions of period 3, one set of 20 of period 6, one set of 30 of period 4, two sets each of 12 of period 5 , and two sets each of 12 of period 10.

The only substitutions of Γ_{120} which transform S_{6} into its inverse are

$$
\left[\begin{array}{lr}
\alpha & \gamma \tag{6}\\
\alpha+\gamma & -\alpha
\end{array}\right], \quad\left(-\alpha^{2}-\alpha \gamma-\gamma^{2} \equiv 1\right)
$$

each of period 4. Denote by Γ_{12} the group formed by the substitutions (3) and (6). Denote by Γ_{20} the group formed by the powers of S_{10} and the 10 substitutions $\left[\begin{array}{cc} \pm 2 & { }_{\beta}^{0} \\ \hline 0\end{array}\right]$ of period 4 which transform S_{10} into its inverse. Denote by Γ_{8} the group of the powers of S_{4} and the substitutions $\left[\begin{array}{cc}0 & \gamma \\ -\gamma^{-1} & \gamma\end{array}\right]$ of period 4 which
transform S_{4} into its inverse. Since Γ_{8} contains 3 groups of order 4 conjugate within Γ_{120}, it is self-conjugate under a subgroup Γ_{24}. Finally, denote by C_{i} the cyclic group generated by S_{i}.

We proceed to show that every subgroup of Γ_{120} is conjugate with one of the preceding. This has already been shown for the cyclic groups, and is evident for groups of orders 8,20 and 40. A subgroup of order 10 is necessarily cyclic. A subgroup of order 12 contains 3 conjugate cyclic groups of order 4 and hence a single cyclic group of order 3 , so that it is conjugate with Γ_{12}. A group of order 15 is cyclic and hence cannot be a subgroup. A subgroup of order 24 has 1 or 3 conjugate groups of order 8 ; if 1 , it is conjugate with Γ_{24}; if 3 , the group transforming each into itself is a self-conjugate subgroup of order 4 of the group of order 24, contrary to the above. There is no subgroup of order 30 , since it would contain 6 cyclic $G_{5}, 10$ cyclic G_{3}, and $15 G_{2}$. There is no subgroup of order 60 , since it would contain 6 cyclic $G_{5}, 10$ cyclic G_{3}, and 15 cyclic G_{4}.

Theorem.* The subgroups of Γ_{120}, aside from itself and identity, are conjugate with $C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, \Gamma_{8}, C_{10}, \Gamma_{12}, \Gamma_{20}$, Γ_{24}. Within Γ_{120}, the largest groups in which these are self conjugate are $\Gamma_{120}, \Gamma_{12}, \Gamma_{8}, \Gamma_{20}, \Gamma_{12}, \Gamma_{24}, \Gamma_{20}, \Gamma_{12}, \Gamma_{20}, \Gamma_{24}$, respectively.

We may derive from $\S 1$ the following subgroups of G_{ω} : $G_{\text {เоо } \mu}(\mu=1,2,3,4,5,6,8,10,12,20,24)$.
Within G_{ω}, G_{500} and $G_{500.2}$ are self-conjugate, while the others are self-conjugate only under the respective groups $G_{500 \lambda}(\lambda=12,8,20,12,24,20,12,20,24)$.
4. Consider next the group H_{ω} of homogeneous quaternary abelian substitutions \dagger in the $G F\left[p^{n}\right], p>2$, subject to the condition that two variables η_{1} and η_{2} are replaced by linear functions of themselves

$$
\left[\begin{array}{llll}
\alpha_{11} & \gamma_{11} & \alpha_{12} & \gamma_{12} \tag{7}\\
0 & \delta_{11} & 0 & \delta_{12} \\
\alpha_{21} & \gamma_{21} & \alpha_{22} & \gamma_{22} \\
0 & \delta_{21} & 0 & \delta_{22}
\end{array}\right] .
$$

[^1]If each $\gamma_{i j}=0,(7)$ becomes, in view of the abelian conditions,

$$
\left(\begin{array}{cccc}
\delta_{22} / \Delta & 0 & -\delta_{21} / \Delta & 0 \tag{8}\\
0 & \delta_{11} & 0 & \delta_{12} \\
-\delta_{12} / \Delta & 0 & \delta_{11} / \Delta & 0 \\
0 & \delta_{21} & 0 & \delta_{22}
\end{array}\right), \quad\left(\Delta=\delta_{11} \delta_{22}-\delta_{12} \delta_{21}\right)
$$

The substitutions (8) form a group H_{ρ} of order

$$
\rho=\left(p^{2 n}-1\right)\left(p^{2 n}-p^{n}\right),
$$

simply isomorphic with the group of all binary substitutions (of general determinant) in the $G \bar{F}\left[p^{n}\right]$. Giving therefore to (8) the notation $\left(\begin{array}{l}\delta_{11} \\ \delta_{21} \\ \delta_{22} \\ \delta_{22}\end{array}\right)$, we find that $\left(\begin{array}{l}\delta_{11} \\ \delta_{21} \\ \delta_{22}\end{array}\right)[k, 0, c, \gamma]$ is identical with (7) if

$$
\begin{array}{ll}
\gamma_{11}=k \delta_{11}+c \delta_{21}, & \gamma_{21}=c \delta_{11}+\gamma \delta_{21} \\
\gamma_{12}=k \delta_{12}+c \delta_{22}, & \gamma_{22}=c \delta_{12}+\gamma \delta_{22}
\end{array}
$$

Inversely, every operator (7) may be obtained as such a product. Indeed, the four last conditions may be written
$k \Delta=\left|\begin{array}{ll}\gamma_{11} & \delta_{21} \\ \gamma_{12} & \delta_{22}\end{array}\right|, \quad c \Delta=\left|\begin{array}{ll}\delta_{11} & \gamma_{11} \\ \delta_{12} & \gamma_{12}\end{array}\right|, \quad c \Delta=\left|\begin{array}{ll}\gamma_{21} & \delta_{21} \\ \gamma_{22} & \delta_{22}\end{array}\right|, \quad \gamma \Delta=\left|\begin{array}{ll}\delta_{11} & \gamma_{21} \\ \delta_{12} & \gamma_{22}\end{array}\right|$.
These determine k, c and γ uniquely, the two values for c being equal in view of the abelian relation (C_{23} in the notation of Linear Groups, page 91)

$$
\left|\begin{array}{c}
\gamma_{11} \gamma_{12} \\
\delta_{11} \\
\delta_{12}
\end{array}\right|+\left|\begin{array}{c}
\gamma_{21} \gamma_{22} \\
\delta_{21} \delta_{22}
\end{array}\right|=0
$$

By bringing the $\alpha_{i j}$ to the foreground in place of the $\delta_{i j}$, we may reverse the order of the factors and give (7) the form

$$
\left[k^{\prime}, 0, c^{\prime}, \gamma^{\prime}\right]\binom{\delta_{11} \delta_{12}}{\delta_{21} \delta_{22}}, \quad \gamma_{11}=k^{\prime} \alpha_{11}+c^{\prime} \alpha_{12}, \text { etc. }
$$

Hence the commutative * group $K_{p^{3 n}}$ of the substitutions $[k, 0, c, \gamma]$ is self-conjugate under H_{ω}. The quotient group may be taken concretely as H_{ρ}. To a subgroup H_{r} of H_{ρ} corre-

[^2]sponds a subgroup $H_{r p^{3 n}}$ of H_{ω}. For the cases $p^{n}=3$ and $p^{n}=5$, we may apply at once the results of $\S \S 2$ and 3.
5. The results thus far obtained may be applied to the simple group given as the quotient group of the homogeneous abelian group by the group composed of the identity and the substitution C which changes the sign of each variable. From G_{ω} and H_{ω}, we obtain $G_{1 / 2 \omega}^{\prime}$ and $H_{1 / \omega \omega}^{\prime}$, respectively. For $p^{n}=3$, $G_{1 / 2 \omega}^{\prime}$, namely G_{648}^{\prime}, has subgroups $G_{27 \mu}^{\prime}, \mu=1,2,3,4,6$, $8(\S 2)$. For $p^{n}=5, G_{30000}^{\prime}$ has subgroups $G_{250 \mu}^{\prime}, \mu=1,2,3$, $4,5,6,8,10,12,20,24(\S 3)$.

Let H_{ρ} correspond to $H_{1 / 2 \rho}^{\prime}$. For $p^{n}=3, H_{24}^{\prime}$ is simply isomorphic with the group of all linear fractional substitutions $\left(\frac{\delta_{11} \delta_{12}}{\delta_{21} \delta_{22}}\right)$ modulo 3. But the latter is simply isomorphic with the symmetric group G_{24} on four letters. The latter has the following non-conjugate subgroups, in addition to identity, itself, and the alternating group G_{12} :
$G_{2}=\{I,(13)\} ; G_{3}=\{I,(123),(132)\} ;$
$G_{6}=\{I,(123),(132),(12),(13),(23)\} ;$
$G_{2}^{\prime}=\{I,(13)(24)\} ; G_{4}=\{I,(13),(24),(13)(24)\} ;$
$G_{4}^{\prime}=\{I,(12)(34),(13)(24),(14)(23)\} ;$
$G_{4}^{\prime \prime}=\{I,(1234),(13)(24),(1432)\} ;$
$G_{8}=\{I,(1234),(1432),(13)(24),(12)(34),(14)(23),(13)(24) ;$
every subgroup being conjugate within G_{24} with one of the foregoing. Then $* G_{2}$ is self-conjugate only under G_{4}, G_{3} only under G_{6}, G_{6} only under G_{6}, G_{2}^{\prime} only under G_{8}, G_{4} only under G_{8}, G_{4}^{\prime} only under $G_{24}, G_{4}^{\prime \prime}$ only under G_{8}, G_{8} only under G_{8}, G_{12} only under G_{24}.

In passing to the subgroups of H_{24}^{\prime}, it is convenient to make the letters $1,2,3,4$ correspond to the respective marks 1 , $-1,0, \infty$. Then
$\begin{array}{ll}(12) \sim z^{\prime}=-z, \quad(13) \sim z^{\prime}=-z+1, \quad(34) \sim z^{\prime}=1 / z, \\ & (23) \sim z^{\prime}=-z-1, \quad(24) \sim z^{\prime}=-z /(z+1),(14) \sim z /(z-1) .\end{array}$
(23) $\sim z^{\prime}=-z-1,(24) \sim z^{\prime}=-z /(z+1),(14) \sim z /(z-1)$.

[^3]Theorem. Every subgroup of H_{24}^{\prime} is conjugate with H_{24}^{\prime}, H_{12} (group of all of determinant +1), identity, or one of the following:

$$
\begin{aligned}
& H_{2}=\left\{I,\left(\frac{-11}{01}\right)\right\} ; H_{3}=\left\{\left(\frac{1 \delta}{01}\right)\right\} ; H_{6}=\left\{\left(\frac{ \pm 1 \delta}{01}\right)\right\} ; \\
& H_{2}^{\prime}=\left\{I,\left(\frac{-11}{11}\right)\right\} ; H_{4}^{\prime}=\left\{I,\left(\frac{-11}{01}\right),\left(\frac{-11}{01}\right),\left(\frac{-11}{11}\right)\right\} ; \\
& H_{4}=\left\{I,\left(\frac{0-1}{100}\right),\left(\frac{ \pm 1}{1 \mp 1}\right)\right\} ; \\
& H_{4}^{\prime \prime}=\left\{I,\left(\frac{11}{10}\right),\left(\frac{0}{1-1}\right),\left(\frac{-11}{11}\right)\right\} ; \\
& H_{8}=\left\{I,\left(\frac{0-1}{10}\right),\left(\frac{11}{10}\right),\left(\frac{-11}{01}\right),\left(\frac{-10}{11}\right),\right. \\
& \left.\left(\frac{0}{1-1}\right),\left(\frac{ \pm 1}{1 \mp 1}\right)\right\}
\end{aligned}
$$

Moreover, H_{2} is self-conjugate only under $H_{4}^{\prime} ; H_{3}$ only under $H_{6} ; H_{2}^{\prime}, H_{4}^{\prime}$ and $H_{4}^{\prime \prime}$ are self-conjugate only under $H_{8} ; H_{6}$ and H_{8} only under themselves; H_{4} and H_{12} only under H_{24}.

To the preceding subgroups $H_{12}, H_{2}, H_{3}, \cdots, H_{8}$ of H_{24}^{\prime} correspond subgroups $H_{27 \cdot 12}, H_{27 \cdot 2}, H_{27 \cdot 3}, H_{27 \cdot 6}, H_{27 \cdot 2}^{\prime}, H_{27 \cdot 4}^{\prime}, H_{27 \cdot 4}$, $H_{27.4}^{\prime \prime}, H_{27.8}$, respectively, of $H_{1 / 2 \omega}^{\prime} \equiv H_{648^{\circ}}^{27}$ Within the latter, they are self-conjugate only under $H_{648}^{648}, H_{27.4}^{\prime}, H_{27.6}, H_{27.6}$, $H_{27.8}, H_{27.8}, H_{648}^{\prime}, H_{27.8}, H_{27.8}$, respectively.

The University of Chicago,
July, 1903.

[^0]: *Transactions, vol. 4 (1903), pp. 371-386.
 \dagger Dickson, Annals of Mathematics, vol. 5 (1903-4).
 \ddagger Dickson, Transactions, vol. 2 (1901), p. 117. Instead of $S_{3}^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]$, we employ its transform S_{3} by $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. In the $G F\left[5^{2}\right], S_{3}$ and S_{6} may both be given ultimate canonical forms of the type $\left[\begin{array}{cc}k & 0 \\ 0 & k_{-1}\end{array}\right], k^{6}=1$.

[^1]: * By way of check, we note that the simple $G_{60}=\Gamma_{120} / C_{2}$ has subgroups only of the orders $2,3,4,5,6,10$ and 12 , those of orders 6 and 10 being dihedral.
 \dagger Given by formula (19), without the sign \pm, page 380, Transactions, vol. 4 (1903).

[^2]: * Transactions, vol. 4 (1903), formula (12), p. 377.

[^3]: * That the chosen groups, and not some of their conjugates, appear as the largest groups in which the types are self-conjugate is a result of the notation used.

